

Facultad

Facultad de Ciencias, Estudios Agroalimentarios e Informática

Titulación

Grado en Ingeniería Informática

Título

Verificación de Programas Java para el Procesamient o de
Imágenes Digitales
Autor/es

Rubén Sáenz Francia

Tutor/es

Dr. Julio Rubio García

Departamento

Matemáticas y Computación

Curso académico

2012 - 2013

Abstract. Fiji is a Java platform widely used by biologists and other
experimental scientists to process digital images. In our research, made
together with a biologists team, we use Fiji in some pre-processing steps
before undertaking a homological digital processing of images. In a pre-
vious work, the team formalised the correctness of the programs which
use homological techniques to analyse digital images. However, the ver-
i�cation of Fiji's pre-processing step was missed and NeuronPersistentJ
plugin had some working issues that needed to be corrected. In this dis-
sertation, we present a multi-tool approach (based on the combination
of Why/Krakatoa, Coq and ACL2) �lling this gap.

Table of Contents

1 Introduction . 1
2 Project Goal Statement (PGS) . 2

2.1 Context . 2
2.2 Goals and Objectives . 2
2.3 Deadlines . 2
2.4 Key Concepts . 3
2.5 Requirements . 3
2.6 Existing Veri�cation Tools . 4
2.7 Work Breakdown Structure (WBS) and estimates of time 5
2.8 Global estimates of time . 7
2.9 Gantt Diagram. 8

3 Analysis . 9
3.1 Tools - Krakatoa and ACL2 . 9
3.2 Method . 12
3.3 NeuronPersistentJ . 14
3.4 Java Parser . 19

4 Design . 20
4.1 Class Uni�er . 20
4.2 Veri�cation Platform . 22
4.3 MakeLineRadii . 23

5 Development . 23
5.1 NeuronPersistentJ Plugin . 23
5.2 Veri�cation Platform . 24
5.3 Specifying programs for digital imaging . 26
5.4 The role of ACL2 . 29
5.5 The method in action: a complete example 30
5.6 The role of jUnit . 35

6 Final Estimates of Time . 37
7 Conclusions and further work . 38
A Install and Con�gure Krakatoa using Eclipse . 41
B Krakatoa Operators . 46

1 Introduction

Fiji [29] is a Java platform widely used by biologists and other experimental sci-
entists to process digital images. In our research, made together with a biologists
team, we use Fiji in some pre-processing steps before undertaking a homological
digital processing of images.

Due to the fact that the reliability of results is instrumental in biomedical
research, we are working towards the certi�cation of the programs that we use
to analyse biomedical images � here, certi�cation means veri�cation assisted by
computers. In a previous work, see [17,19], we have formalised two homological
techniques to process biomedical images. However, in both cases, the veri�cation
of Fiji's pre-processing step was not undertaken.

Being a software built by means of plug-ins developed by several authors,
Fiji is messy, very �exible (program pieces are used in some occasions with a
completely di�erent objective from the one they were designed), contains many
redundancies and dead code, and so on. In summary, it is a big software sys-
tem which has not been devised to be formally veri�ed. So, this endeavour is
challenging.

There are several approaches to verify Java code; for instance, proving the
correctness of the associated Java bytecode, see [24]. In this dissertation, we use
Krakatoa [12] to specify and prove the correctness of Fiji/Java programs. This
experience allows us to evaluate both the veri�cation of production Fiji/Java
code, and the Krakatoa tool itself in an unprepared scenario.

Krakatoa uses some automated theorem provers (as Alt-Ergo [6] or CVC3 [4])
to discharge the proof obligations generated by means of the Why tool [12].
When a proof obligation cannot be solved by means of the automated provers,
the corresponding statement is generated in Coq [10]. Then, the user can try to
prove the missing property by interacting with this proof assistant.

In this picture, we add the ACL2 theorem prover [22]. ACL2 is an automated
theorem prover but more powerful than others. In many aspects, working with
ACL2 is more similar to interactive provers than to automated ones, see [22].
Instead of integrating ACL2 in the architecture of Why/Krakatoa, we have fol-
lowed another path leaving untouched the Why/Krakatoa code. Our approach
reuses a proposal presented in [3] to translate �rst-order Isabelle/HOL theories
to ACL2 through an XML speci�cation language called XLL [3]. We have en-
hanced our previous tools to translate Coq theories to the XLL language, and
then apply the tools developed in [3] to obtain ACL2 �les. In this way, we can
use, unmodi�ed, the Why/Krakatoa framework; the Coq statements are then
translated (if needed) to ACL2, where an automated proof is tried; if it suc-
ceeds, Coq is only an intermediary speci�cation step; otherwise, both ACL2 or
Coq can be interactively used to complete the proof.

The programs and examples that were presented to the Conference on Intel-
ligent Computer Mathematics are available at http://www.computing.dundee.
ac.uk/staff/jheras/vpdims/.

1

http://www.computing.dundee.ac.uk/staff/jheras/vpdims/
http://www.computing.dundee.ac.uk/staff/jheras/vpdims/

2 Project Goal Statement (PGS)

2.1 Context

Fiji [29] is a Java program which can be described as a distribution of ImageJ [28].
These two programs help with the research in life sciences and biomedicine since
they are used to process and analyse biomedical images. Fiji and ImageJ are
open source projects and their functionality can be expanded by means of either
a macro scripting language or Java plug-ins. Among the Fiji/ImageJ plug-ins
and macros, we can �nd functionality which allows us to binarise an image via
di�erent threshold algorithms, homogenise images through �lters such as the
�median �lter� or obtain the maximum projection of a stack of images.

In the frame of the ForMath European project [1], one of the tasks is de-
voted to the topological aspects of digital image processing. The objective of
that consists in formalising enough mathematics to verify programs in the area
of biomedical imaging. In collaboration with the biologists team directed by
Miguel Morales, two plug-ins for Fiji have been developed (SynapCountJ [26]
and NeuronPersistentJ [25]); these programs are devoted to analyse the e�ects
of some drugs on the neuronal structure. At the end of such analysis, some ho-
mological processing is needed (standard homology groups in SynapCountJ and
persistent homology in NeuronPersistentJ). As explained in the introduction, we
have veri�ed these last steps [17, 19]. But all the pre-processing steps, based on
already-built Fiji plug-ins and tools, kept unveri�ed. This is the gap we try to
�ll now, by using the facilities presented in the sequel.

2.2 Goals and Objectives

� Analyse existing veri�cation tools for Java programs.
� Choose and use the most suitable tool to prove Java code.
� De�ne a methodology which provides a general process to compile the Java
Code in the tool that we choose.

� Automate the methodology.
� Choose some parts of ImageJ source code that are suspicious of working
improperly to be proved .

� Debug the ImageJ plugin called NeuronPersistentJ [25] which has some work-
ing issues.

2.3 Deadlines

In order to make a schedule of the tasks that need to be accomplished, we have
to take into account two important events.

� Conferences on Intelligent Computer Mathematics 2013.
This is a Computing and Mathematics Conference that is taking place in the
University of Bath where we hope we can write a paper which will include
some parts of this dissertation.

2

• Submission deadline: 12 March 2013
• Reviews sent to authors: 5 April 2013
• Rebuttals due: 8 April 2013
• Noti�cation of acceptance: 14 April 2013
• Camera ready copies due: 26 April 2013
• Conference: 8-12 July 2013

� La Rioja University Project Deadline.
These are the Deadline dates established by La Rioja University in order to
submit the dissertation and be able to defend it and achieve the Degree in
Computer Science.

• Submission Deadline June: Second Week of June 2013
• Defense of the Project June: Last Week of June 2013
• Submission Deadline July: Second Week of July 2013
• Defense of the Project July: Third Week of July 2013

2.4 Key Concepts

� Object-oriented: is a programming paradigm that represents concepts as
"objects" that have data �elds (attributes that describe the object) and as-
sociated procedures known as methods.

� Java: is a general-purpose, concurrent, class-based, object-oriented com-
puter programming language that is speci�cally designed to have as few
implementation dependencies as possible.

� ImageJ: is a public domain, Java-based image processing program devel-
oped at the National Institutes of Health.

� JML: The Java Modeling Language (JML) is a speci�cation language for
Java programs, using Hoare style pre- and postconditions and invariants,
that follows the design by contract paradigm. Speci�cations are written as
Java annotation comments to the source �les, which hence can be compiled
with any Java compiler.

2.5 Requirements

During this section we identify the tasks that go into determining the needs or
conditions of our dissertation. We can classify the requirements into these two
sections:

Functional Requirements, that de�ne the functions that the dissertation
should have.

� NeuronPersistentJ plugin needs to detect the neuronal structure from an
image without any failure.

3

� Some parts of the code related to NeuronPersistentJ plugin are needed to
be proved using formalisation, therefore we need to select the most suitable
ones.

� We must de�ne a procedure to easily formalise Java Code and automate it.

Non functional requirements, that specify criteria that can be used to
judge the operation of the system, rather than speci�c behaviors.

� We must use formalisation software in our approach.
� We must verify Java Code, therefore the formalisation software needs to be
Java compatible.

