
Effective Homology of Bicomplexes, formalized in Coq

César Domı́nguez∗, Julio Rubio

Departamento de Matemáticas y Computación, Universidad de La Rioja. Edificio Vives,
Luis de Ulloa s/n, E-26004 Logroño (La Rioja, Spain).

Abstract

In this paper we present a complete formalization in the Coq theorem prover
of an important algorithm in computational algebra, namely the calculation
of the effective homology of a bicomplex. As a necessary tool we encode a
hierarchy of algebraic structures in constructive type theory, including graded
and infinite data structures. The experience shows how some limitations
of the Coq proof assistant to deal with this kind of algebraic data can be
overcome by applying a separation of concerns principle; more concretely, we
propose to distinguish in the representation of an algebraic structure (as a
group or a module) a behavioural part, containing operation signatures and
axioms, and a structural part determining if the algebraic data is free, of
finite type and so on.

Keywords: Theorem proving, formal methods, computer algebra, program
verification.

1. Introduction

As signaled by Broy in [6] formal methods are nowadays powerful enough
to deal with real life systems. To give only two examples, the Verisoft project
(see [5], for instance) and the project to build a C compiler by means of
the Coq proof assistant (see [19]) are demonstrating Broy’s claim. At the
same time (and we think this is not something accidental) the mechanized
reasoning tools are now ready to tackle non trivial mathematical theorems, as
in the case of Hales’ proof of Kepler conjecture (through the Flyspeck project,

∗Corresponding author.
Email addresses: cesar.dominguez@unirioja.es (César Domı́nguez),

julio.rubio@unirioja.es (Julio Rubio)

Preprint submitted to Elsevier September 30, 2010

see [21]) or Gonthier’s proof in Coq of the Four Colour Theorem (see [16]).
And, somewhere in the middle between theorem proving applied to software
engineering and to the formalization of mathematics, we find the use of these
tools to verify mathematical software, as in the project Calculemus [7] where
the emphasis is put in the integration of Proof Assistant and Computer
Algebra systems.

This is the context where our research is located. More concretely, in the
area of Homological Algebra and Algebraic Topology computing systems.
At the end of the eighties, Sergeraert introduced a systematic approach to
produce computational results in these fields of mathematics, called effec-
tive homology [24]. Nowadays, there exists an increasing interest on this
kind of computational Algebraic Topology, mainly due to its applications (to
digital image analysis, data mining and other disciplines); see for instance
in [12] an introduction to this research. A characteristic feature of Algebraic
Topology is that, in some situations, to obtain results on finite spaces, it is
necessary to pass as intermediary steps through infinite dimensional spaces.
Sergeraert’s effective homology explicitly deals with these infinite spaces. In
particular, it was clear from the beginning the importance of determining
the effective homology of bicomplexes (as a way to find out algorithmic sub-
stitutes to spectral sequences). In 1988 such an algorithm was presented in
[22], based on the notion of cone of a morphism. Later on, the role of a
result called Basic Perturbation Lemma (or BPL, in short) was discovered.
Almost all the algorithms used previously in the effective homology setting
could be replaced by particular instances of the BPL. As a consequence,
the development of programs was dramatically accelerated, given rise to the
computer algebra system called Kenzo [14]. This system is the first one in
dealing with complex infinite dimensional constructions (as loops spaces or
classifying spaces), being capable of computing homology groups previously
unknown, and whose validity cannot therefore be confirmed nor refuted by
any other means.

And then formal methods start playing a role, analyzing and verifying
parts of Kenzo. In a first step, algebraic specification techniques were used to
study the data structures appearing in Kenzo (see [18, 10, 11], for instance).
Once the structural aspects were formally understood, theorem provers were
employed to verify the algorithms implemented in Kenzo. The first impor-
tant milestone in this area was the mechanized proof in the Isabelle/HOL
proof assistant of the Basic Perturbation Lemma, published in [1]. This for-
mal proof was carried out in the Higher Order Logic (HOL) built on top of

2

Isabelle, and therefore extracting programs from it was not a simple task.
The findings on this topic were reported in [2].

Another alternative to get certified programs in this setting is to move to
constructive mathematics, and more concretely to constructive type theory
by encoding our proofs in the Coq assistant [4]. Some tentative works and
comparisons between Isabelle and Coq [3] made clear that it is possible.
Nevertheless, we consider unnecessary to repeat the complete BPL proof in
Coq. The reason is that, since it was already implemented in Isabelle by using
all power of classical logic (working explicitly, for instance, with general sets
and subsets of them), the translation to Coq would be unnatural. A different
approach is being carried out by Coquand and Spiwack [9] who are using Coq
to model a part of Category Theory, and then trying to obtain a BPL proof
in this larger context.

Our aim in this paper is different. We have gone back to the effective
homology origins, and we have implemented in Coq the algorithms based
in cones previously evoked (published in 1988 in [22]). We have found that
this high level algorithm has an inductive structure that can be translated
very naturally to Coq, allowing us to perform a complete Coq implementa-
tion of a correct algorithm computing the effective homology of a bicomplex.
This result covers most of the applications of the BPL in Kenzo, and thus
its interest is not negligible from the verification point of view. Another
benefit we obtain from our formalization is the treatment of graded and infi-
nite dimensional data structures, which were missing in the previous Isabelle
mechanization of the BPL. Even if our endeavour is very concrete, the in-
frastructure we developed is quite general, dealing with a complex hierarchy
of algebraic data structures. As an illustration of this generic aspect, let us
observe that our work meets several situations shared with the project by
Gonthier and collaborators [17] to devise in Coq a modular formalization of
Finite Group Theory.

