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CAS

Computer Algebra Systems
⇓

Formalize, encode mathematical objects
and Compute

Examples :

Formalize operations and factorize, expand expressions

Formalize polynomials and find their roots (as expressions of
the coefficients)
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Proof Assistant : formalize more

Allows to formalize a bit more :

abstract algebraic structures (e.g. groups, rings, etc ...)

logics and statements (theorems, properties, etc ...)

proofs

...
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Proof Assistant : compute too

Allows to compute : evaluate function calls
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Proof Assistant : prove

Allows to write proofs and verify them
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Aim

First Order Theory of Algebraically Closed Fields
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First order formulas

terms :
t ::= x | k | t1 + t2 | − t | t1 · t2 | t−1

where x is a variable and k ∈ F

formulas :

φ ::= t1 = t2 | > |⊥ |φ1∧φ2 |φ1∨φ2 |φ1 ⇒ φ2 | ¬φ | ∃x , φ | ∀x , φ

Formalized (encoded) in Coq
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First order logic

No quantification on predicates, functions or families.

Example :

∀x y , ∃z , z ∗ x = y is a first order formula

∀P,∃x ,P(x) = 0 isn’t,

even if P is only a polynomial : in

∀n,∀a0 . . . an,∃x ,
n∑

i=0

aix
i = 0

the number of coefficients depend on n.
except if n is fixed ...
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Axiom schema

A formula for each n :

∀a0 a1, a1 6= 0⇒ ∃x , a1x + a0 = 0

∀a0 a1 a2, a2 6= 0⇒ ∃x , a2x
2 + a1x + a0 = 0

∀a0 a1 a2 a3, a3 6= 0⇒ ∃x , a3x
3 + a2x

2 + a1x + a0 = 0

. . .

Expresses that any non constant polynomial has a root.
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Algebraically closed field

Field axioms
+

Any non constant polynomial has a root

Formalized (encoded) in Coq
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Deciding First Order Formulas

Goal :

Given first order formula
(e.g. ∀y , xy = 0 ∨ (∃z , zx = 1 ∧ x = z + 2))

Given an evaluation of the parameters (e.g. x)

Decide whether the formula is true of false.

Coq function :

input : formal formula and values for parameters

output : true or false

Cyril Cohen, Assia Mahboubi A formal quantifier elimination for algebraically closed fields



Deciding First Order Formulas

Goal :

Given first order formula
(e.g. ∀y , xy = 0 ∨ (∃z , zx = 1 ∧ x = z + 2))

Given an evaluation of the parameters (e.g. x)

Decide whether the formula is true of false.

Coq function :

input : formal formula and values for parameters

output : true or false

Cyril Cohen, Assia Mahboubi A formal quantifier elimination for algebraically closed fields



Quantifier Elimination (entails decidability)

∀y , xy = 0 ∨ (∃z , zx = 1 ∧ x = z + 2)input :

x = 0 ∨ x = 1 ∨ x = 2output :

(equivalent formulation, quantifier free)

q_elim
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Quantifier Elimination (entails decidability)

∀y , xy = 0 ∨ (∃z , zx = 1 ∧ x = z + 2)input :

x = 0 ∨ x = 1 ∨ x = 2output :

(equivalent formulation, quantifier free)

q_elim

(For algebraically and real clo-
sed fields : Tarski 1957)
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Proof Assistant

Program

q_elim

Datatypes

mathematical objects (polynomials, formulas)
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Proof Assistant

Program

q_elim

Datatypes

mathematical objects (polynomials, formulas)

Formal proof

q_elim preserves the
validity of a formula

+

Coq
(high order)
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Reducing the problem : eliminating an ∃x

Build a function proj that turns a formula ∃x , φ, where φ is
quantifier free, into a quantifier free formula.

Then we can define qelim by :

qelim(∃x , φ) = proj(∃x , qelim(φ))

qelim(∀x , φ) = ¬proj(∃x , qelim(¬φ))

qelim(φ) = φ if φ is an atom

qelim(φ ∧ ψ) = qelim(φ) ∧ qelim(ψ)

qelim(φ ∨ ψ) = qelim(φ) ∨ qelim(ψ)

qelim(¬φ) = ¬qelim(φ)
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Reducing the problem : input of proj

Without loss of generality, we can suppose that the argument ∃x , φ
of proj is of the form :

∃x ,
∧
i

pi (x) = 0 ∧
∧
j

qj(x) 6= 1

Where pi and pj are polynomials.
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Finding the output formula

Find a formula that tells whether :
∃x ,
∧
i

pi (x) = 0 ∧
∧
j

qj(x) 6= 0 is true.

Algebraic characterization : size
(
gdco∏

j qj
(gcd(pi ))

)
6= 1

But this characterization is not a first order formula as such
(size, gdco, gcd defined by schemata)
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Finding the output formula : example

Example :
∃x , xy + 1 = 0

Algebraic characterization :

size(yX + 1) 6= 1

⇒ How to express it as a first order formula ?

Intuitively : y 6= 0
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Transformation : what ?

We know the program that computes the truth value of :

size
(
gdco∏

i qi
(gcd(pi ))

)
6= 1

Transform it into a program that returns a formula

Characterize the space of parameters
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Transformation : how ?

Using Continuation Passing Style !

Turn
F : (a : A)→ B

into :

Fcps : (a : A)→ (k : (B → formula))→ formula

k is called continuation
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example : handling the degree during a computation

function size_cps : input p, k

if p is a*X^n + q (a = leading coef of p)

then return ( a != 0 /\ k(n+1) )

\/ ( a = 0 /\ size_cps(q,k) )

else return k(0)
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example : ∃x , xy + 1 = 0

sizecps(yX + 1; k) where k(n) := (n 6= 1)

= (y 6= 0 ∧ k(2)) ∨ (y = 0 ∧ sizecps(1; k))
= (y 6= 0 ∧ k(2)) ∨ (y = 0 ∧ (1 6= 0 ∧ k(1)) ∨ (1 = 0 ∧ sizecps(0; k)))
= (y 6= 0 ∧ k(2)) ∨ (y = 0 ∧ ((1 6= 0 ∧ k(1)) ∨ (1 = 0 ∧ k(0))))
= (y 6= 0 ∧ 2 6= 1) ∨ (y = 0 ∧ ((1 6= 0 ∧ 1 6= 1) ∨ (1 = 0 ∧ 0 6= 1)))
∼ y 6= 0 (as foreseen intuitively)
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Conclusion

We had a procedure and its proof on the paper

Contributions

We write the quantifier elimination procedure and prove it
formally
We show how to turn a boolean procedure into a procedure
that outputs a formula, using CPS.
We show that CPS is a useful tool to program and prove this
kind of procedures

The procedure is not able to compute in reasonable time yet,
because we used naive procedures to compute division, gcd,
etc ...
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Future work

Make the procedure compute in reasonable time

Reuse the CPS trick for Real Closed Fields
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The End

Thank you for your attention. Any questions ?
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