� We have to select formalisation software compatible with programming lan-
guages that are used in the Department (Coq, Isabelle or ACL2).

2.6 Existing Veri�cation Tools

� jUnit: JUnit is a unit testing framework for the Java programming language.
Pros: Most used testing framework.
Cons: It is not based on formalisation.

� KeY: KeY is a formal software development tool that aims to integrate de-
sign, implementation, formal speci�cation, and formal veri�cation of object-
oriented software as seamlessly as possible. At the core of the system is a
novel theorem prover for the �rst-order Dynamic Logic for Java with a user-
friendly graphical interface.
Pros: JML/OCL support.
Cons: It does not export to Coq proof assistant.

� ESC/Java2: originally developed at Compaq Research, is a programming
tool that attempts to �nd common run-time errors in JML-annotated Java
programs by static analysis of the program code and its formal annota-
tions. Users can control the amount and kinds of checking that ESC/Java2
performs by annotating their programs with specially formatted comments
called pragmas.
Pros: Standard JML notation, Eclipse plugin.
Cons: Very complex tool and it does not export to the Coq language.

� Krakatoa: It is a front-end of the Why platform for deductive program ver-
i�cation.
Pros: Coq-language export, Java and C veri�cation tool, plenty of back-end
automated provers, available on Ubuntu repositories.
Cons: KML (Krakatoa Modelling Language) which is a self made JML syn-
tax. It is only available for Unix operating systems.

4

2.7 Work Breakdown Structure (WBS) and estimates of time

Fig. 1: Work Breakdown Structure (WBS)

5

Project Management This task consists on planning, organizing, motivating,
and controlling the resources to achieve speci�c goals.

WBS Creation This section provides the necessary framework for detailed time
estimating and control along with providing guidance for schedule development
and monitoring. Estimates: 5 hours

Planning This sections consists of estimating, as real as possible, the time that
the tasks de�ned in the previous item will take. Estimates: 4 hours

Meeting This section contains the subtasks associated with the Project meetings
such as: preparation of the meeting, writing meeting records... Estimates: 6 hours

Monitoring During this section we ensure that the estimates of hours and the real
used hours di�er as few as possible measuring it and making decisions concerning
the adequacy to the scheduled timetable. Estimates: 2 hours

Initiation It is the phase in which we de�ne our scope and, with a clearly
de�ned target, we can face the complete project.

Identifying Requirements During this section we discover the needs of this project.
Estimates: 53 hours

Creating PGS This section contains the creation of a work breakdown structure
(WBS) which helps us to be both comprehensive and speci�c when managing
the project. Estimates: 10 hours

Training During this section we study and learn a variety of technologies with
the purpose of gaining experience on those subjects. Estimates: 178 hours

Analysis This section encompasses those tasks for determining the needs or
conditions of the project, taking account of the possibly con�icting requirements
of the technologies.

Analyzing Tools During this section we analyse di�erent technologies that can
match in our project in order to ful�ll our needs. Estimates: 54 hours

Identifying Restrictions During this section we analyse the constraints of the
technologies and tools. Estimates: 70 hours

Design During this phase, we assemble the information we gathered from the
requirements capture phase. We identify what we need in our project according
to the selected tools and technologies we have chosen.

6

Class Diagram This section consists of modelling Class Diagrams that are es-
sential to the object modeling process and the static structure of the project.
Estimates: 205 hours

Development During this section we build the solution components code as
well as documentation and Test Classes.

Implementation Given the requirements and Class Diagram we build exactly
what was planned taking into account the restrictions of the system. Estimates:
129 hours

Documentation During this phase we detail the design and functionality of the
application. Estimates: 42 hours

Test Classes This section consists of building the mechanisms that will help us
to detect bugs in the system. Estimates: 27 hours

Project Report During this section we write a summarised report of what
we have learnt and made during this project and further work related to this
project. Estimates: 99 hours

Manuals During this section we write manuals that step-by-step help people
to use some tools. Estimates: 18 hours

Defense Having all the tasks completed, we defend the current project in front
of a panel. Estimates: 8 hours

2.8 Global estimates of time

The project Analysis, Design and Development (See Figure 2) are divided into
two phases with the purpose of having done the �rst part before the Submission
Deadline (See Section 2.3). The estimated hours that the project is taking is
obtained from the formula:

6.5 hours/day (Average Active Worktime) x 7 months x 20 hours (Active
Working Days) = 910 hours.

The total number of hours (910) is a much higher value than established
by recommendation for the project but we are taking into account that this
dissertation is going to be reused and attached to the Documentation of the
European Project ForMath.

7

2.9 Gantt Diagram

Fig. 2: Gantt Diagram

8

3 Analysis

3.1 Tools - Krakatoa and ACL2

Why/Krakatoa: Specifying and verifying Java code. The Why/Krakatoa
tools [12] are an environment for proving the correctness of Java programs an-
notated with JML [8] speci�cations which have been successfully applied in dif-
ferent context, see [5]. The environment involves three distinct components: the
Krakatoa tool, which reads the annotated Java �les and produces a represen-
tation of the semantics of the Java program into Why's input language; the
Why tool, which computes proof obligations (POs) for a core imperative lan-
guage annotated with pre- and post-conditions, and �nally several automated
theorem provers which are included in the environment and are used to prove
the POs. When some PO cannot be solved by means of the automated provers,
corresponding statements are automatically generated in Coq [10], so that the
user can then try to prove the missing properties in this interactive theorem
prover. The POs generation is based on a Weakest Precondition calculus and
the validity of all generated POs implies the soundness of the code with respect
to the given speci�cation. The Why/Krakatoa tools are available as open source
software at http://krakatoa.lri.fr.

Krakatoa Semantics

� Krakatoa statements: The comments starting with /*@ specify Krakatoa
clauses.

� Precondition: a requires statement introduces a precondition. This is a
formula that is supposed to hold at the beginning of the method call. The
precondition is not something guaranteed by the method itself.

� Postcondition: an ensures clause introduce a postcondition, which is a for-
mula supposed to hold at end of execution of that method, for any value of
its arguments satisfying its precondition.

� Splitted Postcondition: a behavior statement allows us to split the post-
condition in di�erent sections. A normal behavior clause has the form

behavior id :
assumes A ;
ensures E ;

The semantics of such a behaviour is as follows. The callee guarantees that
if it returns normally, then in the post-state:
\old(A) ⇒ E holds
If \old(A) holds, each location remains allocated and unchanged in the post-
state.

9

http://krakatoa.lri.fr

� Assertions: an assert clause, it speci�es that the given property is true at
the corresponding program point.

� Loop invariants: a loop_invariant statement, is a property that is true at
loop entrance, and it preserves it by loop body and loop exit.

� Loop variants: a loop_variant clause establishes an integer value that de-
creases on each iteration of the loop.

� Lemmas: a lemma statement de�nes a proven proposition.

� Axioms: an axiom clause is a premise or starting point of reasoning. It can
only be used in order to de�ne properties of abstract data types.

� Ghost Variables: a ghost statement is used to de�ne or rede�ne the value
of a variable in Krakatoa.

Krakatoa Structure

Krakatoa External Provers Compatibility Krakatoa is a tool that can support
a wide range of provers but we have to install it independent from Krakatoa.
Each time a new prover is installed, we must rerun the command why-con�g
(in Why 2.xx) and/or why3con�g �detect (in Why3) in order to charge into the
Why core. We can classify the provers into two important groups.

� Automated Provers. Figure 3.
On the one hand, automatic provers provide automation, but only allow �rst
order logic with equality. See the list in Table 1.

Fig. 3: Automated Prover Structure

10

Alt-Ergo CVC3 E-prover Gappa Simplify

SPASS Vampire veriT Yices Z3

Table 1: Krakatoa Supported Automated Provers

� Interactive Probers. Figure 4.
On he other hand, interactive provers o�er users expressive formalisms and
�exibility and are suitable for proving theorems on other logics. See the list
in Table 2.

Fig. 4: Interactive Prover Structure

Coq PVS Isabelle/HOL HOL 4 HOL Light Mizar

Table 2: Krakatoa Supported Interactive Provers

Krakatoa Restrictions

1. Annotations are not allowed.
For instance: @Before;

2. Float and Double numbers that match the pattern <number>f or <num-
ber>d throws compilation errors.
For instance: �oat f = 5.0f;

3. Import statements are forbidden if they are included in the �le that we want
to compile.
For instance: import java.lang.String;

4. Inheritance is not allowed to appear in the �le we compile. For this reason
extends and implements clauses are forbidden .
For instance: class A extends B implements C;

11

5. Else clauses without an if condition usually throws compilation errors.
For instance: if(a==b){return a;} else{ return b;}

6. Numbers like 0x1.��feP+127d throw compilation errors.
For instance: �oat a = 0x1.��feP+127d;

7. Double to integer casts are forbidden.
For instance: int i = (int) (Double.parseDouble("2.4"));

Coq and ACL2: Interactive theorem proving. Coq [10] is an interactive
proof assistant for constructive higher-order logic based on the Calculus of Induc-
tive Construction. This system provides a formal language to write mathematical
de�nitions, executable algorithms and theorems together with an environment
for semi-interactive development of machine-checked proofs. Coq has been suc-
cessfully used in the formalisation of relevant mathematical results; for instance,
the recently proven Feit-Thompson Theorem [14].

