
Report on a SSReflect Week∗

Y. Bertot, L. Rideau and ForMath La Rioja node

21-24th June 2010

Abstract

From 21th to 24th June, Y. Bertot and L. Rideau visited Logroño to
give a course on SSReflect, in the frame of the ForMath European project.
The activities in the week were organized into two parts: the course itself
(lectures plus exercises) and joint work in a problem posed by the La
Rioja team (namely, the formalization of finite simplicial complexes). In
this short document, these activities are reported.

1 The course: Introduction to SSReflect

Lectures:

• Introduction to Ssreflect

– The stack model. Basic commands.

– The tactics. The rewrite tactics. Tools.

– Small Scale Reflection (bool and nat).

• Basic Libraries.

– ssrnat, ssrbool, ssrfun.

– eqtype, fintype , seq.

• Canonical Structures.

• Hierarchy of algebraic structures.

• Big Operators.

• Matrices.

Exercices (see the Appendix):

• Some propositional tautologies
∗Partially supported by by European Commission FP7, STREP project ForMath.

1

0

1

2

3 4

5

6

Figure 1: Butterfly Simplicial Complex

• Proofs about forall exists, not

• Views, reflection

• naturals numbers, lists,

• Proof that
√

2 is not a rational.

2 Formalization of finite simplicial complexes

2.1 The mathematics

The notion of simplicial complex is the most elementary method to settle a
connection between common “general” topology and homological algebra. The
notion of topological space is too “abstract” in order to perform computations.
A triangulation, by means of simplicial complexes, can be provided for “sensible”
spaces, so every topological space can be considered as a simplicial complex,
making the computations easier.

Let us start with some basic terminology. Let V be a set, called the vertex
set. An (abstract) simplex over V is any finite subset of V . Given a simplex α
over V , a subset of α will be called a face of α (to stress the geometrical aspect
of simplexes).

Definition 1 An (abstract) simplicial complex over V is a set of simplexes C
over V such that it is closed by taking faces (subsets); that is to say, if α ∈ C
all the faces of α are in C, too.

Example 1 Let us consider V = N.
The small simplicial complex drawn in Figure 1 is mathematically defined

as the object:
C = {∅, {0}, {1}, {2}, {3}, {4}, {5}, {6},
{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}, {5, 6},
{0, 1, 2}, {4, 5, 6}}

2

facet subsets
{1, 3} {∅, {1}, {3}, {1, 3}}
{3, 4} {∅, {3}, {4}, {3, 4}}
{0, 3} {∅, {0}, {3}, {0, 3}}
{2, 3} {∅, {2}, {3}, {2, 3}}
{0, 1, 2} {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}
{4, 5, 6} {∅, {4}, {5}, {6}, {4, 5}, {5, 6}, {4, 6}, {4, 5, 6}}

Table 1: Faces of the facets

Definition 2 A facet of a simplicial complex C is a maximal simplex with
respect to the subset order ⊆ among the simplexes of C.

Example 2 The facets of the small simplicial complex depicted in Figure 1 are:
{{1, 3}, {3, 4}, {0, 3}, {2, 3}, {0, 1, 2}, {4, 5, 6}}

Let us note that a finite simplicial complex can be generated from its facets
taking their faces. Observe also that the notion of facet can be applied to any
set of simplexes, and not only to simplicial complexes.

Example 3 Let us show the way of generating the simplicial complex depicted
in Figure 1 from its facets. Table 1 shows the faces of facets of Figure 1. If we
gather all the faces and remove the duplicate elements, the desired simplicial
complex is obtained.

Then, the following algorithm can be defined.

Algorithm 1 .
Input: a set of simplexes S
Output: the associated simplicial complex from S

Exercise 1 Prove the correctness of algorithm 1.

Let us call create sc to the function defined by algorithm 1 and facets to
the function computing the facets of a set of simplexes. Then, other related
exercises are:

• Given a finite set of simplexes S, create sc(S) = create sc(facets(S)).

