
Certifying homological algorithms

to study biomedical images

Maŕıa Poza López de Echazarreta

Dissertation submitted for the degree

of Doctor of Philosophy

Supervisors: Dr. D. César Domı́nguez Pérez

Dr. D. Julio Rubio Garćıa

Universidad de La Rioja
Departamento de Matemáticas y Computación

Logroño, April 2013

This work has been partially supported by the project MTM2009-13842-C02-01

from the Spanish Ministerio de Educación y Ciencia, and by the FORMATH

project, nr. 243847 of the FET program within the 7th Framework program of

the European Commission.

Acknowledgments

To Álvaro

To my parents and my brother

First of all, I would like to thank my supervisors César Domı́nguez and Julio

Rubio for your support and dedication along this adventure. Thank you for the

time that you have spent on me, I am sure that without your suggestions and

corrections it would not have been possible for me to make this thesis. Moreover,

I cannot forget Jónathan Heras. I would like to thank you for your help and

unconditional support as at a scientific as personal level. Above all, I would like

to underline your understanding and patience with me. Your thesis has been a

point of reference and yourself a good example for me.

On the other hand, I would like to thank the rest of my group partners for the

fantastic atmosphere that has been between us during this period of time. From

the beginning you have encouraged me to feel part of the group, and in this way,

I begun playing paddel tennis. In addition, I would like to show all my gratitude

to my office partner Clara Jimenez because of her company especially along the

last year. Besides, I also would like to be grateful that my partner and friend

Gadea Mata has given to me the necessary encouragement and also our meals

and cafes at the sun, even when there was not sun.

To conclude, I would like to thank to my parents and my brother for their

patience during the development of this thesis because sometimes I have not

been the best company for them during this period of time. In addition, thanks

to Álvaro because he has stayed close to me when I needed him, for his support

and his big confidence in me. Thanks to my friends because they did not know

i

exactly what was I doing but they were always asking me for the development of

it.

To all of you, thanks.

ii

Contents

Contents iii

Introduction 1

1 Preliminaries 7

1.1 Mathematical background . 7

1.1.1 Chain complexes . 8

1.1.2 Simplicial complexes . 11

1.1.3 From simplicial complexes to chain complexes 13

1.1.4 From digital images to simplicial complexes 15

1.1.5 Reductions . 18

1.1.6 An algebraic setting of Discrete Morse Theory 21

1.1.6.1 Algebraic discrete vector fields 22

1.1.6.2 Discrete vector fields over matrices 25

1.2 Coq and SSReflect . 27

1.2.1 Inductive schemas . 28

1.2.2 Record types . 31

1.2.3 Relevant SSReflect libraries in our development 32

iii

iv Contents

1.2.4 The CoqEAL library . 33

1.3 A methodology to formalize algorithms 34

1.3.1 A Haskell program . 35

1.3.2 Testing with QuickCheck 35

1.3.3 Formalization in Coq/SSReflect 37

1.3.4 Feedback loop . 37

1.4 Mathematics to formalize . 39

2 Formalization of an algorithm to compute discrete vector fields 41

2.1 Romero-Sergeraert’s algorithm (RS algorithm) 42

2.1.1 Realignment of an admissible discrete vector field 46

2.2 Implementation in Haskell . 46

2.2.1 Realignment of an admissible discrete vector field 53

2.3 Testing . 54

2.3.1 Testing with QuickCheck 55

2.4 Verification . 58

2.4.1 Implementation in SSReflect 58

2.4.2 Verification in SSReflect 62

2.4.2.1 Definition of an ordered and admissible discrete

vector field . 62

2.4.2.2 Properties to formalize about an ordered and ad-

missible discrete vector field 63

2.4.2.3 The RS algorithm builds an ordered and admissi-

ble discrete vector field 74

2.5 A non deterministic algorithm in SSReflect 75

3 Reduction with an ordered and admissible discrete vector field 79

Contents v

3.1 Introduction . 81

3.2 Implementation in Haskell . 82

3.3 Formalization of the basic algebraic structures in SSReflect . . 84

3.4 Reduction of a chain complex . 88

3.4.1 Realignment of a matrix . 91

3.4.2 Reduction between the initial chain complex and the re-

ordered one . 94

3.4.2.1 Building of the chain complex consisted of the re-

ordered matrices 96

3.4.2.2 Definition of an isomorphism between the chain

complexes C and D 98

3.4.2.3 Building a reduction from the previous isomorphism 99

3.4.3 Reduction between the reordered chain complex and the

reduced one . 99

3.4.3.1 Hexagonal Lemma 100

3.4.3.2 Formalization . 101

3.4.3.3 Block matrices . 103

3.4.3.4 Proving that |ε| = 1 106

3.4.4 Composing reductions . 112

3.4.4.1 Construction of a reduction from two reductions . 113

3.5 The homology groups in a reduction are isomorphic 114

3.5.1 A reduction preserves the Betti numbers 114

3.5.2 Two vector spaces with the same dimension are isomorphic 118

3.5.3 The computed reduction is a reduction_VS 120

3.5.3.1 First refinement 120

3.5.3.2 Second refinement 121

vi Contents

3.5.3.3 Final refinement 122

3.6 Another reduction: Collapses . 123

3.6.1 Example . 123

3.6.2 Formalization of the reduction using collapses 126

4 Formalization of the Basic Perturbation Lemma (BPL) 129

4.1 Mathematical proof of the BPL . 130

4.1.1 Decomposition Theorem . 130

4.1.2 Generalization of the Hexagonal Lemma 133

4.1.3 Proof of the BPL . 133

4.2 Formalization of the proof . 135

4.2.1 The kernel of a map . 137

4.2.2 Main mathematical structures 139

4.2.3 Formalization of the Decomposition Theorem 140

4.2.3.1 Conditions of the decomposition 143

4.2.4 Formalization of the Generalization of the Hexagonal Lemma146

4.2.5 Formalization of the BPL 147

4.3 Using the BPL to reduce a chain complex 153

4.3.1 The initial reduction . 156

4.3.2 From a 3-truncated reduction to a reduction 157

4.3.3 Applying the BPL . 159

4.3.4 From a reduction to a 3-truncated reduction 163

5 Homological processing of digital images 165

5.1 Semi-automated testing . 166

5.2 Abstract formal development . 167

Contents vii

5.2.1 Simplicial complexes . 168

5.2.2 Abstract incidence matrices 169

5.2.3 Abstract formalization of homology 175

5.3 An effective formal development 177

5.4 The bridges between both representations 180

5.4.1 Incidence matrices bridge 180

5.4.2 Homology bridge . 182

5.5 From digital images to homology 183

5.6 Computing homology within Coq 185

5.7 Computing homology using discrete vector fields within Coq . . . 189

6 Experimental aspects 193

6.1 Testing . 193

6.1.1 Automated testing . 195

6.1.2 Testing with QuickCheck 197

6.2 Profiling in Haskell . 200

6.3 Computational results . 204

6.3.1 Biomedical images . 207

6.4 Other algorithms . 211

Conclusions and further work 215

Bibliography 219

Introduction

Scientific computing is an outstanding tool to assist researchers in experimental

sciences. When applied to biomedical problems, the accuracy and reliability of the

computations are particularly important. Thus, the possibility of increasing the

trust in scientific software by means of mechanized theorem proving technologies

becomes an interesting area of research.

Interactive proof assistants are software tools designed to help researchers

in the development of formal proofs. These systems require the cooperation of

human beings and machines. Namely, the user is in charge of designing the proofs,

giving big steps as usual in mathematics, while the machine, with the help of the

human, fills the gaps. There are several examples of proof assistants such as Hol-

Light [Har09], Isabelle/HOL [NPW02], ACL2 [KM], and Coq [BC04, BGBP08].

Proof assistant tools are mature enough to tackle interesting problems in the

formalization of mathematics and also to verify the correctness of software and

hardware. Some appealing examples are the formalizations of the Four Color

Theorem [Gon08], the Fundamental Theorem of Algebra [GWZ02], the Kepler

Conjecture [Hal05a], the verification of a C compiler [Ler09], or the formalization

of the correctness of an AMD microprocessor [BKM96]. Some projects have

been launched with the unique purpose of ensuring the correctness of a concrete

mathematical proof, as in the case of the Flyspeck project [Hal05b], devoted to

formalize Hales’ proof of the Kepler conjecture [Hal05a].

In our case, we use the Coq proof assistant, which is based on Calculus

of Inductive Constructions [CH88]. This system has an interesting feature which

allows us to extract programs from constructive proofs. In addition, we have used

SSReflect [GM10], an extension for Coq. The SSReflect tactic language

1

2 Introduction

and library were initially designed to prove the Four Color Theorem and has

been later improved in order to tackle the Feit-Thompson Theorem (also known

as Odd Order Theorem) [Mat12].

In this work, we use Coq with the aim of certifying some image processing

procedures. The images are taken at the beginning of our investigation from

neuron cultures using microscopical devices [C+11]. The technique that we use

to process these images is based on Computational Algebraic Topology.

Computational Algebraic Topology is an emerging field which attracts the

interest of researchers, in both theoretical and industrial aspects (see, for in-

stance, [EH10]). Even if the interest is growing in recent years, the history

of Computational Algebraic Topology is long (at least, with respect to the

standards in computer algebra and scientific computing). One of the first the-

ories in this field is called effective homology [RS02], created by F. Sergeraert,

and which produced the Kenzo software system [DRSS98]. Kenzo is devoted

to compute homology and homotopy groups of topological spaces, and some of

its calculations produced unknown results [Ser92] or even corrected previously

published theorems [RR12]. Therefore, mathematicians should trust Kenzo re-

sults. To reinforce this trust, several contributions have been made to apply

formal methods to the study of Kenzo and its underlying algorithms (see, among

others, [ABR08, ABR10, AD09, AD10, DLR07, DR10, DR11]).

This is the frame where the research presented in this memoir is located. Some

algorithms by Romero and Sergeraert [RS10] were implemented in Kenzo to be

applied on digital images. Here, we undertake the verification of those algorithms

in Coq, emulating the Kenzo processes.

The foundations for a homological processing of digital images are based on

the discipline called Digital Topology [ADFQ03]. Digital images must be in-

terpreted as topological spaces in a combinatorial way. The most elementary

method to settle a connection between General Topology and Combinatorial To-

pology is based on the use of simplicial complexes. The notion of topological

space is too “abstract” in order to transfer it to a computational universe. Sim-

plicial complexes provide a purely combinatorial description of topological spaces

which admit a triangulation. The computability of invariants, such as homology

groups, from a finite simplicial complex associated with a topological space is

well-known and, for instance in the case of homology groups the algorithm uses

Introduction 3

Biomedical
image

Digital
image

Simplicial
complex

Incidence
matrices

Homology

reduction

interpretation

Figure 1: Computing homology from a digital image

simple linear algebra [Veb31]. Then, an algebraic topologist can identify a com-

pact triangulable topological space (as a “continuous” interpretation of a digital

image) with a finite simplicial complex, making computations possible. The role

of Algebraic Topology in digital imaging is well-known (see for instance the series

of conferences called Computational Topology in Image Context).

In a very rough manner, the process to be studied in this memoir is described

in Figure 1. Putting it into words, after preprocessing a biomedical image, a

monochromatic picture is obtained; then, from the black pixels of that monochro-

matic image a simplicial complex is created (by means of a triangulation proce-

dure); subsequently, from the simplicial complex, its boundary (or incidence)

matrices are constructed, and finally, homology can be computed. If we work

with coefficients over a field (and it is well-known that it is enough to take as

coefficients the field Z2, when we work with 2D and 3D digital images) and if only

the dimensions of the homology groups (as vector spaces) are looked for, then

having a program able to compute the rank of a matrix is sufficient to accomplish

the whole task.

This architecture is particularized in this memoir with a real problem that

appeared in an industrial application and with the Coq proof assistant as pro-

gramming and verifying tool. The biological problem (namely, the number of

synapses in a picture of a neuron) can be identified with the computation of a

topological invariant (the rank of a homology group). Then, all our efforts are

concentrated on computing, in a certified manner, such an invariant.

Since the size of real-life biomedical images is too big to deal with them in a

direct way, we propose a reduction strategy (see the reduction step in Figure 1)

allowing us to work with smaller data structures but preserving all their homo-

logical properties. To this aim, we use the notion of discrete vector field [For98],

following very closely the approach presented by Romero and Sergeraert in [RS10].

4 Introduction

In order to verify the correctness of these procedures, it is needed to formalize

a certain amount of mathematics. The most significant piece of mathematics

formalized in this work is the so-called Basic Perturbation Lemma (or BPL, in

short). The proof of this theorem has been already implemented in the Isa-

belle/HOL proof assistant [ABR08]. The BPL formalization presented in this

work is much shorter and compact than that of [ABR08]. There are two reasons

for this improvement of the formal proof. The first one is that in this work we

have followed a new and shorter proof of the BPL (due again to Romero and

Sergeraert [RS12]). The second reason is that we have built our formal proof on

the powerful library SSReflect of Coq [GM10] (on the contrary, much of the

infrastructure required was defined from scratch in [ABR08]).

Apart from the efficiency in the writing of proofs, using SSReflect also

has other consequences. Since SSReflect is designed to deal only with finite

structures, the proof of the BPL presented here only applies over finitely generated

groups (the proof formalized in [ABR08] has not this constraint). Furthermore,

dealing with finite structures, and inside the constructive logic of Coq, eases the

executability of the proofs, and thus the generation of certified programs (the

same tasks in Isabelle/HOL pose more difficulties; see [ABR10]).

In order to prove the correctness of the generated programs, we must es-

tablish, and keep, a link among the initial digital image, and the final smaller

data structure where the homological calculations are carried out. This implies

a big amount of processing, and does not allow us to execute all the steps inside

Coq (the full path has been traveled, but only in toy examples). Then, we have

appealed to a programming language, Haskell [Hut07] in our case, to integrate

computation and deduction.

Haskell appears in two different steps of our methodology. In the early de-

velopment stages, Haskell prototypes of the algorithms are systematically tested

using the QuickCheck tool [CH00]. This permits us to discharge many small and

common errors, which could hinder the proving process in Coq. In the final

computational step, Haskell is used as an oracle for Coq. The most hard parts

of the calculation (in our case, an important bottleneck is the computation of

inverse matrices) are delegated to Haskell programs; the results of these Haskell

programs are then proved correct within Coq.

With this hybrid technique, we have reached the objective of computing, in a

Introduction 5

certified way, the homology of actual biomedical images coming from neurological

experiments.

The structure of the memoir is the following one.

In Chapter 1, preliminaries for our research are introduced. It includes both

mathematical and theorem proving aspects. The mathematics to formalize are

also described there.

Chapter 2 is devoted to the implementation and verification of Romero-

Sergeraert’s algorithm to compute a discrete vector field associated with a digital

image. The results covered in this chapter have been partially published in the

paper [HPR12].

In Chapter 3 and 4, we describe respectively the construction of the algebraic

reduction defined by a discrete vector field, and a formal proof of the BPL. The

results of these two chapters are the subject of the forthcoming paper [PDHR13].

Chapter 5 deals with the application of the previous results to materialize the

path represented in Figure 1. Concretely, we implement chain complexes and

incidence matrices (partially published in [HPDR11]) and compute homology

inside Coq (see our paper [HDM+12]). Then, the certified reduction strategy is

integrated in this general schema to improve performance.

In Chapter 6, some computational experiments carried out around our work

(with Kenzo, with Haskell, or in Coq) are reported, showing the strengths and

weaknesses of our approach.

The memoir ends with a section devoted to conclusions and further work, and

the bibliography.

The interested reader can consult the code presented throughout this memoir

in [For].

Chapter 1

Preliminaries

In this chapter, we introduce the context and the tools that we will use in the rest

of this memoir. The first section is devoted to the mathematical notions employed

in this work. Then, a brief introduction to the Coq system and its SSReflect

library is provided in Section 1.2. Afterwards, the methodology which we have

followed in our development is presented in Section 1.3. Finally, we introduce as a

summary the concepts and results which we are going to formalize in Section 1.4.

1.1 Mathematical background

In the first sections, we briefly provide the minimal standard mathematical back-

ground related to Homological Algebra and Simplicial Topology which will be

necessary in the rest of the text. Many good textbooks are available for these

definitions and results about them (see for instance, [Mau96] or [Mac63]). Then,

we introduce the relations between both simplicial complexes and chain complexes

and digital images and simplicial complexes. In this way, we can obtain the ho-

mology groups of a chain complex which give us properties of the corresponding

image.

Moreover, we present some more notions about reductions and an algebraic

setting of Discrete Morse Theory which allows us to reduce the amount of infor-

mation without changing the homological properties [For98].

7

8 Chapter 1 Preliminaries

1.1.1 Chain complexes

Definition 1.1. Let R be a ring with a unit element 1 6= 0. A left R-module M

is an additive abelian group together with a map p : R ×M → M , denoted by

p(r,m) ≡ rm, such that for every r, r′ ∈ R and m,m′ ∈M

(r + r′)m = rm+ r′m

r(m+m′) = rm+ rm′

(rr′)m = r(r′m)

1m = m

A similar definition can be given for a right R-module.

If R = Z (the integer ring), a Z-module M is simply an abelian group. The

map p : Z×M →M is given by

p(n,m) =


m+

n· · · +m if n > 0

0 if n = 0

(−m)+
−n· · · +(−m) if n < 0

Definition 1.2. Let R be a ring and M and N be R-modules. An R-module

morphism α : M → N is a function from M to N such that for every m,m′ ∈M
and r ∈ R

α(m+m′) = α(m) + α(m′)

α(rm) = rα(m)

α(0M) = 0N

Definition 1.3. Given a ring R, a graded module M is a family of left R-modules

(Mn)n∈Z.

Definition 1.4. Given a pair of graded modules M and M ′, a graded module

morphism f of degree k between them is a family of module morphisms (fn)n∈Z

such that fn : Mn → M ′n+k for all n ∈ Z.

Definition 1.5. Given a graded module M , a differential (dMn)n∈Z is a family

of module endomorphisms of M of degree −1 such that dMn−1 ◦ dMn = 0 for all

n ∈ Z.

From the previous definitions, the notion of chain complex is introduced as

follows.

1.1 Mathematical background 9

Definition 1.6. A chain complex C∗ is a pair of families (Cn, dCn
)n∈Z where

(Cn)n∈Z is a graded module and (dCn
)n∈Z is a differential map on (Cn)n∈Z.

The module Cn is called the module of n-chains. The image Bn = im dCn+1 ⊆
Cn is the (sub)module of n-boundaries. The kernel Zn = ker dCn

⊆ Cn is the

(sub)module of n-cycles.

In many situations the ring R is the integer ring, R = Z. In this case, a chain

complex C∗ is given by a graded abelian group (Cn)n∈Z and a graded group

morphism of degree -1, (dCn : Cn → Cn−1)n∈Z, satisfying dCn−1 ◦ dCn = 0 for all

n.

Let us present some examples of chain complexes.

Example 1.7. The unit chain complex has a unique non-null module, namely a

Z-module in degree 0 generated by a unique generator, and the differential is the

null map.

Example 1.8. A chain complex to model the circle is defined as follows. This

chain complex has two non-null modules, namely a Z-module in degree 0 gener-

ated by an unique generator and a Z-module in degree 1 generated by another

generator; and the differential is the null map.

We can construct chain complexes from other ones, applying constructors such

as the direct sum.

Definition 1.9. Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be chain com-

plexes. The direct sum of C∗ and D∗ is the chain complex C∗⊕D∗ = (Mn, dn)n∈Z

such that, Mn = (Cn, Dn) and the differential map is defined on the generators

(x, y) with x ∈ Cn and y ∈ Dn by dn(x, y) = (dCn
(x), dDn

(y)) for all n ∈ Z.

Let us present now one of the most important invariants used in Homological

Algebra. Given a chain complex C∗ = (Cn, dCn)n∈Z, the identities dCn−1◦dCn = 0

are equivalent to the inclusion relations Bn ⊆ Zn: every boundary is a cycle but

the converse is not generally true. Bn represents the image of dCn+1
and Zn the

kernel of dCn
. Thus, the next definition makes sense.

Definition 1.10. Let C∗ = (Cn, dCn
)n∈Z be a chain complex of R-modules. For

each degree n ∈ Z, the n-homology module of C∗ is defined as the quotient

Hn(C∗) =
Zn
Bn

10 Chapter 1 Preliminaries

It is worth noting that the homology modules of a space X are the ones of

its associated chain complex C∗(X); the way of constructing the chain complex

associated with a space X is explained, for instance, in [Mau96]. In an intuitive

sense, homology groups measure “n-dimensional holes” in topological spaces. H0

measures the number of connected components of a space. The homology groups

Hn measure higher dimensional connectedness. For instance, the n-sphere, Sn,

has exactly one n-dimensional hole and no m-dimensional holes if m 6= n.

Moreover, let us highlight that homology groups are an invariant, see [Mau96].

That is to say, given two topological spaces if their homology groups are different

then they are not homeomorphic.

The computation of homology groups of chain complexes is one of the central

tasks in Homological Algebra. A general computing strategy consists in replacing

a given chain complex by another simpler one, but with the same homological

information. This point will be dealt with in this memoir in detail.

Let us finish this subsection with some additional definitions related to chain

complexes.

Definition 1.11. A chain complex C∗ = (Cn, dCn)n∈Z is acyclic if Hn(C∗) = 0

for all n, that is to say, if Zn = Bn for every n ∈ Z.

Definition 1.12. A chain complex C∗ = (Cn, dCn
)n∈N of Z-modules is said to be

free if Cn is a free Z-module (a Z-module which admits a basis) for each n ∈ N.

Definition 1.13. Let C∗ = (Cn, dCn
)n∈Z and D∗ = (Dn, dDn

)n∈Z be two

chain complexes, a chain complex morphism between them is a family of mod-

ule morphisms (fn)n∈Z of degree 0 between (Cn)n∈Z and (Dn)n∈Z such that

dDn
◦ fn = fn−1 ◦ dCn

for each n ∈ Z.

Definition 1.14. An isomorphism between two chain complexes C∗ and D∗ is a

chain complex morphism f : C∗ → D∗ such that there is a chain complex mor-

phism inverse f−1 : D∗ → C∗ with the properties f−1f = idC∗ and ff−1 = idD∗ .

Definition 1.15. Let C∗ = (Cn, dCn)n∈Z be a chain complex. A chain complex

D∗ = (Dn, dDn)n∈Z is a chain subcomplex of C∗ if

• Dn is a submodule of Cn, for all n ∈ Z

• dDn = dCn |D∗

1.1 Mathematical background 11

The condition dDn
= dCn

|D∗ means that the boundary operator of the chain

subcomplex is just the differential operator of the larger chain complex restricted

to its domain. We denote D∗ ⊂ C∗ if D∗ is a chain subcomplex of C∗.

As we said chain complexes are indexed over Z. But in many situations we

will work only with chain complex concentrated on three consecutive degrees.

C0 C1
d1

oo C2
d2

oo (1.1)

That is to say, three modules C0, C1, and C2 plus two homomorphism

d1 : C1 → C0 and d2 : C2 → C1 satisfying d2d1 = 0.

From this data, we can complete an actual chain complex by adding null

modules and null differential maps. Even if in standard mathematical texts these

two concepts are usually identified, in our formalization setting, where types are

essential, it is convenient to distinguish both notions. Therefore, we will call in the

sequel 3-truncated chain complex to the first concept summarized in Expression

1.1.

Analogously, the concept is extended to chain complex morphisms (using the

name 3-truncated chain complex morphisms). Nevertheless, if no confusion can

arise we will use the terminology ‘chain complex’ to denote also 3-truncated chain

complexes and the like.

1.1.2 Simplicial complexes

The notion of simplicial complex gives rise to the most elementary method to

settle a connection between General Topology and Algebraic Topology. The no-

tion of topological space is too abstract to perform computations. Simplicial

complexes provide a purely combinatorial description of topological spaces which

admit a triangulation. The computability of properties, such as homology groups,

from a simplicial complex associated with a topological space is well-known and

the algorithm uses simple linear algebra [Veb31]. Then, an algebraic topologist

can construct from every sensible space (that is to say, a topological space which

admits a triangulation) an equivalent simplicial complex, making computations

easier. A complete description of these notions of Algebraic Topology (simplicial

complexes, chain complexes, and so on) can be seen in [Koz07].

12 Chapter 1 Preliminaries

0

1

2

3 4

5

6

Figure 1.1: Butterfly Simplicial Complex

Let us start with some basic terminology. Let V be an ordered set, called the

vertex set. An (abstract) simplex over V is any finite subset of V . An (abstract)

n-simplex over V is a simplex over V whose cardinality is equal to n+ 1. Given

a simplex α over V , we call the subsets of α faces.

Definition 1.16. An (ordered abstract) simplicial complex over V is a set of

simplices K over V such that it is closed by taking faces (subsets); that is to say,

if α ∈ K all the faces of α are in K, too.

Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the

set made of the simplices of cardinality n+ 1.

Example 1.17. Let us consider V = (0, 1, 2, 3, 4, 5, 6).

The small simplicial complex drawn in Figure 1.1 is mathematically defined

as the object:

K =

{
∅, (0), (1), (2), (3), (4), (5), (6), (0, 1), (0, 2), (0, 3), (1, 2),

(1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6), (0, 1, 2), (4, 5, 6)

}
and for instance, S2(K) = {(0, 1, 2), (4, 5, 6)}.

It is worth noting that simplicial complexes can be infinite. For instance if

V = N and the simplicial complex K is {(n)}n∈N ∪{(n, n+ 1)}n∈N, the simplicial

complex obtained can be seen as a simplicial representation of the real line.

Definition 1.18. A facet of a simplicial complex K over V is a maximal simplex

with respect to the subset order ⊆ among the simplices of K.

Example 1.19. The facets of the simplicial complex depicted in Figure 1.1 are:

{(0, 3), (1, 3), (2, 3), (3, 4), (0, 1, 2), (4, 5, 6))}

1.1 Mathematical background 13

To construct the simplicial complex associated with a sequence of facets F ,

we generate all the faces of the simplices of F . Subsequently, if we perform the

set union of all the faces we obtain the simplicial complex associated with F .

Since the vertex set V is ordered, each simplex (v0, . . . , vn) defines uniquely a

list < v0, . . . , vn >, where v0 < v1 < . . . < vn. If no confusion can arise, we will

denote both the simplex and the corresponding list by (v0, . . . , vn).

Definition 1.20. Let K be a simplicial complex over V . Let n and i be two

integers such that n ≥ 1 and 0 ≤ i ≤ n. Then the face operator ∂ni is the linear

map ∂ni : Sn(K)→ Sn−1(K) defined by:

∂ni (v0, . . . , vn) = (v0, . . . , vi−1, vi+1, . . . , vn)

the i-th vertex of the simplex is removed, so that an (n-1)-simplex is obtained.

Example 1.21. Let us show the behavior of the face operator using the simplicial

complex of Figure 1.1. For instance, if we apply the face operator over the

2-simplex (0 1 2) (analogously for the rest of the simplices) we will obtain:

∂i(0, 1, 2) =


(1, 2) if i = 0

(0, 2) if i = 1

(0, 1) if i = 2

Let us note that the face operator applied over the 2-simplex (0, 1, 2) pro-

duces simplices with geometrical meaning (that are the three edges of the triangle

(0, 1, 2)).

1.1.3 From simplicial complexes to chain complexes

Once we have defined the notions of simplicial complex and chain complex, we

can define the link between them considering Z as the ring R; the most common

case in Algebraic Topology.

Definition 1.22. Let K be a simplicial complex over V . Then the chain complex

C∗(K) canonically associated with K is defined as follows. The chain group Cn(K)

is the free Z module generated by the n-simplices ofK. In addition, let (v0, . . . , vn)

be an n-simplex of K, the differential map of this simplex is defined as:

dCn
(v0, . . . , vn) :=

n∑
i=0

(−1)i∂ni (v0, . . . , vn)

14 Chapter 1 Preliminaries

and then extended to any element of Cn(K) by linearity.

In order to clarify the notion of chain complex canonically associated with a

simplicial complex, let us present an example.

Example 1.23. Let K be the simplicial complex defined in Figure 1.1. The chain

complex C∗(K) canonically associated with K is:

· · · → 0→ C2(K)
d2−→ C1(K)

d1−→ C0(K)→ 0→ · · ·

where there are 3 associated chain groups:

• C0(K), the free Z-module on the set of 0-simplices (vertices)

{(0), (1), (2), (3), (4), (5), (6)}.

• C1(K), the free Z-module on the set of 1-simplices (edges)

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6)}.

• C2(K), the free Z-module on the set of 2-simplices (triangles)

{(0, 1, 2), (4, 5, 6)}.

The elements of either of those groups Cp are linear integer combinations of the

corresponding basis (set of σi’s), i.e. elements of the form
∑
λiσi, λi ∈ Z.

The differential homomorphism is:

dCn
(v0, . . . , vn) :=

n∑
i=0

(−1)i(v0, . . . , vi−1, vi+1, . . . , vn) (1.2)

For instance, d2(0, 1, 2) = (1, 2)− (0, 2) + (0, 1).

From the previous definition, we can introduce a very useful concept for the

computation of homology groups of simplicial complexes.

Definition 1.24. Let K be a simplicial complex, Cn(K) is a free module and

the n-simplices of K form the standard basis of it. Then, given an order, for all

n we can represent the differential map dn : Cn(K) → Cn−1(K) relative to the

standard basis of the chain groups as a Z matrix. Such a matrix is called the n-th

incidence matrix of a simplicial complex.

It is worth mentioning that the entries of incidence matrices are 0’s, 1’s or −1’s.

1.1 Mathematical background 15

Example 1.25. If we impose a lexicographical order on the simplices of the same

dimension of the simplicial complex depicted in Figure 1.1 (if v = (a0, . . . , an)

and w = (b0, . . . , bn) are n-simplices of the simplicial complex, then v < w if

a0 < b0, or if a0 = b0 and a1 < b1, or if a0 = b0 and a1 = b1 and a2 < b2, . . ., or

if a0 = b0, . . . , an−1 = bn−1 and an < bn), then its first incidence matrix is:



(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3) (3, 4) (4, 5) (4, 6) (5, 6)

(0) −1 −1 −1 0 0 0 0 0 0 0

(1) 1 0 0 −1 −1 0 0 0 0 0

(2) 0 1 0 1 0 −1 0 0 0 0

(3) 0 0 1 0 1 1 −1 0 0 0

(4) 0 0 0 0 0 0 1 −1 −1 0

(5) 0 0 0 0 0 0 0 1 0 −1

(6) 0 0 0 0 0 0 0 0 1 1


The relevance of the incidence matrices of simplicial complexes lies in the fact

that they can be used to compute the homology groups of the simplicial complex

by means of a diagonalization process, as explained for instance in [Veb31]. In

the literature, one of the algorithms to diagonalize matrices is the Smith Normal

Form.

1.1.4 From digital images to simplicial complexes

The definitions presented in the previous subsections are classical definitions from

Algebraic Topology. However, since our final goal consists in working with mathe-

matical objects coming from digital images, we need to show how Algebraic To-

pology may be used in this context. There are several methods to construct a

simplicial complex from a digital image [ADFQ03]. We are going to explain one

of them. Roughly speaking, the chosen method obtains a sequence of facets from

a digital image. Then, as we have explained in the previous subsections, we can

generate the simplicial complex associated with the facets. So, we only need to

explain how the facets from a digital image are obtained.

We work with two dimensional monochromatic images (2D images). An image

can be represented by a finite 2-dimensional array of 1’s and 0’s in which the black

pixels are represented by 1’s and white pixels by 0’s.

Let I be an image encoded as a 2-dimensional array of 1’s and 0’s. The sim-

plicial complex associated with I will have as vertex set V = (N,N). The vertex

16 Chapter 1 Preliminaries

set V could be smaller and dependent on the concrete image, but V = (N,N) is

general enough to deal with all the possible images. Let p = (a, b) be the coor-

dinates of a black pixel in I. For each p we can obtain two 2-simplices which

are two facets of the simplicial complex associated with I. Namely, for each

p = (a, b) we obtain the following facets: ((a, b), (a + 1, b), (a + 1, b + 1)) and

((a, b), (a, b + 1), (a + 1, b + 1)). If we repeat the process for the coordinates of

all the black pixels in I, we obtain the facets of a simplicial complex associated

with I, let us called it KI .

Example 1.26. Consider the image depicted in Figure 1.2. This image, I, can

be encoded by means of the 2-dimensional array: ((1,0),(0,1)). Then, with the

previously explained process, we can obtain the facets of KI . The coordinates of

the black pixels are (0, 0) and (1, 1), so the facets that we obtain are:

(((0, 0), (1, 0), (1, 1)), ((0, 0), (0, 1), (1, 1)), ((1, 1), (2, 1), (2, 2)), ((1, 1), (1, 2), (2, 2))).

0 1

0

1

(1,2)

(2,1)

(2,2)

(0,0)

(0,1)

(1,0)

(1,1)

Figure 1.2: A digital image and its simplicial complex representation

We have presented a method to obtain a simplicial complex associated with a

2D image, this process can be generalized to higher-dimensional images [OS03].

Moreover, we can interpret properties about the digital image from its ho-

mology groups. 2D images can be interpreted as embedded in R2 (see [ADFQ03]);

then its homology groups vanish for dimensions greater than 2 and they are

torsion-free in dimensions 0 to dimension 1; that is, their homology groups are

either null or a direct sum of Z components in dimensions 0 and 1. The num-

ber of Z components of the homology groups of dimension 0 and 1 measures

respectively the number of connected components and the number of holes of

the image. As the torsion groups are null, it is not necessary to work with Z
and it is enough to take coefficients over the field Z2. This approach is usually

followed when algebraic topology methods are applied to the study of digital im-

ages, see [GDMRSP05, GDR05]. Then, we work with a different definition of the

1.1 Mathematical background 17

incidence matrices. In particular, since coefficients are in Z2, we do not have to

deal with orientations of faces.

Thus, K will denote a simplicial complex over a finite set V and n an integer

such that n ≥ 1. The incidence matrix is now defined in the following way.

Definition 1. Let K be a simplicial complex with a concrete order on the sim-

plices of the same dimension. Then, for all n, the n-th incidence matrix of K
over the ring Z2, denoted by Mn(K), is a matrix of size m × p, where m is the

cardinality of Sn−1(K) (the number of (n−1) simplices of K) and p is cardinality

of Sn(K). Its coefficients [aji] are 1 if the i-th (n− 1)-simplex is a face of the j-th

n-simplex and 0 otherwise.

Note that each entry in the n-th incidence matrix of K over the ring Z2 is the

absolute value of the corresponding entry in the n-th incidence matrix of K over

the ring Z.

Example 1.27. If we impose a lexicographical order on the simplices of the same

dimension of the simplicial complex depicted in Figure 1.1, then its first incidence

matrix over the ring Z2 is:



(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3) (3, 4) (4, 5) (4, 6) (5, 6)

(0) 1 1 1 0 0 0 0 0 0 0

(1) 1 0 0 1 1 0 0 0 0 0

(2) 0 1 0 1 0 1 0 0 0 0

(3) 0 0 1 0 1 1 1 0 0 0

(4) 0 0 0 0 0 0 1 1 1 0

(5) 0 0 0 0 0 0 0 1 0 1

(6) 0 0 0 0 0 0 0 0 1 1


The incidence matrices of simplicial complexes come from the differential maps

of the chain complexes canonically associated with them. These differentials

satisfy the boundary condition (dn−1 ◦ dn = 0).

Theorem 1. The product of the n-th incidence matrix of K over the ring Z2,

Mn(K), and the (n+1)-incidence matrix of K over the ring Z2, Mn+1(K) is equal

to the null matrix.

In order to compute the dimension of the homology groups associated with

those chain complexes, we apply a diagonalization process to the incidence ma-

trices, see [Veb31].

18 Chapter 1 Preliminaries

To sum up, our method to study digital images consists in using a well known

Algebraic Topology tool: homology groups. As we have explained in the previ-

ous subsections, homology groups measure higher dimensional connectedness of

topological spaces. In the case of 2D images, homology groups provides both the

number of connected components and of holes of digital images. For instance,

if H0 = Z ⊕ Z then the images has 2 connected components. The first step to

compute the homology groups of a digital image is the building of the simplicial

complex associated with the image. Afterwards, we construct a chain complex

from the simplicial complex. Finally, we obtain the homology groups of the pre-

vious chain complex which give us the properties of the initial image. As we work

with chain complexes coming from images, their chain groups are finitely gener-

ated, then, the differential maps between them can be represented by matrices

and the computation of homology groups is reduced to a diagonalization process.

1.1.5 Reductions

As we have seen, a central problem in our context consists in computing homology

groups of topological spaces. By definition, the homology group of a space X is

the one of its associated chain complex C∗(X). If C∗(X) can be described as

a graded free abelian group with a finite number of generators at each degree;

then, computing each homology group can be translated to a problem of diago-

nalizing certain matrices (see [Veb31]). So, we can assert that homology groups

are computable in this finite type case.

Although we can compute the homology groups, in some cases, this can be

very time consuming. We can think in reducing the chain complex preserving the

homological properties. To this aim, we introduce the notion of reduction. This

also allows us to study infinite spaces through finite ones (see [Ser87] and [Ser94]).

Definition 1.28. A reduction ρ between two chain complexes C∗ and D∗, de-

noted by ρ : C∗⇒⇒D∗, is a triple ρ = (f, g, h)

C∗

h

�� f
++
D∗

g

kk

where f and g are chain complex morphisms, h is a graded group automorphism

of degree +1 called homotopy operator, and the following relations are satisfied:

1.1 Mathematical background 19

1) f ◦ g = idD∗ ;

2) dC ◦ h+ h ◦ dC = idC∗ −g ◦ f ;

3) f ◦ h = 0; h ◦ g = 0; h ◦ h = 0.

A particular reduction can be obtained from an isomorphism where g = f−1

and the homotopy operator is null.

The importance of reductions lies in the following fact. Let C∗⇒⇒D∗ be a

reduction, then C∗ is the direct sum of D∗ and an acyclic chain complex; therefore

the graded homology groups H∗(C∗) and H∗(D∗) are canonically isomorphic.

Very frequently, the top chain complex C∗ is huge and the computation of

its homology groups can take a lot of time. On the contrary, the bottom chain

complex D∗ has a reasonable size, then we can compute its homology groups

much faster than in the case of C∗.

The composition of two reductions can be easily constructed.

Proposition 1.29. Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) : D∗⇒⇒E∗

be two reductions. Another reduction ρ′′ = (f ′′, g′′, h′′) : C∗⇒⇒E∗ is defined by:

f ′′ = f ′ ◦ f

g′′ = g ◦ g′

h′′ = h+ g ◦ h′ ◦ f

Two of the most fundamental results dealing with reductions are the two

perturbation lemmas. The main idea of both lemmas is that given a reduction,

if we perturb one of the chain complexes then it is possible to perturb the other

one; so, we obtain a new reduction between the perturbed chain complexes. The

Easy Perturbation Lemma is easily obtained. The Basic Perturbation Lemma is

not trivial at all. It was discovered by Shih Weishu [Shi62], although the abstract

modern form was given by Ronnie Brown [Bro67].

Definition 1.30. Let C∗ = (Cn, dn)n∈Z be a chain complex. A per-

turbation δ of the differential map d is a collection of group morphisms

δ = {δn : Cn → Cn−1}n∈Z such that the sum d + δ is also a differential map,

that is to say, (d+ δ) ◦ (d+ δ) = 0.

20 Chapter 1 Preliminaries

The perturbation δ produces a new chain complex C ′∗ = (Cn, dn + δn)n∈Z;

called the perturbed chain complex.

Theorem 1.31 (Easy Perturbation Lemma, EPL). Let C∗ = (Cn, dCn
)n∈Z and

D∗ = (Dn, dDn
)n∈Z be two chain complexes, ρ = (f, g, h) : C∗⇒⇒D∗ a reduction,

and δD∗ a perturbation of dD∗ . Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗
can be constructed where:

1) C ′∗ is the chain complex obtained from C∗ by replacing the old differential

map dC by a perturbed differential map dC + g ◦ δD ◦ f ;

2) the new chain complex D′∗ is obtained from the chain complex D∗ only by

replacing the old differential map dD by dD + δD;

3) f ′ = f ;

4) g′ = g;

5) h′ = h.

The perturbation δD∗ of the small chain complex D∗ is naturally transferred

(using the reduction ρ) to the big chain complex C∗, obtaining in this way a new

reduction ρ′ between the perturbed chain complexes.

If we consider a perturbation dC∗ of the top chain complex C∗, in general it

is not possible to perturb the small chain complex D∗ in such a way that there

is a reduction between the perturbed chain complexes. As we will see, we need

an additional hypothesis which is defined below.

Definition 1.32. An endomorphism f : C → C is locally nilpotent if given x ∈ C
there exists m ∈ N such that fm(x) = 0.

Theorem 1.33 (Basic Perturbation Lemma, BPL [Bro67]). Let us consider a re-

duction ρ = (f, g, h) : C∗⇒⇒ Ĉ∗ between two chain complexes (C∗, d) and (Ĉ∗, d̂),

and δ a perturbation of d. Furthermore, the composite function δh is assumed

locally nilpotent. Then, a perturbation δ̂ can be defined for the differential map d̂

and a new reduction ρ′ = (f ′, g′, h′) : (C∗, d+δ)⇒⇒ (Ĉ∗, d̂+ δ̂) can be constructed.

Following with the notation presented at the end of Subsection 1.1.1, it is simi-

larly defined a 3-truncated reduction between 3-truncated chain complexes. More-

over, in order to define a reduction from a 3-truncated reduction identity maps

1.1 Mathematical background 21

are added to the 3-truncated chain morphism and null maps to the 3-truncated

homotopy operator.

In the following section we introduce a tool to build some reductions.

1.1.6 An algebraic setting of Discrete Morse Theory

In this section, we present admissible discrete vector fields, an instrumental no-

tion in Discrete Morse theory. This theory was developed by Robin Forman in

the 1920s [For98]. Discrete Morse theory is a tool for determining equivalences

between topological spaces arising from discrete mathematical structures.

In our work we focus on studying properties of biomedical images. One of

the problems of working with medical images is their size, so in this work, we

reduce the image but preserving the homological properties. Namely, we focus

on reducing the chain complex associated with the image through discrete vector

fields. There are many ways to obtain a discrete vector field associated with a

chain complex. Let us show the general idea of discrete vector fields with an

example.

Figure 1.3: A simple digital image

Figure 1.3 shows an image with eight black pixels which has been triangulated

as explained in Subsection 1.1.4 (two triangles for each black pixel), in this way

we have built a simplicial complex. The bases of the corresponding simplicial

complex are made of 16 vertices, 32 edges, and 16 triangles. So, the chain complex

22 Chapter 1 Preliminaries

associated with that simplicial complex is the following one.

0← Z16 ← Z32 ← Z16 ← 0

We can reduce the amount of information using admissible discrete vector

fields. Vector fields are a tool to cancel “useless” information. If we want to

design an admissible vector field, we can decide that the unique allowed vectors

are oriented leftward or downward because it is enough to avoid loops. In the

example, the vector field can be seen in the left side of Figure 1.4. In that

figure, only two critical cells remain, one vertex and one edge. So, the reduced

chain complex is 0 ← Z ← Z ← 0 with the null map between both copies of Z.

Therefore, H0 = Z (one connected component) and H1 = Z (one hole).

Figure 1.4: Discrete vector field

1.1.6.1 Algebraic discrete vector fields

The definitions and results introduced in this subsection have been extracted

literally from [RS10, Chapter 2]. Let us start with some definitions and state

the theorem of the reduction which is generated by an admissible discrete vector

field.

Definition 1.34. An algebraic cellular complex (ACC) is a family

C = (Cp, dp, βp)p∈Z of free Z-modules and boundary maps. Every Cp is a

chain group and is provided with a distinguished Z-basis βp; every basis compo-

nent σ ∈ βp is called a p-cell. The boundary map dp : Cp → Cp−1 is a Z-linear

map connecting two consecutive chain groups. The usual boundary condition

dp−1dp = 0 is satisfied for every p ∈ Z.

1.1 Mathematical background 23

Henceforth, as we are working in a finite context, an ACC can be seen as a

chain complex with a distinguished basis in every chain group. In addition, most

often we omit the index of the differential map.

Definition 1.35. Let C be an ACC. A (p-1)-cell σ is said to be a face of a p-cell

τ if the coefficient of α in dτ is not null. It is a regular face if this coefficient is 1

or -1.

Let us note that the regular property is relative because σ can be a regular

face of τ but also a non-regular face of another simplex τ ′.

Definition 1.36. A discrete vector field V on an algebraic cellular complex

C = (Cp, dp, βp)p∈Z is a collection of pairs V = {(σi, τi)}i∈β satisfying the condi-

tions:

1. Every σi is some p-cell, in which case the other corresponding component τi

is a (p+ 1)-cell. The degree p depends on i and in general is not constant.

2. Every component σi is a regular face of the corresponding component τi.

3. A cell of C appears at most one time in the vector field: if i ∈ β is fixed,

then σi 6= σj , σi 6= τj , τi 6= σj , and τi 6= τj for every i 6= j ∈ β.

Moreover, if v = (σi, τi) is a component of a vector field V , we call σi the

source of v and τi the target of v.

Definition 1.37. A cell χ which does not appear in a discrete vector field

V = {(σi, τi)}i∈β is called a critical cell. A component (σi, τi) of the vector field

V is a p-vector if σi is a p-cell.

In case of an ACC coming from a topological cellular complex, a vector field

cancels “useless” cells in the underlying space, respecting the homotopy type. For

instance ∂∆2, which represents the boundary of a triangle, and the circle have

the same homotopy type, which is described in Figure 1.5.

Example 1.38. The initial complex is made of three 0-cells 0, 1, and 2, and

three 1-cells 01, 02, and 12. The drawn vector field is V = {(1, 01), (2, 02)}
and this vector defines a homotopy equivalence between ∂∆2 and the minimal

triangulation of the circle as a simplicial set. The last triangulation is made of

24 Chapter 1 Preliminaries

01

1

12

2
02

0

⇒ 12

0

Figure 1.5: Reduction of ∂∆2

the critical cells 0 and 12. It would be enough with knowing the homological

properties of the last triangulation for knowing the properties of ∂∆2 because

these properties are the same.

However, not all the vector fields can be used to reduce chain complexes,

we need an additional property called admissibility. The admissibility property

avoids possible loops and infinitive paths.

Definition 1.39. If V = {(σi, τi)}i∈β is a vector field on an algebraic

cellular complex C = (Cp, dp, βp)p, a V -path of degree p is a sequence

π = ((σik , τik))0≤k<m satisfying:

1. Every pair ((σik , τik)) is a component of the vector field V and the cell τik
is a p-cell.

2. For every 0 < k < m, the component σik is a face of τik−1
, non necessarily

regular, but different from σik−1
.

If (σ, τ) is a component of a vector field, in general the cell τ has several faces

different from σ, therefore the possible paths starting from a cell generate an

oriented graph. Moreover, the length of the path π = ((σik , τik))0≤k<m is m.

Definition 1.40. A discrete vector field V on an algebraic cellular complex

C = (Cp, dp, βp)p∈Z is admissible if for every p ∈ Z, a function λp : βp → Z is

provided satisfying the following property: every V -path starting from σ ∈ βp

has a length bounded by λp(σ).

Example 1.41. In Figure 1.6 we have the same picture three times. Let us

analyze if the built vector field on each image is an admissible discrete vector

field.

1.1 Mathematical background 25

Figure 1.6: Different vector fields over a graph

In the left most image, the vector field is not a discrete vector field because

there are two vectors with the same source (Property 3 of Definition 1.36 about a

discrete vector field). In the center image, we can see that it is a discrete vector

field but is not admissible because a cycle appears. Finally, the most right image

shows an admissible discrete vector field.

1.1.6.2 Discrete vector fields over matrices

The following notions have also been extracted from [RS10, Chapter 2]. Let us

note that we have defined the notion of vector field over chain complexes. In our

case, the problem of computing a vector field over a chain complex is reduced to

calculate a vector field over a matrix whose elements are in the field Z2 since we

always work with finitely generated chain complex coming from 2D images.

The chain complex associated with a simplicial complex related to a 2D image

has only three non-null chain groups, corresponding with the chain groups gen-

erated by 0-simplices (vertices), 1-simplices (edges), and 2-simplices (triangles).

. . .← 0← 0← C0
d1←− C1

d2←− C2 ← 0← 0← . . .

Then, we only have two non-null differential maps or two integer matrices that

we will reduce with an admissible discrete vector field.

The following definition introduces a discrete vector field for a matrix whose

elements are in Z.

Definition 1.42. Let M ∈Mm,n(Z) with m rows and n columns. A vector field

V for this matrix is a set of integers pairs {(ai, bi)}i satisfying these conditions:

1. 1 ≤ ai ≤ m and 1 ≤ bi ≤ n.

2. The entry M [ai, bi] is ±1.

3. The indices ai (respectively bi) are pairwise different.

26 Chapter 1 Preliminaries

These three conditions are equivalent to the conditions of Definition 1.36 when

we work with a matrix. It is worth noting that the first components of the vectors

of V are row indexes of M and the second components are column indexes of M .

Using this definition, we can build a particular discrete vector field of a

matrix M for a chain complex, which comes from a 2D image, where one of the

differential maps is represented by M .

The following step consists in knowing when a vector field is admissible. As

we work in a finite context, we only have to avoid possible loops. To this aim,

a partial order between source cells is defined: the relation a > a′ is satisfied

between source cells if and only if a V -path goes from a to a′. The partial order

is built in the case of matrices as follows. Let V be a vector field for a matrix M

and 1 ≤ a, a′ ≤ m with a 6= a′, we can decide a > a′ if a vector (a, b) is present

in V and the entry M [a′, b] is non-null. This means that a is a regular face and

a′ is an arbitrary face of b. Then the vector field V is admissible if and only if

this relation transitively generates a partial order.

Once we have defined the notion of a discrete vector field and a reduction,

we can state a theorem which given an admissible discrete vector field, V on an

ACC C, defines a reduction where the small chain complex is generated by the

critical p-cells.

Theorem 1.43. (Vector-Field Reduction Theorem) Let C = (Cp, dp, βp)p be an

algebraic cellular complex and V = {σi, βi}i∈β be an admissible discrete vector

field on C. Then the vector field V defines a canonical reduction ρ = (f, g, h) :

(Cp, dp) =⇒ (Ccp, d
′
p) where Ccp = Z

[
βcp
]

is the free Z−module generated by the

critical cells.

Let us note that the larger the number of vectors which compose the vector

field, the smaller the reduced chain complex.

In our case, as we work with finite type chain complexes whose differentials are

represented as matrices, given an admissible discrete vector field for those matri-

ces, we can construct new matrices taking into account the critical components.

These smaller matrices define chain complexes which preserve the homological

properties. This is the equivalent version of Theorem 1.43 for finite type chain

complexes. A detailed description of the process can be seen in [RS10].

1.2 Coq and SSReflect 27

1.2 Coq and SSReflect

This section is devoted to provide an overview of Coq/SSReflect and the tools

of this system which have been really important in our developments. In spite of

being a brief introduction to this system, this description provides enough infor-

mation to read the sections dedicated to Coq/SSReflect topics. A complete

description of Coq/SSReflect can be found in [BC04] and [GM10].

Coq is a proof assistant based on the Calculus of Inductive Constructions

(see [BC04]). Coq is not only a system for making formal proofs but also a

functional programming language. This means that both the programs and their

proofs of correctness can be implemented using the same language and logic.

Following the Curry-Howard correspondence, types are statements of theorems

and their proofs are programs. A tactic language is used to build proofs (or,

equivalently, to write programs).