ACL2 [22] is a programming language, a �rst order logic and an automated
theorem prover. Thus, the system constitutes an environment in which algo-
rithms can be de�ned and executed, and their properties can be formally speci-
�ed and proved with the assistance of a mechanical theorem prover. ACL2 has
elements of both interactive and automated provers. ACL2 is automatic in the
sense that once started on a problem, it proceeds without human assistance.
However, non-trivial results are not usually proved in the �rst attempt, and the
user has to lead the prover to a successful proof providing a set of lemmas, in-
spired by the failed proof generated by ACL2. This system has been used for
a variety of important formal methods projects of industrial and commercial
interest [16] and for implementing large proofs in mathematics.

3.2 Method

In this section, we present the method that we have applied to verify Fiji code.
This process can be split into the following steps.

1. Transforming Fiji code into compilable Krakatoa code.
2. Specifying Java programs.
3. Applying the Why tool.
4. If all the proof obligations are discharged automatically by the provers inte-

grated in Krakatoa, stop; the veri�cation has ended.
5. Otherwise, study the failed attempts, and consider if they are under-speci�ed;

if it is the case, go again to step (2).
6. Otherwise, consider the Coq expressions of the still-non-proven statements

and transform them to ACL2.
7. If all the statements are automatically proved in ACL2, stop; the veri�cation

has ended.
8. Otherwise, by inspecting the failed ACL2 proofs, decide if other speci�cations

are needed (go to item (2)); if it is not the case, decide if the missing proofs
should be carried out in Coq or ACL2.

12

The �rst step is the most sensitive one, because it is the only point where informal
(or, rather, semi-formal) methods are needed. Thus, some unsafe, and manual,
code transformation can be required. To minimize this drawback, we apply two
strategies:

� First, only well-known transformations are applied; for instance, we elimi-
nate inheritance by ��attening� out the code, but without touching the real
behaviour of methods.

� Second, the equivalence between the original code and the transformed one
is systematically tested.

Both points together increase the reliability of our approach; a more detailed
description of the transformations needed in step (1) are explained in Section 3.2.
Step (2) is quite well-understood, and some remarks about this step are provided
in Section 5.3. Steps (3)-(6) are mechanized in Krakatoa. The role of ACL2 (steps
(6)-(8)) is explained in Section 5.4 and, by means of an example, in Section 5.5.

Transforming Fiji-Java to Krakatoa-Java In its current state, the
Why/Krakatoa system does not support the complete Java programming lan-
guage and has some limitations. See Section 3.1. In order to make a Fiji Java
program compilable by Krakatoa we have to take several steps.

1. Delete annotations. Krakatoa JML annotations will be placed between *@
and @*\. Therefore, we need to remove other Java Annotations preceded
by @.

2. Move the classes that are referenced in the �le that we want to compile into
the directory whyInstallationDir/java_api/. For example, the class RankFil-
ters uses the class java.awt.Rectangle; therefore, we need to create the folder
awt inside the java directory that already exists, and put the �le Rectan-
gle.java into it. Moreover, we can remove the body of the methods because
only the headers and the �elds of the classes will be taken into consideration.
We must iterate this process over the classes that we add. The �les that we
add into the java_api directory can contain import, extends and implements

clauses although the �le that we want to compile cannot do it � Krakatoa
does not support these mechanisms. This is a tough process: for instance, to
make use of the class Rectangle, we need to add �fteen classes.

3. Reproduce the behaviour of the class that we want to compile. Considering
that we are not able to use extends and implements clauses, we need to move
the code from the upper classes into the one that we want to compile in
order to have the same behaviour. For instance, the class BinaryProcessor
extends from ByteProcessor and inside its constructor it calls the constructor
of ByteProcessor ; to solve this problem we need to copy the body of the super
constructor at the beginning of the constructor of the class BinaryProcessor.
If we �nd the use of interfaces, we can ignore them and remove the implements
clause because the code will be implemented in the class that makes use of
the interface.

13

4. Remove import clauses. We need to delete them from the �le that we want to
compile and change the places where the corresponding classes appear with
the full path codes. If for example we are trying to use the class Rectangle
as we have explained in Step 2, we need to replace it by java.awt.Rectangle.

5. Owing to package declarations are forbidden, we need to remove them with
the purpose of halting �unknown identi�er packageName� errors.

6. Rebuild native methods. The Java programming language allows the use
of native methods, which are written in C or C++ and might be speci�c
to a hardware and operating system platform. For example, many of the
methods in the class Math (which perform basic numeric operations such
as the elementary exponential, logarithm, square root, and trigonometric
functions) simply call the equivalent method included in a di�erent class
named StrictMath for their implementation, and then the code in StrictMath
of these methods is just a native call. Since native methods are not written
in Java, they cannot be speci�ed and veri�ed in Krakatoa. Therefore, if our
Fiji program uses some native methods, it will be necessary to rewrite them
with our own code. See in Section 5.5 our implementation (and speci�cation)
of the native method sqrt computing the square root of a number of type
double, based on Newton's algorithm.

7. Add a clause in if-else structures in order to remove �Uncaught exception:
Invalid_argument(�equal: abstract value�)�. We can �nd an example in the
method filterEdge of the class MedianFilter where we have to replace the
last else... clause by else if(true)....

8. Remove debugging useless references. We have mentioned in a previous step
that we can only use certain static methods that we have manually added to
the Why core code and therefore we can remove some debugging instructions
like System.out.println(...). We can �nd the usage of standard output
printing statement in the method write of the class IJ.

9. Modify the declaration of some variables to avoid syntax errors. There can
be some compilation errors with the de�nition of some �oats and double
values that match the pattern <number>f or <number>d. We can see an
example in the line 180 of the �le RankFilters.java; we have to transform
the code: float f = 50f; into float f = 50.

10. Change the way that Maximum and Minimum �oat numbers are written.
Those two special numbers are located in the �le Float.java and there are
widely used to avoid over�ow errors, but they generate an error due to the
eP exponent. To stop having errors with expressions like 0x1.fffffeP+127d

we need to convert it into 3.4028235e+38f.

3.3 NeuronPersistentJ

NeuronPersistentJ [25] is a plugin for ImageJ and Fiji that implements a method
to detect the neuronal structure from an image. See Figure 5

This method can be split into two steps, the �rst one process the image
with �lters to dismiss the elements which are not part of the structure of the

14

Fig. 5: NeuronPersistentJ in action

main neuron, and the second one is based in the persistent homology. This is a
technique which allows us to study the lifetimes of topological attributes.

There exists an unidenti�ed error on NeuronPersistentJ which eventually out-
puts results that do not correspond with the homological groups of the original
image, therefore we need to detect where the problem is and modify the code in
order to solve it and convert it into a trustful and robust plugin.

NeuronPersistentJ uses Median Filter (See section �refsec:medianFilter) and
makeLineRadii (See Section �refsec:makeRadius) functions which are described
on the following Sections.

Median Filter It is impossible to design a �lter that removes any noise but
keeps all the important image structures intact because no �lter can discriminate
which information is important for a human being and which is not.

The median �lter replaces every value of each pixel by the median of the
�lters corresponding �lter region R.

I�(u,v) ← median{I (u+i,v+j) | (i,j) ∈ R}.

The median of 2K+1 pixel is de�ned as:

median(p0,p1,...,pK ,...,p2K) , pK ;

In order to determine the domain of the �lter region a prompt windows is
shown (See Figure 6) asking us to manually establish it.

15

Fig. 6: Prompt window of the Median Filter asking the user to establish a domain.

MakeLineRadii Function MakeLineRadii is a very useful function which al-
lows us to determine the pixels that are being taken into account to compute
the median value of a pixel; so it creates a circular kernel (structuring element)
of a given radius. The function is located in the �le RankFilters.java which is
placed into ij.plugin.�lters package.

The declaration of the method is:

protected int[] makeLineRadii(double radius)

The returned array represents a circle of pixels as you can see in Figure 7.

16

(a) MakeLineRadii Radius 1 (b) MakeLineRadii Radius 2

(c) MakeLineRadii Radius 3

(d) MakeLineRadii Radius 4

Fig. 7: MakeLineRadii outputs

17

Fig. 8: NeuronPersistentJ State Diagram

1
8

The total number of elements that are taken into account in order to set the
median value is de�ned by the formula:

roint = (int)
√
(int)(radius2) + 1 + 1e− 10

Total Number of Pixels:

2∗roint+1+4∗(
roint∑
i=1

(int)
√

(int)(radius2) + 1− i2 + 1e− 10)+2∗
roint∑
i=1

i

This formula is obtained because:

1. 2*roint+1: Number of pixels that belong to the row with the red pixel in
the center.

2. (int)
√
(int)(radius2) + 1− i2 + 1e− 10): For each positive row i with a given

integer radius, the maximum positive value of the row.

3. 4 * Step 2: Positive and negative number of pixels of a positive row plus the
same number of pixels of the negative row.