• Given a finite set of simplexes S, facets(create sc(S))= facets(S).

• Given a finite simplicial complex C, create sc(facets(C)) = C.

An important variant of a simplicial complex is obtained simply by demand-
ing that the vertex set V is endowed with a partial order. Then, the correspond-
ing simplicial complexes are called ordered (abstract) simplicial complexes. They
are important because, if an order is known on the vertexes, there exists a canon-
ical way for obtaining a simplicial set from a simplicial complex. Simplicial sets

3

are other combinatorial presentation of topological spaces. The Kenzo system
works with simplicial sets.

Another consequence of putting an order on vertexes is that simplexes can
be represented in a unique way as ordered lists. This will be employed in the
next subsection.

2.2 ACL2 formalization

The formalization in ACL2 of the exercise suggested in Subsection 2.1 was de-
veloped from scratch, without using any ACL2 library. Since our aim was to
be close of Kenzo, we deal only with ordered simplicial complexes. As a conse-
quence, simplexes were represented as ordered lists of vertexes. In the same vein,
simplicial complexes (as sets of simplexes, more generally) were represented as
lists of simplexes without duplicates.

In the case of general (non-ordered) simplicial complexes, one could think of
using the “ACL2 Finite Set Theory”1, to make a parallel development.

Let us note that ACL2 is an untyped logic, it uses type information internally
to deduce types. ACL2 users provide the prover with type information by
specifying type hypotheses on variables in a conjecture. Although ACL2 is
syntactically untyped, that does not prevent users from having and using a
notion of a type. One cannot create new types in ACL2, in the sense that one
cannot create a new non-empty set of values that provably extends the ACL2
value universe. This value universe is divided into 5 kinds of data objects:
Numbers, Characters, Strings, Symbols and Conses (Ordered Pairs). Rather,
one typically partitions the existing universe in potentially new ways to form
‘new’ sets. These sets (“types”) are presently characterized by just a type
predicate.

Taking into account the previous paragraph, two type predicates were de-
fined to formalize the notions of “simplex” and “list of simplexes”. Besides,
both the relation “be a face of” between two simplexes and the relation “be
in” between a simplex and a list of simplexes were developed. Afterwards, the
algorithm to construct the simplicial complex (a list of simplexes with some
properties) associated with a simplex (this corresponds with the powerset of a
finite set) was defined. Then, two theorems were provided to prove the correct-
ness of the algorithm.

The algorithm computing a simplicial complex of a given list of simplexes,
list, is split in two steps. The former one, consists of gathering the lists of sim-
plexes coming from the computation of the simplicial complex of each simplex
of list; as a result a list of simplexes is produced but probably with duplicate
elements. The second step is devoted to remove the duplicate elements.

The proof of the correctness of this algorithm was developed using “the
Method”2 that is the recommended procedure by the authors of the system to
tackle a proof project.

1http://userweb.cs.utexas.edu/~moore/publications/finite-set-theory/index.html
2http://userweb.cs.utexas.edu/users/moore/acl2/current/THE-METHOD.html

4

http://userweb.cs.utexas.edu/~moore/publications/finite-set-theory/index.html
http://userweb.cs.utexas.edu/users/moore/acl2/current/THE-METHOD.html

2.3 SSReflect formalization

For the problem suggested in Subsection 2.1, we decided to use the library of
finite sets as already provided in the SSReflect library, under the name “finset”.
Of course, this imposes working on a fixed finite set of vertexes.

A first apparent need was to define a notion of powerset of a finite set.
There is an operator provided in the finset library that gives a more general
operator, which we specialized to implement the notion, and then we wrote two
lemmas showing the relation between powerset and subset (this is a first draft,
and probably the two lemmas should be replaced by a single equality lemma
expressing the equivalence between being a subset and being an element of the
powerset).

There is a type of set of vertexes, named simplex in our development, and we
also manipulate sets of sets. The SSReflect library also provides the construction
to view this a type of sets, with various set operations: union, etc.