The organization of the rest of the paper is as follows. In the next section,
we introduce some mathematical preliminaries, which are encoded in Coq in
Section 3. The effective homology of a cone is implemented in Coq in Section
4, while Section 5 is devoted to comment on a hierarchy of algebraic data
structures. The previous tools are then used in Section 6 to establish, in a
simple inductive manner, our main result: the theorem about the effective
homology of a bicomplex. The paper ends with a section of Conclusions and
Further Work, and the bibliography. The Coq file sources are available at:
http://www.unirioja.es/cu/cedomin/EHBFC.zip.

3

2. Preliminaries

In this section we define the algebraic structures needed in our formaliza-
tion. They include, in particular, chain complexes, reductions and effective
homologies of chain complexes.

We assume as known the notions of ring, module over a ring and module
morphism (see [13] for instance). A ring R commutative and with unity is
fixed along all the paper, and modules are supposed to be left R-modules.

Given a set B, we define a new set denoted by R[B] whose elements
are linear combinations with elements of B as generators. That is to say,
the elements of R[B] are lists of terms, where a term is a pair composed
of a coefficient, a non-null element of R, and a generator, an element of
B. Emulating the way of working in linear algebra, R[B] can be naturally
endowed with an addition and an external product by elements of R, allowing
us to consider a structure of R-module on R[B]. This module is called the free
R-module generated over B. Since we are planning to work in a constructive
logic setting, it is convenient to define a free module as one module M where
an explicit isomorphism is known among M and R[B] (the set of generators
B must be also explicitly given).

Let us note that the set B is not necessarily finite, because, as mentioned
in the introduction, Algebraic Topology and so the Kenzo system need to
deal with infinite dimensional structures. In order to deal with finite sets in
a constructive type theory, even more care is needed. For instance, several
alternatives for defining finite sets in a constructive logic are included in [8].
Finite algebraic structures have also been implemented in Coq in [17] as the
first milestone of a long-term effort to formalize the Feit-Thompson theorem.

Our definition runs as follows. Given a natural number k ∈ N, let us
denote FS(k) the (finite) set {0, 1, . . . , k− 1}. Then, we consider a set B as
finite if it is endowed with a natural number k ∈ N and an explicit bijection
ψ : B → FS(k) with an explicit inverse ψ−1 : FS(k)→ B. A free R-module
is of finite type if it is explicitly isomorphic to R[B] with B a finite set in the
previous sense.

We are ready to introduce the first graded concept, needed in Homological
Algebra and Algebraic Topology.

Definition 1. A (positive) graded module M is a family of R-modules (Mn)n∈N.
A graded module is free (or free of finite type) if every Mn is free (free of
finite type, respectively) for all n ∈ N.

4

Usually, graded modules are indexed by the integers Z, but it is more
convenient for us to work with positive graded modules (indexed by N), as in
Coq it allows us to work with the comfortable data type nat for representing
indexes. Furthermore, to deal with positively graded structures is enough for
our applications in this paper.

Definition 2. Given a graded module M a differential operator d on M is
a family of module morphisms (dn : Mn+1 →Mn)n∈N such that dn ◦ dn+1 = 0
for all n ∈ N.

Again, the convention of denoting the differential dn as having source
Mn+1 will allow us to work in Coq within nat.

Definition 3. A chain complex is a pair CC = (M,d) where M is a graded
module and d a differential operator on M . A chain complex is called free
(or free of finite type) when its underlying graded module is free (free of finite
type, respectively).

Chain complexes have a corresponding notion of morphism:

Definition 4. A chain complex morphism (or, simply, a chain morphism)
f : CC → CC ′ between two chain complexes CC = (M,d) and CC ′ =
(M ′, d′) is a family of module morphisms (fn : Mn → M ′

n)n∈N such that
fn ◦ dn = d′n ◦ fn+1 for all n ∈ N.

Now, the central definition in effective homology theory: reduction. A
reduction establishes a link between a “big” chain complex, called top com-
plex, and a smaller one, called bottom complex, in such a way that if all the
homological problems are solved in the bottom complex, then it is the same
in the top one. A solution for a homological problem in a chain complex
(M,d) is a series of procedures (algorithms, in the computational setting)
asking questions as: is an element x ∈Mn a boundary (i.e. x ∈ Im(dn))? If
it is the case, can you produce an element y ∈ Mn+1 such that x = dn(y)?
Answering these questions is one of the most important problems in Homo-
logical Algebra and, as a consequence, in Algebraic Topology. See [23] for
details.