4. 2∗
roint∑
i=1

i: For each positive row i, the central pixel of the positive and negative

row.

Therefore, regarding the previous results, the length of the returned array is
2*roint+2 because we need to add at the end of the array two elements that are
taken into account in order to set the median value, and roint.

The default behaviour of makeLinkeRadii function follows the rules that we
have just described, but according to the source code, there are two exceptions
to these rules that we need to consider in order to specify the postcondition of
the function:

1. If 1.5 ≤ radius<1.75 ⇒ It returns makeLineRadii(1.75).

2. If 2.5 ≤ radius<2.85 ⇒ It returns makeLineRadii(2.85).

3.4 Java Parser

Javaparser [2] is a Open Source library written in Java created with javacc that
aims to generate an easy to use and lightweight source parser.

Using this package is quite easy. There exits two major classes from which
we have to extend all the functionality:

� VoidVisitorAdapter: It allows us to modify the code without changing
the structure.

� Modi�rVisitorAdapter: It allows us to modify the code and change the
structure of the code. For instance we can change an if-else statement for a
switch statement.

19

4 Design

4.1 Class Uni�er

The classes contained on this section take part of a program that aims at solving
the Krakatoa compilation problems commented on Section 3.1. The classes in
Figure 9 are divided into three sections:

� javaParser: It contains the classes that use Java Parser library.
� Eclipse Plugin: It contains the classes that use Eclipse libraries.
� ClassUni�er: It is the middleware that aims to communicate the two previous
parts.

The classes listed below are displayed in Figure 9.

RemoveAnnotationsVisitor This class allows us to remove the Annotations
that the source code has. This class �xes Restriction 1.

FloatsWithNumbersVisitor This class allows us to change how the numbers
are declared and transform them to default �oating point notation. This class
�xes Restrictions 2 and 6.

ElseAlwaysTrueVisitor This class allows us to change the structure of if-else
statements by adding an "always true" condition on else statements. This class
�xes Restriction 5.

MethodCallerChangerVisitor This class allows us to change the caller of
every function and variable and replace it by the �rst of a List of visited Classes.
This class is useful to solve part of Restriction 4.

MethodNameChangerVisitor This class allows us to change the method
name of a function. This class is useful to solve part of Restriction 4.

SuperChangerVisitor This class allows us to change the references of a given
caller for another one and removes super statements. This class is useful to solve
part of Restriction 4.

PathLocator This class contains static methods and �elds that allow us to
outsource the location of the Java Class Files using Eclipse Plugin Resources.

MainAppHandler This class is the entrance point of the Application and it
launches the method execute(ExecutionEvent) when the user requests it.

ClassUni�er This class is the middleware that communicates javaParser and
eclipsePlugins parts. It has a CompilationUnit �eld that represents the father of
the current class.

20

Fig. 9: Class Uni�er - Class Diagram

2
1

4.2 Veri�cation Platform

In order to verify the code, we need to de�ne a Standard Architecture capable
of facing a multi-strategy approach. The architecture (See Figure 10) consists
on:

� KrakatoaProbe: Represents the �le that we want to verify using Krakatoa.
� Utils.java: It is a utility class that we call from KrakatoaProbe �le. This �le
is located under the Krakatoa installation directory and it is loaded through
a symbolic link.

� UtilsTest.java: Is the jUnit class �le that we use to make Unitary Tests.

The reason why the architecture is de�ned in this way, is because external
classes are referenced in reserved packages and therefore we need to move it to
allowed package names in order to make a safe execution environment.

For this reason, the classes are moved using an ant-script1 from the unsafe
to the safe execution environment.

Fig. 10: Veri�cation Platform

1 An Ant script is an XML build �le, containing a single project and a single or
multiple targets, each of which consists of a group of tasks that you want Ant to
perform. A task is an XML element that Ant can execute to produce a result, for
instance, moving class �les.

22

4.3 MakeLineRadii

MakeLineRadii function (See Section 3.3) makes use of a variety of functions
that need to be formalised; therefore we need to create some basic operations to
support more complex operations.

The basic essential operations that we have considered are: Absolute value,
Power value, Cast from a Double to an Integer and Integer root of a Double
value:

� Abs
• Axiom1: Abs value of any number >= 0 ⇒ The number.
• Axiom2: Abs value of a number < 0 ⇒ - The number.

� Power
• Axiom1: Any number raised to the power of 0 ⇒ 1.
• Axiom2: Any number raised to the power of 1 ⇒ The number.
• Axiom3: Any number raised to the power of 2 ⇒ The number x The
number.

• Axiom4: Power(x, i+j) ⇒ Power(x,i) + Power(x,j).
• Axiom5: Power(x,i*j) ⇒ Power(Power(x,i),j).
• Axiom6: Power(x*y,j) ⇒ Power(x,i) * Power(y,i).
• Axiom7: Power(x,i) ⇒ x * Power(x,i-1).

� Cast
• Axiom1: The cast of a zero double number is zero.
• Axiom2: The cast of a positive double number is its �rst integer lower
number.

• Axiom3: The cast of a negative double number is its �rst integer greater
number.

• Predicate1: isGoodCast(int x, double d)⇒ (d==0.0⇒ x==0) && (d>0
⇒ x≤d<x+1) && (d<0 ⇒ x ≥ d >x-1).

� Root
• Axiom1: The root of zero is zero.
• Axiom2: The root of a positive number is greater or equal than zero.
• Axiom3: Where sqrtd is the integer root of a double positive number ⇒
(sqrtd(x) * sqrtd(x)) ≤ x < ((sqrtd(x)+1) * (sqrtd(x)+1));

• Predicate1: isGoodSqrt(double x, double c) ⇒ x*x-c < Epsilon;

5 Development

5.1 NeuronPersistentJ Plugin

NeuronPersistentJ (as we saw on Section 3.3) had some troubles that made it
fail randomly when trying to detect the neuronal structure of the image.

Using Krakatoa to formalise the median value, helped us to know that the
problem was not on that part of the code, hence we decided to face the problem
using another two di�erent debugging approaches to discover where the problem
in NeuronPersistentJ was:

23

� Launching ImageJ with the argument -debug displays a Log Window that
helped us to determine what was happening in the program on every mo-
ment.

� Downloading the source code of ImageJ gave us the opportunity of setting
break points in the code being able to see the values of the program variables
and how they were changing while the program was running.

We detected that it was a synchronization problem of the threads that per-
formed the operations on the wrong images and that it could be solved gaining
the focus of the image before performing any operation.

Because of this reason, we have de�ned the following functions that need to
be called before performing any operation on the image:

private void gainFocus(Thread cu, ImagePlus imp){

gainFoucs(cu,imp,1);

}

private void gainFoucs(Thread cu, ImagePlus imp, int i) {

int num = imp.getNSlices();

if(num >= i){

imp.setSlice(i);

}

WindowManager.setWindow(imp.getWindow());

WindowManager.setTempCurrentImage(cu,imp);

}

With this code, we gain the focus on the selected slice and imagePlus instance
in the current Thread. Now we only need to call it before performing any doWand
or run action as we can see in the code extracted from NeuronPersistentJ plugin.

//First we charge cu variable with the current thread value

Thread cu = Thread.currentThread();

//Now we perform the two operations over the

this.gainFoucs(cu, ImageMax, 1);

IJ.doWand(ImageMax, x[k], y[k], 10, "8-connected");

this.gainFoucs(cu, ImageMax, 1);

IJ.run(ImageMax,"Create Mask", "");

Performing this simple change on the code, NeuronPersistentJ is a robust
plugin that has exactly the same behaviour each time it is executed.

5.2 Veri�cation Platform

Optimizing Power Axiom The Axiom7 of the Power Section on 4.3 uses
an algorithmic method that requires (power - 1) multiplications to obtain the
desired result, but we can replace it for an optimized version that makes use of
the power of two axiom:

24

@ /*

@ axiom power_general1:

@ \forall real x , integer i;x > 1 && i%2 == 1

@ ==> lpower(x,i) == lpower(lpower(x,2),i/2)*x;

@

@ axiom power_general2:

@ \forall real x , integer i;x > 1 && i%2 == 0

@ ==> lpower(x,i) == lpower(lpower(x,2),i/2);

@ }

@*/

Applying these two axioms to 345 we obtain:

3^45 ==> 3^44 * 3 ==> ((3^22)^2) * 3 ==> ((3^11)^2^2) * 3 ==>

((3^10 * 3)^2^2) * 3 ==> ((3^10 * 3)^2^2) * 3 ==> (((3^5)^2 * 3)^2^2) * 3 ==>

((((3^4) * 3)^2 * 3)^2^2) * 3 ==> ((((3^2^2) * 3)^2 * 3)^2^2) * 3

And instead of 44 multiplications, we only perform 8.

Setting the Epsilon Value of Sqrt As you can see on Section 5.3 we replaced
the native Math.sqrt function for a custom one that requires an epsilon value
that satis�es:

/*@

@ predicate is_sqrt(double x, double c) =

@ x*x-c < Epsilon;

@*/

We need to �nd a proper epsilon value similar than the produced by the
native Math.sqrt function and to obtain that value we have to obtain random
values and save its epsilon value.