In this setting, computing the simplicial complex of a given collection of
simplexes is simply done by performing the big union of all the powersets of
each simplex, thus it can be written in a single formula using a “big operator”,
so we use a union operation at each step.

In a first try, we described the input of create sc as a sequence. This is
given as a module named first try in the file. Working with a sequence gives
a simple way to organize proofs by induction, but it makes that the output of
create sc (which is a collection of simplexes) does not have the same type as its
input (which is also a collection of simplexes). In another try, we described the
input of create sc as a set of simplexes. The advantage is the type of sequences
of simplexes is not used anymore in our formalization. On the other hand,
induction proofs are done on the cardinal of the input set, which implies a few
added proof steps. The comparison between the two developments shows where
computations about cardinals have to be added, but the proof structure remains
basically the same. For instance, the sequence si::s is represented by s’ (with
the added knowledge that si is in s’) in the set-based formalization, and the
sequence s is represented by s’ :\ si, the set s’ from which si is removed.

2.4 Comparing the SSReflect and ACL2 formalizations: a
first look

An “on surface” comparison of the two formalizations is started here. A more
thoughtful analysis would be necessary in the future.

In Figure 2 the powerset definition in ACL2 and SSReflect can be seen.
Observe that the ACL2 definition is more verbose, for two reasons: first, it
deals with lists instead of sets, and, second, the SSReflect is taking profit of
“finset” library.

With respect to proofs, Figure 3 shows the theorems for an equivalent prop-
erty in ACL2 and SSReflect (namely, an element of the powerset of S is a subset
of S, and viceversa). Please, remark the different styles in ACL2 and SSReflect.
In ACL2 the prover is guided by means of some lemmas. On the contrary, SSRe-

5

ACL2

(defun simplex-p (simplex)
(if (endp simplex)

(equal simplex nil)
(if (endp (cdr simplex))

(and (equal (cdr simplex) nil)
(natp (car simplex)))

(and (natp (car simplex))
(natp (cadr simplex))
(< (car simplex) (cadr simplex))
(simplex-p (cdr simplex))))))

(defun map-cons (x s)
(if (endp s)

nil
(cons (cons x (car s))

(map-cons x (cdr s)))))

(defun powerset (l)
(if (endp l)

(list nil)
(append (powerset (cdr l))

(map-cons (car l)
(powerset (cdr l))))

SSReflect

Module Type context.

Variable V : finType.

End context.

Module first_try (CTXT : context).
Import CTXT.

Definition simplex := {set V}.

Definition powerset (x : simplex) :
{set simplex} := setT ::&: x.

Figure 2: Definitions about powerset in ACL2 and in SSReflect

flect proofs are led by interactive tactics. This gives a more compact structure
in SSReflect, which in addition benefits from the use of libraries. Keeping apart
these differences, both proofs can be considered almost “isomorphic”. This sug-
gests that, for a convenient and fruitful comparison, perhaps we should choose
a scale of comparison greater than these small definitions and statements.

2.5 Future work

As immediate future work, it is planned to obtain from a 2-dimensional finite
simplicial complex (as those associated to 2D digital images) its pair of incidence
matrices. Then, the theorem to be proved is that the product of these two
incidence matrices is null. To this aim, it is necessary to start from an ordered
simplicial complex. This is already made in ACL2 (through the Kenzo style of
working). For SSReflect, let us remark that a “finset” always has an implicit
order among its elements (induced from an enumeration of them). If it would
be enough to this further work, or if it would be better to change to a more
“list-oriented” style in SSReflect is still to be decided. Other pending decisions
are related to the right degree of abstraction (and, in particular, on whether it
would be convenient or not to introduce more concepts in the formalization, as
simplicial sets and chain complexes).