Definition 5. A reduction is a 5-tuple (TCC,BCC, f, g, h) where TCC =
(M,d) and BCC = (M ′, d′) are chain complexes (named top and bottom

5

chain complexes, respectively), f : TCC → BCC and g : BCC → TCC are
chain morphisms, h = (hn : Mn → Mn+1)n∈N is a family of module mor-
phisms (called homotopy operator), which satisfy the following properties
for all n ∈ N:

1. fn ◦ gn = idM ′
n

2. dn+1 ◦hn+1 +hn ◦ dn + gn+1 ◦ fn+1 = idMn+1 and d0 ◦h0 + g0 ◦ f0 = idM0

3. fn+1 ◦ hn = 0

4. hn ◦ gn = 0

5. hn+1 ◦ hn = 0

And now, the relevant case. In a free chain complex of finite type the
homological problems can be solved algorithmically in a simple way (at least
in cases where the ring R allows one to diagonalize matrices over R; this
includes the case R = Z, the most important one in Algebraic Topology;
see [23]). Thus, if from a chain complex (possibly of infinite type) we can
get a reduction to a chain complex of finite type, the homological problem
is solved for the initial complex. This is the strategy followed in the Kenzo
system. And it is the very notion of chain complex with effective homology.

Definition 6. A chain complex CC is with (strong) effective homology if it
is free and it is endowed with a reduction where CC itself is the top chain
complex and the bottom chain complex is free of finite type.

The adjective “strong” appears since it is a particular case of the general
notion of effective homology (see [23]). Nevertheless, solving the problems
for this kind of effective homology, the general case follows easily.

3. Coq infrastructure

Although the standard library of Coq [20] does not include a representa-
tion for basic algebraic structures, different implementations of them can be
found in the literature. For instance, there are two representations, CoRN
(Constructive Coq Repository at Nijmegen; see also [15]) and Algebra (by
L. Pottier), published in the users’ contributions in [20]. Even if both formal-
izations have different proposals and natures (the first one is an axiomatic
hierarchy of the most common algebraic structures based on setoids with an
apartness relation; the second one has a categorical flavor), both represent

6

these algebraic structures using records. We have built our own structures
based on the ones included in CoRN (but simplifying them: basically elim-
inating the apartness relation included in setoids which is not used by us,
since we are working in a discrete mathematics setting). A setoid is a Coq
type together with an equivalence relation defined on it (the equality of the
setoid). The CoRN repository includes rings, modules (over a ring) and
module morphisms implemented as records called Ring, Module and ModHom,
respectively. Besides, further constructions as for instance the addition or
the composition of module morphisms are defined, and are represented using
the infix notation: [+h] or [oh], respectively. The repository also contains
useful lemmas on these structures (see [20] for a detailed description).

We concentrate ourselves in the sequel on free modules, since it is the
unique kind of modules dealt with in the Kenzo system [14].

The formalization of free modules follow the ideas given by L. Pottier in
the Coq contributions web page [20]. There, a definition can be found of a
module defined by freely generation from a basis (which is given by a setoid)
using the module operations. If we call B the basis setoid, this is representing
the mathematical structure R[B] introduced in the previous section. Then,
as explained there, a free module is a module with an explicit isomorphism to
such a freely generated module. For free modules of finite type, we change the
view: a free module of finite type is simply a free module, but we impose that
the generator set is equal to a standard finite setoid FS(k) = {0, 1, . . . , k−1},
as mentioned before. With this encoding we get a separation of concerns:
structurally, free chain complexes and free chain complexes of finite type
are indistinguishable (as in mathematics!), but a new property is imposed
to finite type modules. See Section 5 for a more detailed discussion on the
consequences of this design decision.

Given a ring R: Ring, a free graded module can be formalized in Coq
with the following dependent type: nat -> FreeModule R, which accurately
represents a family of free modules indexed by the natural numbers. Then,
a (positive) free chain complex can be formalized in Coq using the following
record structure:

Record ChainComplex: Type:=
{GrdMod:> nat -> FreeModule R;
Diff: forall n:nat, ModHom (R:=R) (GrdMod (S n)) (GrdMod n);
NilpotencyDiff: forall n:nat, (Nilpotency (Diff n)(Diff (S n))}.

where the nilpotency property is defined by Nilpotency(g:ModHom B C)(f:

ModHom A B):= forall a:A, ((g[oh]f) a)[=]Zero.

7

Some comments on the above record structure are required. First, we
define only free chain complexes because in our applications it is enough to
work with this kind of complexes (note the occurrence of the FreeModule

identifier in the GrdMod field). Second, the algebraic laws in definitions must
be compatible with the underlying setoid structure, i.e., with its equality
denoted by [=] in the previous formulae. Third, the GrdMod component
is declared (by the annotation :>) to be a coercion function. This means
that the type checker will insert this function over a chain complex when
a graded module is required. These techniques are extensively used in the
implementation of algebraic structures [20].

In a similar way, given two chain complexes CC1 CC2:ChainComplex R,
a chain complex morphism ChainComplexHom is represented as a record with
a family of module morphisms GrdModHom:> forall n:nat, ModHom (CC1

n)(CC2 n) which commutes with the chain complex differentials. A homo-
topy operator is defined as a family of module morphisms HomotopyOperator
:= forall n:nat, ModHom (CC1 n)(CC1 (S n)).