After having done that process we get Figure 11
We can see red colored the native Math.sqrt function values and blue colored

the custom function values and the epsilon always remains under the value 1,2E-
007. The results are displayed in Table 3.

Table 3: Sqrt Epsilon - Values Table
Custom Sqrt Method Navtive Math.sqrt method

Max_Error 1,23E-007 1,19E-007

AVG_Error 1,06447213215943E-008 3,65610620705302E-009

Analysing the results, we see that the epsilon value in Math.sqrt native func-
tion converges to 1.2E-7, hence we have decided to set the epsilon value of our
sqrt function to 1.2E-7.

25

Fig. 11: Sqrt Epsilon value

5.3 Specifying programs for digital imaging

As already said in Section 3.1, Fiji and ImageJ are open source projects and many
di�erent people from many di�erent teams (some of them not being computer
scientists) are involved in the development of the di�erent Fiji Java plug-ins.
This implies that the code of these programs is in general not suitable for its for-
mal veri�cation and a deep previous transformation process, following the steps
explained in Section 3.2, is necessary before introducing the Java programs into
the Why/Krakatoa system. Even after this initial transformation, Fiji programs
usually remain complex and their speci�cation in Krakatoa is not a direct pro-
cess. In this section we present some examples of Fiji methods that we have
speci�ed in JML trying to show the di�culties we have faced.

Once that a Fiji Java program has been adapted, following the ideas of Sec-
tion 3.2, and is accepted by the Why/Krakatoa application, the following step
in order to certify its correctness consists in specifying its behaviour (that is,
its precondition and its postcondition) by writing annotations in the Java Mod-
elling Language (JML) [8] . The precondition of a method must be a proposition
introduced by the keyword requires which is supposed to hold in the pre-state,
that is, when the method is called. The postcondition is introduced by the key-
word ensures, and must be satis�ed in the post-state, that is, when the method
returns normally. The notation \result denotes the returned value. To di�eren-
tiate the value of a variable in the pre- and post- states, we can use the keyword
\old for the pre-state.

26

Let us begin by showing a simple example. The following Fiji method, in-
cluded in the class Rectangle, translates an object by given horizontal and vertical
increments dx and dy.

/*@ ensures x == \old(x) + dx && y == \old(y) + dy;

@*/

public void translate(final double dx, final double dy) {

this.x += dx; this.y += dy;

}

The postcondition expresses that the �eld x is modi�ed by incrementing it
by dx, and the �eld y is increased by dy. In this case no precondition is given
since all values of dx and dy are valid, and the keyword \result does not appear
because the returned type is void.

Using this JML speci�cation, Why/Krakatoa generates several lemmas (Proof
Obligations) which express the correctness of the program. In this simple case,
the proof obligations are elementary and they can be easily discharged by the
automated theorem provers Alt-Ergo [6] and CVC3 [4], which are included in
the environment. The proofs of these lemmas guarantee the correctness of the
Fiji method translate with respect to the given speci�cation.

Unfortunately, this is not the general situation because, as already said, Fiji
code has not been designed for its formal veri�cation and can be very compli-
cated; so, in most cases, Krakatoa is not able to prove the validity of a program
from the given precondition and postcondition. In order to formally verify a Fiji
method, it is usually necessary to include annotations in the intermediate points
of the program. These annotations, introduced by the keyword assert, must
hold at the corresponding program point. For loop constructs (while, for, etc),
we must give an inductive invariant, introduced by the keyword loop_invariant,
which is a proposition which must hold at the loop entry and be preserved by
any iteration of the loop body. One can also indicate a loop_variant, which must
be an expression of type integer, which remains non-negative and decreases at
each loop iteration, assuring in this way the termination of the loop. It is also
possible to declare new logical functions, lemmas and predicates, and to de�ne
ghost variables which allow one to monitor the program execution.

Let us consider the following Fiji method included in the class RankFilters.
It implements Hoare's �nd algorithm (also known as quickselect) for computing
the nth lowest number in part of an unsorted array, generalizing in this way the
computation of the median element. This method appears in the implementation
of the �median �lter�, a process very common in digital imaging which is used
in order to achieve greater homogeneity in an image and provide continuity,
obtaining in this way a good binarization of the image.

/*@ requires buf!=null && 1<= bufLength <= buf.length && 0<=n <bufLength;

@ ensures Permut{Old,Here}(buf,0,bufLength-1)

@ && (\forall integer k; (0<=k<=n-1 ==> buf[k]<=buf[n])

@ && (n+1<=k<=bufLength-1 ==> buf[k]>=buf[n]))

@ && \result==buf[n] ;

27

@*/

public final static float findNthLowestNumber

(float[] buf, int bufLength, int n) {

int i,j;

int l=0;

int m=bufLength-1;

float med=buf[n];

float dum ;

while (l<m) {

i=l ;

j=m ;

do {

while (buf[i]<med) i++ ;

while (med<buf[j]) j-- ;

dum=buf[j];

buf[j]=buf[i];

buf[i]=dum;

i++ ; j-- ;

} while ((j>=n) && (i<=n)) ;

if (j<n) l=i ;

if (n<i) m=j ;

med=buf[n] ;

}

return med ;

}

Given an array buf and two integers bufLength and n, the Fiji method
findNthLowestNumber returns the (n+1)-th lowest number in the �rst bufLength
components of buf. The precondition expresses that buf is not null, bufLength
must be an integer between 1 and the length of buf, and n is an integer between
0 and bufLength− 1. The de�nition of the postcondition includes the use of the
predicate Permut, a prede�ned predicate, which expresses that when the method
returns the (modi�ed) bufLength �rst components of the array buf must be a
permutation of the initial ones. The array has been reordered such that the
components 0, . . . , n− 1 are smaller than or equal to the component n, and the
elements at positions n+1, . . . , bufLength−1 are greater than or equal to that in
n. The returned value must be equal to buf[n], which is therefore the (n+1)-th
lowest number in the �rst bufLength components of buf.

In order to prove the correctness of this program, we have included di�erent
JML annotations in the Java code. First of all, loop invariants must be given
for all while and do structures appearing in the code. Di�culties have been
found in order to deduce the adequate properties for invariants which must be
strong enough to imply the program (and other loops) postconditions; automated
techniques like discovery of loop invariants [20] will be used in the future. We
show as an example the loop invariant (and variant) for the exterior while, which
is given by the following properties:

/*@ loop_invariant

28

@ 0<=l<=n+1 && n-1<=m<=bufLength-1 && l<=m+2

@ && (\forall integer k1 k2; (0<=k1<=n && m+1<=k2<=bufLength-1)

@ ==> buf[k1]<=buf[k2])

@ && (\forall integer k1 k2; (0<=k1<=l-1 && n<=k2<=bufLength-1)

@ ==> buf[k1]<=buf[k2])

@ && Permut{Pre,Here}(buf,0,buf.length-1) && med==buf[n]

@ && ((l<m)==> ((l<=n)&&(m>=n)));

@ loop_variant m - l+2;

@*/

To help the automated provers to verify the program and prove the generated
proof obligations it is also necessary to introduce several assertions in some
intermediate points of the program and to use ghost variables which allow the
system to deduce that the loop variant decreases.

Our �nal speci�cation of this method includes 78 lines of JML annotations
(for only 24 Java code lines). Krakatoa/Why produces 175 proof obligations
expressing the validity of the program. The automated theorem prover Alt-Ergo
is able to demonstrate all of them, although in some cases more than a minute (in
an ordinary computer) is needed; another prover included in Krakatoa, CVC3, is,
on the contrary, only capable of proving 171. The proofs of the lemmas obtained
by means of Alt-Ergo certify the correctness of the method with respect to the
given speci�cation.

In this particular example, the automated theorem provers integrated in
Krakatoa are enough to discharge all the proof obligations. In other cases, some
properties are not proven, and then one should try to prove them using interac-
tive theorem provers, as Coq. In this architecture, we also introduce the ACL2
theorem prover, as explained in the next section.

5.4 The role of ACL2

In this section, we present the role played by ACL2 in our infrastructure to
verify the correctness of Java programs. The Why platform relies on automated
provers, such as Alt-Ergo or CVC3, and interactive provers, such as Coq or PVS,
to discharge proof obligations; however, it does not consider the ACL2 theorem
prover to that aim. We believe that the use of ACL2 can help in the proof
veri�cation process. The reason is twofold.

� The scope of automated provers is smaller than the one of ACL2; therefore,
ACL2 can prove some of the proof obligations which cannot be discharged
by automated provers.

� Moreover, interactive provers lack automation; then, ACL2 can automat-
ically discharge proof obligations which would require user interaction in
interactive provers.

We have developed Coq2ACL2, a Proof General extension, which integrates
ACL2 in our infrastructure to verify Java programs; in particular, we work with

29

ACL2(r) a variant of ACL2 which supports the real numbers [13] � the for-
malisation of real analysis in theorem provers is an outstanding topic, see [7].
Coq2ACL2 features three main functions:

F1. it transforms Coq statements generated by Why to ACL2;
F2. it automatically sends the ACL2 statements to ACL2; and
F3. it displays the proof attempt generated by ACL2.