The SSReflect extension of Coq (see [GM10]) provides both an alternative

set of tactics and a library. The library consists of definitions, lemmas and theo-

rems which use advanced features of Coq, such as notations, implicit arguments,

coercions and canonical structures. Its development was started by G. Gonthier

during the formal proof of the Four Color Theorem [Gon08]. Moreover, it has

been recently used to formalize the Odd Order Theorem [Mat12] which is part of

the ongoing effort to formalize the classification of finite simple groups. SSRe-

flect (for Small Scale Reflection) contains a large and well designed library of

mathematical theories containing, among other things: group theory [GMR+07],

algebraic structures [GGMR09], polynomials and matrices [Gon11], and so on.

One of the choices made in the SSReflect library is never to rely on Coq

axioms, which are statements that are admitted. However, SSReflect imposes

some limitations on the user. In order to prevent definitions from being expanded

during type checking some definitions are locked which means that computation

on them are blocked. This implies that many definitions lack direct effective

computation. Another limitation is that the algebraic hierarchy only captures

discrete structures in order to enable equational reasoning.

In Coq and SSReflect, proofs are usually built through the interactive mode:

the user writes definitions, statements and proofs in a window, and asks the

software to verify them step by step. Along these verifications the agreeing and

28 Chapter 1 Preliminaries

complaining messages are shown in another window.

SSReflect introduces a new language for tactics which makes the devel-

opment of proof scripts easier. The SSReflect additional tactics are few, but

they can be combined with additional ones, i.e. tactic modifiers, such that one

same tactic may cope with a wide range of similar situations. More details on

the SSReflect tactics language and reflection techniques are presented in its

manual [GM10].

A script has a linear structure composed of tactics. An example of such a

script is the following

move=> n H.

case: n; first by done.

by rewrite muln_addr.

All the frequent bookkeeping operations which consists in moving, splitting, gen-

eralizing formulas from the context are regrouped in a single tactic move. In the

first line of the example of the script, two arguments with the names n and H are

moved from the conclusion to the context. The two tacticals first and last let

the user restrict the application of a tactic to only the first or the last subgoal

generated by the previous command. The tactic by is a tag closing tactics. The

first case is proved with the basic closing tactic done. It involves other tactics as

sym_equal (symmetry property), trivial and so on. It is uniquely used if the

subgoal is easy to prove.

Finally, the tactic more used is rewrite. It comes with a concise syntax to

accommodate in a single command all the possible combinations of conditional

rewriting, unfolding of definition, simplifying, rewriting, and selecting specific

both occurrences and patterns.

1.2.1 Inductive schemas

In the Coq system, the simplified induction principles are automatically gener-

ated for inductive types of the sort Prop and the maximal induction principle is

automatically generated for the other inductive type definitions. The simplest in-

ductive types are the enumerated types, used to describe finite sets. The natural

numbers are built in two steps, inductively: first, zero is a natural; second, the

1.2 Coq and SSReflect 29

successor of a natural is also a natural.

Inductive nat : Set := O : nat | S : nat -> nat.

Such a declaration defines several objects at once. First, a new Set is declared,

with name nat. Then the constructors of nat are declared, called O and S. The

constructor O has type nat, and it actually builds the first natural, i.e. zero.

The second constructor of nat, S, expects a natural number, let us call it n, and

returns a new natural number (S n) which is meant to be the successor of n. In

SSReflect, (S n) is usually written n.+1.

Moreover, the system automatically adds several theorems and functions that

make it possible to reason and to compute on data in this type. The usual theorem

is nat_ind. It is also called the induction principle associated with the inductive

definition.

nat_ind : forall P : nat -> Prop, P 0 ->

(forall n : nat, P n -> P n.+1) -> forall n : nat, P n

In this way, when we want to apply induction (with the tactic elim) on a natural

number the proof will be divided into two parts, if the value is zero or if it is the

successor of another natural number. The inductive schemas associated with a

type are not always useful to prove some properties. This type can depend on

the behavior of other parameters.

In those cases, Coq allows us to define an inductive schema which fits our

recursive programs. The generation of inductive schemas from recursive functions

is automated in systems like ACL2 [KM]. In fact, it would not be difficult to

translate the inductive schema generated in a proof from ACL2 to Coq to prove

the same lemma in Coq.

In our development, we define methods using a functional style; that is, our

programs are defined using pattern-matching and recursion. Therefore, in order

to reason about our recursive functions, we need elimination principles which are

fitted for them. Let us see an example to illustrate it. We define a function subm

which takes as arguments a natural number n, and a sequence of sequences M,

and removes the first n-rows of M. Let us note that matZ2 represents a matrix as

a sequence of sequences with the constraint of representing a matrix i.e., all the

sequences have the same length.

30 Chapter 1 Preliminaries

Fixpoint subm (k: nat) (M: matZ2):=

match k with

|0 => M

|S p => match M with

|nil => nil

|a::b => if (k == 1%N)

then a::b

else (subm p b)

end

end.

The inductive schema associated with subm is got as follows.

Functional Scheme subm_ind := Induction for subm Sort Prop.

Then, in order to reason about subm, we can apply this schema with the

corresponding parameters using the instruction functional induction. In this

schema, the natural number and the sequence of sequences are modified accord-

ing to the definition of subm, if the natural number decreases in one unit the first

row of the matrix is removed.

To define the induction principles, we use the tool presented in [BC02] which

allows one to reason about complex recursive definitions since Coq does not

directly generate elimination principles for complex recursive functions. Let us

see how the tool presented in [BC02] works.

In some cases it is necessary to merge several inductive schemas to induct

simultaneously on several variables. For instance, following with the example

subm, let M be a matrix and M ′ be a submatrix of M where we have removed the

(k−1) first rows of M ; then, we want to prove that ∀j, M(i, j) = M ′(i−k+1, j).

This can be stated in Coq as follows.

Lemma Mij_subM (i k: nat) (M: matZ2):

k <= i -> k != 0 ->

let M’ := (subm k M) in M i j == M’ (i - k + 1) j.

To prove this lemma it is necessary to induct simultaneously on the parameters i,

k, and M, but the inductive schema generated from subm only applies induction on

k and M. Of course, the inductive schema of the type nat is not useful. Therefore,

1.2 Coq and SSReflect 31

we have to define a new recursive function, called Mij_subM_rec, to provide a

proper inductive schema to prove this theorem.

Fixpoint Mij_subM_rec (i k: nat) (M: matZ2) :=

match k with

|0 => M

|S p => match M with

|nil => nil

|hM::tM => if (k == 1)

then a::b

else (Mij_subM_rec p (i- 1) tM)

end

end.

Let us note that the recursive call decreases k and i in one unit and M deletes

the first row.

1.2.2 Record types

A record type in Coq is a record structure which can store not only a bundle

of objects, but also properties about such objects. In the following example the

plane is defined as a set of points where each point is a pair of integer numbers

which correspond with its coordinates.

Record plane: Set := point {abscissa : Z; ordinate : Z}.

In this manner, the interpretation of the various fields of the record is also more

explicit that if one defines

Inductive plane: Set := point : Z -> Z -> plane.

In Coq, a record type is a generalization of sigma types: it is an inductive type

with one constructor, plus a name to access the arguments of the constructor.

Moreover, record types can include specifications as we can see in Figure 1.7. In

this case, this type satisfies the associative property and has a two-sided identity

element.

In addition, it allows us to define structures with inheritance. The identifier

monoid is the name of the defined record. Apart from the properties and types

32 Chapter 1 Preliminaries

Record monoid := mkMonoid {

car :> Type;

dot : car -> car -> car;

one : car;

dot_assoc : associative dot;

dot_one : forall x, dot one x = x;

one_dot : forall x, dot x one = x}.

Figure 1.7: Example of record: monoid

which are defined in it, this record inherits the properties which are included in

Type. This is got by the notation car:> Type. This coercion is applied to a

monoid structure when a Type structure is expected, in a transparent way to the

user. Note that here we define the first projection as a coercion from a monoid

to its carrier.

1.2.3 Relevant SSReflect libraries in our development

SSReflect provides a set of libraries embedding definitions and properties for a

variety of mathematical structures. In our formalization, it is worth mentioning

the following libraries:

• matrix.v: this library formalizes matrix theory, determinant theory and

matrix decompositions. In our development, this library is used to define

incidence matrices, morphisms, and so on.

• finset.v and fintype.v: theory of finite sets and finite types. We use

these libraries to define the basic concepts about simplicial complexes.

• bigop.v: generic indexed “big” operations, like
n∑
i=0

f(i) or
⋃
i∈I

f(i) and their

properties, which are useful to deal with properties such as the incidence

matrices product.

• zmodp.v: additive group and ring Zp, together with field properties when p

is a prime. As we work with elements of the field Z2, we need this library.

1.2 Coq and SSReflect 33

• vector.v: finite dimensional abstract linear algebra. We use it to define

the homology groups using linear applications.

• ssralg.v: main algebraic structures (Zmodule, Ring, etc) where for each

one its type and its canonical properties, are defined.

• fingraph.v: theory of finite graphs.

1.2.4 The CoqEAL library

The CoqEAL library [DMS12b] has been built using a particular methodology on

top of the SSReflect libraries. The aim of this library was the development of

effective computer algebra programs with proofs of correctness. The methodology

which is chosen for this goal is the following one. First, the mathematical algo-

rithm is written using high-level data structures; this makes the proof of its

correctness easier. Second, the algorithm is refined to an efficient version using

again high-level data structures. Moreover, a proof of the equivalence between

the two algorithms is provided. Finally, the efficient version of the algorithm is

refined to simpler data structures closer to the machine representation. An ex-

ample can be seen in [DMS12a]. This methodology has been also used in some

of our developments.

We intensively use the seqmatrix file of the CoqEAL library. In this file, the

low-level data type seqmatrix is defined to represent matrices as sequences of

sequences. The relevance of using this type is that we can compute with it. This

is essential for our work. This type can be transformed into an abstract matrix

(matrix). This matrix, which is defined in the file matrix.v, is represented by

finite functions over pairs of ordinals. The main functions are seqmx_of_mx and

mx_of_seqmx which consists of changing the representation, from an abstract

matrix to a sequence of sequences and the opposite. Apart from that, a huge

number of functions are implemented with this structure related to the operations

of matrices (addseqmx, subseqmx, mulseqmx, and so on). Moreover, we can easily

take blocks of matrices.

34 Chapter 1 Preliminaries

1.3 A methodology to formalize algorithms

The “steep learning curve” is often mentioned as one of the big obstacles to wider

adoption of Interactive Theorem Provings (ITPs) by professional mathematicians

or industries like [Ben06]. Moreover, the complexity increases considerably when

facing directly to this duty without any previous experience. In this work, we

have used a methodology which tries to smooth such a learning curve when we

formalize the correctness of algorithms in Coq.

In our developments the formally certified implementation of the algorithms

have followed the methodology presented in [M1̈0]. This methodology can be

split into these three steps:

1. Implement a version of our algorithms in Haskell [J+03], a lazy functional

programming language.

2. Test properties about the Haskell programs using QuickCheck [CH00]. This

tool allows one to test intensively properties about programs implemented

in Haskell, in an automatic way.

3. Verify the programs using Coq [BGBP08], an interactive proof assistant,

and its SSReflect library [GM10].

Using QuickCheck can be considered as a good starting point towards the

formal verification of our programs. This provides us two advantages:

• A specification of the properties which must be satisfied by our programs

is given (a necessary step in the formalization process which will be reused

in Coq).

• The testing process can be useful in order to detect bugs in a quick and easy

way, before trying a formal verification of our programs (a quite difficult

task).

Let us illustrate this methodology with an example.

1.3 A methodology to formalize algorithms 35

1.3.1 A Haskell program

The choice of Haskell to implement our programs was because both the code and

the way of working is similar to the ones of the Coq formal proof management

system which will be used to certify the correctness of the programs. The simple

semantics of purely functional languages makes them easy to reason about its

programs. Moreover, Haskell functions often satisfy simple algebraic properties,

which can be used to prove correctness.

Let us introduce an example of implementation in Haskell. The method swap

swaps the values True and False of a sequence of booleans.

swap :: [Bool] -> [Bool]

swap s = map not s

The function map receives a function f and a list. It returns a list where each

element is the result of applying f to each element in the input list. In our

example, the input function returns the logical negation of its boolean argument.

Both map and not are already implemented into Haskell.

1.3.2 Testing with QuickCheck

As we have said, the use of QuickCheck is considered a good starting point towards

the formal verification of our programs.

To illustrate its use, let us present a property about the swap function: given

a sequence of booleans s, if we apply the swap method twice to s, we obtain s

as a result. Let us represent this property as a Haskell function which is defined

with the name swap_swap.

swap_swap :: [Bool] -> Bool

swap_swap s = swap (swap s) == s

The == is Haskell’s equality test. The function swap_swap allows us to test for

every possible argument if the property holds. The input parameters, in our

example sequences of booleans, are generated randomly by the system and the

property is tested for all them. To this aim, we use the function quickCheck which

takes a property as a parameter and applies it to a large number of randomly

generated arguments.

36 Chapter 1 Preliminaries

> quickCheck swap_swap

+ + + OK, passed 100 tests.

The above display must be read as follows. In the first line and according to the

definition of swap_swap, we state that given a sequence of booleans, the output

of swap fulfills the specification of the property called swap_swap. The second

line, which is the result produced by QuickCheck when evaluating the statement

of the first line, means that QuickCheck has generated 100 random values for s,

checking that the property was true for all these cases.

In this way, we can check the properties which satisfy the output of a method.

We can test our program in different ways but QuickCheck can be easily handled.

Moreover, let us recall that this testing forces us to define a specification of the

method which will be used also in the verification part.

In the cases where this property fails, QuickCheck reports a counter-example.

For instance, if we mistakenly define that the first element of a sorted sequence

is equal to the minimum element of the sequence

prop_minimum xs = (head (sort xs)) == minimum xs

then checking the property might appear

> quickCheck prop_minimum

* * * Failed!

Exception: ’Prelude.head: empty list’ (after 1 test): []

Then, we know at least that this property is not verified for all the sequences

because the empty sequence does not hold it.

In general, many properties are satisfied under certain conditions. QuickCheck

provides us an implication combinator to represent such preconditions. For in-

stance, the previous property is defined correctly in the following way

prop_minimum xs =

(not (null xs)) ==> (head (sort xs)) == minimum xs

The properties are checked by generating test cases which satisfy the precondi-

tion and checking the conclusion only for those. QuickCheck generates a limited

number of candidate test cases. If 100 valid test cases among those candidates

are not found, then we can see the number of successful tests.

1.3 A methodology to formalize algorithms 37

1.3.3 Formalization in Coq/SSReflect

After testing our programs, and as final step to confirm their reliability, we can

undertake the challenge of formally certify their correctness. To this aim, we must

provide the closer data types and translate both the programs and the properties

from Haskell to SSReflect, a task which is quite direct since these two systems

are close. It is important to provide equivalent codes to ensure that the algorithm

in Haskell works properly since the same algorithm is certified in SSReflect.

Let us see the implementation in SSReflect of the method shown in Sub-

section 1.3.1. The differences in the method swap comes from the own language.

The functionalities of map and not are also defined in SSReflect. In this case,

the corresponding not function in SSReflect is named negb. The method is

defined as follows.

Definition swap (s:seq bool) := map negb s.

After the translation of the code and of the corresponding testing, we have to

prove lemmas like the following one to verify the correctness of the algorithm.

Lemma swap_swap_seq : forall s, swap (swap s) = s.

This lemma corresponds with the function swap_swap which have been defined

to test the function swap with QuickCheck.

Let us note that the properties specified in Haskell to test some methods will

be also used in the verification step. In this way, we will be able to prove in a

formal way our algorithms. In other words, we will verify the correctness of our

developments, detecting and removing (previously by means of a testing process

with QuickCheck) some bugs which could appear in the implementation.

1.3.4 Feedback loop

Along this section, we have introduced a methodology to formalize algorithms.

At first sight, it could seem which is a linear methodology, but in some cases

we need to return to the first step, the implementation of the algorithm. The

reasons for this feedback loop, for instance could be, adding ending conditions in

a loop function or detecting some bugs in the testing process. It is relevant to

keep the Haskell code and the Coq/SSReflect one equivalent because we want

38 Chapter 1 Preliminaries

to verify formally the properties of the programs in Coq and consequently, using

the Haskell code with a complete reliability. Then, this forces us to change the

Haskell functions if some of them cannot be defined in SSReflect.

Let us introduce an example to see this idea. The following method receives

two list of natural numbers l1 and l2 and returns a list which is the concatenation

of every element of l1 with every element of l2.

pair_concat :: [[Int]] -> [[Int]] -> [[Int]]

pair_concat l1 [] = []

...

pair_concat (a:b)(c:d) = [c ++ a] ++ (pair_concat [a] d)

++ (pair_concat b (c:d))

In order to define a recursive function the command Fixpoint in SSReflect

is usually used. However, this case is not so simple. We cannot translate it

directly because the system does not know that the method finishes. It does not

exist any argument which decreases in all the cases. In some cases, the first list

decreases but in other cases the second one is decreasing.

The easy way to deal with it is adding a parameter which always decreases. In this

method, this iterator should be the addition of the lengths of every sequence as

an initial value. This change would cause a modification in the implementation

of Haskell because both codes have to be equivalent. Then, the algorithm in

Haskell would have to be tested again with those changes. However, adding a

new parameter is not the properest option. In order to solve it without using

additional parameters in SSReflect, we can add a measure which specifies how

the argument decreases. To employ this option we use the command Function

instead of Fixpoint which is the usual one. Moreover, this option forces the

function to having a unique input parameter. In this case, we have two sequences

which are transformed into one parameter which is a pair of sequences. Finally,

this method in SSReflect is defined in Figure 1.8.

Let us recall that this change has to be reflected in the Haskell code. Finally,

this method in Haskell would be the function shown in Figure 1.9.

To be sure of that the methods keep behaving properly, we should test again

with QuickCheck our Haskell programs to detect new bugs.

1.4 Mathematics to formalize 39

Function pair_concat (ords: ((seq (seq nat)) * (seq (seq nat)))

{measure (fun ords =>((size (fst ords)) + (size (snd ords)))%N)}

:orders:=

match (fst ords), (snd ords) with

| nil , _ => nil

...

|a::b , c::d => ((c++a)::nil) ++ (pair_concat ((a::nil), d))

++ (pair_concat (b, (c::d)))

end.

Figure 1.8: pair_concat function in SSReflect

pair_concat :: ([[Int]],[[Int]]) -> [[Int]]

pair_concat (l1, []) = []

...

pair_concat (a:b)(c:d) = [c ++ a] ++ (pair_concat ([a], d))

++ (pair_concat (b, (c:d)))

Figure 1.9: pair_concat function in Haskell

1.4 Mathematics to formalize

Applying the methodology introduced in Section 1.3 and using Coq/SSReflect

presented in Section 1.2 we are going to formalize different issues:

• An algorithm to compute admissible discrete vector fields for chain com-

plexes finitely generated (Chapter 2).

• A reduction of a finitely generated chain complex given an admissible dis-

crete vector field (Chapter 3).

• BPL applied to finitely generated chain complexes (Chapter 4).

• Homology of digital images (Chapter 5).

Software systems which are used to study biomedical images must fulfill two

requirements: efficiency and reliability. The former is required due to the huge

40 Chapter 1 Preliminaries

size of the images. The latter is necessary to ensure the correctness of the results

(an important issue when dealing with biomedical applications).

In order to cope with the first requirement, our work will be based on tech-

niques which allows us to reduce the amount of information without changing

the homological properties [For98]. In order to deal with the second issue we will

verify the correctness of our programs with the Coq theorem prover [BGBP08]

and its extension SSReflect [GM10].

Chapter 2

Formalization of an

algorithm to compute

discrete vector fields

In this chapter, we formalize the Romero-Sergeraert’s algorithm to compute an

admissible discrete vector field from a matrix; this algorithm will be called from

now on the RS algorithm. In particular, we will prove that the properties of an

admissible discrete vector field are verified by the output of the RS algorithm. As

the chain complex built from a digital image is of finite type, then its differential

maps can be represented as matrices. So, the RS algorithm could be applied

to these matrices. The admissible discrete vector field will be useful in order to

reduce this chain complex. This was presented in [HPR12].

The first section is devoted to explain the RS algorithm. Following the

methodology presented in Section 1.3, we proceed as follows to formalize such an

algorithm. First, we have implemented the RS algorithm in the functional pro-

gramming language Haskell [Hut07]. This issue is covered in Section 2.2. Second,

the implementation of the algorithm will be tested in Section 2.3 by means of

QuickCheck [CH00]. Finally, we certify our programs with the formal proof man-

agement system Coq [tdt10] using the SSReflect [GM10] extension of Coq

as will be presented in Section 2.4. Moreover, we introduce a non deterministic

41

42 Chapter 2 Formalization of an algorithm to compute discrete vector fields

version of the reduction algorithm which provides us a high-level theory close

to usual mathematics. This abstract algorithm generalizes the effective previous

algorithm.

2.1 Romero-Sergeraert’s algorithm (RS algo-

rithm)

Most of the algorithms devoted to construct admissible discrete vector fields share

the same goal, which is the construction of an admissible discrete vector field

as big as possible, while keeping computation time reasonable; see for instance

[Koz07, Chapter 11] and [LLT04]. Some of them return a vector field quickly, but

others spend more time to compute it. Let us emphasize that the latter ones are

notable because the search has been more thorough, so the number of vectors will

be higher. We looked not only for an algorithm which gives us a big vector field

but also does not spend too much time to compute it. The RS algorithm does not

always build the biggest vector field possible, but experiments showed that the

number of vectors is quite close to the biggest one. Furthermore, in many cases

it returns the best possible vector field. On the other hand, it is fast enough to

obtain the vector field in our application domain. Due to these reasons, the RS

algorithm has been chosen to be used in order to make our computations.

The underlying idea of the RS algorithm is that given an admissible discrete

vector field from a matrix, we try to enlarge it adding a new vector which preserves

the properties of an admissible discrete vector field.

Concretely, this algorithm looks for a new vector in the following way. It

consists of running the rows of the matrix Mm,n in the usual reading order looking

for entries whose value is +1 or −1. This entry will be a position of M, for instance

(i, j), which will be a candidate vector to add to the admissible discrete vector

field. This element will be selected whether it verifies the conditions given in the

definition of a discrete vector field (see Definition 1.42). In particular, the third

property which establishes that every row and column can appear only once in

the vector field should be satisfied. The other properties are trivially verified

since M [i, j] = +1 or −1 (this is the reason because the vector (i, j) has been

selected) and 0 <= i < m and 0 <= j < n (since (i, j) is an entry of the matrix

M). Moreover, in order to satisfy the admissibility property it is necessary to

2.1 Romero-Sergeraert’s algorithm (RS algorithm) 43

avoid the creation of cycles. To this aim, we have to pay attention to the entries

of the column j which are in a different position from i. For instance, if k is a

position different from i of the column j whose entry is different from 0, a path

from (i, j) to an element with k in the second component can be built. This will

be represented through a particular relation i > k. In the process cycles will be

avoided if an element is not related to itself through these relations, after taking

its transitive closure.

If this vector satisfies the previous properties, it is added (and the generated

relations are also added) and we have to continue looking for an entry whose

value is +1 or −1 in the next row. On the contrary, if some of the conditions are

not verified then a new possible vector will have to be looked for along the same

row. This algorithm finishes when every row have already been visited.

We can define algorithmically the RS algorithm as follows.

Algorithm 2.1 (RS Algorithm).

.

Input: a matrix M with coefficients in Z.

Output: an admissible discrete vector field for M and a list of relations r.

Description:

1. Initialize the vector field V with the void vector field.

2. Initialize the relations r with the empty list, nil.

3. For every row i of M :

3.1. Search the first entry of the row equal to +1 or −1, j.

If no entry verifies this condition we return to Step 3 with the next

row.

3.2. if the properties of an admissible discrete vector field are preserved

for (i, j).

then:

- Add (i, j) to V.

- Add to r the corresponding relations generated from (i, j).

∀k 6= i such as M [k, j] 6= 0, add i > k to r and the necessary

relations to complete the transitive closure of r.

44 Chapter 2 Formalization of an algorithm to compute discrete vector fields

- Go to the next row and repeat from Step 3.

else: look for the next entry of the row whose value is +1 or −1.

- if there is some.

then: go to Step 3.2 with j the column of the entry whose

value is +1 or −1.

else: go to the next row and repeat from Step 3.

The heart of the algorithm is carried out in the point 3.2. which consists in:

3.2.1. 0 ≤ i < m and 0 ≤ j < n;

3.2.2. M [i, j] = ±1;

3.2.3. i and j are different from the first and second components of V ;

3.2.4. the relations do not generate cycles.

In order to check that the relations do not generate cycles we will proceed

in the following way. In every step we add to the list of relations the transitive

closure of this list. In particular, if two elements are related then they have to

appear in one of the relations of the computed transitive closure. Therefore,

so as to define the admissibility property will be enough with checking that no

relation has repeated elements. An alternative method consists in storing only the

relations and generating the transitive closure wherein it is necessary. However,

every time a vector is selected to be part of the vector field this condition has to

be verified. Therefore, the whole transitive closure would have to be computed

many times.

In general, this algorithm can be applied over matrices with coefficients in a

ring taking into account that the possible vectors will be only the elements whose

value is a unit of the ring. Specifically, if we work with a field F , instead of a ring,

every the non-null elements are units. In our particular case, we will work with

the smallest field which is Z2 because homology groups of 2D digital images are

torsion-free. Therefore, the selected vectors are the entries whose value is 1. From

now on, we will work with Z2. Let us highlight that depending on the system

wherein is worked the conditions or the tools are not the same. In particular,

Haskell does not contain a data type for representing the Z2 ring. In this case,

the matrices will be represented as a list of lists of Z in spite of the fact that the

algorithm will be defined for a matrix over Z2. On the contrary, we can work

2.1 Romero-Sergeraert’s algorithm (RS algorithm) 45

with the Z2 ring in SSReflect but we cannot use Z as the library about integer

numbers of SSReflect is a work in progress as can be seen in [CM12].

In order to clarify how this algorithm works, let us construct an admissible

discrete vector field from the following matrix.


1 1 0 0

1 1 1 0

0 0 1 1

0 1 1 0



We start with the void vector field V = {}. Running the successive rows, we

find M [0, 0] = 1, and we include the vector (0, 0) in V , obtaining V = {(0, 0)}.
Then, let us add the generated relations, in this case is just the relation 0 > 1

because M [1, 0] 6= 0 and the rest of entries M [2, 0] and M [3, 0] are null. So,

it will be forbidden to incorporate the relation 1 > 0 as a cycle would appear.

So, we go on with the second row and find M [1, 0] = 1. But we cannot add the

vector (1, 0) because the row 0 and the column 0 cannot be used anymore due

to the vector (0, 0) has been selected. Therefore, we look for the next element

in the row whose value is 1 and we find the element (1, 1). But it cannot be

incorporated as M [0, 1] 6= 0 and then the relations 1 > 0 and 0 > 1 > 0 would

be created. So, we continue and find the next element, M [1, 2] = 1. This does

not create any cycle, since the relations to add are 1 > 2 and 1 > 3. Then, we

obtain V = {(1, 2), (0, 0)}. Running the next row, the first element equal to 1

is in the position (2, 2), but we cannot include it because M [1, 2] 6= 0 therefore,

the relation 2 > 1 would be added and a cycle would appear. Therefore, we

try with the last element of this row (2, 3). No relation is generated in this case

because in this column the only non-null element is in the chosen position. So,

V = {(2, 3), (1, 2), (0, 0)}. Finally, we run the last row. The elements that could

be added are (3, 1), (3, 2), but in both cases we would have to append the relation

3 > 1. This would generate a cycle with one of the previous restrictions, 1 > 3.

So, we obtain V = {(2, 3), (1, 2), (0, 0)} and the relations are: 0 > 1, 1 > 2,

1 > 3, 0 > 1 > 2, and 0 > 1 > 3 including the relations created to obtain the

transitive closure.

46 Chapter 2 Formalization of an algorithm to compute discrete vector fields

2.1.1 Realignment of an admissible discrete vector field

Let us mention that it is extremely relevant sorting the admissible discrete vector

field because this will let us order the matrix as a previous step to reduce it.

This matrix will have the feature of that the top-left matrix is a lower triangular

matrix with 1′s on the main diagonal.

For every vector (a,b), it is computed the value of the function λ(a) which

gives us the longer path from a taking into account the transitivity of the partial

relations according to Definition 1.40. In our case, as we build the transitive

closure, it is the maximum length of the relations which start with a. Then we

sort the vector field by the values of λ in decreasing order.

In the previous example, we are reordering the vector field

V = {(2, 3), (1, 2), (0, 0)} with the relations 0 > 1, 1 > 2, 1 > 3, 0 > 1 > 2, and

0 > 1 > 3. For example, λ(0) = 3 because of the fact that the largest paths

starting with 0 are 0 > 1 > 2 and 0 > 1 > 3, in any case the length is 3. In

a similar way, λ(1) = 2 and λ(2) = 1. Then, the ordered vector field with the

values of λ decreasingly is V = < (0, 0), (1, 2), (2, 3) >.

2.2 Implementation in Haskell

Let us explain how we have implemented the algorithm presented in previous

section in the lazy functional programming language Haskell. In particular, let

us introduce the main data types and comment the main methods.

First, the matrices will be represented as a list of lists of integer numbers.

Then, a discrete vector field will be represented as a list of pairs of natural

numbers and the partial relations as lists of natural numbers. For instance, a

partial relation i > j will be represented by [i,j].

Frow now on, let us define the main methods to implement Algorithm 2.1

taking into account the fact that the integer matrices are only consisted of 0′s and

1′s. For each method, we will provide the input, the output, a brief description

in some cases and a small example to clarify the meaning of the method. The

first function will be in charge of selecting the entries of the matrix whose value

is 1. This will be applied in the step 3.1. of the Algorithm 2.1.

2.2 Implementation in Haskell 47

firstElem1 k ls [Function]

Input: a natural number k and a list over Z, ls, where all the elements are

0 or 1.

Output: a natural number which is the first position of the list which is

higher or equal than k whose value is 1, or the size of ls if no element

verifies the condition.

.. ..

firstElem1 2 [1,0,0,1,1] z
3
.. ..

The above display must be read as follows. The maltese cross (in fact not

visible on the user screen) marks in this text the end of the Haskell statement, in

this case firstElem1 2 [1,0,0,1,1]. The result of the evaluation appears in

the next line.

Afterwards, we implement the function which checks if a vector can be added

to a discrete vector field. This corresponds with the steps 3.2.1. and 3.2.3. of the

Algorithm 2.1.

canAddCvd m n a b vf [Function]

Input: four natural numbers m, n, a, and b and a vector field vf.

Output: a boolean value which is True if (a,b) can be added to vf, and

False otherwise.

The parameters m and n refer to the dimensions of the matrix M whose vector

field associated is vf. This function checks if the vector (a,b) verifies the properties

1 and 3 of Definition 1.42. The second property is verified taking into account

the way of choosing a vector from a matrix (only the elements whose value is 1

obtained by the firstElem1 function). In order to check the first property it is

needed that the vector (a,b) corresponds with an element of the matrix M, i.e.,

0 ≤ a < m and 0 ≤ b < n. Moreover, the third property is satisfied if neither a

is in the first components of the pairs of vf nor b is in the second components.

If some of these conditions are false, the vector (a,b) cannot be added, so the

canAddCvd function returns False.

48 Chapter 2 Formalization of an algorithm to compute discrete vector fields

.. ..

canAddCvd 3 4 2 1 [(0,2),(1,1)] z
False

.. ..

canAddCvd 3 4 2 1 [(0,2),(1,0)] z
True
.. ..

The following functions (canAddOrder, canAOrder, and canAddOrders) are

implemented to check that the relations which are generated when a new vector

is added do not create cycles, that is to say, the admissibility property is verified

(step 3.2.4 of Algorithm 2.1). In our implementation, the list of relations always

consists of the transitive closure of the relations. For instance, if 1 > 2 and 2 > 4

belong to the list of relations then the relation 1 > 2 > 4 will be included too.

Let us recall that the admissibility property checks that there are not repeated

elements in any of the relations.

canAddOrder i j r [Function]

Input: two natural numbers i and j and a list of relations r.

Output: a boolean value which is True if the relation i > j does not generate

cycles with any of the partial relation which already exist in r, and False

otherwise.

For every relation r1 in r, it is checked that the new relation i > j does not

generate cycles, concretely, if the element j appears before the element i in r1.

For instance, if r1 is k > j > l > i the function will return False.

.. ..

canAddOrder 1 2 [[0,1],[2,3]] z
True

.. ..

canAddOrder 2 1 [[0,3],[1,2]] z
False
.. ..

But the canAddOrder function is not enough to be sure that this new vector

does not generate cycles. For instance, if the new relation is i > j and the list of

relations r is composed by j > k > l and m > l > i then canAddOrder returns

True because i and j does not appear in any partial relation at the same time. But

in fact, it is not possible to add it because this new relation m > l > i > j > k > l

2.2 Implementation in Haskell 49

appears in the transitive closure of these three partial relations. In order to avoid

this problem, we are going to check that there are not repeated elements in the

concatenation of partial relations which start with j with partial relations which

finish with i. To this aim, the following function has been defined.

canAOrder i j r [Function]

Input: two natural numbers i and j which represent a partial relation and

a list of relations r.

Output: a boolean value which is True if the relation i > j can be added to

a list of relations r checking that every concatenation of a list of r which

starts with j with a list of r which finishes with i has not repeated elements,

and False otherwise.

.. ..

canAOrder 1 2 [[0,1],[2,0]] z
False

.. ..

canAOrder 1 2 [[0,1],[2,3]] z
True
.. ..

The first example is False because if we could add the relation 1 > 2, the

relation 0 > 1 > 2 > 0 would have repeated elements.

The following function involves the canAddOrder and canAOrder functions.

canAddOrders i k col r [Function]

Input: two natural numbers i and k, a list over Z (a column), col, where all

the elements are 0 or 1, and a list of relations r. The first natural number is

the first component of the selected vector and the latter one k is an iterator

which will be used for running col.

Output: a boolean value which is True if the list of relations which will be

generated from col could be added to r without generating cycles.

As we have explained in Section 2.1, when a vector is selected we pay attention to

the column which it belongs to. This column will be run looking for the positions

whose value is different from 0 because they imply that a new relation should be

added.

50 Chapter 2 Formalization of an algorithm to compute discrete vector fields

.. ..

canAddOrders 2 0 [1,0,1,1,0] [[0,1]] z
True

.. ..

canAddOrders 2 0 [1,0,0,0,0] [[0,1],[1,2],[0,1,2]] z
False

.. ..

canAddOrders 2 0 [0,1,0,0,0] [[0,1],[1,2],[0,1,2]] z
False
.. ..

In the last example, the function returns False because the relation 2 > 1

would be added to the list of relations wherein the restriction 1 > 2 is included.

The next method consists in adding a vector to a discrete vector field. This

is used when the step 3.2. returns True.

addcvd a b vf [Function]

Input: two natural numbers a and b which represent a vector (a,b), and a

vector field vf.

Output: a vector field which is the concatenation of vf and (a,b). This

function is called after checking that this new vector can be added by means

of the function canAddCvd. Then the vector (a,b) can always be added.

.. ..

addcvd 2 4 [(0,1),(1,3)] z
[(0,1),(1,3),(2,4)]
.. ..

Another interesting point is the way of adding a new partial relation to a

list of partial relations when it can be added (when the returned value of the

canAddOrders function is True). The method consists in generating the transi-

tive closure of the relations. This task is carried out by the addOrder_orders,

addOrder_concat and addOrders functions.

addOrder orders i j r [Function]

Input: two natural numbers i and j which represent the relation i > j and

a list of relations r.

Output: a list of relations r adding the concatenations of i > j with every

relation of r which starts with j and finishes with i.

2.2 Implementation in Haskell 51

This function will take into account the lists which start with j and finish

with i. This function is used after checking that the corresponding call to the

canAddOrders function, namely the canAddOrder function, returns True. Other-

wise, the chosen vector could not be added.

.. ..

addOrder_orders 2 3 [[0,1]] z
[[0,1],[2,3]]

.. ..

addOrder_orders 2 3 [[0,2]] z
[[0,2],[2,3],[0,2,3]]

.. ..

addOrder_orders 2 3 [[1,2]] z
[[1,2],[2,3],[1,2,3]]

.. ..

addOrder_orders 2 3 [[1,2],[3,4]] z
[[1,2],[3,4],[1,2,3],[2,3,4]]
.. ..

addOrder concat l1 l2 [Function]

Input: two lists of relations l1 and l2.

Output: the list of relations obtained from concatenating every list of l1

with every list of l2.

This function adds new relations that the addOrder_orders function does not.

For instance, if we have the following relations: l > i and j > m and we add the

partial relation i > j, then the addOrder_orders function adds l > i > j and

i > j > m but the relation l > i > j > m would not be added. Let us note

that this relation is obtained concatenating a relation which finishes with i with

a relation which starts with j. The addOrder_concat function will be used to

obtain this type of relations which is in charge of completing the computation of

the transitive closure.

.. ..

addOrder_concat [[0,1],[2,1]][[6,4],[3,5]] z
[[0,1,6,4],[0,1,3,5],[2,1,6,4],[2,1,3,5]]
.. ..

The following function completes the transitive closure of the relations

every time that a new relation is added. So, this function involves both the

addOrder_orders function and addOrder_concat function to build it.

52 Chapter 2 Formalization of an algorithm to compute discrete vector fields

addOrders i k col r [Function]

Input: two natural numbers i and k (for running the column), a list over Z
(a column), col, where all the elements are 0 or 1 and a list of relations r.

Output: a list of relations r adding the relations which come from computing

the transitive closure generated by the relations in the way i > k (which

are built with col) added to r.

.. ..

addOrders 2 0 [1,0,1,1][[0,1],[5,4]] z
[[0,1],[5,4],[2,0],[2,3],[2,0,1]]

.. ..

addOrders 2 3 [0,1,1,1] [[0,2],[3,4]] z
[[0,2],[3,4],[2,1][2,3],[0,2,1],[0,2,3],[2,3,4],[0,2,3,4]]
.. ..

Finally, we introduce the genDvfOrders function which corresponds with Al-

gorithm 2.1.

genDvfOrders i j M M1 vf r [Function]

Input: two natural numbers i, j, two list of lists M, M1, a vector field vf,

and a list of relations r.

Output: a pair of lists. The former one is an admissible discrete vector field.

The latter one is the list of partial relations.

This function is essential and uses the previous ones. The two first parameters

represent the row i and the column j of the element to be processed. M is the

initial matrix and M1 is a submatrix of M obtained removing the i first rows

from M. At the beginning, i = 0 so M1 will be equal to M. The task of looking

for a possible vector in every row is carried out with M1. We remove the first

row of this matrix every time a new vector is added (if it is possible) or if no

candidate to be a vector can be selected. So, the next vector to add will be in the

first row of the submatrix. Let us note that we have to keep the initial matrix M

to create the partial relations since we will need the whole columns to add them

(as we have explained in Section 2.1). Finally, the two last parameters are an

admissible discrete vector field vf and a list of partial relations r.

Let us note that the call to the genDvfOrders function starts with an empty

vector field and an empty list of relations. Moreover, this method starts in the

entry (0, 0) of M (with the two first parameters).

2.2 Implementation in Haskell 53

.. ..

genDvfOrders 0 0 [[1,0,1,1],[0,0,1,0],[1,1,0,1]]

[[1,0,1,1],[0,0,1,0],[1,1,0,1]] [] [] z
([(0,0),(1,2),(2,1)],[[0,2],[1,0],[1,0,2]])
.. ..

The components of the pair obtained by genDvfOrders are projected by the

following functions.

genDvf M [Function]

Input: a list of lists M whose elements are over Z.

Output: an admissible discrete vector field obtained taking the first compo-

nent of the output of genDvfOrders.

.. ..

genDvf [[1,0,1,1],[0,0,1,0],[1,1,0,1]] z
[(0,0),(1,2),(2,1)]
.. ..

genOrders M [Function]

Input: a list of lists M whose elements are over Z.

Output: a list of relations. Namely, an empty list if M is empty, and the

relations generated during the computation of the vector field from M (using

genDvfOrders) otherwise.

.. ..

genOrders [[1,0,1,1],[0,0,1,0],[1,1,0,1]] z
[[0,2],[1,0],[1,0,2]]
.. ..

2.2.1 Realignment of an admissible discrete vector field

Up to now, we have functions to build both an admissible discrete vector field

and their partial relations. Finally, we only have to sort this admissible discrete

vector field taking into account these partial relations. The necessary definition

to compute an ordered and admissible discrete vector field is introduced.

54 Chapter 2 Formalization of an algorithm to compute discrete vector fields

dvford M [Function]

Input: a list of lists M whose elements are over Z.

Output: an ordered and admissible discrete vector field. The vector field

computed by genDvf is sorted.

.. ..

dvford [[1,0,1,1],[0,0,1,0],[1,1,0,1]] z
[(1,2),(0,0),(2,1)]
.. ..

2.3 Testing

The previous section was mainly devoted to present an implementation of the

algorithm which provides an ordered and admissible discrete vector field from a

matrix over Z. However, this implementation could contain some bugs. In order

to handle this issue, it is not enough with creating some small examples which

can be solved by hand and checking that the result obtained by the programs is

the expected. We could use some tools similar to QuickCheck such as HUnit (a

traditional xUnit testing framework for unit testing for Haskell, see [Her]) which

helps us to test batteries of examples. Even if we cannot guarantee that the

implementation of our programs was correct, we can increase the confidence in

their results with this intensive testing.

Besides, using QuickCheck can be considered as a good starting point towards

the formal verification of our programs. On the one hand, before trying a formal

verification of our programs (a quite difficult task) we test the properties hold in

a large number of randomly generated cases. This process can be useful in order

to detect bugs. Moreover, we obtain the specification of the properties which

must be verified formally in Coq/SSReflect thanks to this process. In order

to test our programs, first we have to think and implement the functions which

specify the properties to test.

In this section, we will show how using QuickCheck in some examples. We

focus on testing the implementation of the algorithm which was presented in

Section 2.1.

2.3 Testing 55

2.3.1 Testing with QuickCheck

QuickCheck is an easy to use framework to test programs in a battery of examples.

It requires us to write a specification of our code by defining properties which

our algorithm has to satisfy, as a first step towards the testing of the algorithm

(against those properties). Then it generates random sample data to verify that

the properties hold. This higher level view of testing has a good match with

Haskell.

First of all, let us recall the conditions which any admissible discrete vector

field has to verify i.e., the conditions related to the vector field and its relations:

1. 0 ≤ ai < m and 0 ≤ bi < n.

2. ∀ i,M [ai ,bi] = 1.

3. (ai)i (resp. (bi)i) are pairwise different.

4. V is ordered regarding the maximum length of the relations.

5. r does not have any cycle (admissibility property).

• ∀ k v , v = (a,b) ∈ V ∧M [a, k] 6= 0→ [a, k] ∈ r.

• ∀ x y , last x = head y → x + +(tail y) ∈ r.

• ∀ r1, r1 ∈ r → uniq r.

Let us note that the admissibility property is detailed with the three last

conditions. The first one checks that the relations added by the vector field are

in r. The second one is in charge of checking that the relations added using

the transitive closure also have to belong to r. Finally, taking into account our

implementation, the admissibility property (see Definition 1.40) is verified if every

relation of r has not repeated elements. Let us note that in the last property,

uniq r means that a relation r has not repeated elements.

Then, we introduce as an example a pair of definitions which are needed to

specify the properties which we have just presented to test the RS algorithm

which computes an admissible discrete vector field. For each one, we will provide

the input, the property checked, and their Haskell code. As in the implementation

the matrices will be represented as list of lists over Z since the Haskell language

56 Chapter 2 Formalization of an algorithm to compute discrete vector fields

is exactly the same one of QuickCheck. Let us highlight that some of these

functions are similar to the functions used in the algorithm. For instance, the

canAddCvd function fulfills the properties so that a vector belongs to a vector

field. However, we have to check that every vector which belongs to a vector

field verifies this property. It is worth noting that the following functions are test

functions, namely, functions which return a boolean value which is true if the

property is fulfilled and false otherwise. The first function is in charge of testing

the second property and the other one is focused on testing the second condition

of the admissibility property. Let us explain the notation for the function nth

which appears in compijCvd. The function nth takes three parameters as input:

x0 (a default element), s (a sequence) and i (a natural number); and returns the

i-th element of the sequence s if i is smaller than the length of s; otherwise, it

returns x0.

compijCvd vf M [Function]

Input: a vector field vf and a a list of lists M over Z where all the elements

are 0 or 1.

Property checked: ∀(i, j) ∈ vf , M [i, j] = 1.

The definition of compijCvd in Haskell code is as follows.

compijCvd dvf M =

all (\x -> (nth 0 (nth nil M (fst x)) (snd x)) == 1).

prop cat r [Function]

Input: a list of relations r.

Property checked: ∀ a, b2 : relation, b1 : nat, a ∈ r ∧ (b1::b2) ∈ r ∧
last a = b1 then a + + b2 ∈ r.

Its code in Haskell is as follows.

prop_cat r = all (\x -> all (\y -> (isinSeq (x ++ tail y) r))

(filter (\y0 -> (last (tail x)) == (head y0)) r)) r

These functions and others which specify the properties to verify have been

grouped in Haskell by means of a function called isOrdAdmVecfield. To test in

QuickCheck that our implementation of the RS algorithm fulfills the specification

2.3 Testing 57

given in isOrdAdmVecfield, the following property definition, using QuickCheck

terminology, is defined.

condOrdAdmVecfield M = isOrdAdmVecfield M (dvford M) (genOrders M)

Let M be a matrix, the definition of condOrdAdmVecfield states that the

ordered and admissible discrete vector field and the relations from M produced

by the outputs of dvford and genOrders fulfill the specification of the property

called isOrdAdmVecfield.

Let us note that the matrix M generated randomly can be any list of lists over

Z, then it is quite likely that M is not only consisting of 0′s and 1′s, or that it

does not satisfy the condition of that every row has the same size. In order to

deal with this drawback, it is necessary to redefine the property definition wherein

these preconditions about the input parameters are satisfied. Moreover, you can

define new functions to transform a data type in another one instead of adding

other precondition over this parameter.

condOrdAdmVecfield M =

let M01 = (fill_equalsize (matrixM01 M)) in

(M01 /= [[]]) ==>

isOrdAdmVecfield M01 (dvford M01) (genOrders M01)

Let us emphasize that we are not losing the randomness of the matrices,

because we generate randomly lists of lists of integer numbers. The matrixM01

function becomes a list over Z in a list over Z2, in the following way; if the

integer is a even number, then it is considered as a 0 and in another case, 1.

Then fill_equalsize is in charge of filling the list of lists with 0′s and 1′s

randomly, so that every row has the same number of elements. In this way we

can work with well built matrices over Z2 keeping the randomness.

Now, we can test whether condOrdAdmVecfield satisfies such a property.

.. ..

> quickCheck condOrdAdmVecfield z
+ + + OK, passed 100 tests.

.. ..

QuickCheck works in the following way: for every parameter which is gener-

ated randomly by QuickCheck, it is checked that the preconditions of the func-

tion to test are verified. If these conditions are fulfilled the system checks if

58 Chapter 2 Formalization of an algorithm to compute discrete vector fields

the property is satisfied. The system generates randomly lists of lists for the

property condOrdAdmVecfield and checks that the precondition (M01 /= [[]])

is satisfied. For every list which verifies the precondition the return value of

isOrdAdmVecfield should be true. Finally, the result produced by QuickCheck

when evaluating this statement means 100 random values for M have been gener-

ated, which verify the preconditions, checking that the property was true for all

these cases.

2.4 Verification

After testing our programs, and as a final step to ensure their correctness, we can

undertake the challenge of formally verifying them. For this task we are going to

use Coq/SSReflect.

First of all, we define in the next subsection the data types related to our

programs which are mainly effective matrices, vector fields, and relations. After-

wards, we translate both the programs and the properties, which were specified

during the testing of the programs, from Haskell to Coq. This task is quite di-

rect since these two systems are close (as it will be explained in Subsection 2.4.1).

Subsection 2.4.2 is devoted to verify the correctness of dvford. Namely, we will

define a Vecfieldadm function which receives a matrix over Z2, a vector field

and some relations, and checks if the properties tested in Section 2.3 are verified.

Then we prove that every property included in Vecfieldadm is verified for our

admissible discrete vector field and their relations. Finally, we prove that the

output produced by dvford satisfies the properties specified in Vecfieldadm.

2.4.1 Implementation in SSReflect

First of all, we define the data types of the main structures which are involved

in our development. As we work with matrices over Z2, we have to define the

field Z2. In SSReflect, the field Zp is defined, ∀p ∈ N, with the constructor

Fp_fieldType. So, we only need an instance of it with p = 2.

Definition Z2 := Fp_fieldType 2.

2.4 Verification 59

Let us note that 0 and 1 over Z2 are represented as 0%R and 1%R, respec-

tively. Let us highlight that the matrices are represented in SSReflect by finite

functions over pairs of ordinals (the indices):

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}

This encoding makes many properties easy to derive, but it is inefficient for

evaluation. Indeed, finite functions are internally represented by their graph

which has to be traversed linearly whenever the function is evaluated. Moreover,

having the size of matrices encoded in their type allows us to state concise lemmas

without explicit side conditions. However, our main aim is computing, despite

the proofs are more complicated. Following with this idea, we will keep the

data types as close as possible to the Haskell ones. Therefore, a matrix will be

encoded as a list of lists of Z2. It is worth noting that lists are called sequences

in SSReflect, and we will use this terminology from now on each time that

we refer to SSReflect lists. In addition, a well defined matrix satisfies the

condition that every row has the same size. So, a sequence of sequences of Z2 is

a matrix if the sequence is empty or if the sequence has a good shape. To define

it, we use the rowseqmx function which given a matrix M and a integer i returns

the row M [i]. This function is defined in [DMS].

Definition seqZ2 := seq Z2.

Record matZ2:=

{M:> seq (seq Z2);

m:nat;

n:nat;

is_matrix: M = [::] \/

[/\ m = size M & forall i, i < m -> size (rowseqmx M i) = n]

}.

Moreover, a vector field will be represented by means of a list of pairs of natural

numbers.

Definition vectorfield:= seq (prod nat nat).

Finally, a relation i > j will be represented as a sequence of natural numbers

(i::j::nil). So, the partial relations will be encoded as a sequence of sequences

of natural numbers.

60 Chapter 2 Formalization of an algorithm to compute discrete vector fields

Definition rels:= seq (seq nat).

Let us recall that if a new relation is going to be added, for instance j > k, to a

list of relations which consists of i > j then we can concatenate both relations in

the following way i > j > k and get a new relation. So, the list (i::j::k::nil)

will represent this relation in SSReflect.

The translation of the RS algorithm from Haskell to SSReflect is quite

direct. Namely, several of the functions that we use have their counterpart in

SSReflect, for instance all and filter. Others, such as uniq (checking that a

sequence has not repeated elements) or index (giving the position of an element

in a list), which have been defined ad-hoc in Haskell are already available in the

SSReflect library. Let us see an example (the Haskell counterpart has been

introduced in Section 2.2).

Definition compijCvd (vf:vectorfield)(M: matZ2) :=

all [pred p| (nth 0 (nth nil M p.1) p.2) == 1] vf.

An important difference between Haskell and Coq/SSReflect is the defi-

nition of recursive functions. In Coq, all the functions must terminate; however

this condition is not compulsory in Haskell. In order to illustrate this fact, let

us present how the recursive addOrder_concat function (defined in Section 2.2)

has had to be defined in SSReflect. As we explained in the methodology, we

translate this Haskell function to Coq/SSReflect. We usually define the recur-

sive functions using the Fixpoint command. But, in this case we cannot define

it in this way since the system cannot determine that this function really ends.