Then, the reduction notion is also formalized as a record Reduction with
two chain complexes topCC, bottomCC: ChainComplex R, and three mor-
phisms f t b:ChainComplexHom topCC bottomCC, g b t:ChainComplexHom
bottomCC topCC, h t t:HomotopyOperator topCC. Besides, five fields rep-
resenting the five reduction properties are included. For instance, the field
which corresponds to the second property is: rp2:homotopy operator f t b
g b t h t t with:

Definition homotopy_operator:= forall (n:nat)(a:CC1 (S n)),
((Diff CC1 (S n) [oh] h(S n))[+h](h n [oh] Diff CC1 n)[+h]

(g(S n)[oh] f(S n)))a [=] a
/\ forall (a:CC1 0), ((Diff CC1 0 [oh] h 0) [+h]

(g 0[oh] f 0))a [=] a.

The concept of Effective Homology is then obtained as a specialization of
the reduction structure: simply declaring that the bottomCC is of finite type,
without changing the structure of the record.

4. Effective homology of a cone

Before defining the notion of mapping cone, the concept of suspension is
required.

8

Definition 7. Given a chain complex M = ((Mn)n∈N, (dn)n∈N), the suspen-
sion of M is the chain complex S(M) = ((S(M)n)n∈N, (S(d)n)n∈N) such that,
S(M)n+1 = Mn and S(d)n+1 = dn for all n ∈ N. The chain complex S(M)
is completed with null components in dimension 0. The suspension definition
can be naturally extended to chain morphisms and homotopy operators.

In Coq, the suspension of a free graded module GM: GrdFreeModule R is
formalized as follows.

Definition Susp_GrdFreeMod: GrdFreeModule R:= fun n:nat =>
match n with
| 0 => NullFreeModule R
| S n => GM n
end.

It is naturally extended in Coq to suspensions of chain complexes (Susp CC),
chain morphisms (Susp CC Hom), and homotopy operators (Susp HO).

Definition 8. Given a pair of chain complexes CC = ((Mn)n∈N, (dn)n∈N)
and CC ′ = ((M ′

n)n∈N, (d
′
n)n∈N) and a chain morphism α : CC → CC ′, the

cone of α, denoted by Cone(α), is a chain complex CC ′′ = ((M ′′
n)n∈N, (d

′′
n)n∈N)

such that, for each n ∈ N, M ′′
n = S(M)n ⊕M ′

n and d′′n(x, x′) = (−S(d)n(x),
d′n(x′) + αn(x)) for any x ∈ S(M)n+1 and x′ ∈M ′

n+1.

The relevant part of the corresponding Coq definition is:

Definition ConeDiffGrdMod:= fun(n:nat)(ab:(ConeGrdMod (S n))) =>
([--](Diff (Susp_CC CC1) n (fst ab)),
(Diff CC0 n)(snd ab) [+] alpha n (fst ab)).

It is not difficult to prove that these Coq functions define a module mor-
phism which verifies the nilpotency condition. This last property allows us to
build the cone chain complex associated to a chain morphism: Cone(alpha).

Let us observe that if a graded module is free, its suspension is also
free. It is the same for the direct sum of two free graded modules, and the
same applies if we replaced free by free of finite type. As a consequence, if a
morphism α is defined between free chain complexes (or free chain complexes
of finite type), then Cone(α) is a free chain complex (free chain complex of
finite type, respectively). These remarks, and the form of the statement, give
an elementary proof of the following result.

9

Theorem 1. Given two reductions r = (TCC,BCC, f, g, h) and r′ = (TCC ′,
BCC ′, f ′, g′, h′) and a chain morphism α : TCC → TCC ′ between their top
chain complexes, it is possible to define a reduction r′′ = (Cone(α), BCC ′′,
f ′′, g′′, h′′) with Cone(α) as top chain complex and:

• BCC ′′ = Cone(α′) with α′ : BCC → BCC ′ defined by α′ = f ′ ◦ α ◦ g

• f ′′ = (f, f ′◦α◦h+f ′), g′′ = (g,−h′◦α◦g+g′), h′′ = (−h, h′◦α◦h+h′)

Besides, if TCC and TCC ′ are objects with effective homology through the
reductions r and r′, then Cone(α) is an object with effective homology through
r′′.

Observe that the statement reflects the way of working (and thinking)
in mathematics: all the structural part is proved by means of the reduction
notion. Then, as a corollary, the effective homology version is obtained,
by simply remarking that the suspension and cone on finite type modules,
continue to be of finite type. Our Coq infrastructure allows us to mimic this
way of working, without repeating (an essentially equivalent) proof for the
effective homology case.

The proof is translated to Coq, by using the previous defined types. For
instance, the first chain morphism of the reduction is:

Definition f_coneGrdMod:
forall n:nat, (Cone alpha) n -> (Cone alpha’) n:=
fun(n:nat)(ab:(Cone alpha) n)) =>
(Susp_CC_Hom (f_t_b r1) n (fst ab),

((f_t_b r2) n [oh] alpha n [oh]
Susp_HO (h_t_t r1) n)(fst ab) [+] f_t_b r2 n (snd ab)).

5. A hierarchy of algebraic data structures

Even if the previous proof can be carried out without any special problem
in Coq, the infrastructure needed to prove it deserves some explanation. It
depends heavily on a hierarchy of algebraic data structures. The devising of
such a hierarchy, and the consequences in terms of further proof effort, are
discussed in this section.