If all the statements are proved in ACL2; then, the veri�cation process is ended.
Otherwise, the statements must be manually proved either in Coq or ACL2.

The major challenge in the development of Coq2ACL2 was the transforma-
tion of Coq statements to ACL2. There is a considerable number of proposals
documented in the literature related to the area of theorem proving interoper-
ability. We have not enough space here to do a thorough review, but we can
classify the translations between proof assistants in two groups: deep [9, 15, 21]
and shallow [11, 23,27].

In our work, we took advantage of a previous shallow development presented
in [3], where a framework called I2EA to import Isabelle/HOL theories into
ACL2 was introduced. The approach followed in [3] can be summarised as follows.
Due to the di�erent nature of Isabelle/HOL and ACL2, it is not feasible to replay
proofs that have been recorded in Isabelle/HOL within ACL2. Nevertheless,
Isabelle/HOL statements dealing with �rst order expressions can be transformed
to ACL2; and then, they can be used as a schema to guide the proof in ACL2.

A key component in the framework presented in [3] was an XML-based spec-
i�cation language called XLL (that stands for Xmall Logical Language). XLL
was developed to act as an intermediate language to port Isabelle/HOL theo-
ries to both ACL2 and an Ecore model (given by UML class de�nitions and
OCL restrictions) � the translation to Ecore serves as a general purpose formal
speci�cation of the theory carried out. The transformations among the di�erent
languages are done by means of XSLT and some Java programs. We have inte-
grated the Coq system into the I2EA framework as can be seen in Figure 12;
in this way, we can reuse both the XLL language and some of the XSLT �les
developed in [3] to transform (�rst-order like) Coq statements to ACL2.

In particular, functionality F1 of Coq2ACL2 can be split into two steps:

1. given a Coq statement, Coq2ACL2 transforms it to an XLL �le using a
Common Lisp translator program; then,

2. the XLL �le is transformed to ACL2 using an XSLT �le previously developed
in [3].

In this way, ACL2 has been integrated into our environment to verify Java
programs. As we will see in the following section, this has meant an improvement
to automatically discharge proof obligations.

5.5 The method in action: a complete example

In our work, we deal with images acquired by microscopy techniques from biolog-
ical samples. These samples have volume and the object of interest is not always

30

Isabelle/HOL

Coq

XLL ACL2

Fig. 12: (Reduced) Architecture of the I2EA framework integrating Coq.

in the same plane. For this reason, it is necessary to obtain di�erent planes from
the same sample to get more information. This means that several images are
acquired in the same XY plane at di�erent levels of Z. To work with this stack
of images, it is often necessary to make their maximum projection. To this aim,
Fiji provides several methods such as maximum intensity or standard deviation
to obtain the maximum projection of a set of images.

In this section, we consider the Fiji code for computing the maximum projec-
tion of a set of images based on the standard deviation, which uses in particular
the method
calculateStdDev located in the class ImageStatistics.

double calculateStdDev(double n, double sum, double sum2) {

double stdDev = 0.0;

if (n>0.0) {

stdDev = (n*sum2-sum*sum)/n;

if (stdDev>0.0)

stdDev = Math.sqrt(stdDev/(n-1.0));

else

stdDev = 0.0;

} else

stdDev = 0.0;

}

The inputs are n (the number of data to be considered), sum (the sum of
all considered values; in our case, these values will obtained from the pixels in
an image) and sum2 (the sum of the squares of the data values). The method
calculateStdDev computes the standard deviation from these inputs and assigns
it to the �eld stdDev. The speci�cation of this method is given by the following
JML annotation.

/*@ requires ((n==1.0)==> sum2==sum*sum) && ((n<=0.0) || (n>=1.0)) ;

@ behavior negative_n :

@ assumes n<=0.0 || (n>0.0 && (n*sum2-sum*sum)/n <=0.0);

31

@ ensures stdDev == 0.0;

@ behavior normal_behavior :

@ assumes n>=1.0 && ((n*sum2-sum*sum)/n > 0.0);

@ ensures is_sqrt(stdDev,(double)((n*sum2-sum*sum)/n/(n-1.0)));

@*/

The precondition, introduced by the keyword requires, expresses that in the
case n = 1 (that is, there is only one element in the data) the inputs sum and
sum2 must satisfy sum2 = sum ∗ sum. Moreover we must require that n is less than
or equal to 0 or greater than or equal to 1 to avoid the possible values in the
interval (0, 1); for n in this interval one has n− 1 < 0 and then it is not possible
to apply the square root function to the given argument stdDev/(n− 1.0). This
fact has not been taken into account by the author of the Fiji program because
in all real applications the method will be called with n being a natural number;
however, to formalise the method we must specify this particular situation in
the precondition. For the postcondition we distinguish two di�erent behaviours:
if n is non-positive or sum and sum2 are such that n ∗ sum2 − sum ∗ sum < 0, the
�eld stdDev is assigned to 0; otherwise, the standard deviation formula is applied
and the result is assigned to the �eld stdDev. The predicate is_sqrt is previously
de�ned.

We also consider the code that selects the pixels that are needed to compute
the median �lter over them and the code that performs the selection is located
in the method makeLineRadii (See Sections 3.3 and 4.3). The speci�cation of
this method in JML annotation is not short enough to be included here, but it
can be sawn on the attached source code and we are going to explain it anyway.

The precondition has di�erent blocks:

� �rstif1: It speci�es an input argument which is 1.5<=argument<1.75 and
an output array equals to [0, 0, -1, 1, -2, 2, -1, 1, 0, 0, 13, 2] which is the
output array of an input equals to 1.75.

� �rstif2: It speci�es an input argument which is 2.5<=radius && radius<2.85
and an output array equals to [0, 0, -2, 2, -2, 2, -3, 3, -2, 2, -2, 2, 0, 0, 29, 3]
which is the output array of an input equals to 2.85.

� normal_behavior: It speci�es any input argument between 0.5 and 46339
that do not match in the range of �rstif1 or �rstif2 and the corresponding
output array that can be obtained using the formulas of the Section 3.3.

� over�ow: It speci�es input arguments that could return Exceptions due
to internal operations over�ows and it returns a minimum size radius(0.5)
output which is equals to: [0, 0 , -1, 1, 0, 0, 5, 1).

The number 46339 is not an arbitrary number chosen by chance but a number
obtained by the maximum radius that can be applied as an input argument
without giving an Over�ow Exception on the internal program operations. The
most important part of the function is the loop which has a JML Annotation:

/*@ loop_invariant

@ radius >= 0 &&

32

@ 1<=y<=kRadius+1 &&

@ nPoints == suma(y-1,radius)&&

@ kRadius == (sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0)) + 1e-10))) &&

@ (\forall integer ka; 1<=ka<y ==>

@ kernel[2*(kRadius-ka)] ==

@ 0-sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0)) - ka*ka + 1e-10))) &&

@ (\forall integer ka; 1<=ka<y ==> kernel[2*(kRadius-ka) +1] ==

@ sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0)) - ka*ka + 1e-10))) &&

@ (\forall integer ka; 1<=ka<y ==> kernel[2*(kRadius+ka)] ==

@ 0-sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0)) - ka*ka + 1e-10))) &&

@ (\forall integer ka; 1<=ka<y ==> kernel[2*(kRadius+ka) +1] ==

@ sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0)) - ka*ka + 1e-10))

@);

@ loop_variant (sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0)) + 1e-10))) -y;

@*/

To sum up the behaviour of this code, we ensure for every element between 1
and y-1 which we call ka that:

� kernel[2*(kRadius - ka)] == −(int)
√

(int)(radius2) + 1− ka2 + 1e− 10

� kernel[2*(kRadius - ka) + 1] == (int)
√
(int)(radius2) + 1− ka2 + 1e− 10

� kernel[2*(kRadius + ka) + 1] == (int)
√
(int)(radius2) + 1− ka2 + 1e− 10

� kernel[2*(kRadius + ka)] == −(int)
√

(int)(radius2) + 1− ka2 + 1e− 10

We can see kRadius variable which is equals to (int)
√

(int)(radius2) + 1 + 1e− 10
and we can also see suma function that calculates the pixels that are included
on every step of the loop and its code is:

/*@

@ logic integer suma(integer paso, double r2);

@ logic integer sumaC(double r2);

@ axiom sum_general:

@ \forall integer paso, double radius;radius>=0 &&

@ 1<=paso<=(sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0)) + 1e-10)))

@ ==> suma(paso,radius) == @4*sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0))-paso*paso+1e-10)) +

@ 2 + suma(paso-1,radius);

@ axiom sum_uno:

@ \forall integer paso, double radius;paso == 0 && radius>=0 ==>

@ suma(paso,radius) == 2*(sqrtd((double)

@ (getIntA((double) ((real)radius*(real)radius+(real)1.0)) + 1e-10)))+1;

@ axiom sum_total:

33

@ \forall double radius;radius>=0 ==> sumaC(radius) ==

@ suma((sqrtd((double) (getIntA((double)

@ ((real)radius*(real)radius+(real)1.0)) + 1e-10))),radius);

@*/

For the proof of correctness of the method calculateStdDev in Krakatoa, it is
necessary to specify (and verify) the method sqrt. The problem here, as already
explained in Section 3.2, is that the method sqrt of the class Math simply calls
the equivalent method in the class StrictMath, and the code in StrictMath of
the method sqrt is just a native call and might be implemented di�erently on
di�erent Java platforms. In order to give a JML speci�cation of the method
sqrt is necessary then to rewrite it with our own code. The documentation of
StrictMath states �To help ensure portability of Java programs, the de�nitions
of some of the numeric functions in this package require that they produce the
same results as certain published algorithms. These algorithms are available from
the well-known network library netlib as the package �Freely Distributable Math
Library�, fdlibm�. In the case of the square root, one of these recommended
algorithms is Newton's method; based on it, we have implemented and speci�ed
in JML the computation of the square root of a given (non-negative) input of
type double.

