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Motivation Interactive Proof Assistants

Interactive Proof Assistants

What is an Interactive Proof Assistant?

Software tool for the development of formal proofs
Man-Machine collaboration:

Human: design the proofs
Machine: fill the gaps

Examples: Isabelle, Hol, ACL2, Coq, . . .

Applications:
Mathematical proofs:

Four Color Theorem
Fundamental Theorem of Algebra
Kepler conjecture

Software and Hardware verification:

C compiler
AMD5K86 microprocessor
. . .
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Motivation Algebraic structures in theorem provers

Algebraic structures in theorem provers

Foundation for large proof developments

Coq:

CCorn hierarchy
SSReflect hierarchy
. . .

Isabelle

Nuprl

Lego
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Motivation Algebraic structures in theorem provers

ACL2

ACL2 (A Computational Logic for an Applicative Common
Lisp)

ACL2:

Programming Language
First-Order Logic
Theorem Prover

Proof techniques:

Simplification
Induction
The Method
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Modeling setoids

A setoid X = (X ,∼X ) is a set X together with an equivalence relation ∼X on it
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A methodology to deal with algebraic structures in ACL2 Modeling setoids in ACL2

Modeling setoids

A setoid X = (X ,∼X ) is a set X together with an equivalence relation ∼X on it

Example

Setoid whose underlying set is the set of integer numbers having the same absolute
value

integerp

(defun eq-abs (a b)

(equal (abs a) (abs b)))
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Modeling setoids

A setoid X = (X ,∼X ) is a set X together with an equivalence relation ∼X on it

Example

Setoid whose underlying set is the set of integer numbers having the same absolute
value

integerp

(defun eq-abs (a b)

(equal (abs a) (abs b)))

(implies (integerp x) ;; Reflexive
(eq-abs x x))

(implies (and (integerp x) (integerp y) (eq-abs x y)) ;; Symmetry
(eq-abs y x))

(implies (and (integerp x) (integerp y) (integerp z) ;; Transitive
(eq-abs x y) (eq-abs y z))

(eq-abs x z))
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A methodology to deal with algebraic structures in ACL2 Modeling setoids in ACL2

Modeling setoids

(encapsulate

; Signatures
(((X-inv *) => *)

((X-eq * *) => *))

; Assumptions
(defthm X-reflexive

(implies (X-inv x)

(X-eq x x))

(defthm X-symmetry

(implies (and (X-inv x) (X-inv y) (X-eq x y))

(X-eq y x))

(defthm X-transitive

(implies (and (X-inv x) (X-inv y) (X-inv z) (X-eq x y) (X-eq y z))

(X-eq x z))

)
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(defthm X-transitive

(implies (and (X-inv x) (X-inv y) (X-inv z) (X-eq x y) (X-eq y z))

(X-eq x z))

)

(defthm symmetry-transitive

(implies (and (X-inv x) (X-inv y) (X-inv z) (X-eq y x) (X-eq y z))

(X-eq x z)))
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A methodology to deal with algebraic structures in ACL2 Modeling setoids in ACL2

Modeling setoids

Enhancements:

Structure gathering functional components

Definition of macros to certify definitional axioms

Macro to define generic instances

(defstructure setoid

inv eq)

(defconst *Zabs* (make-setoid :inv ’integerp :eq ’eq-abs))

(check-setoid-p *S*)

(defgeneric-setoid X)
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A hierarchy of structures and morphisms

Records to represent them

Definition of macros to certify definitional axioms

Macros to define generic instances
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A methodology to deal with algebraic structures in ACL2 A hierarchy of structures and morphisms

A hierarchy of structures and morphisms

A magma is a setoid with a closed and compatible binary operation

(defstructure magma

setoid binary-op)

(defconst *Zmagma* (make-magma

:setoid (make-setoid :inv ’integerp :eq ’eq-abs)

:binary-op ’+))

check-magma-p =

 check-setoid-p

binary-op is closed
binary-op is compatible
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Application: Homological Algebra Homology groups

Homology groups

Definition

Let f : G1 → G2 and g : G2 → G3 be abelian group morphisms such that
∀x ∈ G1, gf (x) ∼G3

0G3
(where 0G3

is the neutral element of G3), then the homology
group of (f , g), denoted by H(f ,g), is the abelian group H(f ,g) = ker(g)/im(f ).