Our first attempt to develop the proofs was based on the idea of keeping
a double hierarchy of Coq structures: one dealing with free modules, and the
other one with free modules of finite type. It is true in mathematics, but

10

when translating the idea to Coq we found some shortcomings. The reason
is that a free module has a field containing its generator set (a Coq setoid).
Then a free module of finite type contains a finite setoid. A finite setoid is
a setoid in Coq (by means of an implicit coercion), but it is not possible to
keep the same relation between a free module and a free module of finite
type, since an implicit coercion will include two setoid structures on a free
module of finite type. The situation is similar to multiple inheritance, even if
from a conceptual (mathematical) point of view it is different. Therefore, we
were obligated to maintain separated the two basic structures of free module
and free module of finite type. The definition and proofs (for suspensions,
cones and the like) must then be repeated (even if only the name of structures
changed). Even worse, this approach led us to a multiplication of morphisms:
in order to define the concept of effective homology, we had to consider
morphisms between free modules, from a free module to a free module of
finite type, etc. Four kinds of morphisms were needed, even if, structurally,
they are exactly the same (and, therefore, it is the same for their properties
and proofs). In addition, if we want to prove first the results for reductions,
then we must replay the same proofs for the cases of effective homologies.
It is possible, and it is not difficult, but the deficiencies from the elegance
and the proof engineering points of view are evident. Nevertheless we got a
first complete version of all the results of the paper (including the effective
homology of bicomplexes of next section) with this cumbersome strategy.

Once this first version was finished, we tried to simplify the structure
of our proof, without redoing it. That is to say, we changed some defini-
tions in records, but keeping essentially the tactic steps in proofs. The first
modification was to link free modules of finite type with free modules by
means of an explicit coercion. This allows us to avoid the shortcomings of
implicit coercions previously evoked, and also permits decreasing the dupli-
cation of definitions. In particular, we consider only a kind of morphism,
without distinguishing the types of the modules in the source and the target
of each morphism. And in a third, and final, simplification we get rid of the
repetitions in statements and proofs for reductions and, then for effective ho-
mologies, by the direct mechanism of ignoring reductions. This makes sense
since all our main results are related to effective homology, acting the con-
cept of reduction as an intermediary notion, that can be skipped. However
the price to be paid is expensive: our results were less general (so, making
difficult their reusing in other close formalizations) and the way of working
as in “paper and pencil” mathematics was lost.

11

Even with these severe simplifications, the new proof was not either fully
satisfactory. It was necessary to duplicate some proofs related to suspensions
(and, from them, those related to cones, bicomplexes, etc.). The deep reason
is that, when dealing with modules of finite type, the suspension of the
coercion (from a module of finite type to a module) is not Coq convertible to
the coercion of a suspension. And therefore an explicit management of the
two cases was needed (even if proofs are exactly equal).

Another alternative considered was to redefine the hierarchy as a whole
in a parameterized style, like in the new architecture of the CoRN reposi-
tory [25]. Nevertheless, the same difficulty related to coercions and suspen-
sions was found in our first experiences with this approach and, in addition,
the complete changing of organization did not allow us to reuse the previous
proofs, needing to rewrite them from scratch. This via should be explored
further to conclude if these difficulties can be overcome.

Finally, the solution found was the following. We keep exactly the same
structure (the same record) for free modules and free modules of finite type,
but for the second ones we specialize their behaviour by imposing that the
generator setoid B is equal to a finite setoid FS(k) = {0, 1, . . . , k−1}. Let us
stress that here “equal to” refers to Leibniz equality, since in our development
we are applying the property of replacement only for propositions. With this
small changing of view (before, the record for a free module of finite type had
a slot of type finite setoid, different from the setoid slot of a free module),
the structure of the proofs becomes much simpler. In particular, a separation
of concerns principle can be used in writing proofs: first, we build a proof
for modules, and then we specialized it for modules of finite type, adding
simply a new fragment, without touching at the previous proof. For instance,
to prove that the cone of a morphism between chain complexes of finite type
is a chain complex of finite type, we first prove that it is a chain complex,
and then, by simply observing that the sum of modules of finite type is still
of finite type, we finish the proof.

In Figure 1 we show the part of the hierarchy dealing with free chain
complexes. It can be considered a simple extension of the CoRN hierachy to
graded algebraic structures. A continue arrow describes an implicit coercion
whereas a dashed arrow means a use relationship in the sense that a type
appears in the definition of another type, but excluding coercions. Figure 2
displays the part of the hierarchy related to finitely generated structures. As
it can be remarked, this last part is simpler and illustrates a general way to
add new features to an already-built hierarchy in a modular way.

