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Introduction

Project

1 The objective of this work is to analyze the degree of formalization
that a mathematic textbook has.

2 Another objective is to formalize concepts and theorems of linear
algebra, concretely of vector spaces, using Isabelle/HOL.

3 We have followed a Halmos’ book: Finite-dimensional vector spaces.

Why to formalize mathematics?

Why vector spaces?

Why using this book?
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Formalized sections

We have formalized the first 10 sections in Halmos:

Sections
1 Fields

2 Vector Spaces

3 Examples

4 Comments

5 Linear Dependence

Sections
6 Linear Combinations

7 Bases

8 Dimension

9 Isomorphism

10 Subspaces
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The important results

Main Theorems

Theorem 1

Every linearly independent set of a finite dimensional vector space V can
be extended to a basis.

Theorem 2

Any two bases of a finite dimensional vector space have the same
cardinality.

Theorem 3

An n-dimensional vector space V over a field K is isomorphic to Kn.

J. Aransay and J. Divasón (UR) Formalizing Algebra in Isabelle/HOL June 2012 4 / 24



Introduction Indexed Sets Theorem 1 Theorem 2 Theorem 3 Conclusions

Main notions

Important Concepts

Isabelle

Isabelle: The theorem proving assistant in which we have made the
development.

HOL: Higher-order logic.

HOL-Algebra: A library of algebra implemented in Isabelle using
HOL.

Locales: A kind of module system in which we can fix variables and
declare assumptions.
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Code example

Example of Isabelle code

locale vector_space = K: field K + V: abelian_group V

for K (structure) and V (structure) +

fixes scalar_multiplication:: "’a => ’b => ’b" (infixr "·" 70)

assumes mult_closed: "[[x ∈ carrier V;a ∈ carrier K]]
=⇒ a · x ∈ carrier V"

and mult_assoc: "[[x ∈ carrier V; a ∈ carrier K; b ∈ carrier K]]
=⇒ (a ⊗K b) · x = a · (b · x)"
and mult_1: "[[x ∈ carrier V]] =⇒ 1K · x = x"

and add_mult_distrib1:

"[[x∈ carrier V; y ∈ carrier V; a ∈ carrier K]]
=⇒ a · (x ⊕V y)= a·x ⊕V a·y"
and add_mult_distrib2:

"[[x∈ carrier V; a ∈ carrier K; b ∈ carrier K]]
=⇒ (a ⊕K b) · x = a·x ⊕V b·x"
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Indexed Sets
1 In mathematics, we usually represent a set of n elements this way:

A = {a1, . . . , an}

2 Really a set doesn’t have an order by default (but we can give one for
it).

3 This is not important...unless the order has influence on the proof.

4 So we have to implement the notion of indexed set as any bijection
between the elements of the set and its indices.

5 We have to define operations to insert and remove one element of an
indexed set. We also have to develop an induction rule in order to
prove theorems and properties about this structure.
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THEOREM 1

Auxiliary Result

If the set of non-zero vectors x1, . . . , xn is linearly dependent, then there
exists at least one xk , 2 ≤ k ≤ n, which is a linear combination of the
preceding ones.

Note that the given order is very important, so the use of indexed sets is
indispensable.

Theorem 1

Every linearly independent set of a finite dimensional vector space V can
be extended to a basis.
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The proof explained in the book

Theorem 1

Every linearly independent set of a finite dimensional vector space V can
be extended to a basis.

Let A = {a1, . . . , an} an independent set and B = {b1, . . . , bm} a
basis of V . We apply the auxiliary result to the set:
C = { a1, . . . , an︸ ︷︷ ︸

Elements of A

, b1, . . . , bm︸ ︷︷ ︸
Elements of B

}

Since the first n elements are in an independent set (they are
contained in A), hence the element which is a linear combination of
the preceding ones is in B.

Let bi that element, then we remove it and we obtain:
C ′ = {a1, . . . , an, b1, . . . , bi−1, bi+1, . . . bm}
If C ′ is independent we have already finished (the basis is C ′), if not
we iterate the process.
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The proof implemented in Isabelle

PROBLEMS

INADEQUACIES OF HALMOS:

C = {
Elements of A︷ ︸︸ ︷
a1, . . . , an ,

Elements of B︷ ︸︸ ︷
b1, . . . , bm } could be a multiset.