This is due to the fact that in some cases, the size of the first list decreases, but

in other cases, the size of the second one decreases. This problem can be dealt

with in different ways. The easiest way to be able to define this function consists

in adding a new parameter, an iterator which decreases in every iteration and

makes sure us that the function terminates. This option has been taken to define

the genDvfOrders function making sure that the algorithm can run on all the

elements of the matrix. But this is not the most elegant way. The alternative

that we have employed for addOrder_concat consists in providing a measure to

ensure its termination. After Coq v8.1, the system includes a new command,

called Function, which allows us to directly encode general recursive functions.

This command accepts a measure function that specifies how the argument “de-

creases” between recursive function calls.

2.4 Verification 61

In the case of the addOrder_concat function, the measure is just the sum of

the size of the sequences which are the input parameters.

Function addOrder_concat (rs: rels * rels)

{measure (fun ords=> (size (fst rs) + size (snd rs))%N)}:=

match (fst rs), (snd rs) with

| nil , _ => nil

| _ , nil => nil

|a::nil,c::d => ((c ++ a)::nil) ++ addOrder_concat ((a::nil), d)

|a::b,c::nil => ((c ++ a)::nil) ++ addOrder_concat (b,(c::nil)))

|a::b,c::d => ((c ++ a)::nil) ++(addOrder_concat ((a::nil), d))

++ (addOrder_concat (b, (c::d)))

end.

Proof.

...

Defined.

The using of the Function constructor generates proof-obligations that must

be proved to guaranty the termination of the function. This type of proofs are

usually easy to prove using properties about natural numbers. Furthermore, the

Function command generates a lot of auxiliary results related to the defined

function. Some of them are powerful tools to reason about it. For instance,

addOrder_concat_ind is an specialized induction principle tailored for the spe-

cific recursion pattern of the function. Moreover, this induction principle will

facilitate us the task of proving theorems about addOrder_concat.

Let us note that this proof does not finish with Qed (as happens in the rest of

lemmas) but with Defined. Both options are correct but if we choose the proof

using Qed, the function is not computable.

Another difference between Haskell and SSReflect programs is the gen-

eralization of some programs to make the proofs easier. For instance, we can

consider the function which sorts a discrete vector field (this function is called

dvford). In Haskell the realignment is performed depending on the maximum

length of the paths generated for each vector. However, other functions can

be used to sort a vector field. For instance, we have defined the insert_sort

function (which is internally called by dvford) parameterized by a function

f : nat -> relations -> nat which will be in charge of sorting the vector

62 Chapter 2 Formalization of an algorithm to compute discrete vector fields

field. Afterwards, we instantiate it with our function to compute the maximum

length of the paths associated with the vector.

2.4.2 Verification in SSReflect

In this section we are going to present the verification of the RS algorithm. In

particular, we prove that our implementation constructs an ordered and admissi-

ble discrete vector field computed with dvford. Let us recall that this function

uses genDvfOrders which returns both an admissible discrete vector field with-

out reordering and the relations associated with it. This means that we have

to prove that the output produced by genDvfOrders satisfies the properties of

a discrete vector field (see Definition 1.42) and the admissibility property (see

Definition 1.40). In addition the output produced by dvford must be sorted.

Let us introduce briefly a sketch of the steps that we have followed in the

proof. First of all, the definition of an ordered and admissible discrete vector

field, Vecfieldadm is introduced. This definition consists of a matrix M, a vector

field vf, a sequence of relations r, and a proof of the fact that (vf , r) satisfies

the properties of an ordered and admissible discrete vector field for M. Then,

we have to construct an instance of this definition using the output produced

by the functions dvford M (an ordered and admissible discrete vector field) and

genOrders M (a sequence of relations taking into account dvford M) being M a

matrix over Z2.

2.4.2.1 Definition of an ordered and admissible discrete vector field

Now, let us present the definition of Vecfieldadm (Figure 2.1) which involves

conditions about the three input parameters: a well built matrix, a vector field,

and a list of relations.

Let us note that the five first conditions come from the three properties of a

discrete vector field (see Definition 1.42). Let M be a matrix over Z2 with m rows

and n columns which will be denoted forward by M : M [Z2](m,n) and vf = (ai ,bi)i

be a vector field from M, the first two properties establish that ∀i, 0 ≤ ai < m and

0 ≤ bi < n. The third property states that ∀ i j : nat, (i, j) ∈ vf → M [i, j] = 1.

Another property reflects that ai are different among them and the same happens

2.4 Verification 63

with bi .

Definition Vecfieldadm (M: matZ2)(vf: vectorfield)(r:rels) :=

(all [pred i | 0<= i < (M m)](getfirstseq vf))

(all [pred i | 0<= i < (M n)](getsndseq vf)) /\

(forall i j:nat, (i,j) \in vf -> (nth 0 (nth nil M i) j) = 1%R)

/\ (uniq (getfirstseq vf)) /\

(uniq (getsndseq vf)) /\

(forall i j l:nat, (i,j) \in vf -> i!=l

-> (nth 0 (nth nil M l) j)!= 0%R -> (i::l::nil) \in r) /\

prop_cat2 r /\

(all uniq r) /\

(ordered glMax vf r).

Figure 2.1: Vecfieldadm definition

Then the three following conditions are linked with the relations. The first

one gives us the link between the vector field and the relations. The condition

∀ i j m : nat, (i, j) ∈ vf → i 6= m→ M [m, j] 6= 0→ (i :: m :: nil) ∈ r states the

completeness property of the relations which are generated. The second one

verifies that we are constructing the transitive closure. And the last one states

the admissibility property. It makes sure that every sequence of r has not repeated

elements. Finally, it is checked that vf is ordered taking into account the glMax

function and the relations r.

2.4.2.2 Properties to formalize about an ordered and admissible dis-

crete vector field

In this section we are going to focus on certifying the correctness of the dvford

function. In particular, we are going to prove that the dvford function builds

an ordered and admissible discrete vector field (given a matrix with entries from

Z2 as input). Internally, both this function and genDvf use the genDvfOrders

function which builds and stores an admissible discrete vector field and the

relations associated with the vector field. The difference between the genDvf and

dvford functions is the ordering of the vector field. In the process, we prove that

the output of genDvf satisfies both the three definitional properties of a discrete

64 Chapter 2 Formalization of an algorithm to compute discrete vector fields

vector field (Definition 1.42) and the admissibility property (Definition 1.40).

Knowing that dvford is a permutation of such a vector field, these properties for

dvford are directly obtained using the SSReflect library about permutations.

For instance, if there is a permutation between s1 and s2 and s1 has not repeated

elements then s2 neither (with perm_eq_uniq). Finally, it remains to be proved

that dvford returns an ordered vector field.

Property 1

We are going to prove that the output produced by genDvf verifies the first

property of Definition 1.42. It says that let M : M [Z2](m,n) and vf = (ai ,bi)i be a

vector field associated with M then on the one hand, ∀i, 0 ≤ ai < m and on the

other hand, 0 ≤ bi < n. As both cases are analogous, let us focus on the former

one.

The statement of such a property in SSReflect is the following one.

Lemma propSizef (M:matZ2):

(all [pred i | 0 <= i < (size M)](getfirstseq (genDvf M)))

The genDvf function gives us an admissible discrete vector field vf from a

matrix. But we only need the first components of vf, so we use the getfirstseq

function. This function returns the first components of a sequence of pairs.

This proof is not difficult and only some ideas will be outlined here. The

genDvf function returns either an empty discrete vector field (when M is empty)

or the first component of another function named genDvfOrders. So, rewriting

the definition genDvf and removing the trivial cases, the proposition to prove

with M = a::b is as follows.

P: all [pred i | 0 <= i < (size M)]

(getfirstseq (fst (genDvfOrders (size M*size a).+1 0 0 M

[::][::])))

Let us emphasize that the method genDvfOrders is recursive. So, we will prove

its properties applying induction. In this case, we can use the schema generated

by the own genDvfOrders function which is defined as follows:

Functional Scheme genDvfOrders_ind :=

Induction for genDvfOrders Sort Prop.

2.4 Verification 65

Afterwards, we apply this schema over P with the corresponding parameters of

genDvfOrders using the command functional induction. In order to prove the

different cases we have to notice two aspects. On the one hand, the canAddCvd

function is the responsible for that a new vector (i,j) which was added to the

vector field verifies the condition 0 <= i < (size M). And on the other hand,

it is also necessary to check that the vectors which are in vf (that have already

been added previously) also satisfy the same property. But this is obtained using

the inductive hypothesis.

Property 2

In this section, we will prove the second property of Definition 1.42. It says:

let M : M [Z2](m,n) be a matrix and (ai ,bi)i be a vector field from M, then

∀ i,M [ai ,bi] = 1.

The equivalent statement in SSReflect of this property would be the

following one.

Lemma v_in_genDvf_Mv1 (M: matZ2): (forall a b:nat,

((a,b) \in (genDvf M)) -> nth 0 (nth nil M a) b = 1%R).

Proof of Property 2

An auxiliar lemma will be introduced to prove this property, just to give an idea

of the proof.

To prove v_in_genDvf_Mv1, we will need the following property which is the

result of expanding the definition of genDvf and removing trivial cases.

Lemma inDvf_compij1 (p a b:nat) (M : matZ2):

(a,b) \in (fst (genDvfOrders p 0 0 M M [::] [::]))

-> nth 0 (nth nil M a) b = 1%R

As we said in the proof of the previous property, we will prove this property by

means of induction since genDvfOrders is recursive. However, as usually happens

in mathematics, it is easier to prove a generalization of a result and subsequently,

particularize the result to verify in a straightforward manner the particular case.

So, we are going to generalize some parameters of this function to provide an

easier lemma to prove shown in Figure 2.2.

First, we generalize the two sequences [::], which represent both a vector

field and a sequence of relations. Moreover, the second and third parameter will

66 Chapter 2 Formalization of an algorithm to compute discrete vector fields

Lemma inDvf_compij1_general (p i j a b :nat) (M M2: matZ2)

(vf: vectorfield)(r: rels):

(forall k2, nth 0 (nth nil M (i + a)) k2 = nth 0 (nth nil M2 a)

k2)

-> (i + a,j + b) \in fst (genDvfOrders p i j M M2 vf r)

-> nth 0 (nth nil M (i + a)) (j + b) = 1%R

Figure 2.2: inDvf_compij1_general lemma

be generalized as two natural numbers i and j. Finally, we generalize only the

second matrix M by means of a general matrix M2, because only one of them will

be modified in the recursion of genDvfOrders. So, it is a way of distinguishing

them. But this change would not be enough because there is a relation between

both matrices. Namely, M2 is a submatrix of M where the i-first rows have been

removed, that is to say, ∀ k,M [(i + a), k] = M2[a, k]. Consequently, this

condition will be added as a hypothesis. Then, we are interested in knowing,

given a general position (i, j) instead of (0, 0), what is the corresponding vector

to add taking into account this new reference point. If a vector is (a, b) when the

reference point is (0, 0), consequently, the vector will be (i+a, j+b) with (i, j) as

a reference point.

In many cases, the induction schema associated with a data type is not enough

to prove lemmas which involve complex functions. It is sometimes necessary

to define an induction on different parameters at the same time. Moreover,

these parameters can behave in different ways depending on the case wherein

the processing is located. So, for instance, a parameter cannot always decrease

but sometimes keeps fixed. This is the case of the fourth parameter M1 of

genDvfOrders. To this aim, an inductive schema will be defined taking into

account the complex function (in our case genDvfOrders) to prove the concrete

lemma (inDvf_compij1_general).

Moreover, every recursive function has associated an inductive schema based

on the different cases which appear in it. This schema can be sometimes useful as

we can see during the proof of the Property 1 (Section 2.4.2.2). On the contrary,

you may need to prove a lemma which uses this function but the previous

schema is not suitable. These situations appear if some of the parameters of

2.4 Verification 67

the lemma, which does not appear in the recursive function, change depending

on some of the parameters of the recursive function. In these cases, we have to

define a new function which allows us to build the schema associated with the

function taking into account the new parameters and how they behave in the

different cases of the method. To define a schema in SSReflect the instruction

Functional Scheme is used with the new function defined. This idea has been

used in many occasions to prove our lemmas with recursive functions and it was

explained in detail in Section 1.2 with a small example.

Let us emphasize that it is necessary to think what schema can be useful

to prove a lemma, namely, how the parameters behave when others change. In

this case, the schema associated is complicated. We show a case to explain how

the variables will have to be modified. This case consists of running the i-th

row (the second parameter of genDvfOrders) with the parameter j. So, this

parameter is increasing in a unit along the row. It is worth noting that when j

increases in a unit, the parameter b decreases in a unit, so that the proposition to

prove nth 0 (nth nil M (i + a)) (j + 1 + b.-1) = 1%R is equivalent to the

previous one nth 0 (nth nil M (i + a)) (j + b) = 1%R. Using this schema

the environment will include an inductive hypothesis which will be enough to

prove the lemma.

This lemma is proved by cases. The first one satisfies that

nth 0 (nth nil M (i + a)) (j + b) = 1%R, consequently the lemma is

proved. The latter one states that nth 0 (nth nil M (i + a))(j + b) = 0%R

but the proposition to prove means that its value is 1. Then a contradic-

tion appears. To deal with this case we apply the following lemma which

proves that if an entry of the matrix is 0 then this position cannot be se-

lected to be a member of the vector field. However, we had as hypothe-

sis (i + a,b) \in fst (genDvfOrders p i j M M2 vf r) that means that

(i + a,b) is a member of the vector field.

• compij0 notinDvf .

The lemma says that if v = (a,b) is a vector, M : M [Z2](m,n), vf is an

admissible discrete vector field generated from M and M [a,b] = 0, then

v /∈ vf . By construction, the function which creates the discrete vector

field only selects some of the entries of M whose value is 1. So, if an entry

68 Chapter 2 Formalization of an algorithm to compute discrete vector fields

of M is 0 then the position of this entry will not belong to vf. The statement

of Lemma compij0_notinDvf is the following one.

Lemma compij0_notinDvf (p i j a b:nat)(M: matZ2):

nth 0 (nth nil M a) b = 0%R ->

(a,b) \notin fst (genDvfOrders p i j M M [::] [::]).

To prove it, we will generalize this result and then particularize instead of

proving it from scratch. In particular, we generalize in the same way that

the lemma inDvf_compij1. The new lemma would be as follows.

Lemma compij0_notinDvf_general (p i j a b:nat)(M M2: matZ2)

(vf: vectorfield)(r: rels): (forall k2,

nth 0 (nth nil M (i+a)) k2 = nth 0 (nth nil M2 a) k2)

-> nth 0 (nth nil M (i+a)) b = 0%R

-> (i + a,b) \notin fst (genDvfOrders p i j M M2 vf r).

This lemma will be proved using induction but the schema

genDvfOrders_ind will not be useful. So, we have to define a new

schema for genDvfOrders which is useful for this concrete lemma. Let us

explain that the parameter a will behave in different ways depending on

the case with which one is dealing. The essential idea is that if i increases

then a should decrease so that the vector (i + a,b) would not change:

((i + 1)+ (a - 1),b).

Property 3

In this section we will prove the third property of Definition 1.42. Let M be

a matrix over Z2 and vf = (ai ,bi)i be a vector field from M, then ai are different

among them and the same happens with bi . Let us focus on the first part (lemma

norepfst). The second one norepsnd is proved analogously.

The statement in SSReflect that establishes the first components are unique

is:

Lemma norepfst (M: matZ2) : (uniq (getfirstseq (genDvf M))).

This lemma is proved rewriting the genDvf function, removing the trivial

cases, for instance when the matrix is empty, and applying induction on the

genDvfOrders function with the inductive schema generated by the own function.

2.4 Verification 69

Property 4

This property is in charge of checking that the transitive closure of the rela-

tions, which is generated during the construction of the vector field from a matrix

does not have repeated elements. The statement in SSReflect is the following

one.

Lemma norep_genOrders (M: matZ2): all uniq (genOrders M).

This lemma will be proved using induction and applying the following lemma

since the relations which belong to the output of genOrders have been added

with the addOrders function.

Lemma canAddOrders_addOrders (i j:nat)(col: seqZ2) (r: rels):

all uniq r -> canAddOrders i j col r

-> all uniq (addOrders i j col r).

Concretely, let i and j be natural numbers, col be a sequence over Z2 (which

represents a column of a matrix), r be a list of relations which has not repeated

elements, and the returned value of canAddOrders function is True, then we

obtain that the corresponding relations which will be added to r will be sequences

without repeated elements.

The addOrders function is a recursive one. In every step the parameter j

increases in one unit, the sequence col deletes its first element, and r is modified

adding new relations. The new possible relations can be:

• [:: i,j]

• addOrder_orders i j r

The relations which can be added as a concatenation of [:: i,j] with any

relation in r which starts with j or ends in i.

• addOrder_concat ((getfirstE j r), (getlastE i r))

This function has two sequences as input parameters. The former one is a

list of sequences of r, where every sequence starts with j. The latter one

is another list of r which finishes with i. This function adds the relations

which are the concatenation of one sequence of every list. Concretely, the

new sequences are consisted of one of the sequences which finishes with

70 Chapter 2 Formalization of an algorithm to compute discrete vector fields

i (second parameter) concatenated with another one which starts with j

(first parameter).

. .

addOrder_concat [[1,7],[1,3]][[4,2],[5,6,2]] z
[[4,2,1,7],[4,2,1,3],[5,6,2,1,7],[5,6,2,1,3]]
. .

Moreover, these different ways of adding relations will be reflected in the way

of checking if new relations can be added. The function which is in charge of this

duty is canAddOrders. In every step the checking is carried out by the following

functions.

• canAddOrder i j ord

This function returns true if for every element of r, for instance r1, one of

the following conditions happens:

- i \notin r1

- j \notin r1

- index i r1 < index j r1

Then, the relation (i::j::nil) will not be added if a relation where first

appears j and then i exists in r. This function checks that the relations

which are created by addOrder_orders do not generate cycles.

• canAOrder i j ord

This function returns True if any two relations, where one of them starts

with j and the other one finishes with i, are joint the new relation will

not have repeated elements. Let us note that canAOrder checks that the

relations created using addOrder_concat do not generate cycles.

These ideas are reflected in the lemmas shown in Figure 2.3.

These last functions depend again on other functions to check that no cycle

will appear in the construction of the relations. We have needed proving similar

lemmas with the different functions for adding relations. Namely, 20 lemmas

related to these functions and some other 30 lemmas about auxiliary functions

have been proved previously.

2.4 Verification 71

Lemma canAddOrder_norep (i k:nat)(r: rels):

i != k -> all uniq r ->

canAddOrder i k r -> all uniq (addOrder_orders i k r).

Lemma norep_addOrder_concat (i k:nat)(r:rels)(rs: rels*rels):

(i != k) -> all uniq r ->

(forall x:seq nat, x \in (fst rest) -> head 0 x = k) ->

(forall x:seq nat, x \in (snd rest) -> last 0 x = i) ->

subseq (fst rest) r -> subseq (snd rest) r ->

canAddOrder i k r -> canAOrder i k r ->

all uniq (addOrder_concat rest).

Figure 2.3: canAddOrder_norep and norep_addOrder_concat lemmas

Property 5

With this property, we are interested in checking that if M is a matrix, vf is

a vector field over M, m is a natural number and (i, j) is a vector satisfying that

(i, j) ∈ vf and M [m, j] 6= 0 then the relation i > m has to belong to the relations

generated during the construction of vf. This lemma in SSReflect is formalized

as follows.

Lemma indif0_order M : forall i j m,

(a,b) \in (genDvf M) -> a != m ->

nth 0 (nth nil M m) b != 0%R -> (a::m::nil) \in genOrders M.

First of all, we introduce two lemmas which will be used to prove

indif0_order. These are in charge of proving properties about the relations

which are added with genOrders, and particularly with addOrders.

• invf inaddO .

This lemma states that if a relation already belongs to a list of relations

then the same relation is a member of the relations where other ones have

been added. The lemma in SSReflect is the following one.

Lemma invf_inaddO a i j c ords:

a \in ords -> a \in addOrders i j c ords.

72 Chapter 2 Formalization of an algorithm to compute discrete vector fields

The lemma is not difficult to prove: the inductive schema associated to the

own addOrders function is applied.

• compij in addOrders.

This lemma proves that the relations added from the column of a chosen

vector (i, j), i.e. the elements different from 0 whose position is not the

i-th of the column, have to belong to the list of relations which are added.

For instance, if the position m of the list satisfies these conditions then the

relation i > m has to be in the relations generated from the vector (i, j).

Lemma compij_in_addOrders (im i:nat) l r:

nth 0%R l im!= 0%R -> uniq (i::im::nil) ->

(i::im::nil) \in addOrders i 0 l r.

To prove it, this lemma is generalized to the following one which allows

us to prove compij_in_addOrders. In the following lemma, the new extra

parameter allows us to add the relation from the k− nth component of the

list instead from the first component.

Lemma compij_in_addOrders_general (im k i:nat) l r:

nth 0%R l im!= 0%R -> uniq (i::(im + k)::nil) ->

(i :: (im + k) ::nil) \in addOrders i k l r.

We will use induction to prove it, but the own inductive schema of this func-

tion is not useful as the parameter k changes in different ways in different

cases. The important point is that this parameter increases when im de-

creases so that the relation is always the same one:

(i::(im + k)::nil) = (i::(im - 1 + k + 1)::nil).

The lemma indif0_order will be proved using the following lemma which is

more general since both genDvf and genOrders are expanded and their arguments

have been generalized as it was made in the proof of Property 2.

Lemma indif0_order_genDvfOrders a b m p i j M M1 r vf :

((a, b) \in vf -> nth 0 (nth nil M m) b != 0%R

-> (a::m::nil) \in r)

-> (a, b)\in (genDvfOrders p i j M M1 vf r).1 -> a!= m

-> nth 0 (nth nil M m) b != 0%R

-> (a::m::nil) \in (genDvfOrders p i j M M1 vf r).2.

2.4 Verification 73

Let us highlight the first hypothesis verifies that every vector (a, b) which

is in the vector field and ∀ m, M [m,b] 6= 0 then the relation (a::m::nil) will be

in r. As we know the elements which are already in r satisfy the property, so we

only have to check the relations which are added in consecutive steps. Finally,

the previous lemmas will be used to sort out the cases which appear when the

inductive schema of genDvfOrders is applied. Therefore, this lemma is proved in

this way.

Property 6

This property checks if the transitive closure property is verified by the re-

lations. We use the following definition instead of the implemented previously

prop_cat.

Definition prop_cat2 (ords: seq (seq nat)):=

(forall a b s p, (a::s) \in ords -> (last 0%N s = b)

-> (b::p) \in ords -> ((a::s) ++ p) \in ords).

Let us note that the difference between both definitions lies in their imple-

mentations. Consequently, the lemma to prove is as follows.

Lemma in_in_cat (M:matZ2):

let r:= (genOrders M) in prop_cat2 r.

Let us note that this property was tested with QuickCheck with the prop_cat

function instead of prop_cat2. Taking into account the following lemma which

relates both definitions:

Lemma prop_cat_prop_cat2 r: (prop_cat r) -> (prop_cat2 r).

we can obtain that if this property is verified by prop_cat then in_in_cat would

be easy to prove, because prop_cat is processed as a generalization of prop_cat2

thanks to the previous lemma. The Lemma in_in_cat will be proved in this way.

On the other hand, prop_cat r will be proved by the own construction of the

relations of the algorithm.

Property 7

After proving that the output of genDvf is an admissible discrete vector field,

it is needed to prove that dvford returns an ordered and admissible discrete

74 Chapter 2 Formalization of an algorithm to compute discrete vector fields

vector field. The properties of an admissible discrete vector field about the out-

put of dvford will be proved easily using the properties about the permutations

of sequences. So, let us prove that the vector field obtained with dvford is

an ordered one decreasingly according to the glMax function, which computes

the maximum length of the paths. Let us note that dvford M is defined as

insert_sort glMax (genDvf M)(genOrders M). So, we sort the vectors which

belong to genDvf M using the returned value of the glMax function which takes

into account the relations genOrders. The lemma in SSReflect is the following

one.

Lemma ordered_dvfg M: let dvf := (dvford M) in

let ords:= (genOrders M) in ordered glMax dvf ords.

To prove it, we generalize the lemma taking f as the reordering function in the

following way.

Lemma ordered_insert_sort vf ords:

ordered (insert_sort f vf ords) ords.

Namely, f is a function which given a natural number and a sequence of relations

returns a natural number (f: nat -> rels -> nat). Moreover, vf and ords

represent a general vector field and a general list of relations, respectively. To

prove it, we apply induction on vf.

2.4.2.3 The RS algorithm builds an ordered and admissible discrete

vector field

In order to prove that the returned value of our algorithm satisfies the properties

of an ordered and admissible discrete vector field, Vecfieldadm (defined in Sec-

tion 2.4.2.1) is needed to have proved the seven properties depicted in the previous

subsection over the parameters (dvford M) and (genOrders M). So, we will only

state the theorem dvfordisVecfieldadm (shown in Figure 2.4) and will apply

the corresponding lemmas to prove the seven properties. The used lemmas which

corresponds with the seven properties are propSizef, propSizes, norepfst,

norepsnd, norep_genOrders, v_in_genDvf_Mv1, indif0_order, in_in_cat,

and ordered_dvfg.

The proofs which have been detailed in this section involve 49 definitions and

2.5 A non deterministic algorithm in SSReflect 75

109 lemmas. In general, the development takes up 3772 code lines.

Theorem dvfordisVecfieldadm (M:matZ2):

Vecfieldadm M (dvford M)(genOrders M).

Proof.

case H1: M=>[|s1 s2]; first by done.

have HH: (M!=[::]); first by rewrite H1.

rewrite -H1 /Vecfieldadm.

rewrite (propSizef_ord M) (@propSizes_ord m n M HH ismatrix)

(norepfst_ord M)(norepsnd_ord M)(admis M).

split; split; split; split; split.

apply: v_in_genDvf_Mv1.

split; first by done.

split; first by apply: ordered_dvfg.

split; first by apply:indif0_order1.

apply: in_in_cat.

Qed.

Figure 2.4: dvfordisVecfieldadm theorem

2.5 A non deterministic algorithm in SSReflect

In this section we introduce an abstract formalization of admissible discrete vector

fields on matrices and a non deterministic algorithm to construct an admissible

discrete vector field from a matrix1.

SSReflect provides all the necessary tools to achieve our goal. In particular,

we take advantage of the matrix, ssralg and fingraph libraries, which formalize,

respectively, matrix theory, the main algebraic structures and the theory of finite

graphs.

First of all, we are going to define an admissible discrete vector field on a

matrix M with coefficients in a ring R, and with m rows and n columns. It is

1Thanks are due to Maxime Dénès and Anders Mörtberg which guided us in this develop-

ment.

76 Chapter 2 Formalization of an algorithm to compute discrete vector fields

worth noting that our matrices are defined over a generic ring instead of working

with coefficients in Z since the SSReflect implementation of Z, see [CM12], is

not yet included in the SSReflect distributed version. The vector fields are

represented by a sequence of pairs where the first component is an ordinal m and

the second one an ordinal n.

Variable R : ringType.

Variables m n : nat.

Definition vectorfield := seq (’I_m * ’I_n).

Now, we can define in a straightforward manner a function, called dvf, which

given a matrix M (with coefficients in a ring R, and with m rows and n columns,

’M[R]_(m,n)) and an object V of type vectorfield checks whether V satisfies

the properties of a discrete vector field on M (Definition 1.42).

Definition dvf (M : ’M[R]_(m,n)) (V : vectorfield) :=

all [pred p | (M p.1 p.2 == 1) || (M p.1 p.2 == -1)] V &&

(uniq (map (@fst _ _) V) && uniq (map (@snd _ _) V)).

It is worth noting that the first condition of Definition 1.42 is implicit in the

vectorfield type. Now, as we have explained at the end of the previous section,

from a discrete vector field V a binary relation is obtained between the first

elements of each pair of V. Such a binary relation will be encoded by means of

an object of the following type.

Definition orders := (simpl_rel ’I_m).

Finally, we can define a function, which is called advf, that given a matrix

’M[R]_(m,n), M, a vectorfield, V and an orders, ords, as input, tests whether

both V satisfies the properties of a discrete vector field on M and the admissibility

property for the relations, ords, associated with the vector field, V. In order to

test the admissibility property we generate the transitive closure of ords, using

the connect operator of the fingraph library, and subsequently check that there

is not any path between the first element of a pair of V and itself.

Definition advf (M:’M[R]_(m,n)) (V:vectorfield) (ords:orders) :=

dvf M V && all [pred i|~~(connect ords i i)] (map (@fst _ _) V).

Now, let us define a non deterministic algorithm which construct an admissible

discrete vector field from a matrix. First, we define a function, gen_orders, which

2.5 A non deterministic algorithm in SSReflect 77

generates the relations between the elements of the discrete vector field as we have

explained at the end of the previous section.

Definition gen_orders (M0 : ’M[’F_2]_(m,n)) i j :=

[rel x y | (x != i) && (y == i) && (M0 x j == 1)].

Subsequently, the function, gen_adm_dvf, which generates an admissible dis-

crete vector field from a matrix is introduced. This function invokes a recursive

function, genDvfOrders, which in each step adds a new component to the vec-

tor field in such a way that the admissibility property is fulfilled. The recursive

algorithm stops when either there is not any new element whose inclusion in the

vector field preserves the admissibility property or the maximum number of ele-

ments of the discrete vector field (which is the minimum between the number of

columns and the number of rows of the matrix) is reached.

Fixpoint genDvfOrders M V (ords : simpl_rel _) k :=

if k is l.+1 then

let P := [pred ij | admissible (ij::V) M

(relU ords (gen_orders M ij.1 ij.2))] in

if pick P is Some (i,j)

then genDvfOrders M ((i,j)::V)

(relU ords (gen_orders M i j)) l

else (V, ords)

else (V, ords).

Definition gen_adm_dvf M :=

genDvfOrders M [::] [rel x y | false] (minn m n).

Eventually, we can certify in a straightforward manner (just 4 lines) the co-

rrectness of the function gen_adm_dvf.

Lemma admissible_gen_adm_dvf m n (M : ’M[R]_(m,n)) :

let (vf,ords) := gen_adm_dvf M in admissible vf M ords.

As a final remark, it is worth noting that the function gen_adm_dvf is not

executable. On the one hand, SSReflect matrices are locked in a way that do

not allow direct computations since they may trigger heavy computations during

deduction steps. On the other hand, we are using the pick instruction, in the

definition of genDvfOrders, to choose the elements which are added to the vector

78 Chapter 2 Formalization of an algorithm to compute discrete vector fields

field; however, this operator does not provide an actual method to select those

elements.

Chapter 3

Reduction associated with

an ordered and admissible

discrete vector field

In the last chapter, we have shown an algorithm to compute an ordered and ad-

missible discrete vector field from a matrix (Section 2.2). Moreover, a formalized

proof of its correctness has been presented in Section 2.4. This vector field will

be used to obtain a reduction of this matrix. The process will be the following

one. The discrete vector field was sorted (see Section 2.1) since our following step

will be reordering the matrix according to it. Moreover, the size of the vector

field gives us an organization of the matrix into four blocks. Let us highlight

that the top-left block will be a triangular matrix with 1′s on the main diagonal,

therefore, we can compute the inverse of this matrix. If this matrix represents

the unique non-null differential map of a chain complex, we can directly apply

the Hexagonal Lemma (Lemma 3.2). Then, the reduced matrix can be obtained

using operations of matrices over the blocks of the reordered matrix. The size of

this new matrix will be the size of the bottom-right block.

In our applications to image processing, we can associate a 2D monochromatic

image with a 3-truncated chain complex of finite type, which consists of only two

non-null differential maps. These differentials can be represented as matrices

79

80 Chapter 3 Reduction with an ordered and admissible discrete vector field

known as incidence matrices. The first matrix is composed by the incidence

relations from edges to vertices and the second one, from triangles to edges. As

the composition of two consecutive differential maps is null by definition of a

chain complex, the product of both matrices has to be the null matrix. It is

worth noting that the size of the matrices of the chain complex associated with

digital images is usually quite big. In most cases it is useful, and sometimes

necessary, to reduce the matrices previously to its homological processing.

The aim is getting a reduced chain complex obtained from the initial one. For

this task, our method to obtain a reduction of a matrix, based on discrete vector

field, will be useful. First, the method can be applied to one of the matrices

and then to the others to reduce more the chain complex. Along the section, we

prove the Vector-field reduction theorem which allows us build a reduction. Let

us note that if we reduce, for instance, the matrix which relates edges to vertices,

some vertices and edges could be deleted. Therefore, we will also need to modify

the matrix where edges and triangles are involved. Moreover, the property of the

chain complex has to hold.

The structure of this chapter is the following. In Section 3.1 we detail the

reduction method based on the Hexagonal Lemma and illustrate it by means of

an example. Then, we explain the implementation in Haskell of the algorithm to

obtain the reduced matrices of the chain complex in Section 3.2. In the rest of

the chapter, we focus on proving in Coq/SSReflect that there is a reduction

between the initial chain complex and the chain complex which consists of these

reduced matrices. First, in Section 3.3 we introduce the basic structures which are

necessary to define Reduction (Definition 1.28) and Isomorphism (Definition 1.14)

in our concrete case. Afterwards, we prove there exists a reduction between the

initial chain complex and the reordered one in Section 3.4. In particular, we

prove that exists an isomorphism between both chain complexes. After that, we

focus on proving the correctness about the reduction between the reordered chain

complex and the reduced one. Finally, taking both reductions into account, we

prove that the composition of these reductions builds a new reduction (Theorem

1.29). Moreover, in Section 3.5 it is proved that the reduction between both chain

complexes preserves the Betti numbers. This implies that the homology groups

associated with both chain complexes are isomorphic. Finally, we conclude in

Section 3.6 with another type of reduction based on collapses. This reduction

could be used as a preprocessing of the image with the aim of applying finally the

3.1 Introduction 81

reduction explained in the previous sections over the new chain complex obtained.

3.1 Introduction

As we said, after computing an ordered and admissible discrete vector field from

a matrix, the matrix will be sorted. Then the reduced matrix will be computed

using operations over the blocks of the reordered matrix. If the initial matrix

corresponds with the unique non-null differential map of a chain complex, then

the reduced chain complex is consisted of an unique differential map represented

by the reduced matrix.

For instance, if we compute an admissible discrete vector field V of the matrix

which represents the differential map d1 this can be divided into four blocks taking

into account the size of V . The top-left block is a square matrix and the number

of rows is given by the number of vectors in the vector field. The rest of the

blocks are immediately determined. Besides, if the top-left block has inverse, it is

possible to apply the Hexagonal Lemma (Lemma 3.2) to this case. The reordered

matrix of d1 is d′1 =

(
ε ϕ

ψ β

)
then the reduced matrix will be obtained from

the formula d̄′1 = β − ψε−1ϕ.

On the other hand, the admissible discrete vector field computed from one

of the differential maps is going to allow us to reduce a finitely generated chain

complex. In this case, the differential of degree −1 and +1 with regard to the

differential which we have computed the vector field are also affected by the

reduction. For instance, if we reduce the differential in degree 1 d1, the previous

one d0, and the following one d2, will be also modified but using the vector field

in a different way. Specifically, the reduced matrix of d0 consists of reordering the

columns with the second components of the discrete vector field d′0 =
(
δ α

)
and deleting the first columns of this matrix d̄′0 = (α). Something similar happens

with d2, the reordered matrix leaves d′2 =

(
η

γ

)
and the reduced one will be

d̄′2 = (γ). This matrix is reordered by rows using the first components of the

vector field and then deletes the first rows. In both cases, the number of columns

or rows which are removed is exactly the size of the computed admissible discrete

vector field.

82 Chapter 3 Reduction with an ordered and admissible discrete vector field

Example

Let us use an example to illustrate the method to reduce a chain complex

using admissible discrete vector field. For this matter we are going to revisit the

example of Section 2 where the only non-null differential map of a chain complex

is defined by a matrix. Let us recall that the matrix was:

d =


1 1 0 0

1 1 1 0

0 0 1 1

0 1 1 0


and the ordered and admissible discrete vector field computed was:

V =< (0, 0), (1, 2), (2, 3) >. Afterwards, we reorder the rows with the sequence

[0,1,2] (the first components of the vector field) and the columns with [0,2,3]

(the second ones). These sequences give us the order of the rows and columns

that will be located in the beginning of the matrix. The rest of rows and columns

are added at the end of the matrix. Then the reordered matrix leaves as follows.

d′ =


1 0 0 1

1 1 0 1

0 1 1 0

0 1 0 1


Using the previous formula the reduced matrix is:

d̄′ = β − ψε−1ϕ = (1)

3.2 Implementation in Haskell

In this section we are going to focus on the implementation in Haskell of both a

way of reordering a matrix and of obtaining the reduced matrix. So as to reorder

the matrix we need two sequences which encode the new positions of the rows

and the columns, respectively. This is obtained with the following function which

first, reorders the rows and then the columns.

reorderM s1 s2 M = (reorder_columns_s s2 (reorder_rows_s s1 M))

3.2 Implementation in Haskell 83

Let us note that reorder_rows_s uses the sequence s1 as a permutation of

{0, 1, . . . , (length M − 1)} to reorder the rows of M. Something similar happens

with s2 which reorders the columns with the function reorder_columns_s. Both

sequences are obtained from the discrete vector field. We know that the first

components of the vector field are higher or equal than 0 and lower than the size

of M. But in some cases all the rows have not been able to be chosen, therefore,

we will have to complete the sequence with the aim of obtaining a permutation

of {0, 1, . . . , (length M − 1)}. The function fill is in charge of carrying out

this task. Then the function which obtains a realignment of a matrix given an

admissible discrete vector field is defined in the following way.

reorderM_dvf dvf M = reorderM (fill (getfirstseq dvf) (length M))

(fill (getsndseq dvf) (length (head M))) M

The result of this function applied to our previous example is:

.. ..

reorderM_dvf [(0,0),(1,2),(2,3)] [[1,1,0,0],[1,1,1,0],[0,0,1,1],[0,1,1,0]] z
[[1,0,0,1],[[1,1,0,1],[0,1,1,0],[0,1,0,1]]
.. ..

In this example, the sequence to reorder the rows is [0,1,2,3] and to reorder

the columns is [0,2,3,1]. In both cases, we have had to complete the sequence

which comes from the components of the vector field. This happens because the

length of the vector field is three and both the number of rows and the number

of columns is four.

Then, it is easy to use the functions take and drop (which are Haskell primi-

tives) to define the functions which allow us to obtain the different blocks of a ma-

trix M : ulsubseqmx, ursubseqmx, dlsubseqmx, and drsubseqmx. For instance,

ulsubseqmx returns the top-left submatrix of M given two natural numbers (i, j)

i.e., the matrix with the elements at positions (a,b) of M where a ≤ i and b ≤ j.

.. ..

ulsubseqmx 2 3 [[1,1,0,0],[1,1,1,0],[0,0,1,1],[0,1,1,0]] z
[[1,1,0],[1,1,1]]
.. ..

These functions are used to build the blocks of the reduced matrix. Namely,

let sdvf be the size of the computed admissible discrete vector field, then the

matrix ε is a square matrix with sdvf rows and sdvf columns which is computed

84 Chapter 3 Reduction with an ordered and admissible discrete vector field

with the function epsilonseq. The functions which allow us to obtain the rest

of the blocks are phiseq, psiseq, and betaseq.

.. ..

epsilonseq 3 [[1,1,0,0],[1,1,1,0],[0,0,1,1],[0,1,1,0]] z
[[1,1,0],[1,1,1],[0,0,1]]
.. ..

Let us recall that the reduced matrix is obtained by means of operations over

matrices in the following way: M̄ ′ = β − ψε−1ϕ. The function matrixReduced

returns this matrix.

.. ..

matrixReduced [[1,1,0,0],[1,1,1,0],[0,0,1,1],[0,1,1,0]] z
[[1]]
.. ..

Let us note that the other matrices which define the differential maps of the

chain complex in degree −1 or +1 affected by the reduction will be sorted using

reorder_rows_s or reorder_columns_s and reduced taking or dropping some

rows or columns of the matrices.

3.3 Formalization of the basic algebraic struc-

tures in SSReflect

Different ways to represent matrices exist in a system. The one used in

Coq/SSReflect consists in formalizing a matrix as a function which deter-

mines every element of the matrix through two indices (for its row and its col-

umn). With this abstract representation it is very easy to formalize different

operations with matrices and to prove properties of them. Indeed, an extensive

library on matrices is provided in SSReflect. But this formalization is not di-

rectly computable. An alternative could be representing a matrix as a sequence of

sequences. This representation allows us to define operations directly computable

in the system. For this reason, it was chosen for the implementation of our algo-

rithms in the previous chapter. But proving properties with this representation

is much harder, and we do not dispose of the extensive SSReflect library with

this representation.

3.3 Formalization of the basic algebraic structures in SSReflect 85

The solution adopted by us tries to take advantage of both representations.

On the one hand, we have used the concrete representation of a matrix as a

sequence of sequences in the previous chapter because our main purpose was to

compute an admissible discrete vector field. This representation was also used to

compute the reduced matrix in the previous section. On the other hand, we will

use in this chapter the abstract representation of matrices as functions to define

a reduction between the initial matrix and the reduced one and actually to prove

that it satisfies the reduction properties.

In order to prove that these two matrix representations are equivalent we

define two morphisms, seqmx_of_mx from abstract to concrete matrices and

mx_of_seqmx in the other direction (Figure 3.1), whose compositions are identi-

ties. They allow us to change the representation when required.

Abstract matrices

Sequences

seqmx of mx mx of seqmx

Figure 3.1: Bridges between matrix representations

In this section, we will formalize the notion of Reduction and Isomorphism

of chain complexes (introduced in Section 1.1), restricting the chain complex to

the one which consists of two non-null differential maps. First, we introduce the

formalization of chain complexes, morphism of chain complexes, and homotopy

operator with the previous constraint; working in this very particular case is

justified because our main application domain will be the processing of 2D images.

A chain complex which comes from a 2D image consists in two matrices where

the product of both matrices is null. This condition has to be verified for any

chain complex. Moreover, we are interested in proving that property, and not in

the computation of both matrices. This is the reason why the matrices which

are involved in the product will be represented as abstract matrices instead of

as sequences. Let us note that our algorithm is defined with sequences, so the

two input matrices have type matZ2, but in order to state the property of the

product and later to prove it, we use SSReflect matrices. Let us recall that

86 Chapter 3 Reduction with an ordered and admissible discrete vector field

the function mx_of_seqmx builds an abstract matrix from a concrete one.

Definition is_chaincomplex (d1 d2: matZ2) (m n p: nat):=

is_matrix m n d1 /\

is_matrix n p d2 /\

(mx_of_seqmx m n d1) *m (mx_of_seqmx n p d2) = 0.

Record chaincomplex:=

{d1: matZ2;

d2: matZ2;

m: nat;

n: nat;

p: nat;

chaincomplex_proof: is_chaincomplex d1 d2 m n p}.

Let us highlight *m denotes the matricial product. The type information of

each matrix includes its size. When the product operator is applied, the type-

checking ensures that the two arguments have compatible sizes. Then the system

knows the expected size of the result matrix and reads 0 as the null matrix of

this size.

Moreover, we need to introduce the corresponding notions of a chain complex

morphism and of a homotopy operator. Again, the properties included in the

definitions will not be computed but proved.

Definition is_chaincomplex_morphism C D p0 p1 p2:=

((p0 *m (mx_of_seqmx (m C) (n C)(d1 C))) =

((mx_of_seqmx (m D) (n D)(d1 D))) *m p1) /\

(p1 *m (mx_of_seqmx (n C) (p C)(d2 C)) =

((mx_of_seqmx (n D) (p D)(d2 D)) *m p2)).

Record chaincomplex_morphism (C D: chaincomplex):=

{p0: ’M[Z2]_(m D, m C);

p1: ’M[Z2]_(n D, n C);

p2: ’M[Z2]_(p D, p C);

chaincomplex_morphism_proof: is_chaincomplex_morphism p0 p1 p2}.

3.3 Formalization of the basic algebraic structures in SSReflect 87

Record homotopy_op (C: chaincomplex):=

{h0: ’M[Z2]_(n C, m C);

h1: ’M[Z2]_(p C, n C)}.

Finally, we can state the definition of a reduction between two chain complexes

C and D. This reduction consists of two chain complex morphisms, namely, f and

g, and a homotopy operator h. Moreover, a reduction has to verify the eleven

properties defined in is_reduction_CC2.

Definition is_reduction_CC2 C D (f:chaincomplex_morphism C D)

(g:chaincomplex_morphism D C)(h: homotopy_op C) :=

(p0 f) *m (p0 g) = (1:Z2)%:M /\

(p1 f) *m (p1 g) = (1:Z2)%:M /\

(p2 f) *m (p2 g) = (1:Z2)%:M /\

(p0 g) *m (p0 f) + (mx_of_seqmx (m C) (n C) (d1 C)) *m (h0 h)

= (1:Z2)%:M /\

(p1 g) *m (p1 f) + (mx_of_seqmx (n C) (p C) (d2 C)) *m (h1 h) +

(h0 h) *m (mx_of_seqmx (m C) (n C) (d1 C)) = (1:Z2)%:M /\

(p2 g) *m (p2 f) + (h1 h) *m (mx_of_seqmx(n C)(p C)(d2 C))

= (1:Z2)%:M /\

(p1 f) *m (h0 h) = 0 /\

(p2 f) *m (h1 h) = 0 /\

(h0 h) *m (p0 g) = 0 /\

(h1 h) *m (p1 g) = 0 /\

(h1 h) *m (h0 h) = 0.

Record reduction_CC2 (C D: chaincomplex):=

{f: chaincomplex_morphism C D;

g: chaincomplex_morphism D C;

h: homotopy_op C;

is_reduction_CC2_proof: is_reduction_CC2 f g h}.

Moreover, we also present the notion of isomorphism between two chain com-

plexes. An isomorphism is stronger than a reduction, so if we have an isomor-

phism, we can build a reduction of it, defining the homotopy operator as the

null automorphism. (In fact, we can build two reductions given an isomorphism.

For instance, if we have an isomorphism between C and D then we can build a

88 Chapter 3 Reduction with an ordered and admissible discrete vector field

reduction between D and C and another one between C and D.)

Definition is_isomorphism_CC2 C D (f:chaincomplex_morphism C D)

(g:chaincomplex_morphism D C) :=

(p0 f) *m (p0 g) = (1:Z2)%:M /\

(p0 g) *m (p0 f) = (1:Z2)%:M /\

(p1 f) *m (p1 g) = (1:Z2)%:M /\

(p1 g) *m (p1 f) = (1:Z2)%:M /\

(p2 f) *m (p2 g) = (1:Z2)%:M /\

(p2 g) *m (p2 f) = (1:Z2)%:M.

Record isomorphism_CC2 (C D: chaincomplex):=

{f_eq: chaincomplex_morphism C D;

g_eq: chaincomplex_morphism D C;

is_isomorphism_CC2_proof: is_isomorphism_CC2 f_eq g_eq}.

3.4 Reduction of a chain complex

In this section, we are going to deal with the formalization of the algorithm

presented in Section 3.2 which reduces a chain complex which comes from a 2D

monochromatic digital image to a simpler one. The reduced chain complex will

be obtained through an admissible discrete vector field of one of the matrices

which represent the differential maps of the chain complex. The lemma which we

formalize is a particular case of the Vector-Field Reduction Theorem introduced

in Subsection 1.1.6. Let us state this particular theorem.

Theorem 3.1. Let C = (Cp, dp, βp)p be a 3-truncated algebraic cellular complex

and V = {σi, βi}i∈β be an admissible discrete vector field on C built from one of

the map of dp. Then the vector field V defines a canonical 3-truncated reduction

ρ = (f, g, h) : (Cp, dp) =⇒ (Ccp, d
′
p) where Ccp = Z

[
βcp
]

is the free Z-module

generated by the critical cells.

With this theorem, we are able to work with the chain complex generated

by the critical cells which is smaller than the initial chain complex, knowing that

homological properties are preserved. Let us note that the larger is the number of

3.4 Reduction of a chain complex 89

vectors which compose the vector field the smaller is the reduced chain complex.

So, we are interested in creating a vector field with many vectors as possible.

Initially, this process has been proved starting with a chain complex which

consists of only one non-null differential map (as a first step in the proof). It will

be also useful to become familiar with the way of proving this kind of lemmas.

Then, we focus on a chain complex which comes from a 2D image, that is to

say, a chain complex with two non-null differential maps. Some lemmas which

are already proved for the first step will be useful. Finally, we formalize the

algorithm for a chain complex composed by three non-null matrices. Thanks to

the last step, we can apply the process to a finitely generated chain complex,

since when a matrix is reduced due to an admissible discrete vector field the

only matrices which are also reduced are the previous one and the following one.

The rest of differential maps of the chain complex are not modified. Along the

section, we focus on explaining the idea for a chain complex with only two non-null

matrices.

The section is organized as follows. First, some details about the different

definitions to reorder a matrix are introduced in Subsection 3.4.1. Then in Sub-

section 3.4.2 a reduction between the initial chain complex C and the reordered

one D will be defined where C consists of two matrices, d1 and d2 and D of the

ordered ones d′1 and d′2. Afterwards, another reduction will be defined from D

to the reduced chain complex E in Subsection 3.4.3 where E is composed by the

reduced matrices d̄′1 and d̄′2, which we have obtained with the algorithm presented

in Section 3.2. Later, in Chapter 4, we introduce an alternative to the reduction

presented in Subsection 3.4.3 (from the ordered chain complex to the reduced

one) applying the BPL. Finally, in Subsection 3.4.4 we build the reduction of the

initial chain complex C to the reduced one by composing the previous reductions.

The development described in this section takes up 7511 lines where 303 defi-

nitions have been stated and 361 lemmas have been proved. Namely, about 1000

lines have been used to prove properties about the realignment of the matrix

(Subsection 2.1.1) and about the inverse of a lower triangular matrix (Subsection

3.4.3.4).

Example

Let us see an example to clarify the process. The digital image of Figure 3.2

can be represented through a chain complex in the following way. First, the chain

90 Chapter 3 Reduction with an ordered and admissible discrete vector field

complex associated with the image consists of the incidence matrices d1 and d2.

The first one relates edges to vertices and the other one triangles to edges.

0

2

1

3

Figure 3.2: A small digital image

d1 =


{0, 1} {0, 2} {1, 2} {1, 3} {2, 3}

{0} 1 1 0 0 0

{1} 1 0 1 1 0

{2} 0 1 1 0 1

{3} 0 0 0 1 1

 d2 =



{0, 1, 2}
{0, 1} 1

{0, 2} 1

{1, 2} 1

{1, 3} 0

{2, 3} 0


As we explained in Section 2.1 we compute the ordered and admissible discrete

vector field from a matrix, for instance d1. In this case, the ordered and admissible

discrete vector field obtained is {(0, 0), (1, 2), (2, 4)}. The chain complex D is

defined with the ordered matrices of d1 and d2 using this vector field. Then we

reorder the rows of d1 with (0, 1, 2, 3) and its columns with (0, 2, 4, 1, 3). Moreover,

let us reorder the rows of the matrix d2 with the last sequence. Then the matrices

which take part in the reordered chain complex remain as follows.

d′1 =


{0, 1} {1, 2} {2, 3} {0, 2} {1, 2}

{0} 1 0 0 1 0

{1} 1 1 0 0 1

{2} 0 1 1 1 0

{3} 0 0 1 0 1

 d′2 =



{0, 1, 2}
{0, 1} 1

{1, 2} 1

{2, 3} 0
{0, 2} 1

{1, 2} 0



3.4 Reduction of a chain complex 91

Finally, as for building the reduced chain complex, we compute d̄′1 = β − ψε−1ϕ

and d̄′2 = γ. Therefore, the obtained chain complex is the following one:

d̄′1 =
(

0 0
)

d̄′2 =

(
1

0

)
If we had chosen d2 instead of d1, an ordered and admissible discrete vector field

would have computed from d2. Then, we had reordered the rows and columns of

d2 and only the columns of d1. In a similar way, we had obtained the reduced

matrices.