12

Setoid SetoidFun

Semigroup

OO

SemigroupMrph

OO

Monoid

OO

MonoidMrph

OO

Group

OO

GroupMrph

ff

AbGroup

OO

AbGroupMrph

OO

Ring

OO

RingMrph

OO

Module

;;

ModHom

ee

FreeModule

OO

@@

;
7

3
/

+
'

#
�

�
�

�
�

�
�

�

22ddddddddddd

GrdFreeModule

OO�
�

GrdModHom

OO�
�
�
�

Differential

ggO O O O O O O O O

ChainComplex

OO 11bbbbbbbbbbbbbbbbbbb
ChainComplexHom

OO

HomotopyOperator

XX

P
L

G
@

:

4

Reduction

iiT T T T
44jjjjj

11ddddddddddd

ComplexSequence

OO�
�
�
�

ReductionSequence

jjU U U U U

Bicomplex

;;

iiS S S S
BiReduction

ff

kkV V V V V V

Figure 1: Free algebraic structure hierarchy

Our way of organising finally the proof is inspired by previous work in
the Isabelle/HOL proof assistant (see [1] and [2]). In that proving environ-
ment types (structure) and properties (behaviour) are uncoupled, easing the
translation of the working mathematician style to the computer. Of course,
the absence of dependent types (and, in general, the poorer expressiveness of
the type system) produces proofs where more constraints must be encoded
in the logical part, in order to avoid inconsistent expressions that the Coq
type system does not allow. With our treatment of free modules of finite
type, we think we obtain the best of both worlds: the proofs can follow ac-
curately the textbooks guidelines, and the full power of types is applied in

13

Setoid FiniteSetoo GrdFiniteSetoo_ _ _ _ GrdFinSetSequenceoo_ _ _

FreeModule

OOAA

5
� 	

FinFreeModuleoo

OO�
�
�

ChainComplex

OO�
�
�

FinFreeChainComplex

OO�
�
�
�
�
�

oo

Reduction

OO�
�
�

EffectiveHomologyoo

hh

p
s

x
�

�
4

>
F

K
N

Q

BiReduction

OO�
�
�

BiEHoo

OO�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2: Free of finite type algebraic structure hierarchy

the development.

6. Effective homology of a bicomplex

In this last, and main, section we are going to use the previous infras-
tructure and the formalization of mapping cones to build a Coq proof of the
effective homology of a bicomplex. Let us first introduce smoothly this cen-
tral notion in homological algebra, by giving some auxiliary definition. We
are going to work with sequences (that is to say, families indexed by N) of
the previously introduced objects.

Thus, a sequence of graded modules is a map from N to the class of graded
modules. Let us denote by B = {Bp,∗}p∈N such a sequence. If we denote by q
the index in each graded module, the information contained in the previous
definition is exactly the same as in the following one.

Definition 9. A bigraded module B is a system B = {Bp,q}p,q∈N where
every Bp,q, p, q ∈ N, is a module.

From now on, both concepts are identified. A bigraded module B is called
free (or free of finite type) when all the modules Bp,q are free (free of finite
type, respectively).

Each sequence of objects comes endowed with a corresponding notion of
totalization.

14

Definition 10. Given a bigraded module B = {Bp,q}p,q∈N, the totalization
of B is the graded module T (B) = {T (B)n}n∈N where T (B)n = ⊕p+q=nBp,q.

It is clear that the totalization of a free bigraded module is a free graded
module. More care is needed to prove that the totalization of a bigraded
module free of finite type is also free of finite type. This is true because,
given a natural number n ∈ N, only finitely many pairs (p, q) ∈ N × N
satisfy p + q = n. It is not longer true, for instance, if the sequences of
graded modules were indexed by the integer numbers Z. It is the reason
why in the literature our bigraded modules are called more specifically first
quadrant bigraded modules.

The next notions to be considered are those of sequence of chain com-
plexes and of chain morphisms. If an additional condition is required to a
sequence of chain morphisms, all the information can be totalized in a unique
chain complex. This is collected in the following definition of a bicomplex.

Definition 11. A (first quadrant) bicomplex B is a pair ((Bp,∗)p∈N, (bp)p∈N)
with (Bp,∗)p∈N a chain complex sequence and (bp : Bp+1,∗ → Bp,∗)p∈N a se-
quence of chain morphisms, such that bp ◦ bp+1 = 0.

The corresponding type in Coq looks as follows.

Record Bicomplex: Type:=
{FCC: nat -> ChainComplex R;
FCCh:> forall (n:nat), ChainComplexHom (FCC(S n))(FCC n);
NilpFCCh: forall (n m:nat), (Nilpotency(FCCh n m)(FCCh(S n) m))}.

The “nilpotency” condition bp ◦ bp+1 = 0 allows us to prove that the
totalization of a bicomplex is really a chain complex.

Definition 12. Given a bicomplex B = ((Bp,∗, dp,∗)p∈N, (bp,∗)p∈N), the to-
talization of B is the chain complex T (B) = ((T (B)n)n∈N, (dn)n∈N) where
T (B)n = ⊕p+q=nBp,q and dn = ⊕p+q=n((−1)pdp,q ⊕ bp,q).

Let us note that the underlying graded module T (B) is exactly the to-
talization of the underlying bigraded module {Bp,q}p,q∈N.

Imagine now that we have a degenerated bicomplex B where Bp = 0,
∀p > 1. In other words, B is only a chain morphism b0 : B1 → B0. Then, it is
easy to check that the totalization T (B) is exactly Cone(b0). Thus, mapping
cones are totalizations of a particular kind of bicomplexes. In the sequel,

15

we will use that the totalization of each bicomplex can be understood as an
iteration of mapping cones. Then, by iterating the algorithm to compute
the effective homology of a cone, we will get the corresponding result on the
effective homology of a bicomplex.

