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An example

∀x ∈ R,
(
x > 0⇒ ∃y ∈ R, (y 2 ≤ x ∧ y 5 − y + 3x = 0)

)
Question : is it true or false ?

Yes ! It is true or false

Can we decide this kind of problem ?

⇒ Yes, by eliminating quantifiers

Is there an efficient algorithm ?
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The problem we would like to solve

Quantifier elimination procedure for first order formulas on
classical real numbers and involving the following
constructions:

field operations (+, −, ×, . . .)

equality and comparison

Formalised and verified in Coq
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Reducing the problem

We reduced the problem to eliminating “∃x” in :

∃x ,P(x) = 0 ∧
∧

Qi(x) > 0

Sketch of the solution from there:

Count the number of roots x of P
such that for all i , Qi(x) > 0

if it is positive then it is true, else it is false
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Case of one variable

∃x ,P(x) = 0 ∧
∧

Qi(x) > 0

with P , Qi ∈ R[X ]

getting the roots : OK (root finding procedure)

testing the signs of the Qi : OK
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Case of multiple variables

∃x ,P(x) = 0 ∧
∧

Qi(x) > 0

with P , Qi ∈ R[X1, . . . ,Xn][X ]

We need a characterisation of the existence of a solution,
using an algebraic combinations of the variables.
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Tarski query

Definition :

TQ(P ,Q) =
∑

x∈roots(P)

sign (Q(x))

We showed we can characterise algebraically the sign of
this quantity using the Xj
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Constraints

So we have :

TQ(P ,Q) =
∑

x∈roots(P)

sign (Q(x))

And want to know whether :

∃x ,P(x) = 0 ∧
∧

Qi(x) > 0

i.e. whether  ∑
x∈roots(P)

[∀i ,Qi(x) > 0]

 > 0

with [true] = 1 and [false] = 0
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If only one Qi

∃x ,P(x) = 0 ∧ Q(x) > 0

We need :

C1(P ,Q) :=

∑
x∈roots(P)

[Q(x) > 0]

with ε ∈ {1,−1, 0}
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If only one Qi
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If only one Qi

∃x ,P(x) = 0 ∧ Q(x) > 0

We need :

Cε(P ,Q) :=
∑

x∈roots(P)

[sign (Q(x)) = ε]

with ε ∈ {1,−1, 0}
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Relating TQ and Cε

TQ(P ,Q) =
∑

x∈roots(P)

sign (Q(x))

We omit Q for the sake of readability
with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQ(P) =
∑

x∈roots(P)

sign (Q(x))

We omit Q for the sake of readability

with z = roots(P)
We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz =
∑
x∈z

sign (Q(x))

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz =
∑

x∈z∧Q(x)>0

sign (Q(x)) +
∑

x∈z∧Q(x)<0

sign (Q(x))

TQz(Q2) = C1
z(Q) + C−1

z (Q)
TQz(1) = C1

z(Q) + C−1
z (Q) + C0

z(Q)

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz =
∑

x∈z∧Q(x)>0

1 +
∑

x∈z∧Q(x)<0

− 1

TQz(Q2) = C1
z(Q) + C−1

z (Q)
TQz(1) = C1

z(Q) + C−1
z (Q) + C0

z(Q)

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz =
∑

x∈z∧Q(x)>0

1 −
∑

x∈z∧Q(x)<0

1

TQz(Q2) = C1
z(Q) + C−1

z (Q)
TQz(1) = C1

z(Q) + C−1
z (Q) + C0

z(Q)

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz =
∑
x∈z

[Q(x) > 0] −
∑
x∈z

[Q(x) < 0]

TQz(Q2) = C1
z(Q) + C−1

z (Q)
TQz(1) = C1

z(Q) + C−1
z (Q) + C0

z(Q)

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz =
∑
x∈z

[sign (Q(x)) = 1] −
∑
x∈z

[sign (Q(x)) = −1]

TQz(Q2) = C1
z(Q) + C−1

z (Q)
TQz(1) = C1

z(Q) + C−1
z (Q) + C0

z(Q)

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz = C1
z − C−1

z

TQz(Q2) = C1
z(Q) + C−1

z (Q)
TQz(1) = C1

z(Q) + C−1
z (Q) + C0

z(Q)

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz(Q) = C1
z(Q) − C−1

z (Q)

TQz(Q2) = C1
z(Q) + C−1

z (Q)
TQz(1) = C1

z(Q) + C−1
z (Q) + C0

z(Q)

We omit Q for the sake of readability

with z = roots(P)
We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz(Q) = C1
z(Q) − C−1

z (Q)
TQz(Q2) = C1

z(Q) + C−1
z (Q)

TQz(1) = C1
z(Q) + C−1

z (Q) + C0
z(Q)

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Relating TQ and Cε

TQz(Q) = C1
z(Q) − C−1

z (Q)
TQz(Q2) = C1

z(Q) + C−1
z (Q)

TQz(1) = C1
z(Q) + C−1

z (Q) + C0
z(Q)

We omit Q for the sake of readability

with z = roots(P)

We restore the “ printing” of Q

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Matricial equation

TQz(Q)
TQz(Q2)
TQz(1)