3.4.1 Realignment of a matrix

Let us recall that the chain complex is sorted after computing an ordered and

admissible discrete vector field vf from one of their matrices. We reorder this

matrix using the first components of vf to reorder rows and the second ones to

reorder columns. For the other matrix, we only reorder rows using the second

components of vf so that the product of both matrices continues making sense

and being null. Let us focus on the realignment of the first matrix where the

discrete vector field is computed, because the realignment of the second matrix

is done using similar techniques.

In our implementation with matrices as sequences of sequences, we use auxil-

iary function reorderM which has as inputs two sequences of natural numbers, s1

and s2, and a matrix M represented by means of sequences. Namely, s1 will give

us the new positions of the rows of M and s2 the new positions of the columns

of M. These lists are obtained from a discrete vector field. The function which is

in charge of reordering the matrix given an admissible discrete vector field is the

following one.

Definition reorderM_dvf (dvf:vectorfield) (M: matZ2):=

reorderM (fill (getfirstseq dvf) (size M))

(fill (getsndseq dvf) (size (head [::] M))) M.

On the other hand, there is a pair of libraries related to permutations in SSRe-

flect: perm and perm_seq. These libraries include some functions about ma-

trices represented as functions, such as row_perm and col_perm. The former

one receives a permutation s and a matrix and returns the matrix with the rows

permuted by s. These functions are useful to reorder a matrix.

92 Chapter 3 Reduction with an ordered and admissible discrete vector field

Definition reorder_mx (s1:’S_m)(s2:’S_n)(M:’M[R]_(m,n)):=

col_perm s2 (row_perm s1 M).

The main differences between both definitions for reordering is that the first

one is applied to a sequence of sequences and it is computable, but the second one

is defined over abstract matrices (SSReflect matrices) and, therefore, it is not

possible to compute with it. Moreover, reorderM receives two sequences of natu-

ral numbers but reorder_mx receives two permutations. Let us stress that ’S_k

is the set of all permutation of the ordinal k, ’I_k, for instance {0, 1, . . . , (k− 1)}.

Following with our general way of work, we have an abstract version of the al-

gorithm reorder_mx using SSReflect’s structures and libraries to prove proper-

ties about them. Here, we can use the full power of dependent types when proving

correctness. On the other hand, we have another more efficient definition of re-

ordering which uses simple types which are closer types to standard implemen-

tation in traditional programming languages. Our aim is proving the correctness

of these translations to get that the abstract definition and the concrete efficient

one are equivalent. To this aim, we state another definition to reorder a ma-

trix, t_reorderM, which is an intermediary between both definitions. The input

parameters are the same that the ones used by the function reorderM but the

structure of the implementation is closer to reorder_mx. This is due to the fact

that the new functions which order the rows and the columns in the function

t_reorderM are quite similar to the functions row_perm and col_perm (used

by reorder_mx). Then, we will prove the equivalence between reorderM and

t_reorderM and between t_reorderM and reorder_mx. Finally, we obtain an

equivalence between reorder_mx and reorderM_dvf since the last one involves

reorderM.

Let us introduce the statements of the two lemmas which relate the abstract

definition to the concrete and efficient one. The first one receives a SSReflect

matrix and the last one a sequence of sequences. Their proofs are based on

applying the intermediate bridge (as we can see in Figure 3.3).

Variable s s1: seq nat.

Variable m n:nat.

Hypothesis H : perm_eq s (iota 0 m).

Hypothesis H1 : perm_eq s1 (iota 0 n).

3.4 Reduction of a chain complex 93

Abstract definition

reorder_mx

Efficient definition
(close to the abstract

implementation)

t_reorderM

Concrete and

efficient definition

reorderM_dvf

Figure 3.3: Bridges between matrix realignments

Lemma reorderM_E (M1:’M[Z2]_(m,n)) :

(seqmx_of_mx M1) != [::] -> size s = m -> size s1 = n ->

reorderM s s1 (seqmx_of_mx M1) = (seqmx_of_mx

(reorder_mx (perm_of_seq H s) (perm_of_seq H1 s1) M1)).

Lemma reorderM2_E (M1:matZ2) : M1!= [::] ->

size s = m -> size s1 = n -> perm_eq s (iota 0 (size s)) ->

is_matrix m n M1 ->

reorder_mx (perm_of_seq H s) (perm_of_seq H1 s1)

(mx_of_seqmx m n M1) = mx_of_seqmx m n (reorderM s s1 M1).

We use the function perm_of_seq to convert a sequence of naturals s,

in a permutation satisfying that s is a permutation of {0, 1, . . . , (k − 1)},
with perm_eq s (iota 0 k). The function (iota m n) builds the sequence

{m,m + 1, . . . ,m + n − 1} then (iota 0 k) corresponds with the sequence

{0, 1, . . . , (k− 1)}.

A similar process is followed with other definitions as reorder_rows_s and

reorder_columns_s since these functions are used in the definition of reorderM.

Let us see the concrete implementation to reorder rows in our algorithm (given a

sequence of sequences).

94 Chapter 3 Reduction with an ordered and admissible discrete vector field

Definition reorder_rows_s (s: seq nat) (M: matZ2):=

map (nth nil M) s.

Then we can use the groups of permutation formalized in SSReflect where

the permutation of a matrix vertically row_perm, is defined. This choice in the

definition does not permit us compute it, but the proofs will be easier.

Definition row_perm (s : ’S_m) A := \matrix_(i, j) A (s i) j.

Our aim is proving the equivalence between both definitions, the efficient and

the abstract one. Taking this into account, we can prove with the abstract one

and compute using the efficient one. In order to obtain the correctness of this

equivalence, we use another definition which approaches to both definitions. On

the one hand, the function has the same input parameters as reorder_rows_s,

and on the other hand, the implementation is closer to the abstract one. Let us

see this new definition.

Definition t_reorder_rows_s (s: seq nat) (M: matZ2):=

map (fun i => (nth [::] M (nth 0%N s i))) (iota 0 (size M)).

Finally, we will prove that the functions reorder_rows_s and row_perm re-

turn the same result. To get this objective, we need to prove the equivalence

between reorder_rows_s and t_reorder_rows_s and the equivalence between

t_reorder_rows_s and row_perm. Let us see the lemma which describes the

second equivalence.

Lemma t_reorder_rows_sE (M1:’M[R]_(m,n)) :

(t_reorder_rows_s s (seqmx_of_mx M1)) =

(seqmx_of_mx (row_perm (perm_of_seq H s) M1)).

3.4.2 Reduction between the initial chain complex and the

reordered one

In this subsection we are going to build an isomorphism between the initial chain

complex and the chain complex obtained after reordering the rows and columns

of the differential matrices. The process of reordering was explained in previous

subsection and is carried out taking into account an admissible discrete vector

3.4 Reduction of a chain complex 95

field. This is a first step in the reduction process. Obviously, an isomorphism is

a particular case of reduction with the homotopy operator being null. First, we

are going to enrich the chain complex structure (defined in Section 3.3) with the

admissible discrete vector field obtained from its first differential.

Record chaincomplex_advf:=

{C:> chaincomplex;

dvf_c :seq (nat*nat);

ords_c: orders;

dvfnonil_c: dvf_c!=[::];

M2nonil_c: (d2 C)!=[::];

vecfield_c: Vecfieldadm (d1 C) dvf_c ords_c}.

Variable chaincomplexd1d2 : chaincomplex_advf.

Let us recall Coq allows us to define structures with inheritance using

the Record macro. Apart from the properties and types which are defined in

chaincomplex_advf, this record inherits the properties which are included in the

record chaincomplex using the notation C:> chaincomplex.

On the other hand, we have to define the reordered matrices d′1 and d′2 which

are part of the reordered chain complex which will be called D.

Definition d1’:= reorderM_dvf dvf d1.

Definition d2’:= t_reorder_rows_s (s2 n dvf) d2.

Finally, let us show an small sketch of the steps to prove that a reduction exists

between the initial chain complex and the reordered one which will be described

along this subsection:

C0

h0 //

f 0

��

C1

h1 //
d1

oo

f 1

��

C2
d2

oo

f 2

��
D0

g0

OO

D1
d′1

oo

g1

OO

D2
d′2

oo

g2

OO

1. Building of the chain complex D which consists of the reordered matrices.

2. Construction of the chain complex morphisms f = (f 0, f 1, f 2) and

g = (g0, g1, g2).

96 Chapter 3 Reduction with an ordered and admissible discrete vector field

3. Definition of an isomorphism between the chain complexes C and D.

4. Building a reduction from the previous isomorphism.

3.4.2.1 Building of the chain complex consisted of the reordered ma-

trices

In this subsection we build a chain complex whose differential maps are the re-

ordered matrices obtained from an admissible discrete vector field computed from

the first differential map of a chain complex. For this purpose, we have to take

into account two aspects. On the one hand, the sequences defined are indeed ma-

trices, and in particular every row has the same size. On the other hand, checking

that the product of both matrices, d′1(m,n) and d′2(n,p) is null. The first issue will

be easy to solve since these matrices, sequence of sequences, are permutations of

the initial ones, d1(m,n) and d2(n,p). Consequently, let us concentrate on proving

the second issue.

First of all, let us introduce some lemmas related to the groups of permutations

which are defined in SSReflect. These lemmas will be useful due to the fact

that our reordered matrices are permutations of the initial ones. Let us recall

that row_perm and col_perm permute a matrix vertically (rows) and horizontally

(columns), respectively, given a group of permutation. Moreover, perm_mx is the

matrix permutation, namely, it is a permutation of rows of the identity matrix.

Let us show some lemmas about permutations already proved in SSReflect

which will be useful in our proofs.

mul row perm: Let Am,n and Bn,p be two matrices and s be a group of permu-

tation then A ∗ row perm s B = (col perm s−1 A) ∗B.

row permE: Let Am,n be a matrix and s and t be two groups of permutation

then row perm s A = perm mx s ∗A.

col permE: Let Am,n be a matrix and s and t be two groups of permutation

then col perm s A = A ∗ perm mx s−1.

Let us prove that d′1 ∗ d′2 = 0 knowing that d1 ∗ d2 = 0. First, we present the

statement of the lemma to prove where the matrices represented by sequences

are converted in SSReflect matrices with mx_of_seqmx giving its dimensions.

3.4 Reduction of a chain complex 97

Lemma prod_d1’d2’:

(mx_of_seqmx (sdvf dvf + (m - (sdvf dvf)))

(sdvf dvf + (n-sdvf dvf) d1’)

*m (mx_of_seqmx (sdvf dvf + (n - (sdvf dvf))) p d2’) = 0.

Let us note that d′1 and d′2 are defined as sequences of sequences and are

reordered matrices obtained from d1 and d2. Namely, d′1 reorders both the rows

and the columns of d1 and d′2 only the rows. Then we will change the view

of this executable definition to an abstract one to be able to use SSReflect

matrices and properties of the groups of permutations. In this way, the proof

will be easier. We will use the lemmas reorderM2_E and t_reorder_rows_sE

mentioned in Section 3.4.1 as a bridge between both definitions. In particular,

d′1 is a permutation of rows and another one of columns over d1. Finally, the

statement to prove (with the abstract representation) is as follows with s1’ a

group of permutations of ’I_m and s2’ a group of permutations of ’I_n.

col_perm s2’ (row_perm s1’ d1) * (row_perm s2’ d2) = 0

For the proof we apply the lemma mul_row_perm whose statement is let

A: ’M_(m, n), B: ’M_(n, p) and s be a group of permutations then

A *m row_perm s B = col_perm s^-1 A *m B

In other words, this lemma says that the product of a matrix A with a row

permutation matrix of B is equal to the product of a column permutation matrix

of A with B. Then we obtain:

col_perm (inv s2’) (col_perm s2’ (row_perm s1’ d1)) * d2 = 0

Concretely, this lemma consists in applying a column permutation given by

(inv s2’) to every matrix of the equation. In this way, the matrix 0 con-

tinues being the null matrix and the matrix (row_perm s2’ d2) is simplified

to d2. Finally, applying col_permE to cancel the two consecutive permuta-

tions given by inv s2’ and s2’ and rewriting the lemma row_perm_E we ob-

tain perm_mx s1’ * d1 * d2 = 0. Therefore, since d1 * d2 = 0, the lemma

prod_d1’d2’ is proved.

The lemma d1’d2’_chaincomplex collects the proofs of the properties re-

quired in is_chaincomplex, so that D is a chain complex. Then, it is used to

build the chain complex D.

98 Chapter 3 Reduction with an ordered and admissible discrete vector field

Definition chaincomplexd1’d2’ :=

Build_chaincomplex d1’d2’_chaincomplex.

3.4.2.2 Definition of an isomorphism between the chain complexes C

and D

In this section we deal with building two chain complex morphisms f : C → D

and g : D → C which define an isomorphism between them. We focus on the

definition of the first morphism f. It consists of a family of three morphisms

f = (f 0, f 1, f 2). These morphisms are defined as permutation matrices since the

matrices of D are permutations of the matrices of C, respectively. Let us introduce

the definitions of these functions. For instance, f0 is a permutation matrix which

will be created from the set of all permutations of the ordinal m obtained from

the first components of the discrete vector field.

Definition f0 := (@perm_mx Z2 m

(perm_of_seq (H vecfield dvfnonil ismatrixM1) (s1 m dvf))).

Definition f1 := (@perm_mx Z2 n

(perm_of_seq (H1 vecfield dvfnonil ismatrixM1) (s2 n dvf))).

Definition f2: ’M[Z2]_p := (1:Z2)%:M.

Then we have to prove that f verifies the properties of a chain complex mor-

phism defined in Section 3.3. In our concrete case, there are two conditions to

verify: f 0 ∗ d1 = d′1 ∗ f 1 and f 1 ∗ d2 = d′2 ∗ f 2. Let us state the first one.

Lemma proof_f0_d1_d1’_f1:

(f0_eq *m (mx_of_seqmx m n d1))=((mx_of_seqmx m n d1’) *m f1_eq).

We focus on this proof using lemmas about permutation matrices in a similar

way as in the proof of the lemma prod_d1’d2’ in the previous subsection. Let

us stress that f 0 means a exchange of rows and f 1 an exchange of columns. On

the another hand, we have the matrix d′1 which is a permutation of rows and

columns of d1 with respect to the same patterns, then we cancel this permutation

of columns with f 1. Therefore, we obtain the same in both sides.

After proving the two previous conditions, we can define the chain complex f

in SSReflect, chaincomplex_morphism_f. Then this development is repeated

analogously to the chain complex morphism g which goes from D to C, which

3.4 Reduction of a chain complex 99

is called chaincomplex_morphism_g. Let us define g as the inverse of f. In

particular, g0 gives us a exchange of rows and g1 one of columns.

Definition g0 := (invmx f0).

Definition g1 := (invmx f1).

Definition g2 :’M[Z2]_p := (1:Z2)%:M.

Finally, it is easy to prove that the morphism chaincomplex_morphism_f and

chaincomplex_morphism_g fulfill the conditions given in is_isomorphism_CC2

and this allows us to define an isomorphism between C and D.

3.4.2.3 Building a reduction from the previous isomorphism

As we know, the definition of isomorphism is a particular case of the definition

of reduction. Anyway, we are interested in building a reduction between C and

D since we want to compose two reductions to obtain a new one.

The process is straightforward. It only consists in considering the null homo-

topy operator. This is defined in the following way.

Definition h0: ’M[Z2]_(n,m):= 0.

Definition h1: ’M[Z2]_(p,n):= 0.

Definition homotopy_op_h_eq :=

(@Build_homotopy_op chaincomplexd1d2 h0 h1).

The reduction properties are also verified with no much effort taking into

account the previous isomorphism properties; this allows us to build the required

reduction.

3.4.3 Reduction between the reordered chain complex and

the reduced one

In this section we are going to define a reduction between the reordered

chain complex D from an ordered and admissible discrete vector field and

a reduced chain complex E applying Hexagonal Lemma. This is extracted

from [RS10, Section 2.5]. Then, let us formalize these results. In Section 4.3 we

100 Chapter 3 Reduction with an ordered and admissible discrete vector field

introduce another way of getting a reduction between the reordered chain com-

plex and another one reduced applying the Basic Perturbation Lemma (Lemma

1.33).

3.4.3.1 Hexagonal Lemma

Proposition 3.2 (Hexagonal Lemma). Let C = (Cp, dp)p be a chain complex.

For some k ∈ Z, the chain groups Ck and Ck+1 are given with decompositions

Ck = C ′k ⊕ C ′′k and Ck+1 = C ′k+1 ⊕ C ′′k+1, so that between the degrees k − 1 and

k + 2 this chain complex is described by the diagram:

C ′k C ′k+1

Ck−1 Ck+2

C ′′k C ′′k+1

α

β

γ

δ ε η
ϕ

ψ

ε−1

⊕ ⊕d dd
(3.1)

The partial differential ε : C ′′k+1 → C ′′k is assumed to be an isomorphism.

Then a canonical reduction can be defined ρ : C⇒⇒C ′ where C ′ is the same chain

complex as C except between the degrees k − 1 and k + 2:

. . .←− Ck−2 ←− Ck−1
α←−− C ′k

β−ψε−1ϕ←−−−−−− C ′k+1
γ←−− Ck+2 ←− Ck+3 ←− . . .

3.4.3.1.1 Proof

An integer matrix

[
ε ϕ

ψ β

]
is equivalent to the matrix

[
ε 0

0 β − ψε−1ϕ

]
if

|ε| = 1. It is the simplest case of Gauss’ elimination. More generally, the following

matrix relation is always satisfied:

[
ε ϕ

ψ β

]
=

[
1 0

ψε−1 1

][
ε 0

0 β − ψε−1ϕ

][
1 ε−1ϕ

0 1

]

The lateral matrices of the right-hand term can be considered as basis changes.

These matrices define an isomorphism ρ′ : C → C̄ between the initial chain

3.4 Reduction of a chain complex 101

complex C and the chain complex C̄ made of the same chain groups but the

differentials displayed on this diagram:

C ′k C ′k+1

Ck−1 Ck+2

C ′′k C ′′k+1

α

β − ψε−1ϕ

γ

0

ε

0
0

0

⊕ ⊕d dd
(3.2)

Throwing away the component ε : C ′′k+1 → C ′′k from this chain complex C̄

produces a reduction ρ′′ : C̄⇒⇒C ′ to the announced chain complex C ′. The

desired reduction is ρ = ρ′′ρ′ : C⇒⇒C ′ where ρ = (f, g, h) with

1. The morphism f is the identity except:

fk = [−ψε−1 1] fk+1 = [0 1]

2. The morphism g is the identity except:

gk =

[
0

1

]
gk+1 =

[
−ε−1ϕ

1

]

3. The homotopy operator h is the null operator except:

hk =

[
ε−1 0

0 0

]

matrices to be interpreted via appropriate block decompositions.

Let us note the boundary components α and γ are not modified by the re-

duction process. Since the independent “hexagonal” decompositions are given for

every degree, the process can be applied to every degree simultaneously.

3.4.3.2 Formalization

Let us recall that D is defined through the differential maps d′1 =

(
ε ϕ

ψ β

)
and

d′2 =

(
η

γ

)
and E is defined through the reduced matrices d̄′1 = β − ϕ ∗ ε−1 ∗ ψ

102 Chapter 3 Reduction with an ordered and admissible discrete vector field

and d̄′2 = γ. Let us note that the reduced matrices are obtained using operations

over blocks of matrices. In the matrix library of SSReflect, we can find many

lemmas about properties of blocks of matrices which will be very useful in this

task. Again, although our computable algorithm is defined for matrices as se-

quences of sequences we will change this representation to abstract SSReflect

matrices (using the bridges between these representations) in order to prove the

required properties in this context. In this way, the new definitions, as for instance

the reduced matrices or the morphisms, will use SSReflect matrices.

In order to define this reduction we have used the formulas from the Hexagonal

Lemma (3.2). Let us recall that the hypotheses are that exists a decomposition

between some degrees and ε is an isomorphism that is to say, ε is invertible. We

have followed a plan similar to the one presented in the previous subsection:

1. Defining the chain complex E.

2. Defining the chain complex morphisms between D and E, f ′ and g ′, and

the homotopy operator h′.

3. Verifying the properties of the reduction given by (f ′, g ′,h′).

D0

h′0 //

f ′0
��

D1

h′1 //
d′1

oo

f ′1
��

D2
d′2

oo

f ′2
��

E0

g′0

OO

E1
d̄′1

oo

g′1

OO

E2
d̄′2

oo

g′2

OO

The reduction generated by (f ′, g ′,h′) will be named reduction_CC2_D_E.

The different definitions and lemmas required to obtain this reduction are for-

malized in a similar way to the previous reduction. For this reason, we are not

going to detail all the steps and we only focus on some ideas which have been

instrumental for the proof. More concretely, we will present the work with block

matrices, the proof about the top-left block has an inverse and the effective com-

putation of this inverse. The last issue could be considered contrary to the idea

of proving lemmas in abstract versions, but in this case, we need to compute the

inverse to give the definition of one of the reduced matrices.

3.4 Reduction of a chain complex 103

3.4.3.3 Block matrices

The representation of the matrices in SSReflect as finite functions allows us to

express block matrices in an easy way. In this section we explain some properties

of block matrices included in the matrix library which are useful for the repre-

sentation of our matrices d′0 and d′1. First, we introduce some constructors of

matrices using block matrices.

row mx: Let Alm,n1 and Arm,n2 be two matrices, returns the row block matrix(
Al Ar

)
.

col mx: Let Aum1,n and Adm2,n be two matrices, returns the column block ma-

trix

(
Au

Ad

)
.

block mx: Let Aulm1,n1, Aurm1,n2, Adlm2,n1 and Adrm2,n2 be four matrices,

returns the block matrix

(
Aul Aur

Adl Adr

)
.

Let us show the last definition in SSReflect as an example.

Definition block_mx Aul Aur Adl Adr : ’M_(m1 + m2, n1 + n2) :=

col_mx (row_mx Aul Aur) (row_mx Adl Adr).

Other interesting functions consists in slicing each matrix in four blocks. To

get this aim, A has to have the type: M_(m1+m2,n1+n2). The following definitions

are defined to obtain every block: ulsubmx, ursubmx, dlsubmx, and drsubmx. For

instance, ulsubmx returns the top-left matrix of M consisted of m1 rows and n1

columns.

After introducing the main definitions about block matrices, let us state a

lemma in SSReflect to show the potential of working with blocks of matrices.

mul row block: Let Alm,n1, Arm,n2, Buln1,p1, Burn1,p2, Bdln2,p1 and

Bdrn2,p2 be six matrices then
(
Al Ar

)
∗

(
Bul Bur

Bdl Bdr

)
=(

Al ∗Bul +Ar ∗Bdl Al ∗Bur +Ar ∗Bdr
)

.

104 Chapter 3 Reduction with an ordered and admissible discrete vector field

To illustrate why it is interesting to work with blocks, we introduce the lemma

(with standard mathematical notation) which proves the boundary condition over

the differential map d̄′.

As hypothesis, we have that d′1 ∗ d′2 = 0, in other words,(
ε ϕ

ψ β

)
∗

(
η

γ

)
= 0. Therefore, the following conditions are verified:

1. ε ∗ η + ϕ ∗ γ = 0 which implies that ϕ ∗ γ = −ε ∗ η

2. ψ ∗ η + β ∗ γ = 0

Expanding the proposition to prove d̄′1 ∗ d̄′2 = 0 we obtain that it is necessary

to prove (β − ψ ∗ ε−1 ∗ ϕ) ∗ γ = 0. By the distributive property, the previous

equality is equivalent to β ∗ γ − ψ ∗ ε−1 ∗ ϕ ∗ γ = 0. Using (1), it is converted to

β∗γ−ψ∗ε−1∗(−ε∗η) = 0. Then applying the fact of that ε is an invertible matrix,

the proposition is reduced to β ∗ γ + ψ ∗ η = 0. Finally, using the commutative

property of matrix addition, we exactly obtain the hypothesis (2).

Moreover, a required tool in SSReflect are casts. They help us to change

the type of an object in another type which is not directly convertible. Let us see

an example which has appeared in our development.

After computing the reordered matrix d′1, which represents m se-

quences of n elements, we build the SSReflect matrix associated with it

(mx_of_seqmx m n d0’) which consists of m rows and n columns. Then, we are

interested in applying the lemma submxK which says that if M : Mm1+n1,m2+n2

then M can be defined as a block matrix composed by its four blocks. This

statement in SSReflect is the following one:

block_mx (ulsubmx M)(ursubmx M)(dlsubmx M)(drsubmx M)= M.

But let us note that we cannot apply it directly because to use this lemma the

matrix need to have m1 + n1 rows (instead of m) and m2 + n2 columns (instead

of n). Then it is compulsory that d′1 is a matrix of this type Mm1+n1,m2+n2.

Namely, the top-left block of the matrix is a matrix Msdvf,sdvf , considering sdvf

as the size of the discrete vector field obtained from d1. Let us note that in

order to build the SSReflect matrix of d1 using the function mx_of_seqmx is

necessary to provide its dimensions. Taking everything into account, we define

3.4 Reduction of a chain complex 105

the reordered matrix d′1 as an abstract matrix representing a matrix Mm,n in the

following way:

mx_of_seqmx (sdvf + (m - sdvf))(sdvf + (n - sdvf)) d1’

Let us note that we can prove that (sdvf + (m - sdvf))= m since sdvf (number

of vectors of the vector field) is always lower or equal than m, the number of rows

of d0. If this condition does not fulfill then the equality is false since we are

working over natural numbers and (m - sdvf) would not be a natural number.

This decision affects to other definitions, for instance to the definition of the

morphism

h′0 =

(
ε−1 0

0 0

)
which is created by blocks. Then h′0 has type Msdvf+(n−sdvf), sdvf+(m−sdvf).

Taking into account the properties about a reduction which have to

be proved, for instance, g1 ∗ f 1 + d′1 ∗ h′1 + h′0 ∗ d′0 = id, we can see that

h′0 : Msdvf+(n−sdvf), sdvf+(m−sdvf) should be multiplied to d′0 : Mm,n. Both ma-

trices, however, cannot be multiplied since the types are not directly convertible

for the system. So, we will need to cast the type of h′0 to Mn,m as we can see

below.

Definition h0_CC2 :’M_(n,m):=

(castmx (sdvf_n_sdvf, sdvf_m_sdvf)

(block_mx (epsilon_inverse dvf M1) 0 0 0)).

Let us analyze this definition. Every matrix which is defined with block_mx

is a matrix Mm1+n1, m2+n2 depending on the size of the blocks given to build this

matrix. In our case, (block_mx (epsilon_inverse dvf M1)0 0 0)) returns a

matrix of type Msdvf+(n−sdvf), sdvf+(m−sdvf). For the previous reason, we want

that this matrix is Mn, m. To prove it, we use the definition castmx to change

the type of this matrix in another one that the system does not consider directly

convertible. But the equality between the old dimensions and the new ones can

be proved. The definition castmx receives as parameters: a matrix and the

corresponding proofs to change the dimensions of this matrix. For instance, the

first proof is the lemma sdvf_n_sdvf which states that sdvf + (n - sdvf) is

equal to n. Paying attention to the definition h0_CC2, and namely the parameters

of castmx, the matrix Msdvf+(n−sdvf), sdvf+(m−sdvf) is converted into a matrix

106 Chapter 3 Reduction with an ordered and admissible discrete vector field

Mn, m.

The occurrence of this type of situations (where explicit casts are necessary)

increases the effort in proofs that, otherwise, would be considered easy (from a

strictly mathematical point of view). In order to ease these proofs we prove some

lemmas about castmx which let us work with them in a convenient way. Let us

present a simple example with its proof.

Lemma addmx_cast : forall (R : ringType) (m1 n1 m2 n2 : nat)

(eq_mn1:(m1 = m2)*(n1 = n2))(A:’M[R]_(m1,n1))(B:’M[R]_(m1,n1)),

((castmx eq_mn1 A) + (castmx eq_mn1 B))= castmx eq_mn1 (A + B).

Proof.

move => R m1 n1 m2 n2 [eq_mn1 eq_mn1’] A B.

move: (eq_mn1) (eq_mn1’) A B.

rewrite eq_mn1 eq_mn1’ => eq_mn_0 eq_mn_1 A B.

by rewrite !castmx_id.

Qed.

This lemma means that the cast (given by eq_mn1) of the addition of two

matrices A and B, is equal to the addition of the cast of each matrix. This

type of proofs follows always the same pattern. In the first line, the hypothe-

ses are transferred to the context. Then, the equalities given by eq_mn1 are

generalized and then they are used to rewrite our particular case. Finally, we ob-

tain castmx ((m2 = m2) * (n2 = n2)) M = M and it is proved using the lemma

castmx_id which says that if the equalities of the dimensions of the matrix, which

allow us to change the type, are of the following form: (k = k) then the matrix

is equal to the matrix applying this concrete cast.

3.4.3.4 Proving that |ε| = 1

We want to stress the proof of that the determinant of the top-left block matrix

ε (submatrix of d′0) is 1. In particular, we will prove that ε is a lower triangular

matrix with 1′s on the diagonal. Then the determinant of this matrix is computed

as the product of the elements of the diagonal. As a result, we also obtain that

ε is invertible.

The steps of the proof are the following ones. First, we will show that ε is a

triangular matrix with 1′s on the main diagonal. This is an executable matrix

3.4 Reduction of a chain complex 107

(sequence of sequences) obtained from our algorithm. On the other hand, we

will define the notion of an abstract lower triangular matrix M with 1′s on the

diagonal. With this definition, we will prove that det M = 1 since M is invertible:

M∗M−1 = id. Afterwards, the equivalence between both definitions, the abstract

and the executable ones, will be proved. Finally, we will be able to prove that the

SSReflect matrix built from the top-left submatrix of d′0 verifies the abstract

definition of a triangular matrix. In addition, we define an executable function

which computes the inverse of a lower triangular matrix with 1′s on the main

diagonal and we prove that this definition is equivalent to the definition of the

inverse of SSReflect in our particular case, a lower triangular matrix with 1′s

on the diagonal. Let us note that if we only focus on the proof it would be enough

with proving that the inverse of this matrix exists on the contrary, we need to be

able to compute the inverse since the reduced matrix is obtained thanks to it.

3.4.3.4.1 Executable triangular matrix

As we said, the reordered matrix from our algorithm M =

(
ε ϕ

ψ β

)
has as top-left submatrix a lower triangular matrix with 1′s on the diagonal.

Namely, this submatrix is ε and is a square matrix whose dimension is given

by the size of the ordered discrete vector field. Indeed we can prove a more

general result, if we have a vector field and a list of relations obtained from M

which satisfy the properties of an admissible discrete vector field encoded by the

definition of Vecfieldadm (given in Subsection 2.4.2.1), we can also prove that

the reordered matrix verifies that its top-left submatrix is a lower triangular

matrix with 1′s on the main diagonal.

The definition of a lower triangular matrix above a sequence of sequences is

given by two conditions. The former one is that the entries on the diagonal are

1’s (∀ k, k < size M →M [k, k] = 1) and the latter one is that the entries which

are above the diagonal are 0’s (∀ r s, r < size M ∧ s < size M ∧ r < s →
M [r, s] = 0). This definition in SSReflect is as follows.

Definition lower_triangular_seq n (M:matZ2) :=

(forall k, k < (n+1) -> (nth 0 k (nth [::] k M)) = 1%R) /\

(forall r s, (r < (n+1)) && (0 <= s < (n+1)) && (r < s) ->

(nth 0 s (nth [::] r M)) = 0%R).

108 Chapter 3 Reduction with an ordered and admissible discrete vector field

In order to prove that the top-left submatrix of the reordered matrix (using

reorderM_dvf) verifies this definition, two lemmas are required. The first one

ensures that the values of the elements which are on the diagonal are 1’s.

Lemma diagonalis1_gen (dvf:vectorfield)(M:matZ2) rel:

Vecfieldadm M dvf rel ->

(forall k, k < (size dvf) ->

nth 0 k (nth [] k (reorderM_dvf dvf M)) = 1%R).

A brief idea of the proof is the following one. Let us imagine that we have

an admissible discrete vector field dvf = ((a1, b1), (a2, b2), . . . , (an, bn)) sorted

according to the maximum lengths of the paths. Then, we reorder the rows and

columns of M with the orders (a1, . . . , an) and (b1, . . . , bn), respectively. Let us

recall that ∀ i,M [ai, bi] = 1 due to the second property of a discrete vector field

consequently, the value of the entries of the diagonal (indexed by (ai, bi)) of the

reordered matrix using dvf are 1′s.

The second lemma expresses that the values which are above the diagonal are

0’s. Let us see its statement and a brief idea of its proof.

Lemma onDiagonal0_gen (n:nat) M dvf rel:

let n := size dvf in Vecfieldadm M dvf rel ->

(forall (r s:nat), (r < n) && (s < n) && (r < s) ->

nth 0 s (nth [] r (reorderM_dvf dvf M)) = 0%R).

A sketch of the proof is the following one. Let us denote by ir the r-th element

of the sequence composed by the first components of every pair of dvf and by js

the s-th element of the sequence composed by the second components of every

pair of dvf. After the realignment, the entry (r,s) of the reordered matrix

corresponds with the entry M[ir,js]. Then this condition in SSReflect is:

(reorderM_dvf dvf M)[r, s] = M[ir,js].

Consequently, we will have to prove that M[ir,js] = 0. We divided the problem

in cases, the first one, M[ir,js]= 0 is exactly the proposition to prove. The

other one, M[ir,js] 6= 0 will produce a contradiction. As js ∈ (snd dvf), we

can obtain that ∃is, is ∈ (fst dvf) such as (is,js) ∈ dvf. Then we split into

two cases depending on whether a path between ir and is exists.

3.4 Reduction of a chain complex 109

• There exists a path between ir and is.

This means there exists a relation p generated by the vector field such

as ir and is belong to p and head p = ir. For instance, p could be

[ir, i1, . . . , ik, is]. Due to M[ir,js] 6= 0 and (is,js) ∈ dvf we obtain

that the relation [is,ir] exists using the lemma indif0_order presented

in Subsection 2.4.2.2. So, a path exists between is and ir. Finally, it is

proved that this generates a contradiction about the admissibility property.

In particular, we know that if p = [p1,p2] then p = [ir,p2], and then

the relation (ir::p2) exists in our relations. Using the property which is

in charge of generating the transitive closure we obtain that the relation

[is,ir,p2] has to be in the set of relations. But on the other hand, is ∈ p

so, is ∈ [ir,p2], and therefore the relation [is,ir,p2] has repeated

elements.

• There exists no path between ir and is.

We have that the relation [is,ir] belongs to the set of relations. Con-

sequently, let g be the function to compute the maximum length of

the paths and rel be the list of relations; then we can obtain that

g ir rel < g is rel. On the other hand, we have that r < s. So, the

vector which is in the position r will have associated a higher value of g

that what is in the position s. Taking into account the notation of ir

and is we can conclude that g is rel <= g ir rel. Finally, we obtain a

contradiction using the transitive property: g is rel < g is rel.

�

3.4.3.4.2 Abstract triangular matrix

First, we show the abstract definition of a lower triangular matrix.

Definition lower_triangular n (A:’M[F]_n) :=

forall (i j : ’I_n), i <= j -> A i j = (i == j)%:R.

Then we will prove that the determinant of a lower triangular matrix with 1′s on

the main diagonal is equal to 1.

Lemma lower_triangular_det_1 : forall n (A:’M[F]_(n+1)),

(lower_triangular A) -> \det A = 1.

110 Chapter 3 Reduction with an ordered and admissible discrete vector field

It will be proved applying induction on n. The equality n = 0 implies that

det A = A(0, 0), since A has only one entry. On other cases, (n = n′. + 1) we

have as inductive hypothesis

∀A:M n’+1, lower triangular A→ det A = 1.

Moreover, detA = det

(
Aul Aur

Adl Adr

)
being Aul : Mn′ , Aur : Mn′,1,

Adl : M1,n′ and Adr : M1,1. We have proved that Aur = 0 and

Adr = 1 and A is a lower triangular matrix with 1′s on the main diago-

nal. So, we have to prove that det

(
Aul 0

Adl 1

)
= 1 or equivalently to

detAul ∗ 1 = 1. Now, we could apply the inductive hypothesis if we prove

(lower_triangular Aul). Finally, this is true since A was a lower triangu-

lar matrix by hypothesis. With this result, we can obtain other interesting re-

sults, such as A is invertible (lower_triangular_invertible) and A ∗A−1 = id

(lower_triangular_product).

3.4.3.4.3 Equivalence between both representations

Up to now, we have presented two definitions of a lower triangular matrix with

1′s on the diagonal. On the one hand, we have obtained that the top-left sub-

matrix of the reordered matrix verifies the definition of lower_triangular_seq.

On the other hand, if a matrix M fulfills the definition lower_triangular then

we obtain that det M = 1.

We include in this subsection the lemma that establishes that the two previous

representations of a lower triangular matrix are equivalent. Thanks to this, we

will be easily able to obtain properties about the first representation, such as that

its determinant is 1, using the second one as we have shown before.

Lemma lower_triangular_seqE : forall n (M:’M[R]_(n+1)),

lower_triangular_seq n (seqmx_of_mx M) <-> (lower_triangular M).

3.4.3.4.4 Implementation to compute the inverse of a lower triangular

matrix with 1′s on the main diagonal

Our aim is implementing an algorithm to compute the inverse of a lower

3.4 Reduction of a chain complex 111

triangular matrix (sequence of sequences) with 1′s on the diagonal because it is

used in the computation of the reduced matrices. Moreover, it is necessary to

check that this algorithm is equivalent to the abstract function invmx defined in

SSReflect for this same task. Namely, this algorithm computes properly the

inverse of a matrix if the input matrix is a lower triangular matrix with 1′s on

the diagonal. The process which we carry out to prove this equivalence is based

on the methodology explained in [DMS12a]. Let us illustrate schematically this

idea in Figure 3.4.

Abstract definition

invmx

Abstract and

efficient definition

fast_invmx

Concrete and

efficient definition

cfast_invmx

Figure 3.4: Bridges between inverse matrices

First, we introduce the abstract efficient function to compute this inverse,

fast_invmx. This definition was implemented with the help of G. Gonthier, A.

Mörtberg, and V. Siles who are members of the Formath project. Let us stress

that it is a recursive function.

Fixpoint fast_invmx (m : nat) : ’M[R]_m -> ’M[R]_m :=

match m return ’M[R]_m -> ’M[R]_m with

| S p => fun (M : ’M[R]_(1 + p)) =>

let: N := fast_invmx (drsubmx M) in

block_mx 1%:M 0 (- N *m dlsubmx M) N

| O => fun _ => 1%:M

end.

112 Chapter 3 Reduction with an ordered and admissible discrete vector field

Then it is proved the following lemma which establishes that fast_invmx

and invmx obtain the same result when the matrix satisfies the condition

lower_triangular.

Lemma fast_invmxP m (M : ’M[R]_m) (H : lower_triangular M) :

fast_invmx M = invmx M.

Therefore, we are sure that the function fast_invmx computes properly the in-

verse of a lower triangular matrix with 1′s on the diagonal. But this definition

is still not executable, so let us define a computable function, using functions

defined over sequences instead of over SSReflect matrices. These functions

appear in [DMS].

Fixpoint cfast_invmx (m : nat) (M : seqmatrix R) :=

match m with

| S p => let: N := cfast_invmx p (drsubseqmx 1 1 M) in

block_seqmx (seqmx1 _ 1) (seqmx0 _ 1 p)

(mulseqmx (oppseqmx N) (dlsubseqmx 1 1 M)) N

| O => seqmx1 _ O

end.

As we can see both definitions are quite similar, the differences coming only

from the used data types. Finally, we prove a morphism lemma linking the

effective definition to its abstract counterpart.

Lemma cfast_invmxP : forall (m : nat),

{morph (@seqmx_of_mx R m m):

M / fast_invmx M >-> cfast_invmx m M}.

3.4.4 Composing reductions

Up to now, we have built two reductions, a reduction of the initial chain complex

to the reordered one (reduction_CC2_C_D) in Section 3.4.2 and the other one

from the ordered chain complex to the reduced one (reduction_CC2_D_E) in

Section 3.4.3. In this section we will build a reduction from the initial chain

complex to the reduced one.

3.4 Reduction of a chain complex 113

3.4.4.1 Construction of a reduction from two reductions

We are actually to prove a more general result (Proposition 1.29) where a reduc-

tion ρ′′ = (f ′′, g ′′,h′′) : C⇒⇒E is built from two reductions: ρ = (f , g ,h) : C⇒⇒D

and ρ′ = (f ′, g ′,h′) : D⇒⇒E where f ′′ = f ′ ◦ f , g ′′ = g ′ ◦ g and h′′ = h + g ◦h′ ◦ f .

Taking into account the corresponding diagram:

C0

h0 //

f 1

��

C1

h1 //
d1

oo

f 1

��

C2
d2

oo

f2

��
D0

h′0 //

g0

OO

f ′0
��

D1
d′1

oo
h′1 //

g1

OO

f ′1
��

D2
d′2

oo

g2

OO

f ′2
��

E0

g′0

OO

E1
d̄′1

oo

g′1

OO

E2
d̄′2

oo

g′2

OO

We consider three chain complexes which will name C, D, and E and two

reductions reduct eq : C⇒⇒D and reduct : D⇒⇒E.

Variables C D E:chaincomplex.

Variable reduct_eq : reduction_CC2 C D.

Variable reduct : reduction_CC2 D E.

We prove Theorem 1.29 which says that the composition of two reductions is

a reduction. In this way, we can define a reduction between C and E. This result

will be proved mainly applying the particular properties given by the reductions

ρ and ρ′, using the command rewrite of SSReflect. Then, it will be easy to

obtain that the chain complex morphisms f ′′ and g ′′ and the homotopy operator

h′′ satisfy the properties of a reduction, is_reduction_red_red. Finally, we

build the reduction with the definition Reduction_red_red.

Lemma is_reduction_red_red:

is_reduction_CC2 chaincomplex_morphism_f’’

chaincomplex_morphism_g’’ homotopy_op_h’’.

Definition Reduction_red_red :=

Build_reduction_CC2 is_reduction_red_red.

114 Chapter 3 Reduction with an ordered and admissible discrete vector field

We have seen that we can define a reduction ρ′′ : C⇒⇒E from two reductions:

ρ : C⇒⇒D and ρ′ : D⇒⇒E. Therefore, we can apply this result to our particular

case. Let us use the definition Reduction_red_red with the two reductions which

have been built in Subsection 3.4.2 and in Subsection 3.4.3.

Definition Reduction_red_red_rs :=

Reduction_red_red reduction_CC2_C_D reduction_CC2_D_E.

3.5 The homology groups of the chain complexes

in a reduction are isomorphic

In this section, we introduce an abstract definition of reduction reduction_VS

between two chain complexes C and D. These chain complexes consist of two

homomorphisms or linear applications between vector spaces instead of two ma-

trices (namely, sequences of sequences) as in the definition of chaincomplex pre-

sented in Section 3.3. This new definition is going to allow us to define the

concept of homology. We will prove from the previous definition that the di-

mension of the homology is the same for both chain complexes. Then we prove

that any two vector spaces over a field F having the same dimension are isomor-

phic. This has been carried out thanks to A. Mörtberg, V. Siles, and J. Heras.

Finally, we will prove that the reduction obtained in the previous subsection

Reduction_red_red_rs (verifying the properties of reduction_CC2) satisfies the

definition of reduction_VS.

3.5.1 A reduction preserves the Betti numbers

First of all, we define an abstract reduction ρ = (f , g ,h) between two chain com-

plexes C and D which consists of three vector spaces and two homomorphisms

which represent the differential maps. A chain complex is consisted of two homo-

morphisms of vector spaces satisfying the boundary condition. In SSReflect

the definition of an abstract chain complex is as follows.

Definition is_ChainComplex_VS (K : fieldType)

(V0 V1 V2 : vectType K)(d2 : ’Hom(V2,V1))(d1 : ’Hom(V1,V0)):=

(d1 \o d2 = \0)%VS.

3.5 The homology groups in a reduction are isomorphic 115

Record ChainComplex_VS (K : fieldType) :=

{ V0 : vectType K;

V1 : vectType K;

V2 : vectType K;

d2 : ’Hom(V2,V1);

d1 : ’Hom(V1,V0);

CC_VS_proof: is_ChainComplex_VS d2 d1

}.

Let us note that we use the type vectType to define a vector space structure.

Moreover, the differential maps are functions which are defined as homomor-

phisms between two vector spaces. Apart from this definition, we will need to

define a chain complex morphism (ChainComplexMorphism_VS) and a homotopy

operator (HomotopyOperator_VS) to be able to introduce the abstract concept of

reduction (Reduction_VS).

Record Reduction_VS (K : fieldType) (C D : ChainComplex_VS K) :=

{ f : ChainComplexMorphism_VS C D;

g : ChainComplexMorphism_VS D C;

h : HomotopyOperator_VS C;

Reduction_VS_proof: is_Reduction_VS f g h

}.

Let us show diagrammatically the situation reflected in the previous definition:

C0

h0 //

f 0

��

C1

h1 //
d1

oo

f 1

��

C2
d2

oo

f 2

��
D0

g0

OO

D1
d′1

oo

g1

OO

D2
d′2

oo

g2

OO

Then, the aim of this section is proving that if we have a reduction between

two chain complexes C and D then C and D have the same Betti numbers.

As we explained in Subsection 1.1.1 the homology of a chain complex C, de-

noted by H(C), is the quotient between the kernel and the image. In our case,

H(C) = ker d1/ im d2. The Betti numbers are the dimensions of the homology

vector spaces, because we are working with coefficients over a field. This pair of

116 Chapter 3 Reduction with an ordered and admissible discrete vector field

definitions in SSReflect is as follows. Let us note the quotient is denoted in

SSReflect as :\:.

Variables (K : fieldType) (C : ChainComplex_VS K).

Definition Homology := ((lker (d1 C)) :\: (limg (d2 C)))%VS.

Definition Betti := \dim Homology.

Then, we will introduce different properties which are necessary to prove the

final result which establishes that the homology of both chain complexes are

isomorphic.

Lemma reduction_preserves_betti : Betti C = Betti D.

Since \dim (A :\: B)= \dim A - \dim B. The previous lemma is equiva-

lent to prove that \dim (lker (d1 C))- \dim (limg (d2 C))= \dim (lker

(d1 D))- \dim (limg (d2 D)).

The mathematical sketch of the proofs of these lemmas are followed step by

step during the proof in SSReflect. Most of these steps are given applying

lemmas which are already proved in the library of vector spaces in SSReflect.

1. f(ker d1) is a subspace of ker d′1

This lemma is proved as follows: let x ∈ ker d1 then d1x = 0. We have

to prove that fx ∈ (ker d′1) i.e., d′1(fx) = 0. Using that f is a chain

complex morphism we obtain that d′1(fx) = f(d1 x). Finally, as d1x = 0

then f(d1 x) = 0

2. f(im d2) is a subspace of im d′2

Let x ∈ (im d2) then ∃y such as d2 y = x; thus f(d2 y) = fx. Applying

that f is a chain complex morphism we obtain d′2(fy) = fx. On the other

hand, fx ∈ im d′2 if ∃z such as d′2 z = fx. The result is proved taking as

value z the element fy.

3. dim (f(ker d1)) = dim (ker d′1)

Using (1) we obtain dim (f(ker d1)) ≤ dim (ker d′1). On the other hand, we

have that g(ker d′1) ≤ ker d1 in a similar way. As f is an application we apply

it in this result in both sides: f g (ker d′1) ≤ f (ker d1) (limg_monotone

3.5 The homology groups in a reduction are isomorphic 117

from the SSReflect library is used here). Therefore, dim (f g (ker d′1)) ≤
dim (f (ker d1)). Moreover, fg = id is one of the reduction properties;

then dim (ker d′1) ≤ dim (f (ker d1)). Finally, we can apply the Sandwich

Lemma and obtain dim (f (ker d1)) = dim (ker d′1).

4. dim (f (im d2)) = dim (im d′2)

This lemma is proved in an analogous way to the previous one.

5. Betti(C) = Betti(D) + dim (ker d1 ∩ ker f1)− dim (im d2 ∩ ker f1)

By expanding the definition of Betti(D), we get Betti(C) = dim (ker d′1)−
dim (im d′2) + dim (ker d1 ∩ ker f1)− dim (im d2 ∩ ker f1).

First, we define two equalities between the dimension of ker d1 with

the dimension of ker d′1 and about im d2 and im d′2. We have that

dim (ker d1) = dim (ker d1 ∩ ker f1) + dim (f (ker d1)) using the lemma

limg_ker_dim already proved in SSReflect. Using (3) dim (ker d1) =

dim (ker d1 ∩ ker f1) + dim (ker d′1). With an analogous argument, we ob-

tain dim (im d2) = dim (im d2 ∩ ker f2) +dim (im d′2). Then, the result is

obtained subtracting the previous equalities.

6. dim (im d2 ∩ ker f1) ≤ dim (ker d1 ∩ ker f1)

Since C is a chain complex then d1d2 = 0, therefore im d2 is a subspace of

ker d1. Applying the intersection of ker f to this inequality,

im d2 ∩ ker f1 ≤ ker d0 ∩ ker f1

Therefore,

dim (im d2 ∩ ker f1) ≤ (dim (ker d1 ∩ ker f1))

7. dim (im d2 ∩ ker f1) ≥ dim (ker d1 ∩ ker f1)

Let us see that (ker d1 ∩ ker f1) is a subspace of (im d2 ∩ ker f1). If

x ∈ (ker d1 ∩ ker f1) then d1x = fx = 0. On the other hand, if

x ∈ (im d2 ∩ ker f1), ∃ y such that d2y = x ∧ fx = 0. Let us prove that

∃ y such as; d2y = x. Using the condition of the reduction d2h1 + h0d1 +

g1f1 = id applied to the element x, we obtain

d2h1x+ h0d1x+ g1f1x = idx

118 Chapter 3 Reduction with an ordered and admissible discrete vector field

This can be simplified since h0d1x = 0 (due to d1x = 0) and g1f1x = 0

(due to f1x = 0). Therefore,

d1h1x = x.

Thus, we can define y = h1x. Finally, as ker d0 ∩ ker f1 is a subspace of

im d1 ∩ ker f1 then dim (ker d1 ∩ ker f1) ≤ dim (im d2 ∩ ker f1).

8. dim (im d2 ∩ ker f1) = dim (ker d1 ∩ ker f1)

This lemma follows from by (6) and (7).

Finally, we can prove the lemma:

Betti C = Betti D.

Since Betti C = Betti D+ dim (ker d1 ∩ ker f1)− dim (im d2 ∩ ker f1) by (5) and

dim (im d2 ∩ ker f1) = dim (ker d1 ∩ ker f1) by (8), we obtain Betti C = Betti D.

�

3.5.2 Two vector spaces with the same dimension are iso-

morphic

To complete the proof that the homology groups of C and D are isomorphic,

we conclude proving the following result: any two vector spaces of the same

dimension are isomorphic. The idea of the mathematic proof is as follows: let X

and Y be vector spaces satisfying that |X| = |Y | then we have xs = {x1, . . . , xn} a

basis forX and ys = {y1, . . . , yn} for Y . Afterwards, we define a linear application

f which consists in ∀ i, f(xi) = yi. This is extended by linearity and it is proved

that exists a linear isomorphism between X and Y .