SOLUTION: C = A ∪ (B − A).

There could be some elements of B which are linear combination of
the preceding ones (there is no unicity). SOLUTION: Take the least.

Why will the process finish?

DIFFICULTIES WITH OUR IMPLEMENTATION:

Reasoning about iterative processes can be hard to be implemented in
Isabelle. Functions in HOL are total. SOLUTION: Partial functions
(tail recursive).
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The proof implemented in Isabelle

We define two functions: remove ld and iterate remove ld.

The first one removes the least element of a dependent set which is a
linear combination of the preceding ones.

The second one iterates the previous function until achieving an
independent set:

partial function (tailrec) iterate_remove_ld ::

"’c iset => ’c set"

where "iterate_remove_ld (A,f)

= (if linear_independent A then A

else iterate_remove_ld (remove_ld (A, f)))"
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The proof implemented in Isabelle

There are three important properties which iterate remove ld must satisfy
to demonstrate the theorem:

1 The result is a linearly independent set (about 100 lines).

2 The result is a spanning set (about 130 lines).

3 The independent set A is contained in the result of the function
(about 350 lines).

The total number of lines necessary to prove this theorem were 984.
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The proof implemented in Isabelle

lemma extend_independent_set_to_a_basis:

assumes "linear_independent A"

shows "∃ S. basis S ∧ A ⊆ S"

proof -

def C ≡"A∪(B-A)"
have "linear_independent (iterate_remove_ld (C,h))"

proof (rule linear_independent_iterate_remove_ld)

...

qed
have "span(iterate_remove_ld (C,h))=carrier V"

proof (rule iterate_remove_ld_preserves_span)

...

qed
have "A ⊆ (iterate_remove_ld (C,h))"

proof (rule A_in_iterate_remove_ld)

...

qed
...

qed
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THEOREM 2

Swap theorem

If A is a linearly independent set of V and B is any spanning set of V ,
then card(A) ≤ card(B).

Corollary: theorem 2

Any two bases of a finite dimensional vector space have the same
cardinality.
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The proof in the book

Swap theorem

If A is a linearly independent set of V and B is any spanning set of V ,
then card(A) ≤ card(B).

SUMMARY OF THE PROOF IN HALMOS:
Let A = {a1, . . . , an} be an independent set, B = {b1, . . . , bm} a spanning
set and m < n. Then:

1 Construct the set S = {a1, b1, . . . , bm}. S is a linearly dependent set.

2 Apply the auxiliary result to S , obtaining
S ′ = {a1, b1, . . . , bi−1, bi+1, . . . , bm}. S ′ is a spanning set.

3 Iterate the process m times to obtain a contradiction (i. e. add the
first m elements of A and remove all elements of B).
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Inadequacies

INADEQUACIES OF HALMOS:

1 Construct the set S = {a1, b1, . . . , bm}. S is a linearly dependent set.

Need to take into account the positions of the elements.

What happens if a1 ∈ {b1, . . . , bm}? The set S could be not a
linearly dependent set!!

2 Apply the auxiliary result to S , obtaining
S ′ = {a1, b1, . . . , bi−1, bi+1, . . . , bm}. S ′ is a spanning set.

There could be some elements of B which are linear combination of
the preceding ones (there is no unicity).

3 Iterate the process m times to obtain a contradiction (i. e. add the
first m elements of A and remove all elements of B).
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PROBLEMS WITH OUR IMPLEMENTATION

We can’t follow a similar reasoning than in theorem 1 to prove the
result: now we need to have control in the number of iterations.
The iterative reasoning is implemented applying m times the next
function:

swap function ({a1, . . . , an} × {b1, . . . , bm})
= ({a2, . . . , an} × {a1, b1, . . . , bi−1, bi+1, . . . , bm})

We have to make use of the power of a function...however, this is not
implemented in Isabelle. We have to make it:
instantiation "fun" :: (type, type) power

begin
definition one_fun :: "’a => ’a"

where one_fun_def: "one_fun = id"

definition times_fun :: "(’a => ’a) => (’a => ’a) => ’a => ’a"

where "times_fun f g = (∀ x. f (g x))"

end
J. Aransay and J. Divasón (UR) Formalizing Algebra in Isabelle/HOL June 2012 17 / 24