The first step in order to formalize the totalization of a bicomplex is to
consider in Coq the cone of the first morphism in a bicomplex F:Bicomplex
which is simply obtained by Cone1:=Cone (F 0). Then, we can easily define
a new sequence of chain complexes:

Definition new_ComplexSequence:=
fun n : nat => match n with
| 0 => Cone1
| S n => Minus_ChainComplex(Susp_CC(FCC F(S(S(n)))))

end.

and similarly a new bicomplex through a family of chain morphisms.
This construction can be endowed with an iterator, in such a way that at

step n in the iteration, the module in degree n of the first chain complex of
the family coincides with the module in degree n of the totalization of the
initial bicomplex. The same applies to the differential dn in the totalization.

In that way, (totalizations of) bicomplexes can be understood as iterated
cones. In the statement of the theorem about the effective homology of a
cone, it is explained that the output bottom complex is again the cone of a
certain morphism. Then it is appealing to think that the bottom complex
in the effective homology of a bicomplex could be also (the totalization of) a
bicomplex. Nevertheless it is not true: even if a bicomplex can be interpreted
as an iteration of cones, in general an iteration of cones does not define a
bicomplex, but a more complicated structure called multicomplex (the rea-
son is that, in a bicomplex, the target of a morphism is always in the first
“column” of a cone; on the contrary, a general morphism arriving to a cone
can have part of its image in each “column” of the cone). We do not need to
introduce here the general notion of multicomplex, because it will be auto-
matically produced by our mechanical Coq proof of the main result, whose
statement is as follows.

Definition 13. A bicomplex B is an object with effective homology if its
totalization T (B) is a chain complex with effective homology.

Theorem 2. Let B = ((Bp)p∈N, (bp)p∈N) be a bicomplex such that each chain
complex Bp is with effective homology, for all p ∈ N. Then the bicomplex B
is an object with effective homology.

16

As in the case of the Theorem 1 for the homology of the cone, we will
prove first the structural part of the theorem working with reductions. Then,
the effective homology version is obtained.

Let us call BiReduction the Coq data structure consisting in a sequence
of reductions together with a sequence of chain morphisms between the top
chain complexes satisfying the nilpotency condition (in other words, the
top chain complexes together with the chain morphisms form a bicomplex).
Then, we repeat with it the iterative process previously done for a single
bicomplex, using now as starting step the Coq theorem on the reduction of
the cone. If we denote by new BiReduction the corresponding iterative step,
then an iterator can be defined in Coq as follows:

Fixpoint iterated_BiReduction
(n:nat)(F:BiReduction){struct n}: BiReduction:=

match n with
|0 => F
|S n => New_BiReduction (iterated_BiReduction n F)
end.

We have now all the necessary instruments to prove in Coq our main
theorem. The harder part is to deal with the following dependent type:

Definition Diff_bottom_totalization: forall n: nat,
ModHom (bottomCC (FR (iterated_BiReduction (S n) F) 0) (S n))
(bottomCC (FR (iterated_BiReduction n F) 0) n):=
fun n:nat => sndConeDiff(alpha’((iterated_BiReduction F) 0)) n.

and then to prove that it defines really a chain complex (as mentioned be-
fore, it is the differential of the totalization of a multicomplex, but here it is
produced automatically as the iteration of the reduction of cones).

Then it is necessary to prove that this chain complex appears as the
bottom complex of a reduction where the top complex is the (totalization of
the) input bicomplex (it is again a corollary of the corresponding result for
mapping cones).

To finish the proof it is necessary to ensure that, if we take from the
premise as input a BiEH structure, i.e. a BiReduction whose sequence of
reductions are indeed effective homologies, the previous bottom chain com-
plex is of finite type. But here it is enough to observe that the underlying
graded module is the totalization of a (first quadrant) bigraded module of
finite type (it is enough to observe it, but . . . it is necessary to convince Coq
of it, too!).

17

7. Conclusions and further work

In this paper, a complete formalization of an important algorithm in
computational algebra (namely, the effective homology of a bicomplex) has
been presented. The proof assistant used has been Coq, and thus our work
can be understood as the application of constructive type theory to a piece
of sophisticated mathematics. The verified algorithm is related to a Com-
puter Algebra system for Algebraic Topology called Kenzo [14]. Therefore,
our research is placed between the efforts to formalize mathematics and the
application of formal methods in software engineering.

Interestingly enough, we did not re-elaborated on a previous work of for-
malization in this area carried out in Isabelle/HOL [1, 2]. We have retaken
an older algorithm [22] which has demonstrated to be better adapted to
the type theoretic Coq style. As a comparison between the two proof assis-
tants, we can conclude that the dependent types in Coq allow the modeler
a most accurate representation of the mathematical structures (on the con-
trary, the rigidities of constructive type theory make difficult to translate to
Coq the more set-theoretic argumentation implemented in [1] by means of
Isabelle/HOL).

Perhaps the contribution that could be more useful for other researchers is
the reflection on how building complex hierarchies of mathematical structures
(needed in most of the formalization projects on non-trivial mathematics;
see [15, 17], for instance), and how it relates to the further proving effort.
Our conclusion is that Coq needs more automation in this area, beyond
of inheritance (single coercion or multiple inheritance), to emulate the way
working mathematicians deal with their objects of study.