However, we cannot prove this lemma in SSReflect following this same

idea because a vector space X is defined inside a bigger structure U which is a

vectType structure. The type vectType is defined over a field K and X is a

subspace of it, {vspace U}. Furthermore, we cannot define a linear application

from X to Y in SSReflect. Then we have to define one between U and V

(where U (respectively V) includes X (Y)). In this way, we can obtain an image

in Y of the elements which belong to X. However, the elements which are in the

3.5 The homology groups in a reduction are isomorphic 119

complement of X (U\X) cannot be defined in the same way. Consequently, it is

not likely to define an isomorphism in this way.

To overcome this difficulty, we define the notion of isomorphism as a bijective

application f from V to V verifying that the image of X applying f is Y . Let

us note that both X and Y are in V . In SSReflect, the notion of isomorphism

(a bijective homomorphism) is not defined but the definition of homomorphism

does exist (’Hom(U,V)). But we will not use this notion to define the isomorphism

because f has to be defined from V to itself. Then we use the notation f:’End(V)

to define this isomorphism. Moreover, this function has to be also bijective and

verifies that the image of f(X) is Y .

Variable (K : fieldType).

Variable (V : vectType K).

Definition isomorphic (X Y : {vspace V}) := exists (f : ’End(V)),

bijective f /\ (f @: X == Y)%VS.

Thanks to this notion, we can state the lemma to prove.

Lemma same_dim_isomorphic (V1 V2 : {vspace V})

(hdim : \dim V1 = \dim V2): isomorphic V1 V2.

This proof consists of providing two applications f and g where g is the

inverse of f so that the lemma is verified. Concretely, f is going to be the

linear application associated with the change of basis which we define as follows.

Definition base_change m (M M’ : ’M[K]_m):=

invmx (row_ebase M) *m row_ebase M’.

The way to define a change of basis is using the bases of the vector spaces.

In SSReflect, a set of vectors {vj}j∈J of V is a basis if this set is linearly

independent and spans V . Let us note that in the definition base_change, we

see the vector spaces as matrices and in this way we define the application as a

matrix, too.

120 Chapter 3 Reduction with an ordered and admissible discrete vector field

3.5.3 The computed reduction is a reduction_VS

Up to now, we have introduced an abstract definition to the notion of reduction,

reduction_VS. Then, we have proved that the dimensions of the homology of

both chain complexes are the same from this definition. The purpose of this

subsection is proving that the Betti number are the same for the chain complexes

which are in the reduction given by the definition reduction_CC2 presented in

Section 3.3. In other words, we want to build a reduction (reduction_VS) from

a reduction defined with reduction_CC2. Let us show the sketch of this process

in Figure 3.5.

Abstract definition

reduction_VS

First refinement

rho_m

Second refinement

rho_seq

Concrete definition

rhoM_VS

Figure 3.5: Refinements of the reduction concept

3.5.3.1 First refinement

In a first refinement we change the general finite vector spaces for the type

matrixVectType which is represented by its matrix since every linear map be-

tween finite dimensional based vector spaces can be represented as a matrix. As

the chain complex is finitely generated, the functions which appear in the defi-

nition of a reduction are represented as SSReflect matrices ’M[K]_(m,n) with

3.5 The homology groups in a reduction are isomorphic 121

m and n being their corresponding dimensions. For instance, the chain groups of

the bigger chain complex are C0, C1, and C2. Then, this chain complex is defined

by d1 and d2. So, the morphisms required in the reduction are also matrices of

similar types.

Variable (K : fieldType) (v0 v1 v2 :nat).

Definition C0 := (matrixVectType K 1 v0).

Definition C1 := (matrixVectType K 1 v1).

Definition C2 := (matrixVectType K 1 v2).

Variables (d1: ’M[K]_(vdim C0,vdim C1))

(d2: ’M[K]_(vdim C1,vdim C2)).

Then, we have to build the necessary abstract chain complexes, homomor-

phisms and the homotopy operator using the definitions given in Subsection 3.3

in order to define an abstract reduction. The definition is_Reduction_VS_rho

is going to involve the properties to verify, which come from the elements which

have been built. Therefore, we define the reduction in the following way.

Definition rho_m := Build_Reduction_VS is_Reduction_VS_rho.

Let us remark that, for instance, the function which gives the properties of

a chain complex is is_ChainComplex_VS and this function receives two homo-

morphisms (two differential maps), but in this case we work with SSReflect

matrices. Therefore, we will have to build the linear application given for every

matrix using LinearApp. Let us see how the chain complex C is built in an easy

way.

Lemma is_ChainComplex_VS_C :

is_ChainComplex_VS (LinearApp d1) (LinearApp d2).

Definition C_m := Build_ChainComplex_VS is_ChainComplex_VS_C.

3.5.3.2 Second refinement

In a second refinement we define our differential maps as sequences of sequences

over a general field K, i.e., as executable structures since we want to reduce

these differential maps. The rest of the other morphisms which appear in the

122 Chapter 3 Reduction with an ordered and admissible discrete vector field

reduction are not going to redefine because we do not want to obtain explicitly

these matrices but only proving properties about them. Let us note that only the

structures which we want to compute are redefined in an executable way. Then,

we only show the changes with relation to the previous refinement.

Variable (K : fieldType).

Variables (d1 d2 d’1 d’2: seqmatrix K).

Finally, we build a new reduction given the differential maps as sequences.

The necessary conditions to construct it are given as hypotheses by the definition

rho_m, then most of the lemmas are already proved. Therefore, the new reduction

is expressed in the following way.

Definition rho_seq :=

rho_m boundary_C boundary_D f0d1 f1d2 g0d’1 g1d’2

f0g0 f1g1 f2g2 h1h0 f1h0 f2h1 h0g0 h1g1 d2h1_h0d1_g1f1.

3.5.3.3 Final refinement

We want to define a reduction with the previous definition rho_seq from two

concrete chain complexes defined as sequences of sequences of Z2 (which were

used to compute the reduction introduced in Section 3.4).

Variables (C D: chaincomplex)(rho: reduction_CC2 C D).

In this case, we will have to prove the properties about a reduction included

in rho_seq over our reduction rhoM_VS. These proofs will be easy since they

belong to the properties verified by reduction_CC2.

Definition rhoM_VS := rho_seq boundary_C boundary_D f0d1 f1d2

g0d’1 g1d’2 f0g0 f1g1 f2g2 h1h0 f1h0 f2h1 h0g0 h1g1

d2h1_h0d1_g1f1.

Finally, using these chain of refinements we can build a reduction between

abstract chain complexes from a reduction between computable chain complexes.

On the other hand, we have proved in previous section that the dimension of the

homology groups for both chain complexes are the same. In this way, we can

ensure that the homology groups (homology vector spaces, in our case) of the

3.6 Another reduction: Collapses 123

initial concrete chain complex and the reduced one have the same dimension, and

as a consequence they are isomorphic.

The formalization of this development takes up 394 lines. Concretely, it in-

volves 12 definitions and only 17 lemmas since many of the lemmas which we

have needed have been proved in an easy way applying lemmas already included

in SSReflect.

3.6 Another reduction: Collapses

In this chapter, we have proved that if we have an admissible discrete vector field

from a matrix which represents a differential map of the whole chain complex

then we are going to be able to reduce the chain complex. On the other hand, we

can build an admissible discrete vector field in many different ways, for instance,

looking for the elements in the columns instead of the rows or even with other

algorithms. In this section, we explain how to reduce a chain complex using

collapses as a method to obtain an admissible discrete vector field.

Definition 3.3. A simplicial collapse of a cellular complex K is the deleting of

a pair of cells (σ, τ), of dimensions respectively p-1 y p where σ is not face of any

other cell in dimension p of K except τ .

The result of a simplicial collapse is another cellular complex, which is a subset

of the original one preserving the homology.

In this case, every reduction is generated by an admissible discrete vector

field consisted of only one vector. If a vector is selected is because the row

which belongs is composed by only one element equal to 1. Geometrically, the

vector (i, j) relates an (n+ 1)-simplex to an n-simplex, so this reduction consists

of deleting the rows or columns of the matrices which correspond with these

n-simplex and (n+ 1)-simplex. In general, we use (geometric) collapses to obtain

a simplicial complex from another one.

3.6.1 Example

Let us see an example computing some of the consecutive reductions of the image

of Figure 3.6. Afterwards, we show the matrices of the different reductions which

124 Chapter 3 Reduction with an ordered and admissible discrete vector field

0 2

1

3

Figure 3.6: A triangled rhombus

consist of the chain complex associated with the image.

d1 =


{0, 1} {0, 2} {0, 3} {1, 2} {2, 3}

{0} 1 1 1 0 0

{1} 1 0 0 1 0

{2} 0 1 0 1 1

{3} 0 0 1 0 1

 d2 =



{0, 1, 2} {0, 2, 3}
{0, 1} 1 0

{0, 2} 1 1

{0, 3} 0 1

{1, 2} 1 0

{2, 3} 0 1


Let us note that in this moment, we cannot reduce the matrix d1 since every

row is composed by more of an element equal to 1. Therefore, we will focus on

reducing d2. The first row has only one element equal to 1, so this row will be

selected and namely, the entry (0, 0). Then we will reduce the matrices deleting

the edge {0, 1} and the triangle {0, 1, 2}, so both differential maps are modified.

Let us recall that we have to order the matrix according to the admissible discrete

vector field, in this case {(0, 0)}. With this vector the image is as we can see in

Figure 3.7 and the matrices associated with it as follows.

d′1 =


{0, 2} {0, 3} {1, 2} {2, 3}

{0} 1 1 0 0

{1} 0 0 1 0

{2} 1 0 1 1

{3} 0 1 0 1

 d′2 =


{0, 2, 3}

{0, 2} 1

{0, 3} 1

{1, 2} 0

{2, 3} 1



3.6 Another reduction: Collapses 125

0 2

1

3

Figure 3.7: First collapse

Going on with this reduction, let us note that an element can be selected

both of d′1 and of d′2. For instance, we pay attention to d′1. In this case the only

element of the matrix which can be selected is the vector (1, 2). In other words,

we delete the vertex {1} and the edge {1, 2}. Afterwards, we will have to order

the rows and the columns according to the vector field {(1, 2)} and we obtain the

reduced matrix (see Figure 3.8).

0 2

3

Figure 3.8: Second collapse

d′′1 =


{0, 2} {0, 3} {2, 3}

{0} 1 1 0

{2} 1 0 1

{3} 0 1 1

 d′′2 =


{0, 2, 3}

{0, 2} 1

{0, 3} 1

{2, 3} 1



Finally, following with the same method, Image 3.6 is reduced to a vertex

where the matrices of the chain complex are as follows. Let us note that d̄1 and

126 Chapter 3 Reduction with an ordered and admissible discrete vector field

d̄2 are empty matrices but d̄1 consist of one row but no column.

d̄1 = () d̄2 = ()

3.6.2 Formalization of the reduction using collapses

Let us stress that many functions which were necessary to implement the RS

algorithm (see Section 2.2) have been useful here, too. One of the differences

between both reductions is the way of selecting a vector. In the RS algorithm

(Section 2.1) we select any element whose value is 1; however, using collapses we

can only select the elements whose value is 1 and it is the unique one in the row.

Consequently, the function which chooses is as follows.

Definition find_collapse_rows (s : matZ2) :=

search (fun i => (count (@pred1 Z2 1) i) = 1%N) s.

The implemented function search is in charge of selecting a row which must

satisfy a condition. In this case, it looks for the rows with an unique element

whose value 1. Moreover, we need to obtain its position.

Definition position_collapse_aux (s : matZ2) (l : seqZ2) :=

(pair (index l s) (index 1 l)).

Then we have to generate the relations as we have explained in Section 2.2

looking for the elements of the column whose value is 1. In this case, it would

not be necessary to store these relations because we use the relations to order the

vectors of the vector field but in this case, we only work with an unique vector in

each vector field. But in this way, we will be able to prove that this vector field is

admissible and therefore, to apply the obtained result in the Section 3.4. This will

be easy to prove as the vector field from a matrix consisted of {(i, j)}, the possible

relations are of the form: i > k with k lower and equal to the number of rows of the

matrix. Therefore, it is impossible that these relations generate cycles. Finally,

we reorder the matrix and obtain the reduced matrix (see Section 3.2). Let us

recall that the reordered matrix has the following form M ′ =

(
ε ϕ

ψ β

)
. In our

particular case, this matrix is always as follows: M ′ =

(
1 0

ψ β

)
. Therefore,

the reduced matrix will be computed as M̄ ′ = β instead of M̄ ′ = β − ψε−1ϕ.

3.6 Another reduction: Collapses 127

Then the formalization of the reduction can be obtained as a particular case

of the reduction using the RS algorithm. Every time which this matrix is reduced

(deletes a row and a column) the previous and the following matrix of the chain

complex will also be reduced as we said in Section 3.2. This process can be

repeated until there are not more rows of any matrices of the chain complex

composed by only one non-null element.

In this case, we simply have to prove that this function returns a vector field

which verifies the properties of Vecfieldadm. This development only requires 7

definitions and 13 lemmas. After that, every lemma proved in previous sections

over a Vecfieldadm can be transferred to the output of this new algorithm.

Chapter 4

Formalization of the Basic

Perturbation Lemma (BPL)

In this chapter, we introduce a formalization of the Basic Perturbation Lemma

(in short, BPL). This is an essential result in Computational Algebraic Topology

[RS02]. In the literature, there are several ways of proving this lemma (see for

instance, [Gug72], [BL91], and [RS97]). Moreover, there are works related to

the formalization of the BPL. The non-graded case of this lemma was proved

in Isabelle/HOL [ABR08]. Furthermore, a particular case of the BPL was also

proved in Coq using bicomplexes [DR11]. Now, we show a formalization of the

general case in SSReflect but with finitely generated structures. Let us recall

that SSReflect only works with finite types; so, it can seem that this technology

can restrict our development. Nevertheless, it is enough because we are interested

in applying this lemma to the computation of the homology of a 2D digital image,

a case where every chain group is finitely generated. Indeed, in this context, this

lemma is applied to a reduction where most of the differential maps are null. An

alternative, in the case of 2D digital images, consists of proving a very particular

case of the BPL removing in the chain complexes all the differential maps except

two of them. This particular lemma can be easily obtained from the general case.

In the next section, we introduce a mathematical proof of the BPL. Then, its

formalization in SSReflect is presented. Finally, we show a proof of the Vector-

129

130 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

Field Reduction Theorem for 3-truncated structures (Theorem 3.1) applying the

BPL. This proof is an alternative to the one introduced in Chapter 3. Let us

recall the statement of the BPL introduced in Subsection 1.1.5.

Theorem 4.1 (Basic Perturbation Lemma, BPL [Bro67]). Let us consider a re-

duction ρ = (f, g, h) : C∗⇒⇒ Ĉ∗ between two chain complexes (C∗, d) and (Ĉ∗, d̂),

and δ a perturbation of d. Furthermore, the composite function δh is assumed

locally nilpotent, in other words, given x ∈ C∗ there exists m ∈ N such that

(δh)m(x) = 0. Then a perturbation δ̂ can be defined for the differential map d̂

and a new reduction ρ′ = (f ′, g′, h′) : (C∗, d+δ)⇒⇒ (Ĉ∗, d̂+ δ̂) can be constructed.

4.1 Mathematical proof of the BPL

The proof of the BPL presented in [RS12] is based on two results. The former

named Decomposition Theorem (Subsection 4.1.1), builds a decomposition of

a chain complex from a reduction of it. The latter is a Generalization of the

Hexagonal Lemma (Subsection 4.1.2). First, we introduce the Decomposition

Theorem.

4.1.1 Decomposition Theorem

Theorem 4.2 (Decomposition Theorem). Let ρ = (f, g, h) : (C∗, d)⇒⇒ (Ĉ∗, d̂) be

a reduction. This reduction is equivalent to a decomposition: C∗ = A∗⊕B∗⊕C ′∗
where:

1. C∗ ⊃ C ′∗ = im g.

2. A∗ ⊕B∗ = ker f .

3. C∗ ⊃ A∗ = ker f ∩ kerh.

4. C∗ ⊃ B∗ = ker f ∩ ker d.

5. The chain complex morphisms f and g are inverse isomorphisms between

C ′∗ and Ĉ∗.

6. The arrows d and h are module isomorphisms between A∗ and B∗.

4.1 Mathematical proof of the BPL 131

{· · ·

{· · ·

{· · ·

{· · ·

{· · ·

Ĉp−1

C ′p−1

Bp−1

Ap−1

Cp−1

Ĉp

C ′p

Bp

Ap

Cp

Ĉp+1

C ′p+1

Bp+1

Ap+1

Cp+1

· · · } = Ĉ∗

· · · } = C ′∗

· · · } = B∗

· · · } = A∗

· · · } = C∗
h

d

h

d

h

d

h

d

∼=
d

h
∼=
d

h
∼=
d

h
∼=
d

h

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

d

d

d

d

d

d

d

d

f ∼= g f ∼= g f ∼= g f ∼= g

A∗ = ker f ∩ kerh C ′∗ = im g B∗ = ker f ∩ ker d

Figure 4.1: Diagram of Decomposition Theorem

This decomposition is represented in Figure 4.1.

Proof.

First, we prove that C∗ = ker f⊕im g. Given x ∈ C∗, gf(x)+dh(x)+hd(x) = x

by Property 2 of the reduction ρ. Then,

• gf(x) ∈ im g.

• dh(x) + hd(x) ∈ ker f .

This is proved applying the morphism f , f(dh(x) + hd(x)) = fdh(x) +

fhd(x) = dfh(x) + fhd(x) = d(0) + 0 = 0 by Property 3 of ρ.

• im g ∩ ker f = {0}.

Let x ∈ im g be an element different from 0, then ∃y 6= 0 such that g(y) = x.

Therefore, f(x) = f(g(y)) = y because fg = id by Property 1 of ρ. Finally,

x /∈ ker f .

132 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

Second, let us see that ker f can be split into two disjoint subsets. Given

x ∈ ker f , the equality of Property 2 of ρ: gf(x) + dh(x) + hd(x) = x is reduced

to dh(x) + hd(x) = x. Then,

• dh(x) ∈ im dn+1 ⊂ ker dn by the boundary condition of d. It implies that

dh(x) ∈ ker f ∩ im d ⊂ ker f ∩ ker d. Given x ∈ ker d we have d(x) = 0. As

dh(x)+hd(x) = x⇒ dh(x) = x⇒ x ∈ im d. Finally, dh(x) ∈ ker f ∩ im d =

ker f ∩ ker d = B∗.

• hd(x) ∈ imhn ⊂ ker hn+1 by Property 5 of ρ. It implies that

hd(x) ∈ ker f ∩ imh ⊂ ker f ∩ kerh. Given x ∈ kerh we have h(x) = 0. As

dh(x) + hd(x) = x⇒ hd(x) = x⇒ x ∈ imh. Then, hd(x) ∈ ker f ∩ imh =

ker f ∩ kerh = A∗.

• A∗ ∩B∗ = {0}.
Let x ∈ kerh verifying x 6= 0 then, x /∈ ker d due to Property 2 of ρ.

Finally, we focus on proving the isomorphisms shown in Figure 4.1.

• f |C′∗ = g−1|C′∗ where f |C′∗ : C ′∗ → Ĉ∗.

Due to Property 1 of ρ, we have fg = id, then we only need to prove

gf = id.

Given x ∈ im g, then ∃ y ∈ C∗ such as x = g(y). Then, by Property 2 of ρ:

gf(x) + dh(x) + hd(x) = x

⇒ gf(x) + dhg(y) + hdg(y) = x

⇒ gf(x) + dhg(y) + hgd(y) = gf(x) + d(0) + 0 = x

⇒ gf(x) = x

Here, we used Property 4 of ρ and that g is a morphism.

• d|A∗ = h−1|A∗ where d|A∗ : A∗ → B∗.

– If x ∈ A∗, let us prove that hd(x) = x. As x ∈ A∗ = ker f ∩ kerh,

then Property 2 of a reduction gf(x) + hd(x) + dh(x) = x is reduced

to hd(x) = x

– If x ∈ B∗, we have to prove that dh(x) = x. As x ∈ B∗ = ker f∩ker d,

then the condition gf(x) +hd(x) +dh(x) = x is reduced to dh(x) = x.

4.1 Mathematical proof of the BPL 133

In this way, we obtain the diagram of Figure 4.1 where the components which do

not appear are null. �

4.1.2 Generalization of the Hexagonal Lemma

The Hexagonal Lemma (Lemma 3.2) allows us to reduce only a chain group of

a chain complex in a particular degree. It is possible to generalize this lemma

applying the reduction to every degree simultaneously.

Theorem 4.3. Let C = (Cp, dp)p be a chain complex. We assume that every

chain complex is decomposed Cp = Ap ⊕ Bp ⊕ C ′p. The boundary maps dp

are then decomposed in 3 × 3 block matrices [dp,i,j]1≤i,j≤3. If every component

dp,2,1 : Ap → Bp−1 is an isomorphism, then the chain complex can be canonically

reduced to a chain complex (C ′p, d
′
p).

Proof.

Applying the formulas produced by the Hexagonal Lemma in each component,

the desired reduction is obtained. Its components are:

d′p = dp,3,3 − dp,3,1d−1
p,2,1dp,2,3 fp = [0 −dp,3,1d−1

p,2,1 1]

gp =

−d
−1
p,2,1dp,2,3

0

1

 hp−1 =

0 d−1
p,2,1 0

0 0 0

0 0 0


It is not difficult to check the shown formulas satisfy the relations of a re-

duction stated in Definition 1.28. The components dp,1,1, dp,1,2, dp,1,3, dp,2,2 and

dp,3,2 do not play any role in the homological nature of C, but these components

are not independent from the others, because of the relation dp−1dp = 0. �

4.1.3 Proof of the BPL

The hypotheses of the BPL are:

1. A reduction ρ = (f, g, h) : (C∗, d)⇒⇒ (Ĉ∗, d̂).

134 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

2. A perturbation δ of the differential d.

3. δh is locally nilpotent.

With these hypotheses it is necessary to build a new reduction ρ′ = (f ′, g′, h′) :

(C∗, d+ δ)⇒⇒ (Ĉ∗, d̂+ δ̂).

As we have a reduction ρ : C∗⇒⇒ Ĉ∗, we can apply the Decomposition

Theorem. We obtain the diagram of Figure 4.1 where every chain group

C∗ = A∗⊕B∗⊕C ′∗. Afterwards, we introduce a perturbation δ of the differential

d, i.e. a morphism such that (d+ δ)(d+ δ) = 0. Then it is clear that (d+ δ) can

be depicted in nine blocks. If the component (d + δ)21 : A∗ → B∗ is invertible,

then the Generalization of the Hexagonal Lemma can be applied and the BPL

proved.

Since h12d21 = id, (d+ δ)21 = d21 + δ21 = d21 + δ21h12d21 = (id +δ21h12)d21.

As d21 is invertible (h21 is its inverse), we focus on proving that the other member

of the product (id +δ21h12) is invertible.

As δh is locally nilpotent, i.e. for every x ∈ C∗, there exists n ∈ N satisfying

(δh)n(x) = 0, then (δ21h12)n(x) = 0 since the unique non-null component of h is

h12 : B∗ → A∗.

Cp−1

⊕
Bp−1

⊕
Ap−1

Cp

⊕
Bp

⊕
Ap

δ21

h12

The nilpotency of δ21h12 gives us an inverse of (id +δ21h12), Φ′.

Φ′ = (id +δ21h12)−1 = id−δh+ (δh)2 − (δh)3 + . . .+ (−1)n(δh)n + · · ·

=

∞∑
i=1

(−1)i(δ21h12)i

Let us check that forall x ∈ C∗, (id +δ21h12)(id +δ21h12)−1(x) = x.

4.2 Formalization of the proof 135

(id +δ21h12)(id−δh+ (δh)2 − (δh)3 + . . .+ (−1)n(δh)n)(x)

= (id−δh+ . . .+ (−1)n(δh)n + δh+ . . .− (−1)n(δh)n

+ (−1)n+1(δh)n+1 + . . .)(x)

= id(x) + 0 = x.

The last step is true because some of the addends are cancelled pairwise and the

rest of them are null because of the nilpontency property. Therefore, (d+ δ)21 =

(id +δ21h12)d21 : A→ B is invertible with Φ′h12 as inverse.

4.2 Formalization of the proof

The formalization of the proof of the BPL in SSReflect requires restricting the

data structures to finitely generated chain complexes. These structures are pre-

sented in Subsection 4.2.2. Before introducing the BPL formalization, we give a

brief explanation of the formalization of the kernel of a map in SSReflect. The

representation chosen for this well-known notion in mathematics has important

consequences in the rest of structures used in the formalization of the proof. Then,

the Decomposition Lemma and the Generalization of the Hexagonal Lemma are

formalized in Subsection 4.2.3 and in Subsection 4.2.4, respectively. These are the

key ingredients used in the formalization of the BPL included in Subsection 4.2.5.

Before explaining the details of this formalization let us highlight the use of

casts in our development. The rigid typing strategy of Coq makes sometimes

difficult to translate mathematical intuitions. For instance, even if the expressions

i and i+1-1 are provable equal with i an integer number, they are not directly

convertible in Coq. When integers are used as indexes (for instance, in degrees

of chain complexes), problems increase. In order to show an example about it,

we introduce some notations.

The differential of a chain complex C in degree i is usually defined as a mor-

phism di : Ci → Ci−1. In Coq, we can define di as (diff C i) whose type is a

matrix ’M_(m C i, m C (i-1)) where (m C i) gives us the number of genera-

tors of C in degree i. A homotopy operator h in degree i in C is a morphism

136 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

hi : Ci → Ci+1. In Coq, we can define hi as (Ho H i) whose type is a matrix

’M_(m C i, m C (i+1)).

Then, if we compose both morphisms di+1hi : Ci → Ci+1−1, we will obtain

in Coq a matrix of type ’M_(m C i, m C (i+1-1)). This matrix is not di-

rectly convertible by Coq to ’M_(m C i). The standard solution in SSReflect

consists in using casts, in this case (Ho H i)*m (diff C (i+1)) is equal to:

castmx (cast1, cast2) ((Ho H i) *m (diff C (i+1)))

where cast1 and cast2 are the following lemmas.

Lemma cast1: m C i = m C i.

Lemma cast2: m C (i+1-1) = m C i.

In this way, we change the type of (diff C (i+1-1)). The pair of equali-

ties of the first argument of castmx provides the change of the dimensions of

(diff C (i+1-1)).

Being a general solution, the explicit using of casts makes notations cum-

bersome. In order to avoid these casts, at least in the main definitions of our

development, we can take profit from the freedom of dealing with structures in-

dexed over the integers. As an illustration, instead of working with the usual

definition of the differential, we defined di : Ci+1 → Ci. In this way, the compo-

sition di+1hi is translated with the new definition into dihi : Ci → Ci. Moreover,

the type of the obtained matrix is ’M_(m C i).

We will use systematically this kind of tricks. To this aim, we need a

terminology expressing this shift of indexes. We will call n-suspended up or

n-suspended down chain complex for a chain complex which is built moving up

or down n degrees of a chain complex. Concretely, if we have a chain complex C

and define n-suspended up chain complex C ′ from C, the differential in degree k

of C is the same object than the differential in degree k + n in C ′.

This terminology is extended naturally to other graded structures such as

chain morphisms, reductions, and so on.

4.2 Formalization of the proof 137

4.2.1 The kernel of a map

The kernel of a finite map is defined by the kernel of the matrix which represents

this map. The kernel of a matrix A in SSReflect is defined using kermx A,

which is the row kernel of A. In other words, it is a square matrix whose row

space consists of all u such that u *m A = 0. The row space of a matrix is the set

of all possible linear combinations of its row vectors. Let us show the definition

of the kernel in SSReflect.

Definition kermx m n (A: ’M_(m,n)): ’M_m :=

copid_mx (\rank A) *m invmx (col_ebase A).

The kernel of a matrix A is defined as the inverse of col_ebase (the extended

column basis of A), with the top rank A rows zeroed out. The kernel (kermx A)

is defined as the product of two matrices. The first one, copid_mx (\rank A) is

a square diagonal matrix with 0’s in the first top (\rank A) rows and 1’s in the

rest of the diagonal. This matrix converts the first (\rank A) rows of the second

one into zeros.

Two lemmas, which are included in the library, help us to understand better

this definition:

Lemma mulmx_ker m n (A : ’M_(m, n)) : kermx A *m A = 0.

Lemma mulmxKV_ker m n p (A : ’M_(n, p)) (B : ’M_(m, n)) :

B *m A = 0 -> B *m col_ebase A *m kermx A = B.

The first lemma establishes that the elements of the kernel of a matrix are made

null when A is applied to the left. The second lemma establishes that kermx A is a

partial right inverse of col_ebase A. Let us note that col_ebase A *m kermx A

is the right identity if B *m A = 0, in other words, if B is included in kermx A.

In addition to the lemmas about the kernel proved in the library, we need to

define other ones; for instance, the following one related to the intersection.

Lemma ker_intersection m1 n1 n2 (A:’M[K]_(m1,n1))

(B:’M[K]_(m1,n2)):

(kermx A :&: kermx B :=: kermx (row_mx A B))%MS.

138 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

This lemma states that the intersection of kernels of two matrices generates the

same space that the kernel of a row matrix composed by both matrices.

As we have previously said, the kernel of a matrix A has the top (\rank A)

rows zeroed out. In our development, we chose to delete these null rows; because

if we worked with the original definition, we would obtain partial identities in

some proofs. Due to this fact, we define a new kernel denoted by ker_min.

Definition ker_min (m n : nat) (M : ’M_(m,n)) :=

(castmx ((Logic.eq_refl (m-\rank M)),

(\rank M) + (m-(\rank M))) = m)

(row_mx (@const_mx _ (m-\rank M)(\rank M)0) 1%:M)) *m (kermx M).

It consists of the product of a row matrix with the kernel (kermx). The row

matrix is composed by a block of zeros with (m-\rank M) rows and (\rank M)

columns and an identity matrix of (\rank M) rows and columns. This definition

allows us to obtain the elimination required. Let us note that the cast in the

definition is necessary to define the product properly. Then, the lemmas about

the kernel are more thorny because some casts are also required. In this way, we

delete the null rows of the matrix obtained from kermx. Anyway, both definitions

generate the same space as we can see in the following lemma.

Lemma ker_min_kermx (m n : nat) (M : ’M_(m,n)) :

(kermx M :=: (ker_min M))%MS.

The proof of this lemma can be divided into two parts using the inclusion of

subsets (A:=:B <-> A ⊆ B /\ B⊆ A). Both lemmas are proved in the same way,

applying a change of view with the lemma submxP (A ⊆ B <-> ∃D, A = DB). We

obtain a proposition of this type:

exists D0 : ’M_(m - \rank M, m), ker_min M = D0 *m kermx M

This is proved giving a matrix D0 which fulfills the proposition. In this case, D0

is the row matrix given in the own definition of ker_min.

Let us recall that the kernel of A in SSReflect consists of the elements u

which uA = 0. However, in our previous mathematical definitions the product

is null when is applied to the right. Therefore, we have decided to represent the

matrices with their transposes in SSReflect. For instance, if M is a matrix of

dimension m× n this variable in SSReflect is defined with the following type.

4.2 Formalization of the proof 139

Variable M: ’M[K]_(n,m).

This implies that the rows and columns in the matrix are swapped. Moreover,

the product of matrices is also affected because it is reversed.

Then, along this chapter we will alternate both representations using the most

suitable in each moment. This decision will be carried out to ease the reader

the understanding of some topics. In our mathematical representation, given two

matrices Mm,n and Nn,l their product is denoted as MN , whereas in Coq we

define the matrices as M:’M[K]_(n,m) and N:’M[K]_(l,n) and the product is

represented as N *m M.

4.2.2 Main mathematical structures

Following the methodology explained in Section 1.3, we have used SSReflect

matrices to prove mathematical results; and we only use sequences to represent

matrices when we want to compute. Therefore, we will use abstract structures to

prove the BPL. Let us define a finitely generated chain complex with a countable

list of chain groups.

Variable K : fieldType.

Record FGChain_Complex :=

{ m : Z -> nat;

diff : forall i:Z, ’M[K]_(m (i + 1), m i);

boundary : forall i:Z, (diff (i + 1)) *m (diff i) = 0}.

Some comments about this definitions are necessary. The chain complex defi-

nition contains a function denoted by m which obtains the number of gen-

erators for each degree as we said at the beginning of the section. Then,

we can define the differentials using the matrix representation of these maps

forall i:Z, ’M[K]_(m (i + 1), m i). Two important design decisions have

been included in this definition. Due to the definition of the kernel of a matrix in

SSReflect we will work with transposed matrices due to the definition of ker-

nel mentioned in Subsection 4.2.1. This implies that the product is also reversed.

Furthermore, the degrees of the differentials have been increased in one unit to

avoid using casts.

140 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

Now, the definitions of chain complex morphism and homotopy operator are

introduced.

Record FGChain_Complex_Morphism (A B : FGChain_Complex) :=

{ M : forall i:Z, ’M[K]_((m A i),(m B i));

M_well_defined : forall i:Z,

(diff A i) *m (M i) = (M (i+1)) *m (diff B i)}.

Record FGHomotopy_operator (A : FGChain_Complex) :=

{ Ho : forall i:Z, ’M[K]_(m A i, m A (i+1)%Z)}.

With these previous definitions, we can define the notion of a reduction for a

finitely generated chain complex. In the definition of reduction of a 3-truncated

chain complex presented in Subsection 3.3, we needed to define the same property

twice, one for each degree. Now, we define the properties in each degree at once.

Record FGReduction :=

{ C : FGChain_Complex;

D : FGChain_Complex;

F : FGChain_Complex_Morphism C D;

G : FGChain_Complex_Morphism D C;

H : FGHomotopy_operator C;

ax1 : forall i:Z, (M G i) *m (M F i) = 1%:M;

ax2 : forall i:Z, (M F (i+1)) *m (M G (i+1)) +

((Ho H (i+1)) *m (diff C (i+1))) +

((diff C i) *m (Ho H i)) = 1%:M;

ax3 : forall i:Z, (Ho H i) *m (M F (i+1)) = 0;

ax4 : forall i:Z, (M G i) *m (Ho H i) = 0;

ax5 : forall i:Z, (Ho H i) *m (Ho H (i+1)) = 0}.

4.2.3 Formalization of the Decomposition Theorem

In this subsection, we focus on proving the Decomposition Theorem

(Theorem 4.2): a reduction ρ = (f, g, h) : C∗⇒⇒ Ĉ∗ is equivalent to a decom-

position C∗ = A∗ ⊕ B∗ ⊕ C ′∗ where A∗ = ker f ∩ ker h, B∗ = ker f ∩ ker d and

C ′∗ = im g satisfying the chain complex morphisms f and g are inverse isomor-

phisms between C ′∗ and Ĉ∗ and d and h are module isomorphisms between A∗

4.2 Formalization of the proof 141

and B∗.

First, we focus on the decomposition of the chain groups. Let us denote the

morphisms f and g of the reduction ρ in SSReflect as F_rho and G_rho and

the homotopy operator as H_rho. Moreover, the differential of the chain complex

C∗ is D_rho and the differential of C ′∗ is d_rho.

We are going to define the decomposition through an isomorphism between

the chain groups of C∗ and A∗ ⊕ B∗ ⊕ C ′∗. To build this isomorphism we have

to define two functions which we call Fi isom and Gi isom satisfying for every

degree i:

Fi isom i ∗Gi isom i = id ∧ Gi isom i ∗ Fi isom i = id (4.1)

These functions can be understood as a change of basis between C∗ (where we

work with the canonical basis) and A∗ ⊕ B∗ ⊕ C ′∗. The function Fi isom can

be defined directly taking into account how every chain group is divided (see

Figure 4.1).

Fi isom(i : Z) =

 ker min(F rho(i+ 1)) ∩ ker min(H rho(i+ 1))

ker min(F rho(i+ 1)) ∩ ker min(D rho(i+ 1))

G rho(i+ 1)


Let us show the definition of Fi isom in SSReflect.

Definition Fi_isom (i : Z):=

(col_mx (ker_min (row_mx (F_rho (i+1)) (H_rho (i+1))))

(col_mx (ker_min (row_mx (F_rho (i+1)) (D_rho i)))

(G_rho (i+1)))).

Let us simply emphasize two aspects in the previous definition. First, the direct

sum A ⊕ B generates the same space that the matrix col_mx A B defined in

SSReflect. It is a square matrix whose row space is the concatenation of

the row spaces of A and B. Second, the intersection A ∩ B is equivalent to

row_mx A B. Moreover, the first block of the column matrix in both definitions,

ker min(F rho(i+ 1)) ∩ ker min(H rho(i+ 1))

and

(ker_min (row_mx (F_rho (i+1))(H_rho (i+1))))

142 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

generate the same subspace, taking into account the lemma ker_intersection

introduced in Subsection 4.2.1.

The following task is the definition of Gi isom knowing that ∀i, Gi isom(i)

is a row matrix composed by three blocks (m1 m2 m3) satisfying the conditions

in (4.1). Let us see the process followed to define Gi isom.

id = (Gi isom i)(Fi isom i) = (m1 m2 m3)

 ker min(F rho(i + 1), H rho(i + 1))

ker min(F rho(i + 1), D rho(i + 1))

G rho(i + 1)


m1 ∗ ker min(F rho(i + 1), H rho(i + 1)) +

m2 ∗ ker min(F rho(i + 1), D rho(i + 1)) +

m3 ∗G rho(i + 1) = id

(4.2)

Now, we try to link Equation 4.2 with Property 2 of the reduction ρ. In the

formalization, this exactly corresponds with ax2 of the definition FGReduction

introduced in Subsection 4.2.2. In this case, ax2 is as follows.

(F_rho (i+1)) *m (G_rho (i+1)) + ((H_rho(i+1)) *m (D_rho (i+1)))

+ ((D_rho i) *m (H_rho i)) = 1%:M

Then, our aim is associate each addend of this property with one of Equation 4.2.

In this way, we will be able to obtain the values m1, m2 and m3 that satisfy the

equality. Let us note that the first addend corresponds with m3 ∗ G rho(i + 1)

if m3 = F rho(i + 1). In addition, ker min appears in the other addends of

Equation 4.2. Then, we will have to apply some of the lemmas related to ker min

to obtain m1 and m2. In particular, there exists the lemma mulmxKV_ker (defined

in Subsection 4.2.1) which will be useful in this case. It allows us to cancel the

ker min part. For instance, in order to obtain m2 we check that

(H_rho(i+1))*m (D_rho (i+1))*m row_mx(F_rho (i+1))(D_rho i)= 0

we can apply this lemma and obtain HD *m col_ebase(FD)*m kermx (FD)= HD

where HD is (H_rho(i+1)) *m (D_rho (i+1)) and FD is row_mx(F_rho (i+1))

(D_rho i). In this way, we obtain the required simplification of kermx. Conse-

quently, we can define

m2 = (H_rho(i+1)) *m (D_rho (i+1)) *m

col_ebase(F_rho (i+1),D_rho i) *m castFiDi i

4.2 Formalization of the proof 143

The component (castFiDi i) appears because we are working with ker_min

instead of kermx. We recall that some casts are necessary with this new definition.

Now, we prove why the previous condition HD * FD = 0 is true. Multiplying both

matrices, the condition is the following:(
(H rho (i+ 1)) ∗ (D rho (i+ 1)) ∗ (F rho (i+ 1))

(H rho (i+ 1)) ∗ (D rho (i+ 1)) ∗ (D rho i)

)
= 0

The upper block is 0 using the properties of the morphism F rho and applying

Property 3 of the reduction ρ. The lower block is null due to the boundary

condition of D rho.

The other block of Gi isom is obtained in a similar way.

m1 = ((D_rho i) *m (H_rho i)) *m

col_ebase(F_rho (i+1), H_rho (i+1)) *m castFiHi (i+1)

4.2.3.1 Conditions of the decomposition

The two functions Fi isom and Gi isom can be understood as a change of basis

between the initial representation of the chain groups of C∗ and the decomposed

one A∗⊕B∗⊕C ′∗. Now, this change of basis is useful to define the new representa-

tion of the differentials for A∗⊕B∗⊕C ′∗. Also, this change of basis can be applied

to the reduction ρ as a whole in order to obtain a reduction from A∗ ⊕ B∗ ⊕ C ′∗
to Ĉ∗.

Definition D_rho_base (i:Z):=

(Fi_isom (i+1) *m (D_rho (i+1)) *m (Gi_isom i)).

Definition H_rho_base (i:Z):=

(Fi_isom i) *m (H_rho (i+1)) *m (Gi_isom (i+1)).

Definition F_rho_base (i:Z) := Fi_isom (i) *m (F_rho (i+1)).

Definition G_rho_base (i:Z) := G_rho (i+1) *m Gi_isom (i).

144 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

These definitions are represented in the following diagram.

· · ·
//
A⊕ B ⊕ C′(i−1)

H rho base(i−2) //
oo

Fi isom(i−2)

��

A⊕ B ⊕ C′i
H rho base(i−1)//

D rho base(i−2)

oo

Fi isom(i−1)

��

A⊕ B ⊕ C′(i+1)

D rho base(i−1)

oo

Fi isom i

��

· · ·oo

· · ·
//
C(i−1)

H rho(i−1) //
oo

Gi isom(i−2)

OO

F rho(i−1)

��

Ci

D rho(i−1)

oo
H rho i //

Gi isom(i−1)

OO

F rho i

��

C(i+1)

D rho i

oo

Gi isom i

OO

F rho(i+1)

��

· · ·oo

· · ·
//
Ĉ(i−1)

G rho(i−1)

OO

oo Ĉi
d rho(i−1)

oo

G rho i

OO

Ĉ(i+1)
d rho i

oo

G rho(i+1)

OO

· · ·oo

It is not difficult to prove that the previous definitions are:

F_rho_base i =

 0

0

id

 G_rho_base i =
(

0 0 id
)

H_rho_base i =

 0 0 0

H_aux i 0 0

0 0 0

 (4.3)

D_rho_base i =

 0 D_aux i 0

0 0 0

0 0 d_rho (i+1)


With this representation we directly obtain that f = g−1 on the third com-

ponent of the decomposition. In this case, these maps correspond with the third

block both of (F_rho_base i) and of (G_rho_base i).

The other condition d = h−1 is defined between the block with coor-

dinates (1, 2) of (D_rho_base i) and the block with coordinates (2, 1) of

(H_rho_base i) (taking into account that the matrices associated with the maps

have been transposed). These blocks have been denoted by (D_aux i) and

(H_aux i), respectively. Then, the two lemmas to prove in SSReflect are:

Lemma D_aux_H_aux : forall i:Z, (D_aux i) *m (H_aux i) = 1%:M.

Lemma H_aux_D_aux :

forall i:Z, (H_aux (i+1)) *m (D_aux (i+1)) = 1%:M.

The proof of these lemmas is based on the fact that a reduction can be defined

from the decomposed chain complex A∗ ⊕ B∗ ⊕ C∗ to Ĉ∗ (a composition of an

4.2 Formalization of the proof 145

isomorphism and a reduction). This reduction includes properties such as the

following lemma gf_Dh_hD_base.

Lemma gf_Dh_hD_base : forall i:Z,

F_rho_base (i+1) *m G_rho_base(i+1) +

H_rho_base (i+1) *m D_rho_base(i+1) +

D_rho_base i *m H_rho_base i = 1%:M.

Both lemmas are obtained from this property. We can see in (4.3) that both

H_aux and D_aux are included in the definitions of H_rho_base and D_rho_base,

respectively. Concretely, if we multiply the matrix H_rho_base with D_rho_base

(we obtain a matrix composed by 3× 3 blocks) where the block (1, 1) and (2, 2)

is the product of D_aux and H_aux and the one of H_aux and D_aux, respectively,

as we can see below.

H_rho_base (i+1)*m D_rho_base(i+1) =

 0 0 0

0 H_aux (i+1)*m D_aux (i+1) 0

0 0 0


Furthermore, if we simplify the previous lemma gf_Dh_hD_base we obtain the

following equalities.

 0 0 0

0 0 0

0 0 id

 +

 0 0 0

0 H_aux (i+1)*m D_aux (i+1) 0

0 0 0


+

 D_aux i *m H_aux i 0 0

0 0 0

0 0 0



=

 D_aux i *m H_aux i 0 0

0 H_aux (i+1)*m D_aux (i+1) 0

0 0 id

 = id

146 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

4.2.4 Formalization of the Generalization of the Hexagonal

Lemma

Let us recall that Theorem 4.3 establishes that given a chain complex where each

chain group Ck can be decomposed into 3 parts: Ak ⊕Bk ⊕C ′k, where the block

(2, 1) of every differential of Ck is an isomorphism, then a canonical reduction

can be defined ρ : Ck⇒⇒C ′k.

The first step towards the formalization of this lemma is defining its hypothe-

ses. As every chain group is divided into three parts, every differential consists

of nine blocks.

Variables (m1 m2 m3 : Z -> nat).

Variable Di : forall i:Z,

’M[K]_(m1(i+1)+(m2(i+1)+ m3(i+1)),((m1 i)+ ((m2 i) + (m3 i)))).

Hypothesis boundary_Di : forall i:Z, Di (i+1) *m Di i = 0.

Definition CH := Build_FGChain_Complex boundary_Di.

In this way, we have a chain complex CH where each differential (Di i) consists

of nine blocks. Let us denote the blocks of each differential in the following way.

Di i =

 (d11 i) (d12 i) (d13 i)

(d21 i) (d22 i) (d23 i)

(d31 i) (d32 i) (d33 i)


As we are working with transposed matrices, the hypothesis over the block

(2, 1) of every differential is defined over the block (1, 2) of its transpose. This

means that there exists matrices for these blocks, which are defined as d12_1,

satisfying the condition given in d12_invertible.

Variable d12_1 : forall i : Z, ’M[K]_(m2 i, m1 (i + 1)).

Hypothesis d12_invertible :

forall i:Z, (d12 (i+1)) *m (d12_1 (i+1)) = 1%:M

/\ (d12_1 (i+1)) *m (d12 (i+1)) = 1%:M.

Afterwards, we define the morphisms fi and gi and the homotopy

operator hi to build a reduction of the chain complex CH. These maps

are detailed in the proof of Theorem 4.3 of Subsection 4.1.2. First,

4.2 Formalization of the proof 147

gi i =
(
−(d32 i) ∗ (d12 1 i) 0 1

)
. We remark that (gi i) has type

’M_(m3(i+1), m1(i+1)+m2(i+1)+m3(i+1)). In this definition, we increase a

degree in the chain morphism to avoid the use of casts.

Taking this into account, (fi i) is defined according to the definition of

(gi i).

fi i =

 0

(- (d12_1 (i+1))*m (d13 (i+1))

1


In a similar way, the rest of the matrices are defined as follows.

di_up i = (d33 (i+1))− ((d32 (i+1)) *m (d12_1 (i+1))) *m (d13 (i+1))

Di_up i = (diff CH (i+1))

hi_up i =

 0 0 0

(d12_1 (i+1)) 0 0

0 0 0


We can note that Di_up is the differential of the 1-suspended up chain complex

from CH, CH_up. Let us represent the components of the reduction in the following

diagram.

· · · // A⊕B ⊕ C ′i
hi up(i−1)//oo

fi(i−1)

��

A⊕B ⊕ C ′(i+1)

hi up i//
Di up (i−1)
oo

fi i

��

A⊕B ⊕ C ′(i+2)
Di up i
oo //

fi (i+1)

��

· · ·oo

· · · Ĉioo

gi(i−1)

OO

Ĉ(i+1)
di up (i−1)

oo

gi i

OO

Ĉ(i+2)
di up i

oo

gi(i+1)

OO

· · ·oo

Finally, the proof that the components of the previous diagram define a reduc-

tion is an exercise based on using rewriting tactics. In conclusion, the reduction

defined as rhoHL is a 1-suspended up reduction because we have not built from

the initial chain complex CH, but CH_up.

4.2.5 Formalization of the BPL

First, we define the objects which appear in the BPL. These are a reduction

and a perturbation of the top chain complex of the reduction. Moreover, the

148 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

boundary condition of the chain complex where the differentials are the sum of

the differential of (C rho) and the perturbation is hold.

Variable K: fieldType.

Variable rho : FGReduction K.

Variable delta : forall i:Z, ’M[K]_(m (C rho)(i+1), m (C rho) i).

Hypothesis boundary_dp :

forall i:Z, ((diff (C rho)(i+1) + delta (i+1))

*m ((diff (C rho)i + delta i) = 0.

In addition, we will assume the nilpotency hypothesis. Let us remember that

a function f : X → X satisfies the nilpotency property if ∀x, x ∈ X, ∃n such

that fn(x) = 0. Since we are working in a finite context, we can consider n as the

maximum of the values which verify the nilpotency property for all the elements

of the function. Then, our function is not only locally nilpotent but also globally

nilpotent. Let us note that pot_matrix is a function which we have defined to

formalize the power of a matrix.

Variable (n : nat).

Hypothesis nilpotency_hp : forall i:Z,

(pot_matrix (delta i *m (Ho (H rho) i)) n = 0).

With these hypotheses, we define a reduction from the chain complex whose

differentials are: (diff (C rho)i)+ delta i and delta. To this aim, we apply

the Decomposition Lemma, introduced in Subsection 4.2.3, to (C rho). We can

use the isomorphism given by Fi_isom and Gi_isom. This isomorphism allows

us to decompose the chain group into three parts and consequently the matrices

are divided into nine blocks as we saw in Subsection 4.2.3.1. Let us show the new

differential in SSReflect.

Definition Di_pert(i:Z):=

(Fi_isom rho (i+1)) *m (diff (C rho) (i+1) + delta (i+1))

*m (Gi_isom rho i).

In this definition, we move up again one degree the chain complex to avoid the

use of casts in the last component, (Gi_isom rho i). Then (Di_pert i) is a

matrix which is defined from the degree (i+2) to the degree (i+1). In the same

way, the perturbation is also increased in one degree.

4.2 Formalization of the proof 149

Definition delta_new (i:Z):=

(Fi_isom rho (i+1)) *m (delta (i+1)) *m (Gi_isom rho i).

· · · Ci

Fi isom i

��

oo C(i+1)
C rho i+delta i

oo

Fi isom(i+1)

��

C(i+2)
C rho(i+1)+delta(i+1)

oo

Fi isom(i+2)

��

oo

· · · A⊕ B ⊕ C′i

Gi isom i

OO

oo A⊕ B ⊕ C′(i+1)
Di pert(i−1)

oo

Gi isom(i+1)

OO

A⊕ B ⊕ C′(i+2)
Di pert i

oo

Gi isom(i+2)

OO

oo

The hypotheses assumed for the initial chain complex are transferred, i.e. proved

over the decomposed chain complex.

Lemma boundary_dp_new :

forall i:Z, Di_pert (i+1) *m Di_pert i = 0.

Lemma nilpotency_hp_new : forall i:Z,

pot_matrix ((delta_new i) *m (H_rho_base rho i)) n = 0.

Afterwards, we will apply the Generalization of the Hexagonal Lemma pre-

sented in Subsection 4.1.2 and formalized in Subsection 4.2.4. In this step, every

differential is divided into nine blocks. Then, the first hypothesis of the lemma

which says that every chain complex is decomposed Cp = Ap⊕Bp⊕C ′p is already

verified. Afterwards, we focus on proving the other hypothesis of the lemma in

SSReflect; i.e., that the block (1, 2) of Di_pert is invertible. Then, a series

of equalities about the block (1, 2) is shown where we denote M_12 as the block

(1, 2) of a matrix M.