Introduction Indexed Sets Theorem 1 Theorem 2 Theorem 3 Conclusions

Once we have defined the power of a function, we have to prove the
properties that swap function satisfies; after that, we have to
generalize that properties to the case where the function is applied m
times, by using induction. The following lemma is indispensable:

corollary fun_power_suc_eq:

shows "(f^(n+1)) x = f ((f^n) x)"

using fun_power_suc by (metis id_o o_eq_id_dest)

This is a long and tedious process: the proofs of all necessary
properties and lemmas to make the demonstration take up 1800 lines.

J. Aransay and J. Divasón (UR) Formalizing Algebra in Isabelle/HOL June 2012 18 / 24



Introduction Indexed Sets Theorem 1 Theorem 2 Theorem 3 Conclusions

Definition of Kn

THEOREM 3

What is Kn?

Definition of Kn

Kn = K×K× · · · ×K︸ ︷︷ ︸
n

= {(x1, . . . , xn)|xi ∈ K ∀i ,1 ≤ i ≤ n}

And in Isabelle?

First we define the type vector, a pair of a function and a natural:
types ’a vector = "(nat => ’a) * nat"

The function maps naturals to elements of a set.
The natural is the length of the vector minus one.
Example: To represent (a1, a2, a3, a4) we have a vector (f , 3) where
f (0) = a1, f (1) = a2, f (2) = a3 and f (3) = a4.
Problem: we don’t have unicity of representation (a problem of
partiality).
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Definition of Kn

definition K_n_carrier :: "’a set => nat => (’a vector) set"

where "K_n_carrier A n = {v. ((∀ i<n. ith v i ∈ A))

∧ (∀ i≥n. ith v i = 0) ∧ (vlen v = (n - 1))}"

definition
K_n_add :: "nat => ’a vector => ’a vector => ’a vector"

(infixr "⊕ı" 65)

where "K_n_add n = (λv w. ((λi. ith v i ⊕R ith w i), n -

1))"

definition K_n_zero :: "nat => ’a vector"

where "K_n_zero n = ((λi. 0R), n - 1)"

definition K_n_mult :: "nat => ’a vector => ’a vector => ’a

vector"

where "K_n_mult n = (λv w. ((λi. ith v i ⊗R ith w i),

n - 1))"

definition K_n_one :: "nat => ’a vector"

where "K_n_one n = ((λi. 1R), n - 1)"
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Definition of Kn

Definition of Kn in Isabelle
Finally using the definition of carrier, add, zero, mult and one we can define the

concept of Kn:
definition K_n :: "nat => ’a vector ring"

where
"K_n n = (| carrier = K_n_carrier (carrier R) n,

mult = (λv w. K_n_mult n v w),

one = K_n_one n,

zero = K_n_zero n,

add = (λv w. K_n_add n v w)|)"

We need to check that Kn is a vector space over K, so we need to define its

scalar multiplication: a� (b1, . . . , bn) = (a · b1, . . . , a · bn)

definition K_n_scalar_multiplication :: "’a => ’a vector => ’a

vector"

(infixr "�" 65) where "a � b = (λn::nat. a ⊗R ith b n, vlen b)"
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Theorem 3

Definition of isomorphism between vector spaces

Two vector spaces V and W over the same field K are isomorphic if there
exists a linear map f : V →W such that is a bijection.

Theorem 3

An n-dimensional vector space V over a field K is isomorphic to Kn.

Let X = {x1, . . . , xn} be a basis of V . The isomorphism between V and
Kn is easy to understand:

a = α1x1 ⊕V · · · ⊕V αnxn ∈ V

f

((
(α1, . . . , αn) ∈ Kn

f −1

hh
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CONCLUSIONS AND RELATED WORK

CONCLUSIONS

Proofs in a book are not fully formal.

Comparison between the length in the book and the formalized proof.

Chapters and concepts in the book can be, sometimes out of order.

We are able to generate code of the constructive proofs and execute
it over instances.

To formalize a book is factible.

RELATED WORK

Mizar

HOL-Light

Coq
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Questions

ANY QUESTIONS?
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