/*@ requires c>=0 && epsi > 0 ;

@ ensures \result >=0 && (\result*\result>=c)

@ && \result*\result - c < epsi ;

@*/

public double sqrt(double c, double epsi){

double t;

if (c>1) t= c;

else t=1.1;

/*@ loop_invariant

@ (t >= 0) && (t*t> c) ;

@*/

while (t* t - c >= epsi) {

t = (c/t + t) / 2.0;

}

return t;

}

/*@ requires c>=0 ;

@ ensures (\result >=0) && (\result*\result>=c)

@ && (\result*\result - c < 1.2E-7);

@*/

public double sqrt(double c){

double eps=1.2E-7;

return sqrt(c,eps);

}

The �rst method computes the square root of a double x with a given pre-
cision epsi; the second one calls the previous method with a precision less than

34

1.2E−7. Using JUnit, we have run one million tests between 1E9 and 1E−9 to
show that the results of our method sqrt have similar precision to those obtained
by the original method Math.sqrt. Here, we applied the ��rst test, then verify�
approach � intensive testing can be really useful to �nd bugs (and can save us
time) before starting the veri�cation process.

For instance, from the given JML speci�cation for the Fiji method calculateStdDev

and our sqrt method, Why/Krakatoa produces 52 proof obligations, 9 of them
corresponding to lemmas that we have introduced and which are used in order
to prove the correctness of the programs. Alt-Ergo is able to prove 50 of these
proof obligations, but two of the lemmas that we have de�ned remain unsolved.
CVC3 on the contrary only proves 44 proof obligations.

The two lemmas that Alt-Ergo (and CVC3) are not able to prove are the
following ones:

/*@ lemma double_div_pos :

@ \forall double x y; x>0 && y > 0 ==> x / y > 0;

@*/

/*@ lemma double_div_zero :

@ \forall double x y; x==0.0 && y > 0 ==> x / y == 0.0;

@*/

In order to discharge these two proof obligations, we can manually prove
their associated Coq expressions.

Lemma double_div_zero : (forall (x_0_0:R), (forall (y_0:R),

((eq x_0_0 (0)%R) /\ (Rgt y_0 (0)%R) -> (eq (Rdiv x_0_0 y_0) (0)%R)))).

Lemma double_div_pos : (forall (x_13:R), (forall (y:R),

((Rgt x_13 (0)%R) /\ (Rgt y (0)%R) -> (Rgt (Rdiv x_13 y) (0)%R)))).

Both lemmas can be proven in Coq in less than 4 lines, but, of course, it
is necessary some experience working with Coq. Therefore, it makes sense to
delegate those proofs to ACL2. Coq2ACL2 translates the Coq lemmas to the
following ACL2 ones. ACL2 can prove both lemmas without any user interaction
(a screenshot of the proof of one of this lemmas in ACL2 is shown in Figure 13).

(defthm double_div_zero

(implies (and (realp x_0_0) (realp y_0) (and (equal x_0_0 0) (> y_0 0)))

(equal (/ x_0_0 y_0) 0)))

(defthm double_div_pos

(implies (and (realp x_13) (realp y) (and (> x_13 0) (> y 0)))

(> (/ x_13 y) 0))

5.6 The role of jUnit

In this section, we present the role played by jUnit in our infrastructure to verify
the correctness of Java programs. During the Section 5.5 we performed a change

35

Fig. 13: Proof General with Coq2ACL2 extension. The Coq2ACL2 extension
consists of the Coq2ACL2 menu and the right-most button of the toolbar. Left:
the Coq �le generated by the Why tool. Top Right: current state of the Coq
proof. Bottom Right: ACL2 proof of the lemma.

in the code and we formalised the methods to ensure the correctness of them,
but in addition, we want to ensure that the replaced functions have the same
behaviour as the newest ones

For this reason we have developed two tests:

@Test

public void comprobarAccion() {

tester = new Utils();

for(double i = 0; i < 20000;i = i+0.01){

assertEquals("Result " + i, (int) i, tester.getInt2(i));

assertEquals("Result " + (-i), (int) -i, tester.getInt2(-i));

}

}

@Test

public void comprobarAccion2() {

double err=1.2E-7;

//First of all we perform the test with Double_max and Double_min values

double da1 = Double.MAX_VALUE;

double ra1= Math.sqrt(da1);

double da2 = Double.MIN_VALUE;

double ra= Math.sqrt(da2);

Assert.assertTrue(ra1*ra1-da1 < err);

Assert.assertTrue(ra*ra-da2 < err);

for(int i=0;i<1000000;i++){

double d = Math.random();

36

d = d * tester.power(10, (int)(Math.random()*10));

double ra2= tester.newtonSqrt(d, err);

Assert.assertTrue(ra2*ra2-d < err);

String aux = d + "";

Double da3;

if(aux.indexOf("E-") < 0) {

da3 = Double.parseDouble(aux.replace("E", "E-"));

}

else{

da3 = Double.parseDouble(aux.replace("E-", "E+"));

}

Double ra3= tester.newtonSqrt(da3, err);

Assert.assertTrue(ra3*ra3-da3 < err);

}

}

6 Final Estimates of Time

This section contains a summary of the estimated and spent hours to conclude the
current project (See Table 4)

Table 4: Estimates of time
Task Estimated

Hours
Estimated
Percentage

Real Hours Real Percent-
age

Project Management 17 1.868 15 1.574

Initiation 63 6.923 71 7.45

Training 178 19.56 213 22.35

Analysis 124 13.626 104 10.913

Design 205 22.527 175 18.363

Development 198 21.758 226 23.715

Project Report 99 10.879 135 14.166

Manuals 18 1.978 4 0.42

Defense 8 0.879 10 1.049

910 100 % 953 100 %

In the end, the estimates almost re�ected reality and we were able to achieve all
the goals that we set on Section 2.2. We were only capable of achieving partially the
automation of the process that converts Java code into compilable Krakatoa code.

37

7 Conclusions and further work

This dissertation2 reports an experience to verify actual Java code, as generated by
di�erent-skilled programmers, in a multi-programmer tool called Fiji and correct the
Fiji Plugin called NeuronPersistentJ.

We have found that the degree of maturity of Krakatoa could be improved although
it is a very useful tool to prove isolated and relevant parts of the code using formalisation
and several examples in our text show it. In addition to Krakatoa, several theorem
provers (Coq and ACL2) have been used to discharge some proof obligations that were
not automatically proved by Krakatoa and it has been a teamwork that one person
could have never achieved.

In addition we were able to detect and correct an existing problem in Real Java
Code (NeuronPersistentJ) used by scientists which is always a highly rewarding task.

Future work includes several improvements in our method. Starting from the be-
ginning, the transformation from real Java code to Krakatoa is partially automated
although it needs more e�orts to be putted into production. Moreover, a formal study
of this transformation could be undertaken to increase the reliability of our method.

We are proud of this project because it was �nally accepted in the Conference
on Intelligent Computer Mathematics [18] and NeuronPersistentJ plugin has been
updated with our suggestions [25].

On the whole, we can say that the formalisation of the code is a very tough process
that requires enormous e�orts in order to prove a few lines of code, but it should be
taken into account in the test of critical software systems.

References

1. ForMath: Formalisation of Mathematics, European Project. http://wiki.portal.
chalmers.se/cse/pmwiki.php/ForMath/ForMath.

2. Java Parser. https://code.google.com/p/javaparser.
3. J. Aransay et al. A report on an experiment in porting formal theories from

Isabelle/HOL to Ecore and ACL2. Technical report, 2012. http://wiki.portal.
chalmers.se/cse/uploads/ForMath/isabelle_acl2_report.

4. C. Barrett and C. Tinelli. CVC3. In 19th International Conference on Computer
Aided Veri�cation (CAV'07), volume 4590 of LNCS, pages 298�302, 2007.

5. G. Barthe, D. Pointcheval, and S. Zanella-Béguelin. Veri�ed Security of
Redundancy-Free Encryption from Rabin and RSA. In Proceedings 19th ACM
Conference on Computer and Communications Security (CCS'12), pages 724�735,
2012.

6. F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and A. Mebsout.
The Alt-Ergo automated theorem prover, 2008. http://alt-ergo.lri.fr/.

7. S. Boldo, C. Lelay, and G. Melquiond. Formalization of Real Analysis: A Survey
of Proof Assistants and Libraries. Technical report, 2013. http://hal.inria.fr/
hal-00806920.