Di_pert_12 = (Fi_isom * (C rho + delta)* Gi_isom)_12

= (Fi_isom * C_rho * Gi_isom)_12 +

(Fi_isom * delta * Gi_isom)_12

= D_rho_base_12 + delta_new_12 (4.4)

= D_aux + delta_new_12

= D_aux + delta_new_12 * (H_aux * D_aux) (4.5)

= (id + delta_new_12 * H_aux)* D_aux

The first step consists in rewriting the definition of Di_pert and using the

distributive property. Let us note that the two addends of (4.4) correspond

with the definition of the differential and the perturbation in the decomposed

chain complex. Concretely, the block D_rho_base_12 is D_aux. We can see the

150 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

definition given in SSReflect of D_rho_base in Subsection 4.2.3.1. Moreover,

we also know that H_aux * D_aux = id (lemma H_aux_D_aux) then it can be

introduced in (4.5). Finally, we reorder the equation by taking D_aux as a common

factor.

With these relations, Di_pert_12 has an inverse if both D_aux and

(id + delta_new_12 * H_aux) have inverse. As we have said, thanks to the

lemmas D_aux_H_aux and H_aux_D_aux, the inverse of D_aux is H_aux. Then,

we focus on proving that id + delta_new_12 * H_aux has an inverse. To this

aim, the following lemma is useful. If Mm = 0 then the inverse of id +M is∑
0≤i<m

(−M)i. One of the lemmas used to prove this is the following one.

Mm = 0→
∑

0≤i<m

(−M)i ∗ (id +M) = id

Its statement in SSReflect is as follows.

Lemma inverse_I_plus_M_big : (pot_matrix M m = 0)

-> (\sum_(0<=i<m) (pot_matrix (- M) i)) *m (1%:M + M) = 1%:M.

Instead of proving this lemma directly, we will focus on a generalization of it.

Lemma inverse_I_minus_M_big (M : ’M[R]_n): (pot_matrix M m = 0)

-> (\sum_(0<=i<m) (pot_matrix M i)) *m (1%:M - M) = 1%:M.

First, we apply induction on the dimension of the matrix M, n. The first

case is trivial since all the matrices which are involved in the statement are

empty matrices. Namely, the lemmas thinmx0 and flatmx0 of SSReflect are

in charge of every matrix which has no rows or columns. These particular matrices

are considered as empty matrices represented by 0. To deal with the inductive

case, we apply induction again on the exponent of the power, m. In the first case,

we obtain as hypothesis that M0 = 0 then id = 0. The system automatically does

not find the contradiction; but, if we use properties already proved in SSReflect

about the determinant, we obtain the equality 1 = 0 and finally, the contradiction

is solved by the system. Now, we focus on the general case (m = n1 + 1). As

hypothesis, we have Mn1+1 = 0 and the proposition to be proved is∑
0≤i<n1+1

M i ∗ (id−M) = id

4.2 Formalization of the proof 151

Then, we introduce the steps which have been followed in this proof.∑
0≤i<n1+1

M i ∗ (id−M) =
∑

0≤i<n1+1

M i − (M i ∗M)

=
∑

0≤i<n1+1

M i −
∑

0≤i<n1+1

(M i ∗M)

=
∑

0≤i<n1+1

M i −
∑

0≤i<n1+1

(M i+1)

= M0 +

���
���

∑
0≤i<n1

M i+1 −Mn1+1 −
�������
∑

0≤i<n1

(M i+1)

= M0 −Mn1+1 = M0 = id

These steps are easily achieved using the powerful bigop library of SSRe-

flect [BGBP08].

Finally, if we prove that the block H_aux * delta_new_12 to the power of n

is 0; then, we can apply the lemma inverse_I_plus_M_big. The lemma to be

proved is introduced below.

Lemma H_aux_delta_i : forall i:Z,

pot_matrix ((lsubmx (ursubmx (delta_new i)))

*m (H_aux rho i)) n = 0.

This lemma is proved thanks to the nilpotency_hp_new lemma. Then, the

inverse of (id + delta_new_12 * H_aux) is
∑

0≤i<m
(−(delta_new_12 * H_aux))i.

Consequently, it is proved a lemma inverse_dp_12_inverse which ensures

that the inverse of D_aux * (id + delta_i_new_12 * H_aux) is the following

one.

Definition inverse_dp_12 (i:Z) :=

(H_aux rho i) *m (\sum_(0<=j<n)(pot_matrix

(-(lsubmx (ursubmx (delta_new i)) *m (H_aux rho i)))) j).

Now, applying the Generalization of the Hexagonal Lemma (where the reduc-

tion rhoHL is defined) we build a reduction, called quasi_bpl (see Figure 4.2),

from the decomposed and perturbed chain complex.

The Generalization of the Hexagonal Lemma proved in Subsection 4.2.3 builds
a reduction of a chain complex. But, the chain complex is an 1-suspended up

152 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

Definition quasi_bpl :=

(rhoHL (Di:= Di_pert) (boundary_Di := boundary_dp_new)

inverse_dp_12_inverse).

Figure 4.2: quasi bpl definition

chain complex of the original one. Moreover, the chain complex which involves
Di_pert is also an 1-suspended up one. To sum up, we have built a reduction
from the following perturbed chain complex:

· · · A⊕ B ⊕ C′(i+1)
oo A⊕ B ⊕ C′(i+2)

Di pert (i−1)

oo A⊕ B ⊕ C′(i+3)
Di pert i

oo · · ·oo

Besides, the Decomposition Lemma allows us to build an isomorphism between

C∗ and A∗⊕B∗⊕C ′∗. Using a composition of both results, we obtain a reduction

from the 2-suspended up perturbed chain complex.

Definition Di_BPL (i:Z):= (diff (C rho) (i+1+1) + delta (i+1+1)).

Let us introduce graphically this situation.

C(i+1)
oo

Gi isom

��

C(i+2)
Di BPL(i−1)

oo

Gi isom

��

C(i+3)
Di BPL i

oo

Gi isom

��

oo

A⊕ B ⊕ C′(i+1)
oo

H(quasi BPL) //

Fi isom

OO

F (quasi BPL)

��

A⊕ B ⊕ C′(i+2)
Di pert(i−1)

oo
H(quasi BPL) //

Fi isom

OO

F (quasi BPL)

��

A⊕ B ⊕ C′(i+3)
Di pert i

oo

Fi isom

OO

F (quasi BPL)

��

oo

C′(i+1)
oo

G(quasi BPL)

OO

C′(i+2)
Di′ BPL(i−1)

oo

G(quasi BPL)

OO

C′(i+3)
Di′ BPL i

oo

G(quasi BPL)

OO

oo

Finally, we focus on obtaining a reduction from the initial chain complex

C∗ perturbed by δ. Then, we have to define the 2-suspended down reduction

from the reduction quasi_bpl. In this way, we obtain the expected reduction of

applying the BPL to the initial reduction ρ (defined at the beginning of this same

subsection). Since the new definition is analogous, we introduce as an example

the definition of Di_BPL_down.

Definition Di_BPL_down(i:Z):=

castmx(cast3 i,cast4 i)(Di_BPL(i-1-1)).

Afterwards, we build the morphisms and the homotopy operator and the

reduction rho_BPL. In this moment the cast are required, but we have avoided

using casts until the last step of the proof.

4.3 Using the BPL to reduce a chain complex 153

4.3 Using the BPL to reduce a chain complex

associated with a digital image

Two different proofs of the Vector-Field Reduction Theorem (Theorem 1.43) ap-

pear in [RS10]. The most direct one is based on the BPL. In this section, we are

going to formalize this proof of the theorem when we work with a 3-truncated

chain complex. This is the particular case of the chain complex associated with

a 2D image where the admissible discrete vector filed is computed using the RS

algorithm (explained in Subsection 2.1). The Chapter 3 includes the other proof

of this theorem introduced in [RS10], which uses the Hexagonal Lemma. Now,

we are going to follow the same structure of that proof since we want to reuse

most of the work presented in that section. Nevertheless, this new proof includes

some minor extra steps to apply the BPL; for instance, to convert a 3-truncated

chain complex into a chain complex or to transpose the matrices.

The structure of the proof is the following one. Let us consider a chain complex

which comes from a 2D image and an admissible discrete vector field associated

with it. Then, the proof is divided into the same parts than the one included

in Chapter 3. First, the admissible discrete vector field is used to reorder the

differentials of the chain complex. Then, an isomorphism is defined between

the chain complex and the reordered one. Second, a reduction of the reordered

chain complex is built. Finally, the desired reduction is obtained thanks to the

composition of the two previous reductions. In this process, the proofs of the

first and third step will be reused from the ones detailed in Subsection 3.4.2 and

Subsection 3.4.4. Then, we only focus on obtaining a reduction from the ordered

chain complex using the BPL.

The second part of the proof begins with an ordered chain complex

chaincomplexd1’d2’ where the differentials d’1 and d’2 have been sorted ac-

cording to an admissible discrete vector field. This vector field is computed from

d1 which is one of the differentials of the initial chain complex chaincomplexd1d2

(defined in Subsection 3.4.2). It is also proved that the sorting in d’1 implies

that the top-left block is a lower triangular matrix. In our case, d’1 is a matrix

’M_(m1+m2,m1+n2) where m1=sdvf, m2=n-sdvf and n2=m-sdvf, then d’2 is a

matrix ’M_(m1+m2,l). Let us recall that n is the number of rows of d’1, m is the

number of columns of d’1, l is the number of columns of d’2, and finally, sdvf

154 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

is the size of the admissible discrete vector field obtained from d1.

The required reduction is obtained directly from a chain complex which verifies

the hypotheses of the BPL. But we need previously to build a FGChain_Complex,

denoted by D∗ = (Dn, dDn
), from our chaincomplexd1’d2’. It consists of ob-

taining a finitely generated chain complex from a 3-truncated chain complex in

the way represented in the following diagram.

· · · D−1
oo D0

0
oo D1

d′T1

oo D2
d′T2

oo D3
0

oo · · ·
0

oo

Let us note that the number of generators of D0 is m1+m2, of D1 is m1+n2, and of

D2 is l.

This process requires to translate sequences to SSReflect matrices, to trans-

pose the matrices, and to complete the 3-truncated structure to define a chain

complex. In this way, the two non-null components are:

Definition d’1_trmx :=

trmx (mx_of_seqmx (sdvf + (m - sdvf))(sdvf + (n -sdvf)) d’1)).

Definition d’2_trmx :=

trmx (mx_of_seqmx (sdvf + (n - (sdvf))) l d’2).

The condition d′1d
′
2 = 0 which comes from the chain complex

chaincomplexd1’d2’ is converted into d′2
T
d′1
T

= 0 (lemma prodd1d2’_trmx).

Moreover, the top-left block of d′1
T

is an upper triangular matrix because the

top-left block of d′1 is a lower triangular matrix. This lemma, which we will name

daa_triangular_upper, is proved applying properties of the transpose of a ma-

trix and the following lemma which relates a lower triangular matrix to an upper

triangular one.

Lemma lower_triangular_trmx n (A:’M[F]_(n)) :

lower_triangular A -> upper_triangular A^T.

Then, we define a reduction of the chain complex D∗ = (Dn, dDn
) where the

top-left block of dDn
in degree 1 is an upper triangular matrix with 1’s on the

diagonal.

Let us start with a FGChain_Complex, C∗ = (Cn, dCn), a reduction

ρ = (f, g, h) : (Cn, dCn)⇒⇒ (En, dEn), and a perturbation δ which verifies the

4.3 Using the BPL to reduce a chain complex 155

nilpotency condition (∃m ∈ N such that (δh)m = 0) such that dCn
+ δ = dDn

.

Then, the BPL directly produces the required reduction of the chain complex D∗.

Briefly, let C∗ be a FGChain_Complex composed only of the vectors of the

vector field (i.e., the only non-null differential consists of the identity in the top-

left block and null in the rest of the blocks) and δ = dDn
− dCn

which is clearly

a perturbation whose top-left block is strictly upper diagonal. This can be seen

easily according to these definitions.

dCn =


1 0 0

. . .

0 1

0 · · · 0 0

 dDn =

(
A 0

0 0

)

where

A =



1 a12 a13 a14 · · · a1n

0 1 a23 a24 · · · a2n

0 0 1
. . .

. . . a3n

0 0 0
. . .

. . .
...

...
...

...
. . . 1 amn

0 0 0 0 0 1


Then, we obtain the nilpotency hypothesis taking a trivial reduction where

h is the transpose of dCn
(which also has an identity in the top-left block and

null in the rest of the blocks). In order to have an idea of the proof about the

nilpotency condition, the following equations are going to be used.

(dDn − dCn) · h =



0 a12 a13 a14 · · · a1n

0 0 a23 a24 · · · a2n

0 0 0
. . .

. . . a3n

0 0 0
. . .

. . .
...

...
...

...
. . . 0 amn

0 0 0 0 0 0


So, δh has a top-left block strictly upper diagonal and the lower and top-right

156 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

blocks are null. Then, the nilpotency condition is easily proved. We are going to

detail this proof in the rest of the section.

4.3.1 The initial reduction

Let us start with a 3-truncated reduction where the top 3-truncated chain complex

has the same chain groups than chaincomplexd1’d2’; i.e., D0, D1 and D2 with

m1+m2, m1+n2 and l generators, respectively. The differential between D0 and

D1 is defined by d̂1 whose top-left block is an identity matrix of dimension m1,

and null the rest of the blocks. The differential between D1 and D2 is null. From

a notational point of view, the differential of this 3-truncated chain complex is

denoted by < d̂1, 0 > where

d̂1 =


1 0

. . .

1

0 · · · 0 0


It is worth mentioning here that m1 is the number of vectors in the admissible

discrete vector field obtained from d′1, and m2 the number of critical cells of d′1.

The reduced 3-truncated chain complex consists of non-null chain groups E0, E1

and E2 with, respectively, m2, n2 and l generators and null differentials. The

rest of the morphisms and the homotopy operator of the reduction are included

in the following diagram.

D0

d̂ T
1 //

f ′0
��

D1

0T
//

d̂1

oo

f ′1
��

D2
0

oo

f ′2
��

E0

g′0

OO

E1
0

oo

g′1

OO

E2
0

oo

g′2

OO

where f ′0 =

(
0

id

)
, f ′1 =

(
0

id

)
, f ′2 = id, g′0 =

(
0 id

)
, g′1 =

(
0 id

)
,

g′2 = id and h0 = d̂ T1 . It is easy to prove that these components define a reduction.

4.3 Using the BPL to reduce a chain complex 157

4.3.2 From a 3-truncated reduction to a reduction

We want to apply the BPL to the reduction defined in the previous subsection.

But, let us recall that the BPL is proved over chain complexes not over 3-truncated

chain complexes. Then, we are going to define a general reduction from the

3-truncated reduction. The process consists in adding null components.

· · · // 0oo //

f ′−1

��

D0
d0 m

oo
d1 m

T

//

f ′0
��

D1
d1 m

oo
d2 m

T

//

f ′1
��

D2
d2 m

oo //

f ′2
��

0
d3 m

oo //

f ′3
��

0
dn m

oo //

f ′4
��

· · ·oo

· · · 0oo

g′−1

OO

E0
oo

g′0

OO

E1
0

oo

g′1

OO

E2
0

oo

g′2

OO

0
0

oo

g′3

OO

0
0

oo

g′4

OO

· · ·oo

(4.6)

According to the previous subsection, in our particular case, d1 m corresponds

with d̂1 and d2 m with 0.

The top chain complex of the reduction (4.6) consists of two unique non-null

maps, the rest of the maps are null. However, there are two particular null maps:

the one in dimension -1, with rows but no columns, and the one in dimension 2,

with columns but no rows. In our development, we have built a general definition

to build a chain complex from a 3-truncated chain complex. This definition is

explained as follows. First, it is necessary to define a function m_m, of type:

Z -> nat, which provides the number of generators for each chain group. Let us

note that the number of generators is 0 in all the degrees but in degrees 0, 1 and

2. The corresponding definition in SSReflect is as follows.

Definition m_m: Z -> nat:= fun i:Z => match i with

|0%Z => c0

|1%Z => c1

|2%Z => c2

|_ => 0%nat

end.

As the types of d1 m and d2 m are known thanks to d̂1 and 0, respectively, we

provide the type of the rest of maps of differential. These maps are represented

as empty matrices. We have to highlight the differentials d0 m and d3 m because

they are matrices with rows and no columns or with columns and no rows. The

rest of maps will be matrices with no rows and no columns.

Variable (d3_m : ’M[K]_(0,c2)).

158 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

Variable (d0_m : ’M[K]_(c0,0)).

Variable (dn_m : ’M[K]_(0,0)).

Afterwards, we define the function diff_m which involves the whole differen-

tial.

Definition diff_m:= fun i:Z => match i as z

return ((fun z0 : Z => ’M_(m_m (z0 + 1), m_m z0)) z) with

|(-1)%Z => d0_m

|0%Z => d1_m

|1%Z => d2_m

|2%Z => d3_m

|3%Z => dn_m

|_ => dn_m

end.

Finally, we prove the boundary condition of the differentials which allows us

to build the finitely generated chain complex Dcc.

Lemma boundary_diff_m:

forall i:Z, (diff_m (i+1)) *m (diff_m i) = 0.

This lemma is proved applying induction and proving the corresponding lemmas

of the boundary condition of diff_m for each degree, as for instance:

Lemma d2d1: d2_m *m d1_m = 0.

Lemma d1d0: d1_m *m d0_m = 0.

Lemma d0dn: d0_m *m dn_m = 0.

Due to the fact that most of the matrices are empty matrices, this process

is simplified using the lemmas thinmx0 and flatmx0 which transform a matrix

without rows or columns into a null matrix.

The morphisms F_m_m and G_m_m and the homotopy operator H_m_m and the

reduced chain complex Dcc’ generated by the chain groups En are defined in a

similar way. Finally, we build the reduction with the previous definitions.

Definition reductionFG_gen :=

Build_FGReduction (C:=Dcc)(D:= D’cc)(F:=F_m_m)(G:=G_m_m)

(H:=H_m_m) GF_m FGHDDH_m HF_m GH_m HH_m.

4.3 Using the BPL to reduce a chain complex 159

The proof of the properties required by the FGReduction definition is quite direct.

4.3.3 Applying the BPL

Now, we can apply the BPL over the reduction reductionFG_gen, which have

just been defined, and which is depicted in (4.6). Previously, we need to prove

the following properties:

P1. A perturbation δDcc for the differential of the chain complex Dcc.

P2. δDcch is locally nilpotent.

Let us start proving Property P1. First, we define a perturbation for Dcc. We

define its components in degree 1 and 2 as δ1 = d′1
T − d̂1 and δ2 = d′2

T
. The

rest of the components are null. In this way, the perturbed chain complex is the

one we want to reduce (thanks to the BPL); i.e., it is composed by the non-null

differentials given by (d̂1 + (d′1
T − d̂1)) = d′1

T
and (0 + d′2

T
) = d′2

T
. The map d̂1

is defined in SSReflect using the function hat_d1, and the components of the

perturbation, called delta_m, are the following ones.

Definition delta1 := d’1_trmx - hat_d1.

Definition delta2 := d’2_trmx.

Definition delta3 : ’M[K]_(0,l):=0.

Definition delta0 : ’M[K]_(m1+n2,0):=0.

Definition deltan : ’M[K]_(0,0):=0.

Now, we can prove that delta_m is a perturbation of the chain complex Dcc

(defined by (C reductionFG_gen)).

Lemma boundary_dp_m: forall i : Z,

(diff (C reductionFG_gen) (i + 1) + delta_m (i + 1)) *m

(diff (C reductionFG_gen) i + delta_m i) = 0.

In the proof of this lemma, most of the cases are easy since most of the differentials

and perturbations are null. The unique interesting case involves the differential

in degrees 1 and 2 which is proved directly from the boundary condition of Dcc

in these degrees. Let us recall that the differential in degree 1 (d1_m) corresponds

with hat_d1. The statement in SSReflect is as follows.

160 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

Lemma boundary_d1d2_pert :

(d2_m K (m1 + m2) l + delta2) *m (hat_d1 + delta1) = 0.

In mathematic notation this is equivalent to:

(d̂1 + (d′1
T − d̂1))(0 + d′2

T
) = d′1

T
d′2
T

= 0

This is proved thanks to the boundary condition of chaincomplexd1’d2’

(d′2d
′
1 = 0).

Property P2 is stated in SSReflect in the following way. In our case, the

number m which verifies the nilpotency property is m1 + 2 where m1 is the size

of the vector field associated with d1.

Lemma nilpotency_hp_m :

forall i:Z, (pot_matrix

(delta_m i *m (Ho (H reductionFG_gen) i)) (m1.+2) = 0).

In the proof of this lemma most of the cases are proved easily. We only focus

on the part associated with the homotopy operator in degree 0: (δ1h0)m1+2 = 0.

Let us recall that δ1 = d′1
T − d̂1 and h0 = d̂ T

1 and expanding the definitions, we

obtain

(δ1h0)m1+2 =

(((
d11 d12

d21 d22

)
−

(
id 0

0 0

))(
idT 0

0 0

))m1+2

=

((
d11− id d12

d21 d22

)(
id 0

0 0

))m1+2

(4.7)

=

(
d11− id 0

d21 0

)m1+2

(4.8)

Then, we prove different lemmas for every block of the power of a block matrix

which will be applied over (4.8).

• ulsubmx

(
a 0

b 0

)k
= ak

• ursubmx

(
a 0

b 0

)k
= 0

4.3 Using the BPL to reduce a chain complex 161

• 0 < k, dlsubmx

(
a 0

b 0

)k
= b ∗ ak−1

• drsubmx

(
a 0

b 0

)k
= 0

Using the previous lemmas we obtain:

(δ1h0)m1+2 =

(
(d11− id)m1+2 0

d21(d11− id)m1+1 0

)
=

(
(d11− id)(d11− id)m1+1 0

d21(d11− id)m1+1 0

)

If we prove that (d11− id)m1+1 = 0, then nilpotency_hp_m will be proved. Let

us recall that d11 is an upper triangular matrix of type ’M_m1 (where m1 is the

length of the admissible discrete vector field associated with d1). Then, we define

the notion upper_triangular_up_to_k which receives an integer k and a matrix

M and returns true if the matrix is an upper triangular matrix with 0′s below

the diagonal matrix and the first k diagonals above it. Consequently, if k = 0

the matrix M is an upper triangular matrix with 0′s on the main diagonal and

below it. This definition is represented in SSReflect as follows.

Definition upper_triangular_up_to_k n k (A:’M[F]_(n)) :=

forall (i j : ’I_n), j <= i + k -> A i j = 0.

As d11 is an upper triangular matrix; then, d11 − id is an upper triangular

matrix with 0′s on the main diagonal and below it. This property is shown in

the following lemma.

Lemma upper_triangular_minus_1 n (A:’M[F]_n):

upper_triangular A -> upper_triangular_up_to_k 0 (A - 1%:M).

Then, in order to prove (d11 − id)m1+1 = 0 we focus on the following gener-

alization of this lemma.

Lemma upper_triangular_pot_matrix_n n (A:’M[F]_n) :

upper_triangular_up_to_k 0 A -> (pot_matrix A n.+1) = 0.

To prove this result, we introduce several auxiliary lemmas. The first one says

that if A is an upper triangular matrix with 0′s on and below the main diagonal,

and B is an upper triangular matrix with 0′s below the main diagonal and the

162 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

first k diagonals above it then, the product of A and B is an upper triangular

matrix with 0′s below the main diagonal and the first (k + 1) diagonals.

Lemma upper_triangular_mulmx_AB n k (A B:’M[F]_n) :

upper_triangular_up_to_k 0 A ->

upper_triangular_up_to_k k B ->

upper_triangular_up_to_k k.+1 (A *m B).

The previous lemma is instrumental to prove the following one.

Lemma upper_triangular_pot_matrix n k (A:’M[F]_n) :

upper_triangular_up_to_k 0 A ->

upper_triangular_up_to_k k (pot_matrix A k.+1).

It is proved by applying induction on the parameter k. Since the first case

is trivial, we pay attention to the inductive one. We have as hypothe-

ses that upper_triangular_up_to_k 0 A and upper_triangular_up_to_k 0 A

-> upper_triangular_up_to_k k (pot_matrix A k.+1). We want to prove

that upper_triangular_up_to_k (k.+1)(pot_matrix A k.+2). Let us ob-

serve that (pot_matrix A k.+2)= A *m (pot_matrix A k.+1). Then, the

matrices involved in this product satisfies the conditions of the lemma

upper_triangular_mulmx_AB. In this way, we obtain the expected result.

Finally, we also need the proof of a lemma which states that given an upper

triangular matrix with 0′s below the main diagonal and the first n diagonals

about it (with n the size of the matrix) this implies that the matrix is a null

matrix.

Lemma upper_triangular_up_to_dimension n (A:’M[F]_n):

upper_triangular_up_to_k n A -> A = 0.

This lemma is proved applying induction on the size of the matrix. The

interesting case is the inductive one. As inductive hypothesis we have

upper_triangular_up_to_k n A -> A = 0, and we want to prove that if A is a

matrix ’M[F]_n.+1 satisfying the condition upper_triangular_up_to_k n+1 A

then the matrix is null. The type of the matrix can be written in this way:

’M[F]_1+n where the bottom-right block is a matrix ’M[F]_n. In this way,

proving A=0 is equivalent to prove that every block of A is null. The inductive

hypothesis is used to prove this property over the bottom-right block.

4.3 Using the BPL to reduce a chain complex 163

After having defined and proved the conditions to apply the BPL, we can

define a new reduction using rho_BPL defined at the end of Subsection 4.2.5.

Definition red_BPL := (rho_BPL boundary_dp_m nilpotency_hp_m).

In this way, we have built the reduction red_BPL using the BPL. We show

this reduction in the following diagram where the number of generators of D0,

D1, and D2 are m1+m2, m1+n2, and l, respectively. The number of generators

of E0, E1, and E2 are m2, n2, and l, respectively. Let us recall that m1 is the

number of vectors of the admissible discrete vector field built from the initial

chain complex. Then, the reduction depends on the size of the vector field.

· · · // 0oo
h′0 //

f ′−1

��

D0
0

oo
h′1 //

f ′0
��

D1

h′2 //

d′1
T

oo

f ′1
��

D2
d′2

T

oo

f ′2
��

// · · ·oo

· · · 0oo

g′−1

OO

E0
0

oo

g′0

OO

E1
d̄′T1

oo

g′1

OO

E2
d̄′T2

oo

g′2

OO

· · ·oo

(4.9)

4.3.4 From a reduction to a 3-truncated reduction

Up to now, we have obtained a reduction defined as red_BPL where the non-null

differentials of the top 3-truncated chain complex are d′1
T

and d′2
T

as we can see

in (4.9). But we want to obtain a 3-truncated reduction where the maps of the

differentials of the top chain complex are d′1 and d′2, denoted as < d′1, d
′
2 >.

D0

h′1
T

//

f ′0
T

��

D1

h′2
T

//
d′1

oo

f ′1
T

��

D2
d′2

oo

f ′2
T

��
E0

g′0
T

OO

E1
d̄′1

oo

g′1
T

OO

E2
d̄′2

oo

g′2
T

OO

In order to obtain this desired 3-truncated reduction we have focused on two

points. First, we extract from red_BPL the necessary maps to be able to build a

3-truncated reduction. In other words, we only take the two non-null differentials

with the corresponding consecutive modules. Second, it is necessary to apply

the transpose operation to all the components of the reduction. In this way, we

obtain the expected differentials d′1 = d′1
TT

and d′2 = d′2
TT

. Let us show some

details of this formalization.

164 Chapter 4 Formalization of the Basic Perturbation Lemma (BPL)

The definition of the bottom 3-truncated chain complex involves the applica-

tion of the transpose operation to the differentials of the reduced chain complex

of red_BPL.

Definition diff1D:= seqmx_of_mx (trmx (diff (D red_BPL) 0)).

Definition diff2D:= seqmx_of_mx (trmx (diff (D red_BPL) 1)).

These matrices are defined as sequences transposing the corresponding differen-

tials. We define a 3-truncated chain complex ccD checking that these sequences

are matrices which verify the boundary condition. It is necessary to highlight

that the obtained 3-truncated chain complex is composed by the differential

< d′1
TT
, d′2

TT
> instead of the 3-truncated chain complex chaincomplexd1’d2’

defined by < d′1, d
′
2 >. We deal with this issue using casts. Let us see the way

of checking that the differentials of the initial chain complex of the reduction

red_BPL are exactly the same that the reordered matrices d’1 and d’2. To this

aim, it is necessary to prove the following lemmas, and other similar ones.

Lemma b0:

m (C red_BPL) 0 = (definitions_typesCC2.m chaincomplexd1’d2’).

Lemma b1:

m (C red_BPL) 1 = (definitions_typesCC2.n chaincomplexd1’d2’).

Lemma M1C:

(mx_of_seqmx (definitions_typesCC2.m chaincomplexd1’d2’)

(definitions_typesCC2.n chaincomplexd1’d2’) d’1)

= (castmx (b0,b1) (trmx (diff (C red_BPL) 0))).

Finally, we define the 3-truncated reduction, which we call red_BPL_CC2, from

the chaincomplexd1’d2’ to ccD.

Let us recall that our objective was to obtain a reduction of a 3-truncated

chain complex < d1, d2 > (chaincomplexd1d2) obtained from a digital image.

We have started with a 3-truncated reduction reduct_eq (defined in Subsec-

tion 3.4) from chaincomplexd1d2 to the ordered chain complex defined with the

differential < d′1, d
′
2 > (chaincomplexd1’d2’). Then, we have built a 3-truncated

reduction red_BPL_CC2 from the ordered 3-truncated chain complex to a reduced

3-truncated chain complex. Finally, using the lemma Reduction_red_red, both

reductions are composed and we obtain a 3-truncated reduction of the chain

complex chaincomplexd1d2.

Chapter 5

Homological processing of

digital images

In this chapter we present an application in Digital Algebraic Topology of our

formal development about the reduction of chain complexes using admissible

discrete vector fields. Digital Topology, and more specifically, the computation of

homology groups from digital images is mature enough (see, for instance, [ZA02],

one among many good references) to go one step further and investigate the

possibility of a certified computation (i.e., formally verified by proving correctness

using an interactive proof assistant).

In a rough manner, the process to be verified is depicted in Figure 5.1. Putting

it into words, from the black pixels of a monochromatic digital image a simplicial

complex is obtained (by means of a triangulation procedure). Subsequently, from

the simplicial complex, its boundary (or incidence) matrices are constructed.

Finally, the homology of the chain complex defined by those matrices can be

computed. If we work with coefficients over a field and if only the dimensions

of the homology groups (as vector spaces) are looked for (which determines the

groups of homology), then having a program able to compute the rank of a

matrix is sufficient to accomplish the whole task. However, incidence matrices

associated with a digital image usually have a considerable size and, therefore,

homology computation can take a lot of time. In order to overcome this drawback

165

166 Chapter 5 Homological processing of digital images

Digital
image

Simplicial
complex

Incidence
matrices

Homology

interpretation

reduction

Figure 5.1: Computing homology from a digital image

we reduce those matrices applying the procedures explained in the two previous

chapters. In this way, we can work with smaller matrices but with the same

homology.

The rest of this chapter is organized as follows. First, we briefly explain in

Section 5.1 how the Haskell code has been tested to check that the computation

of the homology using the reduced matrices was exactly the same than using

the initial matrices. Then, we focus on the formalization of the computation of

the homology in SSReflect in general. We introduce an abstract formalization

ranging from simplicial complexes to homology in Section 5.2. However, this does

not allow us to effectively compute the homology of a simplicial complex since

for instance, some definitions used for the definition of homology are based on

abstract structures of the bigop library of SSReflect. Then, we define again the

same structures but in an executable way in Section 5.3. The equivalence between

both representations is proved in Section 5.4. Then, in Section 5.5, we focus on

building the connection between digital images and simplicial complexes. Section

5.6 is devoted to present an example of computation of homology associated with

a digital image in SSReflect (directly obtained, i.e., without using reductions).

Finally, in Section 5.7 we also compute homology but using the reduced matrices

which have been obtained thanks to an ordered and admissible vector field.

5.1 Semi-automated testing

As we have previously commented, our final aim consists in computing the ho-

mology groups of digital images. In the process, huge matrices, namely the inci-

dence matrices, are used. The algorithm presented in Section 3.1 reduces these

matrices in order to make the computations quicker. In this process we should

check that the homology groups computed with the initial incidence matrices are

5.2 Abstract formal development 167

the same that the homology groups computed with the reduced matrices. If both

results coincide, this is a proof that the ordered and admissible discrete vector

field, computed to obtain the reduced matrices, is at least coherent from a homo-

logical point of view. However, it is not yet a proof that it is actually a correct

ordered and admissible discrete vector field.

To this aim, a file will be generated with a battery of pairs of incidence ma-

trices coming from random 2D monochromatic images and the homology groups

associated with them. This file is carried out with a Computer Algebra System

devoted to Algebraic Topology named Kenzo [DRSS98] and other auxiliary pro-

grams implemented in Common Lisp. First of all, randomly images composed by

0’s and 1’s are generated. Subsequently, the simplicial complex associated with

every image is built. Then, the chain complex associated with this simplicial

complex is constructed. Finally, we can compute the homology groups of the

image thanks to the chain complex which give us properties of the given image.

Next sections can be understood as an attempt to formalize all this process (but

not exactly the same programs) in SSReflect.

With this file, we can take each pair of matrices, d0 (the incidence matrix

between degrees 1 and 0) and d1 (between degrees 2 and 1) together with the

homology groups H0 and H1 already computed. On the other hand, we can

reduce both matrices using our algorithms (presented in Section 3.1), to get d̄′0
and d̄′1 and to obtain H ′0 and H ′1 in a similar way.

Finally, we create a new file with the values of H0 and H1 and the values of H ′0
and H ′1. If the computed values coincide with the expected values, the programs

seem to work properly. This process has been applied to several batteries of

examples and the obtained results have been the expected ones in all the cases.

5.2 Abstract formal development

In this section we focus on defining the concepts presented in Figure 5.1 using

the SSReflect style. Some of the developments included in this section were

written in [HPDR11].

168 Chapter 5 Homological processing of digital images

5.2.1 Simplicial complexes

First of all, we define the notions related to simplicial complexes included in

Subsection 1.1.2. The vertices are represented by a finite type V. Then, a simplex

is defined as a finite set of vertices. Finally, the definition of a simplicial complex

as a set of simplices closed under inclusion is straightforward:

Variable V : finType.

Definition simplex := {set V}.

Definition simplicial_complex (c : {set simplex}) :=

forall x, x \in c -> forall y: simplex, y \subset x -> y \in c.

As we have seen in Definition 1.18 a natural way of determining a simplicial

complex is by means of its facets. Therefore, given a list of simplices (which can

be considered that include all the facets) we want to be able to construct the

simplicial complex associated with it. To that aim, we need to define a function

which obtains all the subsets from a simplex. The function powerset is in charge

of this task. Then, we can define the function which creates a simplicial complex

given a sequence of simplices, just performing the set union of the powerset of

each one of them. To define such a function, we use the bigop library, namely

the bigcup function which is used for iterated unions.

Variable (T : finType)(A : {set T}).

Definition powerset D := [set A : {set T} | A \subset D].

Definition create_sc (s : seq simplex) : {set simplex} :=

\bigcup_(sp <- s) powerset sp.

Finally, to be sure that this function really creates a simplicial complex, we

have to prove that the output of the function create_sc satisfies the property

specified in the definition of a simplicial complex.

Lemma create_sc_correct:

forall s, simplicial_complex (create_sc s).

On the other hand, it is easy to obtain the facets of any list of simplices.

Definition facet (s : seq simplex) (x : simplex) :=

[set y : simplex | (x \subset y) && (y \in s)] == [set x].

Definition facets (s : seq simplex) := filter (facet s) s.

5.2 Abstract formal development 169

Then, we show the lemma which ensure that given a sequence s of simplices,

the simplicial complex obtained from s is the same that the one computed from

the facets of s.

Lemma facets_sc_same:

forall s, create_sc s =i create_sc (facets s).

5.2.2 Abstract incidence matrices

Let us introduce the notion of incidence matrices associated with a simplicial

complex. Since we can work with Z2 as a ground ring, we define a face operator

as a set difference (we remove a vertex from a simplex) and the boundary as the

image of a simplex by the face operator.

Definition face_op (S : simplex) (x : V) := S :\ x.

Definition boundary (S : simplex) := (face_op S) @: S.

We prove the correctness of our definition of boundary by showing that it is

equivalent to a subset relation with constraints on cardinality:

Lemma boundaryP: forall (S : simplex) (B : simplex),

reflect (B \subset S /\ #|S| = #|B|.+1) (B \in boundary S).

The statement reflect P b expresses an equivalence between a proposition

P and a boolean expression b. This allows us to take advantage of the decidability

of some propositions by going back and forth from their logical expressions (useful

for reasoning) to their boolean counterparts (well suited for computations). Let

us recall that this is the heart of SSReflect.

A key argument for our proof is the injectivity of the face operator above,

which we establish as a lemma:

Lemma face_op_inj2: forall (S : simplex),

{in S &, injective (face_op S)}.

The notation {in S &, P} performs localization of predicates: if P is of the

form forall x y, (Q x y) then {in S &, P} means forall x y, x \in S

-> y \in S -> (Q x y). In our case, injective f stands for forall x y,

f x = f y -> x = y.

170 Chapter 5 Homological processing of digital images

Now, before giving the definition of the n-th incidence matrix of a simpli-

cial complex, we can define the more generic notion of incidence matrix of two

sequences of simplices.

Representing an incidence matrix requires an indexing of the simplices in

Left (for the rows) and Top (for the columns). Then Left and Top are defined

as sequences of simplices. Moreover, a coefficient aij of the incidence matrix will

be 1 if the i-th simplex of Left is a face (subset) of the j-th simplex of Top and

0 otherwise.

Thus we can define the incidence matrix of two finite sets of simplices using

the incidence function boundary as follows:

Definition incidenceMatrix :=

\matrix_(i < m, j < n)

if (nth set0 Left i) \in (boundary (nth set0 Top j))

then 1 else 0:bool.

The type annotation 0:bool indicates that the 0 and 1 appearing as coeffi-

cients of the matrix are two booleans elements. Let us note that the booleans are

a representation of the field Z2. Moreover, set0 is the empty set.

We now define the n-th incidence matrix of a simplicial complex c instantiating

Left as the set of (n-1)-simplices of c and Top as the set of n-simplices. The

function n_1_simplices returns a set which consists of the simplices of c whose

cardinality is n (that is, the (n-1)-simplices of c) and analogously for the function

n_simplices. As Top and Left are sequences of simplices we enumerate the

n_simplices and n_1_simplices using enum in the call to the incidenceMatrix

definition.

Variable c: {set simplex}.

Variable n:nat.

Definition n_1_simplices := [set x \in c | #|x| == n].

Definition n_simplices := [set x \in c | #|x| == n+1].

Definition incidence_mx_n :=

incidenceMatrix (enum n_1_simplices)(enum n_simplices).

Then we have all the ingredients to state the boundary theorem (see

Theorem 1):

5.2 Abstract formal development 171

Theorem incidence_matrices_sc_product:

forall (V:finType) (n:nat) (sc: {set (simplex V)}),

simplicial_complex sc ->

(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.

The proof of this theorem uses two important SSReflect libraries which

are matrix and bigop. In order to show what are the kinds of results which

can be proved with these libraries, let us present a sketch of the proof and some

comments about it.

Sketch of the proof. Let Sn−1, Sn, Sn+1 be the set of (n− 1)-simplices of K, the

set of n-simplices of K and the set of (n + 1)-simplices of K respectively. Then,

the incidence matrices are:

Mn(K) =



Sn[1] · · · Sn[r1]

Sn−1[1] a1,1 · · · a1,r1

.

.

.

.

.

.

.
.
.

.

.

.

Sn−1[r2] ar2,1 · · · ar2,r1

,Mn+1(K) =



Sn+1[1] · · · Sn+1[r3]

Sn[1] b1,1 · · · b1,r1

.

.

.

.

.

.

.
.
.

.

.

.

Sn[r1] br1,1 · · · br1,r3



where r1 =]|Sn|, r2 =]|Sn−1| and r3 =]|Sn+1|. Thus,

Mn(K)×Mn+1(K) =


c1,1 · · · c1,r3

...
. . .

...

cr2,1 · · · cr2,r3

 where ci,j =
∑

1≤k≤r1

ai,k × bk,j

To prove that Mn ×Mn+1 is equal to the null matrix, it is enough to prove

that ∀i, j such that 1 ≤ i ≤]|Sn−1| and 1 ≤ j ≤]|Sn+1|, then ci,j = 0. Each of

these coefficients is written:

ci,j =
∑

1≤k≤r1

ai,k × bk,j

Since k enumerates the indices of elements of Sn, we may write:

ci,j =
∑
X∈Sn

F (Sn−1[i], X)× F (X,Sn+1[j]) with F (Y,Z) =

{
1 if Y ∈ dZ
0 otherwise

(5.1)

172 Chapter 5 Homological processing of digital images

dZ is the analogous in our context of the differential operator defined by 1.24

and is equal to:

dZ = {Z \ {x} | x ∈ Z}

This summation can be split depending on whether X ∈ ∂Sn+1[j] or

X /∈ ∂Sn+1[j].

ci,j =
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i], X)× 1 (5.2)

+
∑

X∈Sn|X/∈∂Sn+1[j]

F (Sn−1[i], X)× 0

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i], X) (5.3)

The last summation is expressed over the image of the face operator

x 7→ Sn+1[j] \ {x} which, restricted to Sn+1[j], is injective. Thus, we can reindex:

ci,j =
∑

x∈Sn+1[j]

F (Sn−1[i], Sn+1[j] \ {x}) (5.4)

Subsequently, this summation can also be split depending on whether x ∈ Sn−1[i]

or x /∈ Sn−1[i].

ci,j =
∑

x∈Sn+1[j]|x∈Sn−1[i]

F (Sn−1[i], Sn+1[j] \ {x}) +

∑
x∈Sn+1[j]|x/∈Sn−1[i]

F (Sn−1[i], Sn+1[j] \ {x}) (5.5)

Let us note that if x ∈ Sn−1[i] then Sn−1[i] 6⊂ Sn+1[j] \ {x}, hence the first

sum above is 0.

ci,j =
∑

x∈Sn+1[j]|x/∈Sn−1[i]

F (Sn−1[i], Sn+1[j] \ {x}) (5.6)

Here, we can split our proof considering two cases: Sn−1[i] 6⊂ Sn+1[j] and

Sn−1[i] ⊂ Sn+1[j].

5.2 Abstract formal development 173

In the first case, we have: ∀x ∈ Sn−1[i], F (Sn−1[i], Sn+1[j] \ {x}) = 0, hence

the result holds.

In the second case, Sn−1[i] ⊂ Sn+1[j] implies that if x /∈ Sn−1[i] then

Sn−1[i] ∈ ∂Sn+1[j] \ {x}, so the terms are all 1.

ci,j =
∑

x∈Sn+1[j]|x/∈Sn−1[i]

1 (5.7)

=]|Sn+1[j] \ Sn−1[i]|

= n+ 2− n = 2 = 0 mod 2

�

As can be seen in the sketch of the proof, a large part of it is devoted to the

work with summations, for which the bigop library has played a key role in its

formalization.

For instance, the first summation splitting (equation (5.2)) is performed by:

rewrite (bigID (mem (boundary (enum_val j)))).

where j belongs to Sn+1.

The lemma bigID states that an iterated operation using a commutative

monoidal operator can be split:∑
i∈r|Pi

Fi =
∑

i∈r|Pi∧ai

Fi +
∑

i∈r|Pi∧∼ai

Fi

It is also possible to split a summation (equation (5.5)) and at the same time

rewrite the first resulting sum to 0:

rewrite (bigID (mem (enum_val i))) big1.

The lemma big1 states that a monoidal operator iterated over elements that are

all equal to the neutral element produced as result the neutral element:∑
i∈r|Pi

0 = 0

174 Chapter 5 Homological processing of digital images

Therefore, after the last tactic, the system will require a proof that all the

terms of the first resulting summation are zero. The lemma big1 is applied to

obtain equations 5.3 and 5.6 of the sketch of the proof.

Our proof relies on two main reindexations: from ordinals to n-simplices (5.1)

and later on from simplices to vertices (5.4). To perform the first reindexation,

the script has the following shape:

rewrite (reindex_onto (enum_rank_in Hx0) enum_val); last first.

by move=> x _; exact:enum_valK_in.

where:

• Hx0 is a proof that there exists at least one n-simplex,

• enum_rank_in enumerates the n-simplices since Hx0 ensures there is at least

one,

• enum_val enumerates the ordinals over which the sum is expressed,

• reindex_onto reindexes from ordinals to n-simplices, given a bi-

jection between both sets. Indeed, the second line proves that

enum_val ◦ enum_rank_in = id.

The second reindexation is based on the injectivity of the face operator:

rewrite big_imset; last exact:face_op_inj2.

Rewriting with the lemma big_imset triggers a check that the summation is

expressed over the image of a set by a function. In our case, the system auto-

matically infers that this function is the face operator face_op, and will then ask

for a proof of its injectivity.

The lemma eq_big and its variants eq_bigl and eq_bigr allow us to rewrite

the predicate or the operand of an iterated operation. It is applied in particular

to obtain equation 5.7.

rewrite (eq_bigr (fun _ => 1)).

The system will, of course, require a proof that the operand is equal to 1. Then

it will rewrite the expression to a constant summation, allowing the use of the

5.2 Abstract formal development 175

lemma big_const to replace it with a product (cardinal of the iterated set by

the constant value).

Simple arithmetic arguments on cardinals will then complete the proof.

Finally, we can instantiate Lemma incidence_matrices_sc_product for

any simplicial complex. In particular, for the ones generated by the function

create_sc as we can see in the following lemma.

Lemma incidence_matrices_sc_product_facets (V:finType) (n:nat)

(s: seq (simplex V)) : (n >= 1)%N ->

(incidence_mx_n (create_sc s) n) *m

(incidence_mx_n (create_sc s) (n.+1)) = 0.

Proof.

by rewrite incidence_matrices_sc_product //;

apply: create_sc_correct.

Qed.

5.2.3 Abstract formalization of homology

The SSReflect libraries include enough ingredients to undertake the task of

defining and computing homology from matrices.

First of all, we define the notion of homology for vector spaces. Let K be

a field, V 1,V 2,V 3 vector spaces on K, and f : V 1 → V 2, g : V 2 → V 3 linear

applications; then, the homology of f and g is the quotient between the kernel of

g and the image of f (taking into account that the condition g ◦f = 0 is verified).

This is translated into SSReflect in the following way.

Variable (K : fieldType) (V1 V2 V3 : vectType K)

(f : linearApp V1 V2) (g : linearApp V2 V3).

Definition Homology := ((lker g) :\: (limg f)).

Let us note that the kernel of a linear function, as for instance f, in SSRe-

flect is defined with the function lker, lker f, and its image with limg,

limg f, and the quotient between vector spaces A and B is denoted as A::B.

176 Chapter 5 Homological processing of digital images

With these abstract definitions, we can prove the following results.

− g ◦ f = 0→ dim(ker g ∩ im f) = dim(im f)

− dim(ker g/ im f) = dim(ker g)− dim(ker g ∩ im f)

− dim(ker g) = dim V 2− dim(im g)

− g ◦ f = 0→ dim Homology = dim V 2− dim(im g)− dim(im f) (5.8)

Let us show the statement in SSReflect of the first property.

Lemma dim_ker_intersection_im:

(g \o f = \0)%VS-> \dim((lker g) :&: (limg f)) = \dim(limg f).

We can see that the notation to represent the composition of two linear func-

tions is \o. Moreover, the intersection between two subspaces is denoted by

:&:. Let us highlight that this abstract definition makes the proof of the above

properties easier since SSReflect libraries include a lot of lemmas about vector

spaces.

In particular, we can easily prove that g ◦ f = 0 → im f ⊆ ker g. Then,

g ◦ f = 0 → ker g ∩ im f = im f (the capvkr lemma provides this result) and,

therefore, the previous lemma is proved.

In this way, we define homology for vector spaces and provide a formula to

compute its dimension (see Formula 5.8). Nevertheless, we do not usually work

with linear applications when trying to compute homology but with matrices

which represent those linear applications. In particular, given two matrices with

coefficients in a field K mxf and mxg, of sizes v1 × v2 and v2 × v3 respectively,

and such that their product is the null matrix, the dimension of the corresponding

homology vector space is given by the formula: v2 − (rank mxg) − (rank mxf).

This definition is introduced as follows.

Definition dim_homology (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v2,v3))

:= v2 - \rank mxg - \rank mxf.

Now, the correctness of dim_homology can be shown by proving that given two

matrices mxf and mxg whose product is the null matrix (mxf *m mxg = 0), then

the result obtained using dim_homology is equal to the dimension of the homology

group associated with the linear applications defined from mxf and mxg. Since

5.3 An effective formal development 177

given a matrix M, (LinearApp M) builds the linear application associated with M,

we can state such a result as follows.

Lemma dimHomologyrankE:

mxf *m mxg = 0 -> \dim Homology (LinearApp mxf) (LinearApp mxg)

= dim_homology mxf mxg.

Finally, we can connect homology with simplicial complexes. Namely, in order

to define the homology in degree n of a simplicial complex we instantiate the

Homology definition using the linear applications associated with the incidence

matrices in degree n+ 1 and n as f and g respectively.

Definition Homology_sc_n (sc : {set simplex}) (n : nat) :=

Homology (LinearApp (incidence_mx_n c n.+1))

(LinearApp (incidence_mx_n c n)).

It is worth noting that this development take up about 1300 lines. Namely,

it involves 38 definitions and 77 auxiliary lemmas. However, the definitions pre-

sented up to now cannot be used to compute homology since some notions, like

matrices or bigops, are locked in a way that do not allow us direct computations.

This is because the use of SSReflect libraries may trigger heavy computations

during deduction steps, that would not terminate within a reasonable amount

of time. To overcome this pitfall and following the idea which we have used in

Section 3.5 in relation to the notion of reduction, we proceed to introduce the

same development but using structures which can be used to compute.

5.3 An effective formal development

Let us introduce the notions presented in previous section but in a way that they

can be used to compute. Let us recall that a vertex was represented having a

finite type V. Moreover, a simplex was defined as a set of V endowed with a partial

order between its elements was associated. A consequence of putting an order

on vertexes is that simplices can be represented in a unique way as ordered lists.

Taking this into account, now we define a simplex as a sequence of V because we

can compute with this data type. Then we have to provide a relation between

the components of the simplex. This relation, called leT, is a binary boolean

relation over V. Apart from that, this relation has to be transitive and irreflexive.

178 Chapter 5 Homological processing of digital images

Moreover, if faces is a sequence of simplices (sequences of V), every element

of each one of these simplices also have to be reordered according to the same

relation. In addition, every simplex has not repeated vertices.

Variable V : finType.

Variable leT : rel V.

Variable simplex : seq V

Hypothesis tr_leT : transitive leT.

Hypothesis irr_leT : irreflexive leT.

Variable faces : seq (simplex).

Hypothesis Hfaces : all (sorted leT) faces.

Hypothesis Hfaces_uniq : all uniq faces.

Furthermore, we define the equivalent notions to powerset and create_sc

on sequences which are respectively powerset_seq and sc.

Fixpoint powerset_seq (x : seq V) :=

if x is h::t then

let X := powerset_seq t in foldl (fun xs x => (h::x)::xs) X X

else [::[::]].

Definition bigcup_seq s (f : seq V -> seq (seq V)) :=

foldl (fun xs x => (f x) ++ xs) [::] s.