 =

1 −1 0
1 1 0
1 1 1

 C1
z(Q)

C−1
z (Q)
C0

z(Q)


with z = roots(P)

∣∣∣∣∣∣
1 −1 0
1 1 0
1 1 1

∣∣∣∣∣∣ = 2
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Matricial equation
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 =

1 −1 0
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 C1
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C−1
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
with z = roots(P)1 −1 0

1 1 0
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For many Qi

We generalise Cε again :

Cε1,...,εn(P ,Q1, . . . ,Qn) =
∑

x∈roots(P)

[∀i , sign (Qi(x)) = εi ]
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Matricial system



TQz (Q1Q2)
TQz (Q2

1Q2)
TQz (Q2)

TQz (Q1Q
2
2 )

TQz (Q2
1Q

2
2 )

TQz (Q2
2 )

TQz (Q1)
TQz (Q2

2 )
TQz (1)

 =



1 −1 0 −1 1 0 0 0 0
1 1 0 −1 −1 0 0 0 0
1 1 1 −1 −1 −1 0 0 0
1 −1 0 1 −1 0 0 0 0
1 1 0 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0
1 −1 0 1 −1 0 1 −1 0
1 1 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1





C1,1
z (Q1,Q2)

C−1,1
z (Q1,Q2)

C0,1
z (Q1,Q2)

C1,−1
z (Q1,Q2)

C−1,−1
z (Q1,Q2)
C0,−1

z (Q1,Q2)

C1,0
z (Q1,Q2)

C−1,0
z (Q1,Q2)

C0,0
z (Q1,Q2)


with z = roots(P)
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Matricial system

Example with 2 polynomials Qi
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2
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1 1 0
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



C1,1
z (Q1,Q2)

C−1,1
z (Q1,Q2)
C0,1

z (Q1,Q2)
C1,−1

z (Q1,Q2)
C−1,−1

z (Q1,Q2)
C0,−1

z (Q1,Q2)
C1,0

z (Q1,Q2)
C−1,0

z (Q1,Q2)
C0,0

z (Q1,Q2)


with z = roots(P)
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We formalised in Coq

Ordered structures :

lots of lemmas : good statements and good naming
conventions

intervals and neighbourhoods infrastructure

Polynomials

properties about pseudo-division

properties about roots and multiplicity

root finding using dichotomy, neighbourhoods

Cauchy index
⇒ gives the algebraic characterisation for TQ
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Issues during the formalisation

Amongst others :

Imprecision of the paper proof (Algorithms in Real
Algebraic Geometry)

Problems with dependent types and data-structures
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Paper proof Imprecision

Relation between the TQz(Q̄ σ̄) and Cε̄
z(Q̄)

Need to compute all the expressions the form

TQz(Q
σ1
1 Qσ2

2 . . .Qσn
n ) for σ ∈ {0, 1, 2}.

Cε1,...,εn
z (Q1, . . . ,Qn) for ε ∈ {1,−1, 0}.

And organise them properly inside the matrices

Induction hypothesis non-trivial and omitted in the paper
“ with z = roots(P)”−→“ for any z”
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Matrix data-structure

Matrices encoded as finite functions (Ssreflect library)

type is dependent on the size of the matrix

forall A i j, A = B <-> A i j = B i j

Thanks to the dependent type, we can easily express block
matrices
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Dependent types issues

Nine block 3n-matrices put together gives a
3n + 3n + 3n-matrix.

Not convertible to 3n+1-matrix (as such)
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Reduction is locked

Ssreflect matrices are locked
⇒ Prevents unwanted partial evaluation

No computation for a simple 3-matrix determinant :1 −1 0
1 1 0
1 1 1


done using rewriting lemmas
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Context

Proof done on any discrete real closed field
(with decidable comparison)

Procedure by reflection : reification of the logic
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An example

∀x ∈ R,
(
x > 0⇒ ∃y ∈ R, (y 2 ≤ x ∧ y 5 − y + 3x = 0)

)
Question : is it true or false ?

Yes ! It is true or false

Can we decide this kind of problem ?
⇒ Yes, by eliminating quantifiers

Is there an efficient algorithm ?

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



An example

∀x ∈ R,
(
x > 0⇒ ∃y ∈ R, (y 2 ≤ x ∧ y 5 − y + 3x = 0)

)
Question : is it true or false ?

Yes ! It is true or false

Can we decide this kind of problem ?
⇒ Yes, by eliminating quantifiers

Is there an efficient algorithm ?

Cyril Cohen, Assia Mahboubi Quantifier elimination in real closed fields : a formal proof



Effective computation and related work

Would executable if data-structures allowed it.

Not efficient

Related work :

Tactic for HOL Light (different spirit) : John Harisson

Cylindrical Algebraic Decomposition in Coq (no
completed proof yet): Assia Mahboubi
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Conclusion and future work

Conclusion :

Makes first order theory of real closed fields decidable

Opens the way to proving the Cylindrical Algebraic
Decomposition (CAD)

Future work :

Integrate automation (fourier, ring) to the development

Prove CAD correctness
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The End

Thank you for your attention. Questions ?
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