This task can be considered as an open problem, and it is a first line
of future work. Another topic is related to the executability of our proofs.
Working in a constructive type theoretic setting, it is always possible to
reduce terms inside Coq itself, but it is needed first to get concrete instances
of any concept (to deal with meaningful examples), and it is not always easy
to obtain, specially in our context where data structures of infinite type occur.
Additionally, even if this obstacle is overcome, the question of performance
would still be open. Being Kenzo a Common Lisp system, we are planning
to extract Common Lisp code from our Coq proofs, in order to compare it
with the original programs, focus of our study.

18

Acknowledgements

Partially supported by Ministerio de Educación y Ciencia, project MTM
2009-13842-C02-01, and by the FORMATH project, nr. 243847, of the FET
program within the 7th Framework program of the European Commission.

References

[1] Aransay, J., Ballarin, C., Rubio, J.: A Mechanized Proof of the Basic
Perturbation Lemma. Journal of Automated Reasoning 40 (4) (2008)
271-292.

[2] Aransay, J., Ballarin, C., Rubio, J.: Generating certified code from
formal proofs: a case study in homological algebra. Formal Aspects of
Computing 22 (2010) 193-213.

[3] Aransay, J., Domı́nguez, C.: Modelling Differential Structures in Proof
Assistants: The Graded Case. Eurocast 2009, Lecture Notes in Com-
puter Science 5717 (2009) 203-210.

[4] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

[5] Botaschanjan, J., Broy, M., Gruler, A., Harhurin, A., Knapp, S., Kof,
L., Paul, W.J., Spichkova, M.: On the correctness of upper layers of
automotive systems. Formal Aspects of Computing 20 (6) (2008) 637662.

[6] Broy, M.: Seamless Model Driven Systems Engineering Based on For-
mal Models. In ICFEM 2009, Lecture Notes in Computer Science 5885
(2009) 1-19.

[7] Calculemus Network. http://www.calculemus.net

[8] Coquand, T., Spiwack, A.: Constructively finite? To appear in Con-
tribuciones cient́ıficas en honor de Mirian Andrés Gómez. Servicio de
Publicaciones de la Universidad de La Rioja, 2010.

[9] Coquand, T., Spiwack, A.: Towards Constructive Homological Algebra
in Type Theory. In Calculemus 2007, Lecture Notes in Artificial Intelli-
gence 4573 (2007) 40-54.

19

[10] Domı́nguez, C., Duval, D.: Diagrammatic logic applied to a parame-
terisation process. Mathematical Structures in Computer Science 20 (4)
(2010) 639-654.

[11] Domı́nguez, C., Lambán, L., Rubio, J.: Object-Oriented Institutions to
Specify Symbolic Computation Systems. Rairo - Theoretical Informatics
and Applications 41 (2007) 191-214.

[12] Edelsbrunner, H., Harer, J. L.: Computational topology: an introduc-
tion. Providence (Rhode Island): American Mathematical Society, 2010.

[13] Jacobson, N.: Basic Algebra II, 2nd edn. W.H. Freeman and Company,
1989.

[14] Dousson, X., Sergeraert, F., Siret, Y.: The Kenzo Program.
http://www-fourier.ujf-grenoble.fr/ sergerar/Kenzo/, Institut
Fourier, Grenoble, 1999.

[15] Geuvers, H., Pollack, R., Wiedijk, F., Zwanenburg, J.: A constructive
algebraic hierarchy in Coq. Journal of Symbolic Computation 34 (4)
(2002) 271-286.

[16] Gonthier, G.: Formal Proof: The Four-Color Theorem. Notices of the
AMS 55 (11) (2008) 1382-1393.

[17] Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular
Formalisation of Finite Group Theory. In Theorem Proving in Higher
Order Logics 2007, Lecture Notes in Computer Science 4732 (2007) 86-
101.

[18] Lambán, L., Pascual, V., Rubio, J.: An Object-Oriented Interpretation
of the EAT System. Applicable Algebra in Engineering, Communication
and Computing 14 (3) (2003) 187-215.

[19] Leroy, X.: Formal Verification of a Realistic Compiler. Communications
of the ACM 52 (7) (2009) 107-115.

[20] LogiCal project. The Coq Proof Assistant. http://coq.inria.fr/,
2010.

[21] Obua, S., Nipkow, T.: Flyspeck II: the basic linear programs. Annals of
Mathematics and Artificial Intelligence 56 (2009) 245-272.

20

[22] Rubio, J., Sergeraert, F.: Homologie effective et suites spectrales
d’Eilenberg-Moore. Comptes Rendus de l’Académie Sciences Paris 306
(17) (1988) 723-726.

[23] Rubio, J., Sergeraert, F.: Constructive Algebraic Topology. Bulletin
Sciences Mathématiques 126 (2002) 389-412.

[24] Sergeraert, F.: The computability problem in Algebraic Topology. Ad-
vances in Mathematics 104 (1994) 1-29.

[25] Spitters, B., van der Weegen, E.: Developing the algebraic hierarchy
with type classes in Coq. In Interactive Theorem Proving 2010, Lecture
Notes in Computer Science 6172 (2010) 490-493.

21