Goal

Use our framework to define H(f ,g) and prove that it is an abelian group
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Application: Homological Algebra Homology groups

Homology groups

Definition of 3 generic abelian groups:

(defgeneric-abelian-group G1)

(defgeneric-abelian-group G2)

(defgeneric-abelian-group G3)

Components of these groups:

G<i>-inv: the underlying set

G<i>-eq: the equivalence relation

G<i>-binary-op: the binary operation

G<i>-id-elem: the neutral element

G<i>-inverse: the inverse operator
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Application: Homological Algebra Homology groups

Homology groups

Definition of two generic abelian group morphisms satisfying nilpotency:

(encapsulate

; Signatures
(((f *) => *)

((g *) => *))

; Generic Abelian Group Morphisms Definition
(defconst *f*

(make-abelian-group-morphism :source *G1* :target *G2* :map ’f))

(defconst *g*

(make-abelian-group-morphism :source *G2* :target *G3* :map ’g))

; Abelian Group Morphism Axioms
(check-abelian-group-morphism-p *f*)

(check-abelian-group-morphism-p *g*)

; Nilpotency condition
(defthm nilpotency-condition

(implies (G1-inv x)

(G3-eq (g (f x)) (G3-id-elem))))

)
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Application: Homological Algebra Homology groups

Homology groups

ker(g) = {x ∈ G2 : g(x) ∼G3
0G3
}

(defun ker-g-inv (x)

(and (G2-inv x)

(G3-eq (g x) (G3-id-elem))))

(defconst *ker-g*

(make-abelian-group :group

(make-group :monoid

(make-monoid :semigroup

(make-semigroup :magma

(make-magma :setoid

(make-setoid :inv ’ker-g-inv :eq ’G2-eq)

:binary-op ’G2-binary-op))

:id-elem ’G2-id-elem)

:inverse ’G2-inverse))
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Application: Homological Algebra Homology groups

Homology groups

im(f ) = {x ∈ G2 : ∃y ∈ G1, f (y) ∼G2
x}

(defun-sk im-f-inv (x)

(exists (y)

(and (G2-inv x) (G1-inv y) (G2-eq (f y) x))))

(defconst *im-f*

(make-abelian-group :group

(make-group :monoid

(make-monoid :semigroup

(make-semigroup :magma

(make-magma :setoid

(make-setoid :inv ’im-f-inv :eq ’G2-eq)

:binary-op ’G2-binary-op))

:id-elem ’G2-id-elem)

:inverse ’G2-inverse))
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Application: Homological Algebra Homology groups

Homology groups

H(f ,g) = ker(g)/im(f )

Equivalence Relation: ∀x , y ∈ ker(g), x ∼im(f ) y ⇔ xy−1 ∈ im(f )
(defun im-f-eq (x y)

(im-f-inv (G2-binary-op x (G2-inverse y))))

(defconst *homology-fg*

(make-abelian-group :group

(make-group :monoid

(make-monoid :semigroup

(make-semigroup :magma

(make-magma :setoid

(make-setoid :inv ’ker-g-inv :eq ’im-f-eq)

:binary-op ’G2-binary-op))

:id-elem ’G2-id-elem)

:inverse ’G2-inverse))

(check-abelian-group-p *homology-fg*)
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Benefits of our methodology

Benefits of our methodology

Application to Algebraic Topology

Definition

A chain complex is a pair (Cn, dn)n∈Z where (Cn)n∈Z is a graded R-module indexed on
the integers and (dn)n∈Z (the differential map) is a graded R-module endomorphism
of degree −1 (dn : Cn → Cn−1) such that dn−1dn = 0 (this property is known as
nilpotency condition).

Let (Cn, dn)n∈Z and (Dn, d̂n)n∈Z be two chain complexes, a chain complex morphism

between them is a family of R-module morphism (fn)n∈Z such that d̂nfn = fn−1dn for
each n ∈ Z.

Definition

Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be two chain complexes and
φ : D∗ → C∗ be a chain complex morphism. Then the cone of φ, denoted by
Cone(φ) = (An, dAn)n∈Z, is defined as: An := Cn+1 ⊕ Dn; and

dAn :=

[
dCn+1 φ

0 −dDn

]
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Benefits of our methodology

Benefits of our methodology

Definition of generic Definition of Proof of the correctness
chain complex morphism cone construction of the construction

from scratch 19 function symbols 9 definitions 49 theorems
19 witnesses 34 auxiliary lemmas

84 axioms
hierarchical 1 macro call 9 definitions 1 macro call

1 chain-complex 34 auxiliary lemmas
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Conclusions and Further work

Conclusions:

ACL2 infrastructure to deal with algebraic structures and morphisms

Methodology to handle other mathematical structures

Benefits when proving

Further work:

Apply methodology to other structures

Formalizing the generic theory of Universal Algebra

Automatic generation of tools for morphisms

Certification of critical fragments of Kenzo
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