Definition sc := undup (bigcup_seq faces powerset_seq).

Some remarks about the above functions are required. The statement

foldl f a s where f: seq V -> seq (seq V), a:seq V, s:seq V behaves as

f (f ... (f a x_1) ... x_n-1) x_n where x_1 . . . x_n are the elements of s.

Given a function f and a sequence, the bigcup_seq function produces the con-

catenation of all the subsequences and finally, the undup function removes the

duplicate elements.

In this way, we have defined the executable counterpart of simplicial com-

plexes. Let us focus now on the incidence matrices. To define the concrete face

operator ex_face_op we use the function rem. This function takes as argument

x: V and s: seq V, and returns the sequence obtained of removing x from s. In

5.3 An effective formal development 179

our case, it removes a vertex of a simplex. Then the function ex_boundary is

defined using ex_face_op.

Definition ex_boundary (S : seq V) :=

foldl (fun xs x => ex_face_op S x :: xs) [::] S.

Let us recall that the definition of the incidence matrices involves an indexing

of the simplices for the rows and for the columns. Consequently, we define these

sets as sequences of sequences of V instead of sequences of sets of V to be able

to compute with them. Namely, to define the simplices of degree n we use the

command filter f sc which lets us select the elements of sc which satisfy the

boolean function f. In this case, f selects the simplices whose size is n. Finally,

we can define the executable version of the incidence matrix.

Definition ex_n_1_simplices := filter (fun s => size s == n) sc.

Definition ex_n_simplices := filter (fun s => size s == n.+1) sc.

Definition ex_incidence_mx :=

let ex_boundaries := map ex_boundary ex_n_simplices in

map (fun x => map (fun y => if x \in y then 1 else 0:bool)

ex_boundaries) ex_n_1_simplices.

The heart of this definition consists in checking for every x, a (n-1)-simplex, and

for every y, a n-simplex of a simplicial complex, if x belongs to y. Let us highlight

that to build incidence matrices is not necessary the complete simplicial complex

but only its facets.

Finally, it leaves the definition of the executable version to compute the ho-

mology dimension. We use the rank algorithm developed in [CDMS] to define

ex_homology which takes as argument two executable matrices (represented by

means of sequences of sequences) mxf and mxg whose dimensions are v1×v2 and

v2×v3 respectively, and computes the homology dimension.

Definition ex_homology (v1 v2 v3:nat) (mxf mxg : matZ2):=

v2 - (rank v2 v3 mxg) - (rank v1 v2 mxf).

This definition can be instantiated for the case of our executable incidence ma-

trices. Up to now, we have two different definitions of both incidence matrices

and homology dimension. For the first development (the abstract one), we have

180 Chapter 5 Homological processing of digital images

proved a series of properties. However, these results have not been proved for the

second representation. We can face this problem in two different ways. The for-

mer would be proving directly the same results with this new representation. In

this case, the difficulty of the proofs will be higher than in the abstract case since

the big power of SSReflect was used to work with the abstract representation.

The latter is proving the equivalence between both definitions up to a change of

representation. We have chosen this second option.

5.4 The bridges between both representations

This section is split into two parts. Firstly, we focus on proving the equivalence be-

tween the different representations of incidence matrices presented in Section 5.2

and Section 5.3. Secondly, we link the different definitions given to define the

homology.

5.4.1 Incidence matrices bridge

We focus on creating the bridge between both definitions of incidence matri-

ces. To this aim, the simplices will be represented as a sequence of sets of a

finite type instead of as sequence of sequences of a finite type (used in the effec-

tive formal development). Then, we will define again a sequence of n-simplices

(n_simplices_seq) and the (n-1)-simplices (n_1_simplices_seq), any set of

faces (faces_set) and finally the simplicial complex (sc_set) from the defini-

tions given in the concrete version. For instance, to define faces_set we use

faces. Let us show two of these definitions.

Definition faces_set := [seq [set t \in x] | x <- faces].

Definition sc_set := create_sc faces_set.

Let us note that in the definition of sc_set we can use the abstract function

named create_sc since faces_set has the proper type seq {set V}.

Two definitions in SSReflect for incidence matrices have been introduced:

incidenceMatrix, the abstract one, and ex_incidence_mx, the effective one.

The main difference is the data type of these matrices. In particular, if we define

an abstract matrix and then we want to obtain the effective one, we will only use

5.4 The bridges between both representations 181

the function seqmx_of_mx which transforms a matrix into a sequence of sequences

as we explained in Section 3.3. To prove this equality between both definitions,

we are going to follow the idea presented in [DMS12a] which we have already

used in our developments (see Subsection 3.4.3.4). Then, we refine the function to

transform the incidence matrix into an efficient one using SSReflect structures.

In this case, we can define a new incidence matrix im_set using incidenceMatrix

with the new definitions about the n or (n-1)-simplices.

Definition im_set :=

incidenceMatrix n_1_simplices_seq n_simplices_seq.

Let us note that in this case the aim of proving that this definition behaves

like the abstract version is extremely easy, due to the use of incidenceMatrix

to define it.

The second step is proving that the concrete definition ex_incidence_mx is

equal to the change of representation (from abstract matrices to sequence of se-

quences) applied over im_set. Then, we need to prove similar lemmas which link

both developments. For instance, lemmas related to boundaries or to n-simplices

of a chain complex. Let us show the statements of two examples.

Lemma ex_boundaryP s :

uniq s ->

boundary[set t \in s]=i [seq [set t \in x]| x <- ex_boundary s].

Lemma n_simplices_seqE :

n_simplices_seq =i n_simplices sc_set n.

Both statements have similar structures and relate the abstract develop-

ment to the efficient one. For instance, the second one states that the efficient

function n_simplices_seq builds the same n-simplices than the abstract one

n_simplices. Concretely, the statement P =i Q means that the P and Q sets are

extensionally equivalent i.e., ∀x, x belongs to P if and only if x is also in Q.

Finally, let us show the statement which relates both definitions.

Lemma im_setE : ex_incidence_mx = seqmx_of_mx im_set.

182 Chapter 5 Homological processing of digital images

5.4.2 Homology bridge

Finally, we prove the correctness of ex_homology by showing its equivalence to

\dim Homology up to a change of representation (this domain transformation is

given by seqmx_of_mx).

Lemma ex_homology_rankE:

forall(mxf:’M[K]_(w1,w2))(mxg:’M[K]_(w2,w3)),

ex_homology (seqmx_of_mx mxf) (seqmx_of_mx mxg)

= \dim Homology mxf mxg.

This lemma will be proved following the schema of Figure 5.2.

\dim Homology

(LinearApp mxf)(LinearApp mxg)

dim_homology

mxf mxg

ex_homology

(seqmx_of_mx mxf) (seqmx_of_mx mxg)

dimHomologyrankE

ex_Betti_rank_Betti_rank_E2

Figure 5.2: Bridges between the different homology concepts

Let us note that we use the definition dim_homology as a bridge between

the other definitions. Moreover, ex_homology_rankE will be proved applying

the lemmas which can be seen in Figure 5.2: dimHomologyrankE (see Subsec-

tion 5.2.3) and ex_Betti_rank_Betti_rank_E2. The last one is an equivalence

between both definitions, in fact the unique difference is the type of the matrices.

Thus, we have an executable program to compute homology from a simplicial

complex whose correctness has been verified in Coq; therefore, we can claim

that its results will always be correct. Now let us present how we can use this

development to compute homology from digital images.

5.5 From digital images to homology 183

5.5 From digital images to homology

It is worth noting that there are several methods to construct a simplicial complex

from a digital image [ADFQ03]. We are going to explain one of these methods.

Roughly speaking, the chosen method consists of obtaining a sequence of facets

from a digital image. Then, as we have explained in the previous section, we can

obtain the simplicial complex associated with the facets. So, we only need to

explain how to get the facets from a digital image.

We are going to work with 2D monochromatic images, that are images with

only black and white pixels. This kind of images can be encoded as sequences

of sequences of booleans where the values true and false represent respectively

black and white pixels.

Let I be an image encoded as a sequence of sequences of booleans. Let

V = (N,N) be the vertex set, each vertex is a pair of natural numbers. Let

p = (a, b) be the position of a black pixel in I. For each p we can obtain two

2-simplices which are two facets of the simplicial complex associated with I (which

we name set1ij and set2ij). Namely, for each p = (a, b) we obtain the following

facets: ((a, b), (a+ 1, b), (a+ 1, b+ 1)) and ((a, b), (a, b+ 1), (a+ 1, b+ 1)). If we

repeat the process for the positions which correspond with all the black pixels in

I, we obtain the facets of a simplicial complex associated with I, let us called it

KI .

Example 5.1. Consider the image depicted in Figure 5.3. This image, I, can be

codified by means of the 2-dimensional array: ((true,false),(false,true)).

0 1

0

1

(1,2)

(2,1)

(2,2)

(0,0)

(0,1)

(1,0)

(1,1)

Figure 5.3: A digital image and its simplicial complex representation

Then, with the previously explained process we obtain the facets of KI . The

positions of the black pixels of the image I are (0, 0) and (1, 1), so the facets that

184 Chapter 5 Homological processing of digital images

we obtain are:

(((0, 0), (1, 0), (1, 1)), ((0, 0), (0, 1), (1, 1)), ((1, 1), (2, 1), (2, 2)), ((1, 1), (1, 2), (2, 2)))

This method to obtain the facets of a simplicial complex associated with a 2D

image can be generalized to higher-dimensional images [OS03].

It is worth noting that even the bigger digital images have always a finite

number of components, hence a finite number of vertices and then our vertex set

V consists of a finite number of vertices. Therefore, simplicial complexes coming

from digital images are always of finite type.

Let us note that every pixel of the image is located knowing its position. Then

the function setijList receives two naturals which represent the position of a

black pixel and creates their two corresponding facets set1ij and set2ij.

Definition setijList (i j:nat):= (set1ij i j)::(set2ij i j)::nil.

At this moment our aim is building all the facets of a digital image. The procedure

to obtain the facets associated with an image consists of running the successive

elements of the image gathering the facets associated with each black pixel. This

task is carried out with the createfacets function. This function receives a se-

quence of sequences of booleans and returns a sequence of sequences of sequences

of natural numbers.

Up to now we have only defined a way to build the facets from a digital

image. Then we introduce some properties which the createfacets function

has to satisfy to make sure that the results of this function are the expected

ones. The three first properties are in charge of the completeness properties of

createfacets and the last one of its correctness. Let i and j be natural numbers

and M be a sequence of sequences of booleans:

- If set1ij ∈ createfacets M then set2ij ∈ createfacets M.

- If set2ij ∈ createfacets M then set1ij ∈ createfacets M.

- If M [i, j] = true then set1ij ∈ createfacets M.

- If set1ij ∈ createfacets M then M [i, j] = true.

5.6 Computing homology within Coq 185

Let us recall that our functions about simplicial complexes receive a sequence

of simplices of type seq (seq V) with V a finite type. However, the function

which builds the facets of an image returns the type seq (seq (seq nat)). In

particular, a vertex is defined as a sequence of natural numbers. In fact, this se-

quence always consists of two natural numbers where the first number is bounded

by the number of rows, m, and the second one by the number of columns, n. Then

a vertex can be encoded as a pair of elements of finite type. Namely, the first

element of the pair will belong to the ordinal ’I_m where m is the number of rows

of the image, and the second one is in the ordinal ’I_n with n the number of

columns of the image. Using this idea, we can transform the output produced

by the createfacets function into a suitable representation for our simplicial

complexes programs. The listSimplex_to_seqSimplex function is in charge of

this task.

Taking everything into account, we define the corresponding ordinals. Let us

define the ordinals Zm and Zn with the constructor ordinal_finType. Then a

vertex is defined as follows.

Definition Vertex := (prod_finType Zm Zn).

Then the type Simplex which represents any face is a sequence of vertices

(seq Vertex). Finally, we have to define the conversion functions, for instance,

the function which obtains an item of type Vertex from a sequence of natural

numbers. In particular, the listSimplex_to_seqSimplex function allow us to

define a sequence of Simplex from a sequence of sequences of sequences of natural

numbers.

Therefore, we can link this construction about digital images with our pro-

grams to compute homology from simplicial complexes. To sum up, given an

image, we compute the facets of the simplicial complex, then we construct the

incidence matrices and finally, compute the homology. In order to clarify how we

can use those programs, let us present an example in the following section.

5.6 Computing homology within Coq

First, we show the way of computing the homology from an image step by step

starting with the computation of the facets of the image and finishing with its

186 Chapter 5 Homological processing of digital images

homology dimension. Let us compute the homology of the image of Figure 5.4.

Figure 5.4: An image with four black pixels and a hole

To work with this image, we define it in the following way.

Definition image := ((false::true::false::nil)::

(true::false::true::nil)::

(false::true::false::nil)::nil).

The following step consists in defining the facets and later on, the simplicial

complex associated with these facets.

Definition facets := (createfacets image).

Definition c := (listSimplex_to_seqSimplex (ltn0Sn (size image))

(ltn0Sn (size (head nil image))) facets).

We can show the result of these definitions using the command Eval

vm_compute. For instance, to compute the facets we use:

Eval vm_compute in facets.

= [:: [:: [:: 0; 1]; [:: 1; 1]; [:: 1; 2]];

[:: [:: 0; 1]; [:: 0; 2]; [:: 1; 2]];

[:: [:: 1; 0]; [:: 2; 0]; [:: 2; 1]];

[:: [:: 1; 0]; [:: 1; 1]; [:: 2; 1]];

[:: [:: 1; 2]; [:: 2; 2]; [:: 2; 3]];

[:: [:: 1; 2]; [:: 1; 3]; [:: 2; 3]];

[:: [:: 2; 1]; [:: 3; 1]; [:: 3; 2]];

[:: [:: 2; 1]; [:: 2; 2]; [:: 3; 2]]]: seq (seq (seq nat))

Then we can define the incidence matrices which are related to this image,

concretely to its 0-simplices (vertices), 1-simplices (edges) and 2-simplices (trian-

5.6 Computing homology within Coq 187

gles) of the image. These elements appear in the incidence matrix in degree 0, 1,

and 2.

Definition im0 := ex_incidence_mx (sc c) 0.

Definition im1 := ex_incidence_mx (sc c) 1.

Definition im2 := ex_incidence_mx (sc c) 2.

Finally, using the function ex_homology we can define the homology in degrees

0 and 1. This function receives three natural numbers (m, n, and p) and the

necessary incidence matrices (M with size m × n and M1 with size n × p) to

define the homology in the corresponding degree.

Definition H0:= ex_homology 0 (size (ex_n_simplices sc 0))

(size (ex_n_simplices sc 1)) im0 im1.

Definition H1:= ex_homology (size (ex_n_simplices sc 0))

(size(ex_n_simplices sc 1)) (size(ex_n_simplices sc 2)) im1 im2.

Evaluating these two last definitions, we obtain that the (dimension of the)

homology in degree 0 is 1 and the one in degree 1 is also 1. This result has an

interpretation on the initial image: the image has one connected component and

one hole.

The way of computing the homology is not the most convenient since we have

to define the previous objects to be able to define the homology and finally, to

compute it. Then, we are going to define and prove some results to compute the

homology of degree n from the image directly.

Let us recall that any set of faces was represented as a sequence of sequences

s, of a finite type V. Moreover, we defined a relation between the elements of V

which is transitive and irreflexive. In these conditions, we can wrapper the details

or the parameters which are necessary to use the function ex_homology in the

definition exHomologySCFacets.

Definition exHomologySCFacets := ex_homology

(size (ex_n_1_simplices (sc s) n))

(size (ex_n_simplices (sc s) n))

(size (ex_n_simplices (sc s) n.+1))

(ex_incidence_mx (sc s) n) (ex_incidence_mx (sc s) (n.+1)).

188 Chapter 5 Homological processing of digital images

Let us note that the statement (sc s) returns the simplicial complex associated

with s. Moreover, the following lemma verifies the correctness of this new defini-

tion since the output of exHomologySCFacets is equal to the computation of the

dimension of the homology computed with the abstract definition Homology.

Lemma exHomologySCFacetsE :

exHomologySCFacets =

\dim Homology

(LinearApp (mx_of_seqmx

(vdim (W1 bool_fieldType (size(ex_n_1_simplices (sc ss) n))))

(vdim (W2 bool_fieldType (size(ex_n_simplices (sc ss) n))))

(ex_incidence_mx (sc ss) n)))

(LinearApp (mx_of_seqmx

(vdim (W2 bool_fieldType (size(ex_n_simplices (sc ss) n))))

(vdim (W3 bool_fieldType (size(ex_n_simplices (sc ss) n.+1))))

(ex_incidence_mx (sc ss) n.+1))).

We are going to apply this new definition to compute the homology in de-

gree n given an image. We start working with a variable named imag which is a

sequence of sequences of booleans which represents the image. Then, we define

m and n as the dimensions of imag enforcing the conditions of that these values

are higher than 0. Let us highlight that we have to define a boolean relation

between the vertices since in the concrete version we only have a general rela-

tion between them. This relation is defined as follows. Let v1 = (v1.1, v1.2)

and v2 = (v2.1, v2.2) be two vertices, v1 is lower than v2 if v1.1 < v2.1 or if

v1.1 = v2.1 ∧ v1.2 < v2.2. Such a relation is transitive and irreflexive. Let us

show this definition in SSReflect.

Definition ltord (i j : Vertex m n) :=

((fst i) < (fst j))

|| (((fst i) == (fst j)) && ((snd i) < (snd j))).

Moreover, we can define the homology in degree n given an image as follows.

Definition HomologyImage (n:nat) := exHomologySCFacets n

(listSimplex_to_seqSimplex m0 n0 (createfacets image)).

Finally, we are going to compute the groups of homology in degree 0 and 1

of Figure 5.4 using the last definition. Let us recall that the definition image

5.7 Computing homology using discrete vector fields within Coq 189

defined as a sequence of sequences of booleans represents the image. Before

computing the groups of homology, we have to prove that the dimensions of

image are higher than 0, i.e., it has at least a row and a column. These results,

which correspond respectively with mimage and nimage lemmas, are proved just

by computing. Let us focus on the first lemma, we define m as the number of rows

of a sequence of sequences of booleans, then (m image) computes the number

of rows of the sequence image. The mimage lemma is proved simply using the

instruction by compute.

Finally, we compute the homology in degree 0 and 1 in the following way.

Eval vm_compute in (HomologyImage mimage nimage 0).

Eval vm_compute in (HomologyImage mimage nimage 1).

We need as input parameters the two previous lemmas and the degree of the

homology. Let us note, that Coq is able to infer the image from the arguments

mimage and nimage.

Up to now, we have introduced a method to compute the dimension of the

homology groups from an image. This task is carried out by means of the compu-

tation of the incidence matrices of the chain complex associated with an image.

Let us recall that we could reduce this chain complex according the explanation

in Chapter 3 based on admissible discrete vector fields. In the following section,

we focus on computing homology using this tool.

5.7 Computing homology using discrete vector

fields within Coq

We focus on defining the homology of an image using the method described in the

previous sections of this chapter but using the reduction tool based on admissible

discrete vector field which we have introduced in Chapter 3.

The image of Figure 5.4 is defined in the same way than in the previous sec-

tion just as its facets and its simplicial complex sc associated. Then let us define

the incidence matrices but in this case, these matrices are defined as sequences of

sequences of Z2 instead of booleans, because we use the function dvford which

computes the ordered and admissible discrete vector field from a matrix represen-

190 Chapter 5 Homological processing of digital images

ted as sequence of sequences of Z2. We use the function matboolseq_to_matZ2

to change the type of these matrices. Let us show the definition of the incidence

matrix in degree 0 im0_Z2. The other matrices will be defined in an analogous

way, im1_Z2 and im2_Z2. Then, we define the ordered and admissible discrete

vector field dvfo.

Definition im0_Z2 :=

(matboolseq_to_matZ2 (ex_incidence_mx (sc c) 0).

Definition dvfo := dvford (im1_Z2).

Thanks to this vector field, we can reduce the incidence matrices as we ex-

plained in Section 3.1. Let us recall that the incidence matrix in degree 0 is empty

when we work with 2D images. Consequently, we cannot reduce it. Then, we

focus on reducing the other matrices. But, previously, we define the sequences

which allows us to reorder the matrices and finally, to reduce them. These se-

quences come from the vector field computed.

Definition s1:= fill (getfirstElemseq dvfo) (size im1_Z2).

Definition s2:=

fill (getsndElemseq dvfo) (size (head [::] im1_Z2)).

Definition im1_red:=

(getMatrixReduced (size dvfo)(reorderM_dvf dvfo im1_Z2)).

Definition im2_red:=

(dsubseqmx (size dvfo)(t_take_rows_s s2 im2_Z2)).

Then, we can define the homology in degree 0 and 1 using the function

ex_homology defined in Section 5.3.

Definition H0_dvf:= ex_homology 0 (size im1_red)

(size (head [::] im1_red)) im0_Z2 im1_red.

Definition H1_dvf:= ex_homology (size im1_red)

(size im2_red) (size (head [::] im2_red)) im1_red im2_red.

Finally, the homology groups of Figure 5.4 are computed in the following way.

Eval vm_compute in (H0_dvf image1).

Eval vm_compute in (H1_dvf image1).

5.7 Computing homology using discrete vector fields within Coq 191

The obtained results are the same that we got in the last section. The size

of the image is small and the difference of time required in both cases is not

appreciable. In the next chapter we will include more interesting examples.

Chapter 6

Experimental aspects

This chapter is devoted to show some experiments carried out throughout the

whole work. First, we will explain the testing performed on our implementation

in Haskell. It is important to remove the possible bugs to reduce the time in-

volved in the verification process. Second, we focus on profiling and analyzing the

behavior of our algorithm paying attention to the possible improvements in our

developments. Third, we show some time comparisons to compute the dimen-

sions of homology groups of different images, depending on the system (Haskell

or SSReflect), or whether the reduction process has been applied. Finally, we

briefly include some further experiments with alternative algorithms to the RS

algorithm.

6.1 Testing

In this section, we detail the testing process which has been applied to increase

the reliability of our code. Although this is not enough to ensure that a program

is correct, it worked properly for a considerable amount of examples. First, we

start testing our implementation of the RS algorithm with the incidence matrices

associated with several images. We want to compute the homology groups in

degree 0 and in degree 1 of the corresponding images. If the image is small we

can manually check that the final result is equal to the connected components or

193

194 Chapter 6 Experimental aspects

to the holes, respectively, which can be simply observed in the image. It could

also happen that the final result was correct but the method was not properly

implemented. Then, we can split the process and check every computation step

by step. There are five main steps: the computation of an admissible discrete

vector field, the reordering of this vector field, the reordering of the incidence

matrices, the computation of the reduced matrices, and the computation of the

homology using the reduced matrices.

Let us show as a first example the image of Figure 6.1 (1×3 pixels). It consists

of two black pixels. The incidence matrices associated with the image are:

0 1

2 3

4 5

6 7

Figure 6.1: 2 black pixels

d1 =



(0, 1) (0, 2) (0, 3) (1, 3) (2, 3) (4, 5) (4, 6) (4, 7) (5, 7) (6, 7)

(0) 1 1 1 0 0 0 0 0 0 0

(1) 1 0 0 1 0 0 0 0 0 0

(2) 0 1 0 0 1 0 0 0 0 0

(3) 0 0 1 1 1 0 0 0 0 0

(4) 0 0 0 0 0 1 1 1 0 0

(5) 0 0 0 0 0 1 0 0 1 0

(6) 0 0 0 0 0 0 1 0 0 1

(7) 0 0 0 0 0 0 0 1 1 1



d2 =



(0, 1, 3) (0, 2, 3) (4, 5, 7) (4, 6, 7)

(0, 1) 1 0 0 0

(0, 2) 0 0 1 0

(0, 3) 1 1 0 0

(1, 3) 1 0 0 0

(2, 3) 0 1 0 0

(4, 5) 0 0 1 0

(4, 6) 0 0 0 1

(4, 7) 0 0 1 1

(5, 7) 0 0 1 0

(6, 7) 0 0 0 1


From these matrices we can compute every step and test the properties ob-

6.1 Testing 195

tained with the expected results.

Let us note that the incidence matrices are big regarding to the size of the

image. These incidence matrices are built from the black pixels of the image.

Each one of these pixels can originate 4 rows and 5 columns in d1 and 5 rows and

2 columns in d2. In this example, the incidence matrices are of the following size:

8 × 10 and 10 × 4. For the image of Figure 6.2 (5 × 5 pixels), they are of size:

26× 45 and 45× 24.

Figure 6.2: Image 5× 5 pixels

6.1.1 Automated testing

The manual testing is very tedious and requires much time. So, it is not a feasible

option if we want to check that the reduction preserves the homology for a big

amount of examples. To this aim, we use fKenzo [Her09] which is a friendly

interface of the Kenzo system [DRSS98]. fKenzo includes a module for digital

images which can compute the required homology groups. To this aim, we need

the incidence matrices which are obtained from the chain complex associated with

an image.

Let us create a file with a battery of pairs of matrices (the corresponding

incidence matrices) which come from digital images and their computed homology

groups. The examples of 2D digital images are randomly generated as matrices

whose entries are 0’s and 1’s. Then, Kenzo computes the homology from the image

196 Chapter 6 Experimental aspects

as we explained in Section 1.1. Afterwards, we have implemented an algorithm in

Haskell which allows us to read this file and for every pair of matrices we compute

the homology groups. Then, it is checked that the dimensions of the homology

groups are the same that the ones computed by Kenzo. We also implemented in

Haskell the RS algorithm which allows us to obtain the reduced matrices. This

also allows us to calculate the percentage of reduction of the incidence matrices.

Moreover, the homology groups are computed using the reduction obtained by

applying the RS algorithm. Finally, it is also checked that we obtain the same

groups that the ones obtained using the previous methods.

This study has been performed with 500 matrices which corresponds with

250 digital images. From this process, we can highlight the following comments.

First, let us focus on the percentage of reduction. In our work, we compute

the admissible discrete vector field of the incidence matrix in degree 1, d1 and

then we reorder both d1 and d2. Finally, we obtain the reduced matrices d̂1 and

d̂2. However, this process can be repeated computing now an admissible discrete

vector field over the differential d̂2. The average percentages of reduction of the

initial matrices applying once or twice the RS algorithm are shown in Table 6.1.

Let us distinguish between the differential in degree 1 and the one in degree 2

since the results are different. Let us note that if the algorithm is applied twice

all the matrices d2 are completely reduced.

Algorithm Algorithm

applied once applied twice

d1 d2 d1 d2

% of reduction 98 49 95 100

Table 6.1: Percentages of reduction of matrices

As we said, apart from the percentages of reduction we can check if the applied

reduction keeps the homological properties. In particular, it allows us to test if

the results obtained when computing the homology groups in dimension 0 and 1

using the reduction algorithm, coincide with the ones computed in the file. This

is another way of checking that our implementation in these test cases is correct.

6.1 Testing 197

6.1.2 Testing with QuickCheck

As we said in Subsection 1.3.2, QuickCheck allows us to randomly test properties

of programs. The process to test that a program verifies some properties consists

of two steps:

• Providing a specification of the program.

• Testing that the properties included in the specification are satisfied by a

number of cases which have been randomly generated.

QuickCheck is a tool which can be used in different systems. In our case, we

use it into Haskell. The basic instructions to define a property are the following

ones:

<name_property><parameters> = <prop>

<name_property><parameters> = <conditions> ==> <prop>

The difference between these two expressions is that the second one includes some

preconditions. Then the command QuickCheck tests that the property is true in

generated cases. Some examples were introduced in Subsection 1.3.2.

The system returns whether the testing has been successful. In the failed

cases, the system shows the concrete example which has caused that the property

was false. The problem can appear due to two reasons. One reason is the input

parameters do not satisfy the preconditions of the property. The other one is

that the program is not correct. This is a good point to sort out some of the

mistakes which could appear in an implementation.

In order to test the RS algorithm, we state the properties which should be

verified. In our case, we want to check that the output given by gen_admdvf_ord

(function which uses genDvfOrders and builds an admissible discrete vector field)

consists of an admissible discrete vector field and the set of relations built in

the RS algorithm. Then, M is a matrix over Z2 with m rows and n columns,

V = (ai, bi)i is a discrete vector field from M and ords is the transitive closure of

the relations associated with V , the properties to test are the ones coming from

Definition 1.42 and the admissibility property adapted to the Z2 case.

198 Chapter 6 Experimental aspects

1. 1 ≤ ai ≤ m and 1 ≤ bi ≤ n.

2. ∀i ,M(ai, bi) = 1.

3. (ai)i (resp. (bi)i) are pairwise different.

4. ords does not have any loop (admissibility property).

These four properties have been encoded in Haskell by means of a function

called isAdmVecfield. To test in QuickCheck that our implementation of the RS

algorithm fulfills the specification given by isAdmVecfield, the following property

definition, using QuickCheck terminology, is defined.

condAdmVecfield M = let advf = (gen_admdvf_ord M) in

isAdmVecfield M (advf.1) (advf.2)

The definition of condAdmVecfield states that given a matrix M, the output

of genDvfOrders, both the discrete vector field (first component) and the rela-

tions (second component) from M, fulfill the specification of the property called

isAdmVecfield. Now, we can test whether condAdmVecfield satisfies such a

property.

> quickCheck condAdmVecfield

+ + + OK, passed 100 tests.

The result produced by QuickCheck means that QuickCheck has generated

100 random values for M, and the property was true for all these cases.

We could also check other properties such as the top-left submatrix of the

reordered matrix using the admissible discrete vector field is a triangular matrix.

Moreover, this matrix is invertible and therefore, its determinant is 1. Initially,

we define this property in the following way.

prop_conjuntaZ M =

isAdmVecfield M vf ord && ((triangular 1 (epsilon M)) == True)

&& (det 1 (epsilon M) == 1)

&& ((mulseqmx (inverse (length (epsilonseq (length vf) mord))

(epsilonseq (length vf) (mord)))(epsilonseq (length vf) (mord)))

== (matrixIdentity (length (epsilonseq (length vf) (mord)))))

where vf = genDvf M

ord = genOrders M}

6.1 Testing 199

But, if this property is executed it fails. As we said, QuickCheck returns cases

where this property is false. Some of them can be empty lists, null lists, lists with

elements different from 0 and 1 or a list which has not the shape of a matrix. The

preconditions about the input parameter M (list of lists) have to delete these cases.

However, in the testing only around 2 matrices of every 500 matrices randomly

generated verify the preconditions so, the condition is tested only for this pair of

cases.

As our main aim is testing this property in a considerable number of cases, this

would not be very useful. Consequently, we have modified the sequence randomly

generated in order to verify the preconditions. First, we have transformed the

sequence with matrixM01 to get that the elements of the sequence are only 0’s

and 1’s and so, reducing a precondition. This is necessary since QuickCheck

generates integer matrices and we work with Z2. In particular, the examples

randomly generated will be modified changing the even numbers by 0 and the

odd ones by 1. Then, the testing will be applied around 20 matrices of every 500

because the rest of preconditions are not verified. Second, we define a function

whose name is conversion which is in charge of converting a null or empty

sequence of integers into a matrix whose elements are only 0’s and 1’s. Moreover,

this matrix has to contain at least an element whose value is 1 in every row.

Finally, it is important to note that every row of the list (matrix) has the same

size. The necessary elements will be added to get this.

prop_conjuntaZ M =

let m = (conversion (matrixM01 M)) in

let vf = (dvford m) in

let mord = ((matrixM01 (reorderM_dvf vf m))) in

isAdmVecfield vf ord &&

((triangular 1 (epsilonseq (length vf) mord)) == True) &&

(det 1 (epsilonseq (length vf) mord) == 1) &&

((mulseqmx (inverse (length (epsilonseq (length vf) mord))

(epsilonseq (length vf)(mord)))(epsilonseq (length vf)(mord)))

== (matrixIdentity (length (epsilonseq (length vf) (mord)))))

where ord = genOrders m}

Let us note that all the sequences of sequences which are randomly generated

in QuickCheck are converted into a matrix with some particular features and, in

200 Chapter 6 Experimental aspects

this way, we can test the properties for all those sequences.

6.2 Profiling in Haskell

Haskell provides us a time and space profiling system [Hut07]. This allows us to

understand the execution behavior of our program, so we can improve it. Profiling

a program is a three-step process. First, we have to re-compile our program

to profile with the -prof and -auto-all option. Second, we have to run our

program with one of the profiling options, in our case, we will use +RTS -p. This

generates a file of profiling information called <prog>.prof with prog the name

of the program. Finally, we examine the generated profiling information, using

one of the GHC’s profiling tools. GHC’s profiling system assigns costs (the time

invested in a computation) to cost centers. In other words, each function shows

the division of costs corresponding to other functions which are used from it.

Furthermore, GHC gives us the stack of enclosing cost centers showing a call-

graph of cost contributions. This tool has been useful to realize where the system

wastes time, what parts of the implementations should be improved, and if the

data types used are suitable.

The first part of the profiling file gives us the program name and the options

used in the compiling, and the total time and total memory allocation consumed

during the running of the program. The second part is a decomposition by cost

center of the most costly functions in the program.

In Figure 6.3 we show an extract of a profiling file where it is detailed the costs

in the computation of the reduced matrix of a small matrix of size 100×200. We

can see in the top part of this file (Figure 6.3) that the significant functions in the

program are getfirstE (responsible for 27.6% of the total time) and getcol and

firstElem1 (both are responsible for 13.8% of the total time). In the bottom part

of the file, we obtain a profile break-down by cost-center stack of the significant

functions used in the computation of the reduced matrix. In this case, we can see

that there are two main methods where the time cost is higher: dvford nearly 76%

and getMatrixReduced with almost 14%. Let us highlight that dvford, which

computes the reordered admissible discrete vector field, uses the most significant

functions: getfirstE, getcol and firstElem1.

The biggest problem is the computation of the admissible discrete vector field

6.2 Profiling in Haskell 201

Figure 6.3: Profiling file

202 Chapter 6 Experimental aspects

of a matrix. This computation depends on the representation chosen for matrices.

It is known that the most efficient algorithm is usually the one which has the most

complicated proof ([DMS12a]). However, we cannot forget that the final aim is

the proof of the correctness of the algorithm. So, in this case it is complicated to

choose the best representation. We have to take into account that the algorithm

needs to access to any position of the matrix and to extract a column to compute

the admissible discrete vector field. We also want to take blocks of matrices

and to reorder the matrix to obtain the reduced matrix. There exist several

representations of a matrix that can be chosen in our implementations. Then,

a representation can ease some computations but can grow worse the others.

Since we work with 2D monochromatic images and the incidence matrices are

only composed by 0’s and 1’s where most of these elements are 0, we think that a

sparse representation for matrices could be useful. Although this representation is

efficient for some operations, it is not suitable to access to a column or to extract

blocks. Another possible representation is included in [CMS12] where a matrix is

represented as a “fan”. In other words, a matrix can be divided into four parts:

an element (the component (1, 1) of the matrix), the rest of the first row, the

rest of the first column and the block composed by the rest of the matrix. This

representation is not convenient to reorder a matrix but is useful to compute the

rank of a matrix. The matrix could also be represented by a sequence of rows or

by a sequence of columns. The sequence of columns representation is convenient

for generating the partial orders whenever a vector is added to the vector field.

But, it is not suitable to run over the elements of the matrix looking for possible

vectors. Finally, we have not found a better matrix representation that the one

initially used for this algorithm. It consisted in using sequences of rows where

every row is a sequence.

In neuron images, whose size are at least of 1000×1500 pixels, a main problem

is the computation of the vector field. However, the computational cost to obtain

the reduced matrix from the matrix already sorted is also very high. This is

due to the implementation of the operations with general matrices. To this aim,

we try to improve the implementations given to reorder matrices, the product of

matrices and the inverse of upper triangular matrices. In fact, an improvement of

this inverse in SSReflect was introduced in [HK13]. An “automatic” way exists

to extract SSReflect code (Coq code in general) (see [tdt12]). For instance,

let us show the extraction of the method addseqmx in charge of the addition of

sequences which represent matrices. Its definition in SSReflect is as follows.

6.2 Profiling in Haskell 203

Definition addseqmx (M N : seq (seq nat)) : (seq (seq nat)) :=

map2seqmx M N (fun x y => x + y).

The syntax to extract this method is the following: Extraction "name_file"

addseqmx. The extracted Haskell code is stored in the file name_file. Let us

show a part of the generated file.

module name_file where

import qualified Prelude

data Nat =

O

| S Nat

...

...

addseqmx ::

(List (List Nat)) -> (List (List Nat)) -> List (List Nat)

addseqmx m n =

map2seqmx m n (\x y -> addn x y)

The problem of this process is that basic definitions are also defined without

taking into account the definitions already implemented in Haskell. In fact, data

types are redefined, in this case, the natural numbers. Then, it is necessary to

adapt this output renaming manually the methods which belong to Haskell.

For instance, let us note that a (List (List Nat)) should be translated into

[[Int]] and the function which adds two natural numbers addn should not be

used because Haskell has already implemented the addition of integers. However,

the other function map2seqmx has been directly extracted from the SSReflect

code.

addseqmx :: [[Int]] -> [[Int]] -> [[Int]]

addseqmx m n =

map2seqmx m n (\x y -> x + y)

Using these new implementations the time cost devoted to the process of

reducing the matrix from the reordered matrix decreases. Namely, we can see in

Figure 6.4 that it spends 11.1% of the total time cost instead of 13.8% shown in

Figure 6.3. Moreover, if we pay attention to the product of matrices mulseqmx,

204 Chapter 6 Experimental aspects

the time cost of this computation has also decreased from 10.3% to 3.7%. This

difference increases when the size of the image is larger. For instance, in the

example of images of neurons, this process decreased 14%.

Figure 6.4: Profiling file with improvements

6.3 Computational results

Using the methodology presented throughout Section 1.3, we have verified the

correctness of the RS algorithm. This let us obtain a reduced matrix preserving

the homological properties of the original one. The formalization process was

detailed in Chapters 3 and 4. Previously, the Haskell implementation was tested

in Chapter 2. Moreover, we have a Coq implementation which can compute

the homology presented in Chapter 5. Namely, we have integrated the programs

presented in this work with the ones devoted to the computation of homology

groups of digital images introduced in [HDM+12].

In this subsection, we compare the computational time required to obtain

the H0 and H1 in Haskell and SSReflect. We also distinguish two ways of

computing the homology: directly from the incidence matrices of the image or

6.3 Computational results 205

after applying the reduction process using the RS algorithm.

Let us begin considering some small images. The first image (corresponding

to Figure 6.5) is composed by 3 × 3 pixels. The sizes of its associated incidence

matrices are: 12× 20 and 20× 8.

Figure 6.5: An image 3× 3 pixels

Haskell SSReflect

Without advf 0.06 0.46

With advf 0.046875 1.016

Table 6.2: Computational times in secs. of H0 and H1 of Figure 6.5

Knowing the main functionalities of both programs, we notice that the com-

putation in Haskell is much quicker than the one in SSReflect. The former

is focused on programming methods instead of verification which is the heart of

SSReflect. However, we are completely sure that our programs work properly

using the SSReflect code. The timing cost devoted to this computation is

shown in Table 6.2. Let us note that the computational times of H0 and H1

using admissible discrete vector fields is higher due to the intermediary steps such

as the computation of the vector field. There are not big differences between the

two ways of computing the homology because the image is small. However, the

larger the image is the bigger are the differences between both systems.

Let us see that the differences increase with Figure 6.6. This image is com-

posed by 68 (4 × 17) pixels. The sizes of the associated incidence matrices are

68× 124 and 124× 58.

Figure 6.6: UVA image

206 Chapter 6 Experimental aspects

The results of the computations are shown in Table 6.3.

Haskell SSReflect

Without advf 0.9 9

With advf

Computation advf 2.484 101

Ordered matrices 0 14

Reduced matrix d1 0 1

Reduced matrix d2 0.0624 5

H0 and H1 1.252 3

Total 3.9 139

Table 6.3: Computational times in secs. of H0 and H1 of Figure 6.6

The computation in Haskell is much quicker, but we are interested in the

verification of the programs. In other words, we want to be able to compute

but being completely sure of the correct behavior of our programs. Therefore,

Haskell cannot be used to this aim. In SSReflect, we see that the computation

of the 0 and 1-dimensional homology groups of the reduced matrices is faster than

the computed from the initial matrices (3 seconds instead of 9 seconds). We are

computing homology groups of the reduced matrices whose dimensions are 4×60

and 60× 58 (the size of admissible discrete vector field which is 64).

The time devoted to reduce those matrices is considerable. The time which

takes the reduction of the incidence matrix in degree 1 in SSReflect is not

exactly what appears in the fourth row of the SSReflect column in Table 6.3.

Indeed, SSReflect cannot compute the inverse of a matrix 64× 64 of the top-

left block of the ordered matrix. We denote this matrix as ulM. This inverse is

necessary to obtain the reduced matrix as we said in Section 3.1. Let us recall that

this matrix is an square matrix whose size is given by the discrete vector field.

Then, we have used Haskell as an oracle to obtain that inverse. The process

carried out is the extraction of ulM to Haskell code, computing the inverse in

Haskell, and returning the inverse to SSReflect. Finally, in SSReflect, we

prove that the new matrix is really the inverse of ulM. In this way, the whole

process is completely verified.

Let us detail this verification. We have proved in Coq that the inverse of a

matrix is unique and that ∀M,MM−1 = id⇒M−1M = id. Then, we introduce

the following lemma which states that the product of ulM and its inverse is the

6.3 Computational results 207

identity matrix.

Lemma m_invmxm : (mulseqmx ulM invmx_ulM)

== (scalar_seqmx 64 (Ordinal (ltn_pmod 1 (ltn0Sn 1)))).

This is proved evaluating this expression using the vm_compute tactic.

This way of verifying is not the standard one but it is sound. We can delegate

to Haskell heavy computations, obtaining in Haskell the required objects, and

proving in SSReflect the properties of the computed objects.

Anyway, in the case of the image in Figure 6.6, the RS algorithm is not

necessary because we can compute the dimension of the homology groups with

the direct method, without using discrete vector fields.

In conclusion, the reduction method is not very useful when dealing with

small images because we can directly compute the homology groups. However, if

the images grow this method cannot be executed in SSReflect. Then, the RS

algorithm will have more sense. In the following subsection, we deal with larger

images which come from a real biomedical problem.

6.3.1 Biomedical images

Biomedical images are a suitable benchmark for testing our programs, the reason

is twofold. First, the amount of information included in this kind of images

is usually quite big; then, a process able to reduce those images but keeping

the homological properties can be really useful. In addition, software systems

dealing with biomedical images must be trustworthy; this is our case since we

have formally verified the correctness of our programs.

As an example, we can consider the problem of counting the number of

synapses in a neuron. Synapses [BCP06] are the points of connection between

neurons and are related to the computational capabilities of the brain. Therefore,

the treatment of neurological diseases, such as Alzheimer, may take advantage of

procedures modifying the number of synapses [C+11].

Up to now, the study of the synaptic density evolution of neurons was a time-

consuming task since it was performed, mainly, manually. To overcome this issue,

an automatic method was presented in [HMPR11]. Briefly speaking, such a pro-

208 Chapter 6 Experimental aspects

cess can be split into two parts. First, from three images of a neuron (the neuron

with two antibody markers and the structure of the neuron) a monochromatic

image is obtained, see Figure 6.71. In such an image, each connected component

represents a synapse. Then, the problem of measuring the number of synapses is

translated into a question of counting the connected components of a monochro-

matic image.

In the context of Algebraic Digital Topology, this issue can be tackled by

means of the computation of the homology group H0 of the monochromatic image.

This task can be performed in Coq through the formally verified programs which

were presented in [HDM+12]. Nevertheless, such programs are not able to han-

dle images like the one of the right side of Figure 6.7 due to its size. In spite

of the fact that the aim of this type of tools is not the efficiency, there is an

effort towards the efficient implementations of mathematical algorithms running

inside Coq, as shown by recent works on efficient real numbers [KS11], machine

integers and arrays [AGST10] or an approach to compiled execution of internal

computations [GL02]. In order to overcome this drawback we have integrated our

reduction programs with the ones presented in [HDM+12].

We focus on reducing the incidence matrix in degree 1 which is enough to

compute the H0 of the chain complex associated with the image. The problem is

that SSReflect cannot compute the reduced matrix. The image is composed

by 871 × 560 pixels and the corresponding incidence matrix in degree 1 consists

of 743 rows and 1424 columns.

Therefore, the process which we have carried out is the following one.

1. Computing in Haskell the reduced matrix Mred and the components f0,

f1, g0, g1 and h0 which define a 2-truncated reduction.

2. Transform the matrices to Coq/SSReflect.

3. Prove in Coq/SSReflect that these matrices establish a reduction.

4. Compute H0 from the reduced matrix Mred in Coq/SSReflect.

Using this approach, we can successfully compute the homology dimension of

the biomedical image using the reduced matrix in just 5 seconds, a remarkable

1The same images with higher resolution can be seen in http://www.unirioja.es/cu/

joheras/synapses/

http://www.unirioja.es/cu/joheras/synapses/
http://www.unirioja.es/cu/joheras/synapses/

6.3 Computational results 209

Figure 6.7: Synapses extraction from three images of a neuron

210 Chapter 6 Experimental aspects

time for an execution inside Coq. This is due to the incidence matrix is reduced

to a matrix 59 × 740 thanks to the length of the admissible discrete vector field

computed which is 684. Finally, it is obtained the computation of H0 which is

59. This means that the image is composed by 59 connected components, and

there are 59 synapses in the original image.

Then, we compute the proofs which establish that there is a reduction between

the initial matrix and the reduced one. The time that Coq devotes to define the

big matrices is 10 minutes and 12 seconds, and to obtain the proofs, approximately

12 hours. These times are shown in Table 6.4.

Haskell (sec) SSReflect

Without advf 0.68 Not available

With advf

Computation advf 108 Proofs

Reduced matrices 26 12h 4min 55sec

H0 0.012 5sec

Total 130 12h 5min

Table 6.4: Computational times of H0 of Figure 6.7

In contrast, let us show a part of an image of a neuron in Figure 6.8 where we

need to apply the RS algorithm to reduce the incidence matrix in degree 1. As

the image is large and the information is located into the left part of the image,

we enlarge this zone (see Figure 6.9) to be able to see the number of connected

components which is exactly 32. Anyway, we will deal with the whole piece.

Figure 6.8: A part of a neuron

Applying the RS algorithm, we reduce the incidence matrix in degree 1

(480× 826) to a matrix whose number of rows is 32 and the number of columns

is 378. The time spent on every step is detailed in Table 6.5.

The different ways of computing the homology presented in Table 6.5 give

the same result, which is that the 0-dimensional homology group is 32. In that

case, the direct computation of homology cannot be obtained. However, the RS

algorithm can directly be applied. In this case, it is not necessary to extract every

6.4 Other algorithms 211

Figure 6.9: Zoom of Figure 6.8

Haskell (min) SSReflect

Without advf 0.26 Not available

With advf

Computation advf 15.19 97h 7min 50sec

Reduced matrix 5.20 29min 10sec

H0 0.002 27 sec

Total 20.402 97h 37min 27sec

Table 6.5: Computational times of H0 of Figure 6.8

component of the 2-truncated reduction to Haskell but it is enough to delegate

the computation of the inverse to Haskell.

6.4 Other algorithms

If our purpose only consists in computing the 0-dimensional homology group of

an image, as we have said this is enough in the case of synapses, there is another

algorithm to compute an admissible discrete vector field which takes profit of the

very particular structures involved in that computation. Concretely, the chain

complex has only one non-null incidence matrix. In this case, it is possible to

introduce an efficient algorithm to obtain an admissible discrete vector field for

this matrix. This matrix relates edges to vertices. The matrix associated with

an image in dimension 1 has only two non-null elements in every column. In this

case, if a vector is selected only one relation will be added. Therefore, it is easier

to obtain the transitive closure than in the algorithm implemented in Section 2.2.

Moreover, the features of this incidence matrix allow us to develop some heuristic

techniques and efficient specific methods. This algorithm is implemented in the

212 Chapter 6 Experimental aspects

system Kenzo. However, in this system, you can only compute the vector field

and the size of the reduced matrix, but the reduced matrix is not provided.

Both the algorithm to build an admissible discrete vector field from a matrix of

this concrete case and its reduction has been implemented in Haskell. Table 6.6

contains the timing devoted to the computation of H0 of Figure 6.7.

Haskell (sec)

With advf

(Efficient

version)

Computation advf 2.24

Reduced matrices 27.42

H0 0.02

Total 29.79

Table 6.6: Efficient computation of H0 from Figure 6.7

Using this algorithm, the size of the admissible discrete vector field is 646. This

size is slightly below than the computed using the RS algorithm (whose length

was 684). Then, the reduced matrix is a 97× 878 matrix instead of 59× 740 with

the RS algorithm. Although the reduced matrix is slightly bigger than the one

obtained using the RS algorithm, it is good enough taking into account that the

size of the initial incidence matrix was 743 × 1424. Of course, the result of the

computation coincides with the output of the other methods.

However, it would be a challenging task the verification of this algorithm due

to the heuristic techniques used in the implementation.

In Section 3.6, we introduced and formally verified another reduction method

based on collapses. This algorithm is quicker than the RS algorithm but the

reduced matrices that we obtain are bigger. The comparison of the computational

times of the 0 and 1-dimensional homology groups of the images shown in Coq

in Figure 6.5 and Figure 6.6 of both methods are shown in Table 6.7.

Figure 6.5 Figure 6.6

RS algorithm 1.016 139

Collapses algorithm 0 29

Table 6.7: Computational times of H0 and H1 in SSReflect using reduction

methods

6.4 Other algorithms 213

Anyway, this method cannot be either applied over huge images like biomedi-

cal digital images, as the one of Figure 6.7.

Conclusions and further

work

In this memoir, we have reported on a research which provides a certified com-

putation of homology groups associated with some digital images coming from a

biomedical problem. The main contributions allowing us to reach this challenging

goal have been the following ones.

• The implementation in Coq/SSReflect of the Romero-Sergeraert algo-

rithm [RS10] computing an admissible discrete vector field for a digital

image.

• The complete formalization in Coq/SSReflect of the theorem known as

Basic Perturbation Lemma (BPL).

• Two formalizations of the Vector-Field Reduction Theorem for matrices.

One is proved using the BPL and the other one applying the Hexagonal

Lemma [RS10].

• A discussion on different methods to overcome the efficiency problems ap-

pearing when executing programs inside proof assistants. In particular, the

Haskell programming language has been used in two different ways: first, to

model algorithms which are subsequently implemented in Coq and, second,

as an oracle to produce results whose properties are verified in the proof

assistant.

• A verified program to compute homology groups of a simplicial complex

obtained from a digital image.

215

216 Conclusions and further work

• As a by-product of all the other contributions, an application of Alge-

braic Topology to study biomedical images in a reliable manner. Our

methodology ensures that the final homological calculations are correct.

By observing the memoir as a whole, it is clear that, even if our initial em-

phasis was in biomedical applications, much of the work has been devoted to the

formalization of mathematics and program verification. The reason is that, even

if we have built over very solid foundations (effective homology [RS10] from the

algorithmic side and SSReflect [GM10] as theorem proving basis), we needed

to reproduce inside Coq/SSReflect a part of Computational Algebraic To-

pology. As a consequence, we focused on obtaining a complete verified path from

biomedical digital images to homological computing, but without getting a good

performance in the final implementation. Thus, our research should be consid-

ered as a proof of concept: homological image processing can be implemented in

a verified manner by using interactive theorem provers. Our results are therefore

rather a starting point, instead of a closed problem.

As for future work, several problems remain open. The most evident one,

after our previous discussion, is obtaining a better performance in the execution

process. This can be undertaken at three different levels. First, by using other

algorithms to compute the main objects in our approach (discrete vector fields,

inverses of matrices, and so on).