8. L. Burdy et al. An overview of JML tools and applications. International Journal
on Software Tools for Technology Transf, 7(3):212�232, 2005.

2 Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-
C02-01, and by the European Union's 7th Framework Programme under grant agree-
ment nr. 243847 (ForMath).

38

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ForMath
https://code.google.com/p/javaparser
http://wiki.portal.chalmers.se/cse/uploads/ForMath/isabelle_acl2_report
http://wiki.portal.chalmers.se/cse/uploads/ForMath/isabelle_acl2_report
http://alt-ergo.lri.fr/
http://hal.inria.fr/hal-00806920
http://hal.inria.fr/hal-00806920

9. M. Codescu et al. Towards Logical Frameworks in the Heterogeneous Tool Set Hets.
In Post-Proceedings 20th International Workshop on Recent Trends in Algebraic
Development Techniques (WADT'10), volume 7137 of LNCS, pages 139�159, 2012.

10. Coq development team. The Coq Proof Assistant, version 8.4. Technical report,
2012. http://coq.inria.fr/.

11. E. Denney. A Prototype Proof Translator from HOL to Coq. In 13th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs'00), volume
1869 of LNCS, pages 108�125, 2000.

12. J. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus Platform for Deduc-
tive Program veri�cation. In 19th International Conference on Computer Aided
Veri�cation (CAV'07), volume 4590 of LNCS, pages 173�177, 2007.

13. R. Gamboa and M. Kaufmann. Non-Standard Analysis in ACL2. Journal of
Automated Reasoning, 27(4):323�351, 2001.

14. G. Gonthier et al. A Machine-Checked Proof of the Odd Order Theorem. In
Proceedings 4th Conference on Interactive Theorem Proving (ITP'13), LNCS, 2013.

15. M. J. C. Gordon, M. Kaufmann, and S. Ray. The Right Tools for the Job: Cor-
rectness of Cone of In�uence Reduction Proved Using ACL2 and HOL4. Journal
of Automated Reasoning, 47(1):1�16, 2011.

16. D. Hardin, editor. Design and Veri�cation of Microprocessor Systems for High-
Assurance Applications. Springer, 2010.

17. J. Heras, T. Coquand, A. Mörtberg, and V. Siles. Computing Persistent Homology
within Coq/SSRe�ect. To appear in ACM Transactions on Computational Logic,
2013.

18. J. Heras, G. Mata, A. Romero, J. Rubio, and R. Sáenz. Verifying a platform for
digital imaging: a multi-tool strategy. In AISC/MKM/Calculemus (CICM'13),
volume 7691 of LNCS, pages 66�81, 2013.

19. J. Heras, M. Poza, and J. Rubio. Verifying an Algorithm Computing Discrete
Vector Fields for Digital Imaging. In AISC/MKM/Calculemus (CICM'12), volume
7362 of LNCS, pages 216�230, 2012.

20. A. Ireland and J. Stark. On the automatic discovery of loop invariants, 1997.
21. M. Jacquel, K. Berkani, D. Delahaye, and C. Dubois. Verifying B Proof Rules

Using Deep Embedding and Automated Theorem Proving. In Proceedings 9th In-
ternational Conference on Software Engineering and Formal Methods (SEFM'11),
volume 7041 of LNCS, pages 253�268, 2011.

22. M. Kaufmann and J S. Moore. ACL2 version 6.0, 2012. http://www.cs.utexas.
edu/users/moore/acl2/.

23. C. Keller and B. Werner. Importing HOL Light into Coq. In Proceedings 1st
International Conference on Interactive Theorem Proving (ITP'11), volume 6172
of LNCS, pages 307�322, 2011.

24. H. Liu and J S. Moore. Java Program Veri�cation via a JVM Deep Embedding
in ACL2. In Proceedings 17th International Conference on Theorem Proving in
Higher Order Logics (TPHOLs'04), volume 3223 of LNCS, pages 184�200, 2004.

25. G. Mata. NeuronPersistentJ. http://imagejdocu.tudor.lu/doku.php?id=

plugin:utilities:neuronpersistentj:start.
26. G. Mata. SynapCountJ. http://imagejdocu.tudor.lu/doku.php?id=plugin:

utilities:synapsescountj:start.
27. S. Obua and S. Skalberg. Importing HOL into Isabelle/HOL. In 3rd International

Joint Conference on Automated Reasoning (IJCAR'06), volume 4130 of LNCS,
pages 298�302, 2006.

28. W. S. Rasband. ImageJ: Image Processing and Analysis in Java. Technical report,
U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997�2012.

39

http://coq.inria.fr/
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:neuronpersistentj:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:neuronpersistentj:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:synapsescountj:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:synapsescountj:start

29. J. Schindelin et al. Fiji: an open-source platform for biological-image analysis.
Nature Methods, 9(7):676�682, 2012.

Krakatoa Install Manual

Krakatoa is suitable to be installed in Linux or Mac, but during the current document we are

describing only Ubuntu Installation.

If you are using another GNU/Linux system distributions, just go to http://krakatoa.lri.fr/ where you

will be able to find different versions of Krakatoa to be compiled. As far as we are concerned, the

best version is: http://why.lri.fr/download/why-2.31.tar.gz

Krakatoa and Why Installation in Ubuntu

Krakatoa is already included on Ubuntu oficial Repsitories, therefore the easiest way to install it is

executing the command:

sudo apt-get install why

The most easy to install automated-verifiers are alt-ergo y cvc3, In order to install them we execute:

sudo apt-get install alt-ergo cvc3

If we want to be capable of generating Coq code, we’ll need to install the dependency libwhy-coq

A Install and Con�gure Krakatoa using Eclipse

41

Installing and Configuring Eclipse

The first thing we must do is to install Eclipse:

http://www.eclipse.org/downloads/packages/eclipse-classic-422/junosr2

We uncompress it wherever we want and we keep it there for a while because we are going to install

the JDK.

The process is detailed explained on the following manual:

http://www.ubuntu-guia.com/2012/04/instalar-oracle-java-7-en-ubuntu-1204.html

Now we can execute Eclipse, giving it execution permissions:

chmod +x eclipse

And now we can run it by “double-clicking” the corresponding Icon. Once Eclipse is running we

must configure it to open Krakatoa, to do that, we perform:

 → External Tools Configuration...

We press the button to create a new configuration.

And now we fill the fields as follows:

42

Now we can open a file with Krakatoa just by selecting the file on the package explorer and

clicking on:

 → gwhy

A window like this should appear on the screen:

43

Configuring Why to generate Coq files and be singletone

By default we can run more than one instance of Why but it can freeze low performance computers.

If you want we can modify the binary file as follows to kill all the previous generated instances

when we run it.

As we can see on the script, we only need to add “-s” argument to the call to be singletone, if we

don’t do it, there could be more than one instances of the program.

#!/bin/sh

case $1 in

 *.java)

 case "$2" in

 -s)

 curr=`echo $$`

 ant=`echo "$curr" | awk '$0 ~/[^0-9]/ { print "NOT_NUMBER" }'`

 ant=$(($curr - 2))

 process_id=`ps aux | grep 'gwhy' | grep -v root | grep -v grep | awk

'{print $2}'`

 for line in $process_id; do

 if ["$line" -le "$ant"] ; then

 `echo "$line"`

 `kill -9 "$line"`

 fi

 done

 ;;

 esac

 b=`basename $1 .java`

 krakatoa $1 || exit 1

 echo "krakatoa on $b.java done"

 d=`dirname $1`

 echo "cd $d"

 cd $d

 jessie -locs $b.jloc -why-opt -split-user-conj $b.jc || exit 2

 echo "jessie done"

 make -f $b.makefile gui

44

 why --lib-file jessie.why --coq-v8 "$d/why/$b.why"

 echo "coq file generated"

 ;;

 *.c)

 b=`basename $1 .c`

 caduceus -why-opt -split-user-conj $1 || exit 1

 make -f $b.makefile gui

 ;;

 *.jc)

 b=`basename $1 .jc`

 jessie -why-opt -split-user-conj $b.jc || exit 1

 make -f $b.makefile gui

 ;;

 .mlw|.why)

 gwhy-bin -split-user-conj $1

 ;;

 *)

 echo "don't know what to do with $1"

esac

45

B Krakatoa Operators

Krakatoa Operators

46

	Introduction
	Project Goal Statement (PGS)
	Context
	Goals and Objectives
	Deadlines
	Key Concepts
	Requirements
	Existing Verification Tools
	Work Breakdown Structure (WBS) and estimates of time
	Global estimates of time
	Gantt Diagram

	Analysis
	Tools - Krakatoa and ACL2
	Method
	NeuronPersistentJ
	Java Parser

	Design
	Class Unifier
	Verification Platform
	MakeLineRadii

	Development
	NeuronPersistentJ Plugin
	Verification Platform
	Specifying programs for digital imaging
	The role of ACL2
	The method in action: a complete example
	The role of jUnit

	Final Estimates of Time
	Conclusions and further work
	Install and Configure Krakatoa using Eclipse
	Krakatoa Operators