Second, and not independent from the previous one, by implementing more

efficient data structures and representations. A first idea is to work with cubical

complexes [ZA02] instead of with simplicial ones. Also more specific data refine-

ments [DMS12a] could be considered, trying to automatically translate proofs

from one (abstract) representation to other (efficient) ones.

As a third more technological aspect about performance, the improvement of

the running environments in proof assistants could be approached.

With respect to applications, in the area of Computational Algebraic To-

pology, our results could be extended to homology with integer coefficients. This

generalization could make it possible to undertake the verification of other Kenzo

results, as those reported in [RR12].

Another line of research is to apply our methodology and techniques to other

problems related to the homological processing of biomedical images. The best

Conclusions and further work 217

candidate is persistent homology, which has been already applied and formalized

(see [HCMS]). Namely, it could be applied in stacks of neurons to remove the

noise of the images and help to the detection of the dendrites (the branches of

the neuron). The project would be to study whether our reduction strategy can

be also profitable in this new homological context. Furthermore, we can focus

on recognizing the structure of a neuron; a problem which seems to involve the

computation of homology groups in dimension 1, see [M+12], a question which

could be tackled with our tools.

Bibliography

[ABR08] J. Aransay, C. Ballarin, and J. Rubio. A mechanized proof of

the Basic Perturbation Lemma. Journal of Automated Reasoning,

40(4):271–292, 2008.

[ABR10] J. Aransay, C. Ballarin, and J. Rubio. Generating certified code

from formal proofs: a case study in homological algebra. Formal

Aspects of Computing, 2(22):193–213, 2010.

[AD09] J. Aransay and C. Domı́nguez. Modelling Differential Structures

in Proof Assistants: The Graded Case. In Proceedings 12th Inter-

national Conference on Computer Aided Systems Theory (EURO-

CAST’2009), volume 5717 of Lecture Notes in Computer Science,

pages 203–210, 2009.

[AD10] J. Aransay and C. Domı́nguez. Formalizing simplicial topology

in Isabelle/HOL and Coq. In L. Lambán, A. Romero, and J. Ru-

bio, editors, Contribuciones cient́ıficas en honor de Mirian Andrés

Gómez, pages 21–42. Universidad de La Rioja, 2010.

[ADFQ03] R. Ayala, E. Domı́nguez, A.R. Francés, and A. Quintero. Homo-

topy in digital spaces. Discrete Applied Mathematics, 125:3–24,

2003.

[AGST10] M. Armand, B. Grégoire, A. Spiwack, and L. Théry. Extending

Coq with imperative features and its application to SAT verifica-

tion. In Proceedings 1st Interactive Theorem Proving (ITP’10),

volume 6172 of Lecture Notes in Computer Science, pages 83–98,

2010.

219

220 Bibliography

[BC02] G. Barthe and P. Courtieu. Efficient Reasoning about Executable

Specifications in Coq. In Proceedings 15th International Confe-

rence on Theorem Proving in Higher Order Logics (TPHOLs’02),

volume 2410 of Lectures Notes in Computer Science, pages 31–46,

2002.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-

gram Development, Coq’Art: the Calculus of Inductive Construc-

tions. Springer-Verlag, 2004.

[BCP06] M. Bear, B. Connors, and M. Paradiso. Neuroscience: Exploring

the Brain. Lippincott Williams & Wilkins, 2006.

[Ben06] N. Benton. Machine Obstructed Proof: How many months

can it take to verify 30 assembly instructions? Microsoft

Research, 2006. http://research.microsoft.com/en-us/um/

people/nick/mop.pdf.

[BGBP08] Y. Bertot, G. Gonthier, S.O. Biha, and I. Pasca. Canonical big

operators. In Proceedings 21st International Conference on Theo-

rem Proving in Higher-Order Logics (TPHOLs’08), volume 5170

of Lecture Notes in Computer Science, pages 86–101, 2008.

[BKM96] B. Brock, M. Kaufmann, and J S. Moore. ACL2 theorems about

commercial microprocessors. In Proceedings of Formal Methods in

Computer-Aided Design (FMCAD’1996), volume 1166 of Lecture

Notes in Computer Science, pages 275–293, 1996.

[BL91] D. Barnes and L. Lambe. Fixed point approach to Homological

Perturbation Theory. Proceedings of the American Mathematical

Society, 112(3):881–892, 1991.

[Bro67] R. Brown. The twisted Eilenberg-Zilber theorem. Celebrazioni

Archimedi de Secolo XX, Simposio di Topologia, pages 34–37, 1967.

[C+11] G. Cuesto et al. Phosphoinositide-3-Kinase Activation Controls

Synaptogenesis and Spinogenesis in Hippocampal Neurons. The

Journal of Neuroscience, 31(8):2721–2733, 2011.

http://research.microsoft.com/en-us/um/people/nick/mop.pdf
http://research.microsoft.com/en-us/um/people/nick/mop.pdf

Bibliography 221

[CDMS] C. Cohen, M. Dénès, A. Mörtberg, and V. Siles. Smith Normal

form and executable rank for matrices. http://wiki.portal.

chalmers.se/cse/pmwiki.php/ForMath/ProofExamples.

[CH88] T. Coquand and G. P. Huet. The Calculus of Constructions. In-

formation and Computation, 76(2/3):95–120, 1988.

[CH00] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for

random testing of Haskell programs. In Proceedings of the fifth

ACM SIGPLAN international conference on Functional program-

ming, ICFP ’00, pages 268–279, 2000.

[CM12] C. Cohen and A. Mahboubi. Formal proofs in real algebric geome-

try: from ordered fields to quantifier elimination. Logical Methods

in Computer Science, 8:1–40, 2012.

[CMS12] T. Coquand, A. Mörtberg, and V. Siles. A formal proof of Sasaki-

Murao algorithm. Journal of Formal Reasoning, 5(1):27–36, 2012.

[DLR07] C. Domı́nguez, L. Lambán, and J. Rubio. Object oriented institu-

tions to specify symbolic computation systems. Rairo - Theoretical

Informatics and Applications, 41:191–214, 2007.

[DMS] M. Dénès, A. Mörtberg, and V. Siles. Module seqmatrix of

CoqEAL. http://www-sop.inria.fr/members/Maxime.Denes/

coqeal/seqmatrix.html.

[DMS12a] M. Dénès, A. Mörtberg, and V. Siles. A Refinement Based Ap-

proach to Computational Algebra in Coq. In Proceedings 3rd

International Conference on Interactive Theorem Proving 2012

(ITP’12), volume 7406 of Lecture Notes in Computer Science,

pages 83–98, 2012.

[DMS12b] M. Dénès, A. Mörtberg, and V. Siles. CoqEAL, the Coq Effec-

tive Algebra Library, 2012. http://www-sop.inria.fr/members/

Maxime.Denes/coqeal.

[DR10] C. Domı́nguez and J. Rubio. Computing in Coq with Infinite Al-

gebraic Data Structures. In Proceedings 17th Symposium on the

Integration of Symbolic Computation and Mechanised Reasoning

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples
http://www-sop.inria.fr/members/Maxime.Denes/coqeal/seqmatrix.html
http://www-sop.inria.fr/members/Maxime.Denes/coqeal/seqmatrix.html
http://www-sop.inria.fr/members/Maxime.Denes/coqeal
http://www-sop.inria.fr/members/Maxime.Denes/coqeal

222 Bibliography

(Calculemus’10), volume 6167 of Lectures Notes in Artificial In-

telligence, pages 204–218, 2010.

[DR11] C. Domı́nguez and J. Rubio. Effective Homology of Bicomplexes,

formalized in Coq. Theoretical Computer Science, 412:962–970,

2011.

[DRSS98] X. Dousson, J. Rubio, F. Sergeraert, and Y. Siret. The Kenzo

program. Institut Fourier, Grenoble, 1998. http://www-fourier.

ujf-grenoble.fr/~sergerar/Kenzo/.

[EH10] H. Edelsbrunner and J. Harer. Computational topology: An intro-

duction. American Mathematical Society, 2010.

[For] Formath: Formalisation of Mathematics. http://wiki.portal.

chalmers.se/cse/pmwiki.php/ForMath/ForMath.

[For98] R. Forman. Morse theory for cell complexes. Advances in Mathe-

matics, 134:90–145, 1998.

[GDMRSP05] R. González-Dı́az, B. Medrano, P. Real, and J. Sánchez-Peláez. Al-

gebraic Topological Analysis of Time-Sequence of Digital Images.

In Proceedings 8th International Conference on Computer Algebra

in Scientific Computing (CASC’05), volume 3718 of Lecture Notes

in Computer Science, pages 208–219, 2005.

[GDR05] R. González-Dı́az and P. Real. On the Cohomology of 3D Digital

Images. Discrete Applied Mathematics, 147(2-3):245–263, 2005.

[GGMR09] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging

mathematical structures. In Proceedings 22nd International Con-

ference on Theorem Proving in Higher Order Logics (TPHOLs’09),

volume 5674 of Lecture Notes in Computer Science, pages 327–342,

2009.

[GL02] B. Grégoire and X. Leroy. A compiled implementation of strong

reduction. In Proceedings of the 7th ACM SIGPLAN International

Conference on Functional Programming (ICFP’02), volume 37,

pages 235–246, 2002.

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath

Bibliography 223

[GM10] G. Gonthier and A. Mahboubi. An introduction to small scale

reflection in Coq. Journal of Formalized Reasoning, 3(2):95–152,

2010.

[GMR+07] G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, and L. Théry.

A Modular Formalisation of Finite Group Theory. Rapport de

recherche RR-6156, INRIA, 2007.

[Gon08] G. Gonthier. Formal proof - The Four-Color Theorem. Notices of

the American Mathematical Society, 55(11):1382–1393, 2008.

[Gon11] G. Gonthier. Point-free, set-free concrete linear algebra. In Pro-

ceedings 2nd Interactive Theorem Proving (ITP’11), volume 6898

of Lectures Notes in Computer Science, pages 103–118, 2011.

[Gug72] V. K. A. M. Gugenheim. On the chain complex of a fibration.

Illinois, 16(3):398–414, 1972.

[GWZ02] H. Geuvers, F. Wiedijk, and J. Zwanenburg. A Constructive Proof

of the Fundamental Theorem of Algebra without using the Ratio-

nals. In Selected papers from the International Workshop on Types

for Proofs and Programs, TYPES ’00, pages 96–111, 2002.

[Hal05a] T. Hales. A proof of the Kepler conjecture. Annals of Mathematics,

162:1065–1185, 2005.

[Hal05b] T. Hales. The Flyspeck Project fact sheet. Project description

available at http://code.google.com/p/flyspeck/, 2005.

[Har09] J. Harrison. The HOL Light System Reference - Version 2.20.

2009. http://www.cl.cam.ac.uk/~jrh13/hol-light/.

[HCMS] J. Heras, T. Coquand, A. Mörtberg, and V. Siles. Computing

Persistent Homology within Coq/SSReflect. To appear in ACM

Transactions on Computational Logic.

[HDM+12] J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles.

Towards a certified computation of homology groups for digital

images. In Proceedings 4th International Workshoph on Compu-

tational Topology in Image Context (CTIC’12), volume 7309 of

Lectures Notes in Computer Science, pages 49–57, 2012.

http://code.google.com/p/flyspeck/
http://www.cl.cam.ac.uk/~jrh13/hol-light/

224 Bibliography

[Her] D. Herington. The HUnit package. Technical report. http://

hackage.haskell.org/package/HUnit-1.2.4.2.

[Her09] J. Heras. The fKenzo program. University of La Rioja, 2009.

http://www.unirioja.es/cu/joheras/fKenzo.

[HK13] J. Heras and E. Komendantskaya. Statistical Proof-Patterns in

Coq/SSReflect. 2013. http://arxiv.org/abs/1301.6039.

[HMPR11] J. Heras, G. Mata, M. Poza, and J. Rubio. Homological process-

ing of biomedical digital images: automation and certification. In

17th International Conferences on Applications of Computer Alge-

bra. Computer Algebra in Algebraic Topology and its applications

session, 2011.

[HPDR11] J. Heras, M. Poza, M. Dénès, and L. Rideau. Incidence simplicial

matrices formalized in Coq/SSReflect. In Proceedings 18th Sym-

posium on the Integration of Symbolic Computation and Mecha-

nised Reasoning (Calculemus’11), volume 6824 of Lectures Notes

in Computer Science, pages 30–44, 2011.

[HPR12] J. Heras, M. Poza, and J. Rubio. Verifying an algorithm computing

discrete vector fields for digital imaging. In Proceedings Confer-

ences on Intelligence Computer Mathematics (CICM’12), volume

7362 of Lectures Notes in Computer Science, pages 215–229, 2012.

[Hut07] G. Hutton. Programming in Haskell. Cambridge University Press,

2007.

[J+03] S. P. Jones et al. The Haskell 98 language and libraries: The

revised report. Journal of Functional Programming, 13(1):0–255,

2003. http://www.haskell.org.

[KM] M. Kaufmann and J S. Moore. ACL2. http://www.cs.utexas.

edu/users/moore/acl2/.

[Koz07] D. Kozlov. Combinatorial Algebraic Topology. Springer, 2007.

[KS11] R. Krebbers and B. Spitters. Computer certified efficient exact

reals in Coq. In Proceedings Conferences on Intelligent Computer

Mathematics (CICM’11), volume 6824 of Lecture Notes in Com-

puter Science, pages 90–106, 2011.

http://hackage.haskell.org/package/HUnit-1.2.4.2
http://hackage.haskell.org/package/HUnit-1.2.4.2
http://www.unirioja.es/cu/joheras/fKenzo
http://arxiv.org/abs/1301.6039
http://www.haskell.org
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/

Bibliography 225

[Ler09] X. Leroy. A formally verified compiler back-end. Journal of Au-

tomated Reasoning, 43(4):363–446, 2009.

[LLT04] T. Lewiner, H. Lopes, and G. Tavares. Applications of Forman’s

discrete Morse theory to topology visualization and mesh com-

pression. Transactions on Visualization and Computer Graphics,

10(5):499–508, 2004.

[M1̈0] A. Mörtberg. Constructive algebra in functional program-

ming and type theory. Mathematics, Algorithms and Proofs

2010, 2010. http://wiki.portal.chalmers.se/cse/pmwiki.

php/ForMath/PapersAndSlides.

[M+12] M. Mrozek et al. Homological methods for extraction and analysis

of linear features in multidimensional images. Pattern Recognition,

45(1):285–298, 2012.

[Mac63] S. MacLane. Homology. Springer, 1963.

[Mat12] Mathematical components team. Formalization of the Odd Order

theorem. Technical report, 2012. http://www.msr-inria.inria.

fr/Projects/math-components.

[Mau96] C.R.F. Maunder. Algebraic Topology. Dover, 1996.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof

Assistant for Higher Order Logic, volume 2283 of Lecture Notes in

Computer Science. Springer, 2002.

[OS03] D. Orden and F. Santos. Asymptotically efficient triangulations of

the d-cube. Discrete and Computational Geometry, 30(4):509–528,

2003.

[PDHR13] M. Poza, C. Domı́nguez, J. Heras, and J. Rubio. A certified re-

duction strategy for homological image processing. Preprint, 2013.

http://www.unirioja.es/cu/cedomin/crship/.

[RR12] A. Romero and J. Rubio. Homotopy groups of suspended classi-

fying spaces: an experimental approach. To be published in Mathe-

matics of Computation, 2012. http://www.ams.org/journals/

mcom/0000-000-00/S0025-5718-2013-02680-4/home.html.

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
http://www.msr-inria.inria.fr/Projects/math-components
http://www.msr-inria.inria.fr/Projects/math-components
http://www.unirioja.es/cu/cedomin/crship/
http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2013-02680-4/home.html
http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2013-02680-4/home.html

226 Bibliography

[RS97] J. Rubio and F. Sergeraert. Constructive Algebraic Topology,

Lecture Notes Summer School on Fundamental Algebraic To-

pology. Institut Fourier, Grenoble, 1997. http://www-fourier.

ujf-grenoble.fr/~sergerar/Summer-School/.

[RS02] J. Rubio and F. Sergeraert. Constructive Algebraic Topology. Bul-

letin des Sciences Mathématiques, 126(5):389–412, 2002.

[RS10] A. Romero and F. Sergeraert. Discrete Vector Fields and Funda-

mental Algebraic Topology, 2010. http://arxiv.org/abs/1005.

5685.

[RS12] A. Romero and F. Sergeraert. Homological Perturbation Theorem

and Eilenberg-Zilber vector field. 2012. http://www-fourier.

ujf-grenoble.fr/~sergerar/Talks/12-06-Zurich-1.pdf.

[Ser87] F. Sergeraert. Homologie effective. Comptes Rendus des Séances

de l’Academie des Sciences de Paris, 304(11 and 12):279–282 and

319–321, 1987.

[Ser92] F. Sergeraert. Effective homology, a survey. Technical report,

Institut Fourier, 1992. http://www-fourier.ujf-grenoble.fr/

~sergerar/Papers/Survey.pdf.

[Ser94] F. Sergeraert. The computability problem in Algebraic Topology.

Advances in Mathematics, 104(1):1–29, 1994.

[Shi62] W. Shih. Homologie des espaces fibrés. Publications

mathématiques de l’Institut des Hautes Études Scientifiques, 13:1–

88, 1962.

[tdt10] Coq development team. The Coq Proof Assistant, version 8.3,

2010.

[tdt12] Coq development team. The Coq Proof Assistant, version 8.4,

Chapter 22 Extraction of programs in Objective Caml and Haskell,

2012. http://coq.inria.fr/refman/Reference-Manual027.

html#toc149.

[Veb31] O. Veblen. Analysis Situs. AMS Coll. Publ., 1931.

http://www-fourier.ujf-grenoble.fr/~sergerar/Summer-School/
http://www-fourier.ujf-grenoble.fr/~sergerar/Summer-School/
http://arxiv.org/abs/1005.5685
http://arxiv.org/abs/1005.5685
http://www-fourier.ujf-grenoble.fr/~sergerar/Talks/12-06-Zurich-1.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Talks/12-06-Zurich-1.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf
http://coq.inria.fr/refman/Reference-Manual027.html#toc149
http://coq.inria.fr/refman/Reference-Manual027.html#toc149

Bibliography 227

[ZA02] D. Ziou and M. Allili. Generating Cubical Complexes from Image

Data and Computation of the Euler number. Pattern Recognition,

35:2833–2839, 2002.

Verificación de algoritmos

homológicos para estudiar

imágenes biomédicas

Maŕıa Poza López de Echazarreta

Memoria presentada para la

obtención del grado de Doctor

Directores: Dr. D. César Domı́nguez Pérez

Dr. D. Julio Rubio Garćıa

Universidad de La Rioja
Departamento de Matemáticas y Computación

Logroño, abril 2013

Este trabajo ha sido parcialmente subvencionado por el proyecto MTM2009-

13842-C02-01 del Ministerio de Educación y Ciencia, y por el proyecto Europeo

Formath no 243847 del programa FET del 7o Programa Marco de la Comisión

Europea.

Agradecimientos

A Álvaro

A mis padres y mi hermano

En primer lugar, me gustaŕıa agradecer a mis directores Julio Rubio y César

Domı́nguez el apoyo y dedicación que han depositado en mi en esta aventura.

Gracias por dedicarme vuestro tiempo, estoy segura que sin vuestras sugerencias

y correcciones esta tesis no hubiese sido posible. No puedo olvidarme de Jónathan

Heras. Gracias, por tu ayuda y por tu apoyo incondicional tanto a nivel cient́ıfico

como personal. Sobre todo me gustaŕıa remarcar tu entendimiento y paciencia

conmigo. Tu tesis ha sido un punto de referencia para mi y él un ejemplo a

seguir.

Quiero agradecer también al resto de compañeros del grupo por el ambiente

tan fantástico que ha habido en este tiempo. Desde el principio hicieron lo posible

porque me integrara y aśı comencé a jugar al pádel. Además, a mi compañera

de despacho Clara Jiménez que nos hemos hecho compañ́ıa mutuamente sobre

todo a lo largo del último año. Especialmente quiero nombrar a Gadea Mata por

sus palabras de ánimo y por nuestras comidas y cafés al sol, e incluso cuando no

hab́ıa sol.

Por último, pero no por eso menos importante, me gustaŕıa agradecer el interés

y la paciencia de mis padres y hermano en la evolución de este trabajo porque

no he sido la mejor compañ́ıa en muchas ocasiones a lo largo de este tiempo. A

Álvaro, por estar siempre cuando le he necesitado, por su apoyo y por su gran

i

confianza en mı́. A mis amigos que aunque no sab́ıan muy bien a que dedicaba

mi tiempo me preguntaban por la evolución de esta tesis.

Gracias a todos.

ii

Índice General

Índice general iii

Introducción 1

1 Preliminares 7

1.1 Contexto matemático . 7

1.1.1 Complejos de cadenas . 8

1.1.2 Complejos simpliciales . 11

1.1.3 De los complejos simpliciales a los complejos de cadenas . . 13

1.1.4 De las imágenes digitales a los complejos simpliciales 15

1.1.5 Reducciones . 18

1.1.6 Un marco algebraico para la Teoŕıa Discreta de Morse . . . 21

1.1.6.1 Campos de vectores discretos algebraicos 22

1.1.6.2 Campos de vectores discretos sobre matrices . . . 25

1.2 Coq y SSReflect . 27

1.2.1 Esquemas inductivos . 28

1.2.2 Registros . 31

1.2.3 Libreŕıas de SSReflect relevantes para nuestro desarrollo 32

iii

iv Índice general

1.2.4 La libreŕıa CoqEAL . 33

1.3 Una metodoloǵıa para formalizar algoritmos 34

1.3.1 Un programa Haskell . 35

1.3.2 Testing con QuickCheck . 35

1.3.3 Formalización en Coq/SSReflect 37

1.3.4 Retroalimentación . 37

1.4 Matemáticas a formalizar . 39

2 Formalización de un algoritmo para calcular campos de vectores

discretos 41

2.1 Algoritmo de Romero-Sergeraert (RS) 42

2.1.1 Reordenamiento de un campo de vectores discreto y admisible 46

2.2 Implementación en Haskell . 46

2.2.1 Reordenamiento de un campo de vectores discreto 53

2.3 Testing . 54

2.3.1 Testing con QuickCheck 55

2.4 Verificación . 58

2.4.1 Implementación en SSReflect 58

2.4.2 Verificación en SSReflect 62

2.4.2.1 Definición de un campo de vectores discreto ad-

misible y ordenado 62

2.4.2.2 Propiedades a formalizar sobre un campo de vec-

tores discreto admissible y ordenado 63

2.4.2.3 El algoritmo RS construye un campo de vectores

discreto admisible y ordenado 74

2.5 Un algoritmo no determinista en SSReflect 75

Índice general v

3 Reducción asociada a un campo de vectores discreto admisible

y ordenado 79

3.1 Introducción . 81

3.2 Implementación en Haskell . 82

3.3 Formalización de estructuras algebraicas básicas en SSReflect . 84

3.4 Reducción de un complejo de cadenas 88

3.4.1 Reordenamiento de una matriz 91

3.4.2 Reducción entre el complejo de cadenas inicial y el reordenado 94

3.4.2.1 Construcción del complejo de cadenas formado de

las matrices reordenadas 96

3.4.2.2 Definición de un isomorfismo entre los complejos

de cadenas C y D 98

3.4.2.3 Construcción de una reducción a partir del iso-

morfismo previo 99

3.4.3 Reducción entre el complejo de cadenas reordenado y el

reducido . 99

3.4.3.1 Lema Hexagonal 100

3.4.3.2 Formalización . 101

3.4.3.3 Matrices de bloques 103

3.4.3.4 Demostración de que |ε| = 1 106

3.4.4 Composición de reducciones 112

3.4.4.1 Construcción de una reducción dadas dos reduc-

ciones . 113

3.5 Los grupos de homoloǵıa de los complejos de cadenas de una re-

ducción son isomorfos . 114

3.5.1 Una reducción preserva los números de Betti 114

3.5.2 Dos espacios vectoriales con la misma dimensión son isomorfos118

vi Índice general

3.5.3 La reducción calculada es un reduction_VS 120

3.5.3.1 Primer refinamiento 120

3.5.3.2 Segundo refinamiento 121

3.5.3.3 Último refinamiento 122

3.6 Otra reducción: Colapsos . 123

3.6.1 Ejemplo . 123

3.6.2 Formalización de la reducción usando colapsos 126

4 Formalización del Lema Básico de Perturbación (BPL) 129

4.1 Prueba matemática del BPL . 130

4.1.1 Teorema de descomposición 130

4.1.2 Generalización del Lema Hexagonal 133

4.1.3 Prueba del BPL . 133

4.2 Formalización de la prueba . 135

4.2.1 El núcleo de una función . 137

4.2.2 Principales estructuras matemáticas 139

4.2.3 Formalización de la prueba del Teorema de Decomposición 140

4.2.3.1 Condiciones de la descomposición 143

4.2.4 Formalización de la generalización del Lema Hexagonal . . 146

4.2.5 Formalización del BPL . 147

4.3 Usando el BPL para reducir un complejo de cadenas asociado con

una imagen digital . 153

4.3.1 La reducción inicial . 156

4.3.2 Desde una reducción 3-truncada a una reducción 157

4.3.3 Aplicación del BPL . 159

4.3.4 De una reducción a una reducción 3-truncada 163

Índice general vii

5 Procesamiento homológico de imágenes digitales 165

5.1 Testing semi-automático . 166

5.2 Desarrollo formal . 167

5.2.1 Complejos simpliciales . 168

5.2.2 Matrices de incidencia abstractas 169

5.2.3 Formalización abstracta de la homoloǵıa 175

5.3 Un desarrollo formal efectivo . 177

5.4 Puentes entre ambas representaciones 180

5.4.1 Puente para las matrices de incidencia 180

5.4.2 Puente para la homoloǵıa 182

5.5 De las imágenes digitales a la homoloǵıa 183

5.6 Calculando la homoloǵıa dentro de Coq 185

5.7 Calculando la homoloǵıa usando campos de vectores discretos den-

tro de Coq . 189

6 Experimentación 193

6.1 Testing . 193

6.1.1 Testing automatizado . 195

6.1.2 Testing con QuickCheck . 197

6.2 Monitorización en Haskell . 200

6.3 Resultados computacionales . 204

6.3.1 Imágenes biomédicas . 207

6.4 Otros algoritmos . 211

Conclusiones y trabajo futuro 215

Bibliograf́ıa 218

Introducción

El cálculo cient́ıfico es una herramienta excelente para ayudar a los investigadores

en ciencias experimentales. Cuando se aplica a problemas biomédicos, la precisión

y la fiabilidad de los cálculos son particularmente importantes. En consecuencia,

la posibilidad de aumentar la confianza en el software cient́ıfico por medio de

herramientas para el razonamiento mecanizado de teoremas se convierte en un

área interesante de investigación.

Los asistentes interactivos para la demostración de teoremas son herramientas

diseñadas para ayudar a los investigadores en el desarrollo de pruebas formales.

Estos sistemas requieren la cooperación de los seres humanos y las máquinas.

Concretamente, el usuario se encarga de diseñar las pruebas, dar grandes pasos

como es habitual en matemáticas y la máquina, con la ayuda del ser humano, y

rellenar los huecos. Hay varios ejemplos de asistente de pruebas, por ejemplo, Hol-

Light [Har09], Isabelle/HOL [NPW02], ACL2 [KM], y Coq [BC04, BGBP08]. Los

asistentes para la demostración están lo suficientemente maduros para enfrentarse

a problemas interesantes en el contexto de pruebas matemáticas y también para

verificar la corrección tanto de software como de hardware. Algunos ejemplos sor-

prendentes son las formalizaciones del Teorema de los Cuatro Colores [Gon08],

el Teorema Fundamental del Algebra [GWZ02], la conjetura de Kepler [Hal05a],

la verificación de un compilador C [Ler09] o la formalización de la corrección

de un microprocesador AMD [BKM96]. Algunos proyectos son realizados con el

único propósito de probar algunos resultados relevantes como el caso del proyec-

to Flyspeck [Hal05b] para formalizar la prueba de Hales sobre la conjetura de

Kepler [Hal05a].

En nuestro caso, nosotros usamos el asistente de demostración de teoremas

1

2 Introducción

Coq que se basa en el Cálculo de Construcciones Inductivas [CH88]. Este siste-

ma tiene una caracteŕıstica interesante que nos permite extraer programas desde

pruebas constructivas. Además, hemos usado SSReflect [GM10], una extensión

de Coq. El lenguaje de tácticas y la libreŕıa de SSReflect fueron inicialmente

diseñadas para probar el Teorema de los Cuatro Colores. Después, SSReflect

ha sido mejorado para atacar el Teorema de Feit-Thompson (conocido como el

Teorema del Orden Impar) [Mat12].

En este trabajo usamos Coq con el objetivo de certificar algunos procedi-

mientos para el procesamiento de imágenes. Las imágenes se toman al principio

de nuestra investigación sobre cultivos de neuronas usando microscopios [C+11].

La técnica que nosotros usamos para procesar estas imágenes está basada en

cálculos de Topoloǵıa Algebraica.

El cálculo en Topoloǵıa Algebraica es un campo que está emergiendo y que

atrae el interés de investigadores, tanto en aspectos teóricos como industriales

(ver por ejemplo [EH10]). Aunque el interés está creciendo en los últimos años,

la historia del cálculo en Topoloǵıa Algebraica es larga (al menos, con respecto a

los estándares en álgebra computacional y cálculo cient́ıfico). Uno de las primeras

teoŕıas en este campo se llama homoloǵıa efectiva [RS02], creada por F. Sergeraert,

y que dio lugar al sistema Kenzo [DRSS98]. Kenzo se dedica a calcular los grupos

de homoloǵıa y de homotoṕıa de espacios topológicos, y algunos de sus cálculos

producen resultados desconocidos [Ser92] o incluso corrigen teoremas previamente

publicados [RR12]. En consecuencia, los matemáticos debeŕıan poder confiar en

los resultados de Kenzo. Para reforzar esta confianza, varias contribuciones se han

hecho aplicando métodos formales al estudio de Kenzo y sus algoritmos subya-

centes (ver, entre otros, [ABR08, ABR10, AD09, AD10, DLR07, DR10, DR11]).

Este es el marco donde se sitúa la investigación presentada en esta memo-

ria. Algunos algoritmos de Romero y Sergeraert [RS10] fueron implementados en

Kenzo para ser aplicados a imágenes digitales. Aqúı, empezamos la verificación

de estos algoritmos en Coq, emulando los procesos Kenzo.

Las bases para el procesamiento homológico de imágenes digitales están basa-

das en la disciplina llamada Topoloǵıa Digital [ADFQ03]. Las imágenes digitales

deben interpretarse como espacios topológicos de una manera combinatoria. El

método más elemental para establecer una conexión entre Topoloǵıa General y

Topoloǵıa Combinatoria está basado en el uso de complejos simpliciales. La noción

Introducción 3

Imagen

biomédica

Imagen
digital

Complejo
simplicial

Matrices de
incidencia

Homoloǵıa

reducción

interpretación

Figura 6.10: Cálculo homológico de una imagen digital

de espacio topológico es demasiada “abstracta” para transferirla a una máquina.

Los complejos simpliciales proporcionan una descripción puramente combinatoria

de espacios topológicos que admiten una triangulación. El cálculo de invariantes,

tales como los grupos de homoloǵıa, desde un complejo simplicial finito asocia-

do con un espacio topológico es conocido y, por ejemplo en el caso de grupos de

homoloǵıa el algoritmo usa álgebra lineal [Veb31]. Luego, un investigador en topo-

loǵıa algebraica puede identificar un espacio topológico compacto y triangulable

(como una interpretación “continua” de una imagen digital) con un complejo sim-

plicial finito, haciendo posible los cálculos. El papel de la Topoloǵıa Algebraica en

imágenes digitales es conocida (ver por ejemplo la serie de conferencias llamadas

Computational Topology in Image Context)

El proceso estudiado en esta memoria está descrito en la Figura 6.10. Po-

niéndolo con palabras, después de un preprocesamiento de una imagen biomédi-

ca, se consigue una imagen monocromática; luego, desde los pixeles negros de

dicha imagen se obtiene un complejo simplicial (por medio de un proceso de

triangulación); seguidamente, desde el complejo simplicial, sus matrices borde (o

de incidencia) son construidas, y finalmente, la homoloǵıa puede ser calculada.

Si trabajamos con coeficientes sobre un cuerpo (se conoce que es suficiente con

considerar el cuerpo Z2 cuando trabajamos con imágenes digitales 2D y 3D) y si

sólo estamos interesados en las dimensiones de los grupos de homoloǵıa (como

espacios vectoriales), es suficiente con tener un programa que calcule el rango de

una matriz para llevar a cabo la tarea completa.

Esta arquitectura es particularizada en esta tesis con un problema real que

apareció en una aplicación industrial y con el asistente de teoremas Coq como

herramienta de programación y verificación. El problema biológico (concretamen-

te, el conteo del número de sinapsis de una imagen de una neurona) puede ser

identificado con el cálculo de un invariante topológico (el rango de un grupo de

4 Introducción

homoloǵıa). Luego, todos nuestros esfuerzos se concentran en calcular, de una

manera certificada, tal invariante.

Ya que el tamaño de las imágenes biomédicas de la vida real es demasiado

grande para tratarlas de una manera directa, proponemos una estrategia de re-

ducción (ver el paso de reducción en la Figura 6.10), que nos permite trabajar

con estructuras de datos más pequeñas, pero preservando todas sus propieda-

des homológicas. Para este objetivo, usamos las noción de campo de vectores

discreto [For98], siguiendo la aproximación presentada por Romero y Sergeraert

en [RS10].

Para verificar la corrección de estos procedimientos, ha sido necesario forma-

lizar una gran cantidad de contenidos matemáticos. La pieza más significativa

formalizada en este trabajo es el llamado Lema Básico de Perturbación (o abre-

viando, BPL). La prueba de este teorema ya ha sido implementada en el demos-

trador de teoremas Isabelle/HOL [ABR08]. La formalización del BPL presentada

en esta memoria es mucho más corta y compacta que la presentada en [ABR08].

Hay dos razones para esta mejora de la prueba formal. La primera es que en este

trabajo hemos seguido una prueba nueva y más corta del BPL (debido otra vez a

Romero y Sergeraert [RS12]). La segunda razón es que hemos construido nuestra

prueba con la potente libreŕıa SSReflect de Coq [GM10] (por el contrario,

una gran parte de la infraestructura requerida tuvo que ser definida desde cero

en [ABR08]).

A parte de la eficiencia en la escritura de pruebas, usar SSReflect también

tiene otras consecuencias. Ya que SSReflect se diseñó para tratar sólo con es-

tructuras finitas, la prueba del BPL presentada aqúı es aplicada sólo sobre grupos

finitamente generados (la prueba formalizada en [ABR08] no tiene esta restric-

ción). Además, tratar con estructuras finitas, y dentro de la lógica constructiva

de Coq, facilita la ejecutabilidad de las pruebas, y en consecuencia la genera-

ción de programas certificados (las mismas tareas en Isabelle/HOL plantean más

dificultades; ver [ABR10]).

Para probar la corrección de los programas generados, debemos establecer y

mantener una unión entre la imagen biomédica inicial y la estructura de datos

final, que es más pequeña, donde los cálculos homológicos son llevados a cabo.

Esto implica una gran cantidad de procesamiento, y no nos permite ejecutar

todos los pasos dentro de Coq (el camino completo ha sido recorrido, pero sólo

Introducción 5

para ejemplos de juguete). Luego hemos utilizado un lenguaje de programación,

Haskell [Hut07] en nuestro caso, para integrar cálculo y deducción.

Haskell interviene en dos pasos distintos de nuestra metodoloǵıa. En las etapas

iniciales del desarrollo, los prototipos de los algoritmos Haskell son sistemática-

mente testeados usando la herramienta QuickCheck [CH00]. Esto nos permite

eliminar muchos errores pequeños y comunes, que podŕıan entorpecer el proceso

de la prueba en Coq. En el paso final de cálculo, Haskell se usa como oráculo

para Coq. Las partes más costosas del cálculo (en nuestro caso, un importante

cuello de botella es calcular la matriz inversa) son delegados a programas Haskell;

la corrección de los resultados obtenidos por Haskell es probada dentro de Coq.

Con esta técnica h́ıbrida, logramos el objetivo de calcular, de una manera

certificada, la homoloǵıa de imágenes biomédicas provenientes de experimentos

neurológicos.

La estructura de la memoria es la siguiente.

En el Caṕıtulo 1 se presentan los preliminares de nuestra investigación. Incluye

tanto aspectos matemáticos como de demostradores de teoremas. Además, se

detallan las matemáticas que se formalizarán en el resto de la memoria.

El Caṕıtulo 2 está dedicado a la implementación y la verificación del algoritmo

de Romero-Sergeraert para calcular un campo de vectores discreto asociado con

una imagen digital. Los resultados presentados en este caṕıtulo han sido parcial-

mente publicados en el art́ıculo [HPR12].

En los Caṕıtulos 3 y 4 describimos respectivamente la construcción de la reduc-

ción algebraica definida por un campo de vectores discreto, y una prueba formal

del BPL. Los resultados de estos dos caṕıtulos son el tema del art́ıculo [PDHR13].

El Caṕıtulo 5 se trata la aplicación de los resultados previos al camino repre-

sentado en la Figura 6.10. Concretamente, implementamos complejos de cadenas

y matrices de incidencia (parcialmente publicados en [HPDR11]) y calculamos la

homoloǵıa dentro de Coq (ver nuestro art́ıculo [HDM+12]). Luego, la estrategia

de reducción certificada es integrada en este esquema general para mejorar la

eficiencia.

En el Caṕıtulo 6 se realizan algunos experimentos de cálculo (con Kenzo, con

Haskell o en Coq), mostrando las fortalezas y debilidades de nuestro alcance.

6 Introducción

La memoria acaba con una sección dedicada a conclusiones y trabajo futuro,

y la bibliograf́ıa.

El lector interesado puede consultar el código presentado a lo largo de esta

memoria en [For].

Resumen de los caṕıtulos

Presentamos a continuación un breve resumen de cada uno de los caṕıtulos de

esta memoria.

1 Preliminares

En este caṕıtulo presentamos el contexto y las herramientas que usaremos en el

resto de la memoria. La primera sección está dedicada a introducir las nociones

matemáticas empleadas en este trabajo. A parte de las definiciones básicas sobre

Álgebra Homológica y Topoloǵıa Simplicial, presentamos las relaciones tanto en-

tre complejos simpliciales y complejos de cadenas como entre imágenes digitales

y complejos simpliciales. Además se presentan resultados sobre el concepto de

reducción y un marco algebraico de la Teoŕıa Discreta de Morse que nos permite

reducir información preservando las propiedades homológicas [For98].

Seguidamente, presentamos una breve introducción al sistema Coq y su li-

breŕıa SSReflect. Este sistema será usado para la formalización de los algo-

ritmos y la verificación de los resultados matemáticos. Además, se muestra la

metodoloǵıa utilizada en nuestro trabajo. Dicha metodoloǵıa puede resumirse en:

1) Implementar en Haskell.

2) Testear con QuickCheck.

3) Verificar con Coq/SSReflect.

7

8 Resumen de los caṕıtulos

2 Formalización de un algoritmo para calcular

campos de vectores discretos

En este caṕıtulo se presenta el algoritmo de Romero-Sergeraert para calcular un

campo de vectores discreto admisible de una matriz, aśı como una implemen-

tación del mismo en Haskell. Para asegurarnos de que nuestros programas son

correctos, aplicamos la metodoloǵıa detallada en la Section 1.3, con el objetivo

de comprobar que la salida de este algoritmo satisface las propiedades dadas en

la definición de un campo de vectores discreto admisible. A continuación, tes-

teamos nuestros programas con QuickCheck [CH00] y formalizamos el algoritmo

con Coq [tdt10] y SSReflect [GM10]. Además presentamos un algoritmo no

determinista en SSReflect para construir un campo de vectores discreto de una

matriz. En consecuencia, este algoritmo no puede ser ejecutado pero su verifica-

ción es sencilla.

3 Reducción asociada a un campo de vectores dis-

creto admisible y ordenado

Presentamos un método de reducción utilizando campos de vectores discretos,

aśı como su implementación en Haskell y su formalización en Coq/SSReflect.

Esto nos permite reducir el complejo de cadenas asociado a una imagen. La prueba

de esta reducción está basada en el Lema Hexagonal.

Además, se prueba que una reducción entre dos complejos de cadenas preserva

los números de Betti. Esto implica que podemos calcular los números de Betti de

uno de los complejos de cadenas a partir del otro.

Finalmente, presentamos otro algoritmo para reducir complejos de cadenas

basado en la noción de colapsos. Esta reducción podŕıa ser usada como un pre-

procesamiento de la imagen con el objetivo de aplicar luego la reducción anterior

sobre el complejo de cadenas reducido.

Resumen de los caṕıtulos 9

4 Formalización del Lema Básico de Perturbación

Nos centramos en presentar la prueba matemática del Lema Básico de Pertur-

bación y su formalización en SSReflect. Este lema es esencial en la teoŕıa de

Álgebra Homológica. La prueba presentada está basada en dos resultados: el teo-

rema de Descomposición, que construye una descomposición de un complejo de

cadenas dada una reducción de dicho complejo de cadenas y la Generalización

del Lema Hexagonal.

Además, usamos este lema para un caso particular que viene de imágenes

digitales dos dimensionales. El Lema Básico de Perturbación nos servirá para

reducir el complejo de cadenas asociado a una imagen digital.

5 Procesamiento homológico de imágenes digita-

les

Nos centramos en formalizar el proceso de cálculo de la homoloǵıa de una imagen

digital que detallamos a continuación. Por medio de un procedimiento de triangu-

lación, construimos el complejo simplicial de una imagen digital monocromática.

Después, construimos las matrices de incidencia asociadas y finalmente, las di-

mensiones de los grupos de homoloǵıa del complejo de cadenas definido por estas

matrices pueden ser calculadas. Para dicho cálculo es suficiente con obtener el

rango de las matrices de incidencia asociadas con el complejo de cadenas.

Se presenta una versión abstracta de esta formalización usando las libreŕıas

de SSReflect. Pero esta formalización no es útil para nuestro objetivo: poder

calcular la dimensión de los grupos de homoloǵıa. Para resolver este problema,

se presenta una implementación ejecutable de este proceso. Para verificar este

desarrollo nos hemos centrado en probar que las definiciones dadas en ambas

versiones son equivalentes. Finalmente, podemos calcular la dimensión de los

grupos de homoloǵıa de una imagen dentro de Coq. Esto también nos permite

calcular la dimensión de la homoloǵıa del complejo de cadenas reducido usando

un campo de vectores discreto de la imagen.

10 Resumen de los caṕıtulos

6 Experimentación

Este caṕıtulo está dividido en tres secciones. La primera, habla sobre el testeo que

se ha desarrollado sobre nuestras implementaciones en Haskell, con el objetivo de

limpiar y eliminar los posibles errores y, de este modo, reducir el tiempo invertido

en la verificación. Explicamos un testeo manual, un testeo “automatizado” usando

el sistema Kenzo, y finalmente, un testeo con la herramienta QuickCheck. La

segunda sección trata sobre el análisis de rendimiento en Haskell para entender el

comportamiento de nuestros programas y ver qué funciones son las que consumen

más tiempo y de este modo, realizar mejoras en la implementación. Finalmente,

presentamos unos resultados sobre el tiempo dedicado al cálculo de la homoloǵıa

de una imagen distinguiendo entre los sistemas Haskell y SSReflect, y aplicando

o no la reducción obtenida gracias a los campos de vectores discretos.

Además tratamos una aplicación concreta que es el conteo de sinapsis de una

neurona que puede ser resuelto calculando H0. El tamaño de estas imágenes es

considerable, luego el uso de los campos de vectores discretos es necesario. Final-

mente, implementamos otros algoritmos más eficientes para tratar este problema

concreto.

Conclusiones y trabajo

futuro

En esta memoria hemos presentado una investigación que estudia el uso de cálculo

certificado para analizar los grupos de homoloǵıa asociados con imágenes digitales

provenientes de un problema biomédico. Las principales contribuciones que nos

han permitido alcanzar este objetivo han sido las siguientes.

• La implementación en Coq/SSReflect del algoritmo de Romero-

Sergeraert [RS10] para el cálculo de un campo de vectores discreto y admi-

sible de una imagen digital.

• La formalización completa en Coq/SSReflect del teorema conocido como

el Lema Básico de Perturbación (BPL).

• Dos formalizaciones del Teorema de Reducción de Campos de Vectores para

matrices. Una de ellas es probada usando el BPL y la otra aplicando el Lema

Hexagonal [RS10].

• Una discusión de los diferentes métodos para superar los problemas de efi-

ciencia que aparecen al ejecutar programas dentro de asistentes para la

demostración. En particular, el lenguaje de programación Haskell ha sido

utilizado de dos formas distintas: primero, para modelar algoritmos que

son luego implementados en Coq y, segundo, como un oráculo para pro-

ducir resultados cuyas propiedades son verificadas en el asistente para la

demostración.

11

12 Conclusiones y trabajo futuro

• Un programa verificado para calcular los grupos de homoloǵıa de un com-

plejo simplicial obtenido a partir de una imagen digital.

• Como una consecuencia de todas las otras contribuciones, una aplicación de

la Topoloǵıa Algebraica para estudiar imágenes biomédicas de una manera

fiable. Nuestra metodoloǵıa asegura que los cálculos homológicos finales son

correctos.

Observando la memoria al completo, está claro que, incluso si nuestro énfasis

fue en aplicaciones biomédicas, gran parte del trabajo ha sido dedicado a la forma-

lización de matemáticas y a la verificación de programas. La razón es que, aunque

lo hemos construido sobre fundamentos muy sólidos (homoloǵıa efectiva [RS10]

desde la parte algoŕıtmica y SSReflect [GM10] como base para la prueba de

teoremas), necesitabamos reproducir dentro de Coq/SSReflect una parte de

Topoloǵıa Algebraica Computacional. Como consecuencia, nos centramos en los

aspectos de formalización en lugar de en los de eficiencia en el cálculo homológi-

co de imágenes digitales. Por ello, nuestra investigación debeŕıa ser considerada

como una prueba de conceptos: el procesamiento homológico de una imagen pue-

de ser implementado y verificado usando demostradores de teoremas. Nuestros

resultados son más bien un punto de partida, en vez de un problema cerrado.

Como trabajo futuro, varios problemas quedan abiertos. El más evidente, des-

pués de nuestra discusión previa, es mejorar la eficiencia de nuestros programas.

Esto puede ser llevado a cabo desde tres niveles distintos. El primero consistiŕıa

en utilizar mejores algoritmos para el cálculo de, por ejemplo, campos de vectores

discretos, inversas de matrices, etc.

El segundo, aunque no es independiente del anterior, seŕıa la implementación

de estructuras de datos y representaciones más eficientes. Una primera idea es

trabajar con complejos cúbicos [ZA02] en vez de complejos simpliciales. También

se podŕıa considerar el uso de refinamientos de estructuras de datos [DMS12a], in-

tentando traducir automáticamente pruebas desde una representación (abstracta)

a otras (eficientes).

Como tercer aspecto podŕıa ser interesante mejorar los entornos de ejecución

en asistentes para la demostración de teoremas.

Con respecto a las aplicaciones, en el área de la Topoloǵıa Algebraica Compu-

tacional, nuestros resultados podŕıan ser extendidos a la homoloǵıa con coeficien-

Conclusiones y trabajo futuro 13

tes en los enteros. Esta generalización podŕıa hacer posible la verificación de otros

resultados de Kenzo, como los presentados en [RR12].

Otra ĺınea de investigación es aplicar nuestra metodoloǵıa y técnicas a otros

problemas relaciones con el procesamiento homológico de imágenes biomédicas.

El mejor candidato es la homoloǵıa persistente, que ya ha sido formalizada (ver

[HCMS]). Concretamente, podŕıa ser aplicado en stacks de neuronas para eliminar

el ruido de las imágenes y ayudar a la detección de las dendritas (las ramas de

la neurona). El proyecto seŕıa estudiar si nuestra estrategia de reducción puede

ser también beneficiosa en este nuevo contexto homológico. Además, podemos

centrarnos en reconocer la estructura de una neurona; un problema que parece

involucrar el cálculo de los grupos de homoloǵıa en dimensión 1, como puede verse

en [M+12], una cuestión que podŕıa ser abordada con nuestras herramientas.

	Contents
	Introduction
	Preliminaries
	Mathematical background
	Chain complexes
	Simplicial complexes
	From simplicial complexes to chain complexes
	From digital images to simplicial complexes
	Reductions
	An algebraic setting of Discrete Morse Theory
	Algebraic discrete vector fields
	Discrete vector fields over matrices

	Coq and SSReflect
	Inductive schemas
	Record types
	Relevant SSReflect libraries in our development
	The CoqEAL library

	A methodology to formalize algorithms
	A Haskell program
	Testing with QuickCheck
	Formalization in Coq/SSReflect
	Feedback loop

	Mathematics to formalize

	Formalization of an algorithm to compute discrete vector fields
	Romero-Sergeraert's algorithm (RS algorithm)
	Realignment of an admissible discrete vector field

	Implementation in Haskell
	Realignment of an admissible discrete vector field

	Testing
	Testing with QuickCheck

	Verification
	Implementation in SSReflect
	Verification in SSReflect
	Definition of an ordered and admissible discrete vector field
	Properties to formalize about an ordered and admissible discrete vector field
	The RS algorithm builds an ordered and admissible discrete vector field

	A non deterministic algorithm in SSReflect

	Reduction with an ordered and admissible discrete vector field
	Introduction
	Implementation in Haskell
	Formalization of the basic algebraic structures in SSReflect
	Reduction of a chain complex
	Realignment of a matrix
	Reduction between the initial chain complex and the reordered one
	Building of the chain complex consisted of the reordered matrices
	Definition of an isomorphism between the chain complexes C and D
	Building a reduction from the previous isomorphism

	Reduction between the reordered chain complex and the reduced one
	Hexagonal Lemma
	Formalization
	Block matrices
	Proving that || = 1

	Composing reductions
	Construction of a reduction from two reductions

	The homology groups in a reduction are isomorphic
	A reduction preserves the Betti numbers
	Two vector spaces with the same dimension are isomorphic
	The computed reduction is a ?reductionVS?
	First refinement
	Second refinement
	Final refinement

	Another reduction: Collapses
	Example
	Formalization of the reduction using collapses

	Formalization of the Basic Perturbation Lemma (BPL)
	Mathematical proof of the BPL
	Decomposition Theorem
	Generalization of the Hexagonal Lemma
	Proof of the BPL

	Formalization of the proof
	The kernel of a map
	Main mathematical structures
	Formalization of the Decomposition Theorem
	Conditions of the decomposition

	Formalization of the Generalization of the Hexagonal Lemma
	Formalization of the BPL

	Using the BPL to reduce a chain complex
	The initial reduction
	From a 3-truncated reduction to a reduction
	Applying the BPL
	From a reduction to a 3-truncated reduction

	Homological processing of digital images
	Semi-automated testing
	Abstract formal development
	Simplicial complexes
	Abstract incidence matrices
	Abstract formalization of homology

	An effective formal development
	The bridges between both representations
	Incidence matrices bridge
	Homology bridge

	From digital images to homology
	Computing homology within Coq
	Computing homology using discrete vector fields within Coq

	Experimental aspects
	Testing
	Automated testing
	Testing with QuickCheck

	Profiling in Haskell
	Computational results
	Biomedical images

	Other algorithms

	Conclusions and further work
	Bibliography