6

ACL2

(encapsulate

()

(local (defthm powersetE-lemma1

(implies (and (consp m)

(not (in-p (car m) l)))

(not (in-p m (powerset l))))))

(local (defthm powersetE-lemma2

(iff (in-p x (append l m))

(or (in-p x l) (in-p x m)))))

(local (defthm powersetE-lemma3

(implies (and (consp m)

(not (in-p (cdr m) l)))

(not (in-p m (map-cons x l))))))

(local (defthm powersetE-lemma4

(implies (and (consp m)

(in-p m (powerset l)))

(in-p (cdr m) (powerset l)))))

(defthm powersetE

(implies (in-p s1 (powerset s2))

(face-p s1 s2)))

)

;; Intermediary lemmas are not included

(defun in-powerset-schema (s1 s2)

(declare (xargs :measure (acl2-count s2)))

(if (or (not (simplex-p s1))

(not (simplex-p s2))

(not (face-p s1 s2)))

nil

(if (endp s2)

t

(in-powerset-schema (cdr s1) (cdr s2)))))

(defthm in-powerset

(implies (and (simplex-p s1)

(simplex-p s2)

(face-p s1 s2))

(in-p s1 (powerset s2)))

:hints (("Goal" :induct (in-powerset-schema s1 s2))))

SSReflect

Lemma powersetE :
forall (x : simplex) (y : simplex),
y \in powerset x -> y \subset x.

Proof.
rewrite /powerset. rewrite /ssetI; move => x y.
rewrite [y \in _]inE.
by move/andP => [_].
Qed.

Lemma in_powerset : forall (x y : simplex),
y \subset x -> y \in powerset x.

Proof.
move => x y xy; rewrite inE.
rewrite xy andbT.
by [].
Qed.

End first_try.

Figure 3: Theorems about powerset in ACL2 and in SSReflect

7

Appendix: SSReflect Exercises

Part I

Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq.
Require Import paths fintype tuple finset.

Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.

(* Prove the following propositional tautologies:*)

Section Tauto.
Variables A B C : Prop.

Lemma tauto1 : A -> A.
Proof.
Qed.

Lemma tauto2: (A -> B) -> (B -> C) -> A -> C.
Proof.
...
Qed.

Lemma tauto4 : A /\ B <-> B /\ A.
Proof.
...
Qed.

End Tauto.
(* Your proof script should come in place of the dots, between "Proof."
and "Qed.". Your proof is finished when the system raises a message
saying so. Then the "Qed" command rechecks the proof term
constructed by your script. In the following, we only give the
statements of the lemmas to be proved and no more repeat "Proof" and
"Qed".

The standard Coq section mechanism allows to globally factorize the
abstraction. Here in the section parameters "A B C" are fixed, and
they are discharged after the section "Tauto" is closed by the
command "End Tauto".
*)

(* Prove the following statements:*)

8

Section MoreBasics.
Variables A B C : Prop.
Variable P : nat -> Prop.

Lemma foo1 : ~(exists x, P x) -> forall x, ~P x.

Lemma foo2 : (exists x, A -> P x) -> (forall x, ~P x) -> ~A.

End MoreBasics.
(*Hint: Remember that the intuitionistic negation ~A is a notation
for "A -> False". Also remember that the proof of an existential
statement is pair of the witness and its proof, so you can destruct
this pair by the "case" command.*)

(*
The ssr ssrnat library crucially redefines the comparison
predicates and the operations on natural numbers. In particular,
comparisons are boolean predicates, instead of the inductive versions
proposed by Coq standard library. What is the definition of the
ssr "leq" predicate, denoted "<="? What is the definition of
"<"? Use the "Search" and "Check" commands *)
(*Prove the following statements:*)

Lemma tuto_subnn : forall n : nat, n - n = 0.

Lemma tuto_subn_gt0 : forall m n, (0 < n - m) = (m < n).

Lemma tuto_subnKC : forall m n : nat,
m <= n -> m + (n - m) = n.

Lemma tuto_subn_subA : forall m n p,
p <= n -> m - (n - p) = m + p - n.

(*
*** Local Variables: ***
*** coq-prog-name: "~/coq/coq-8.2pl1/bin/ssrcoq" ***
*** coq-prog-args: ("-emacs-U" "-I"
"/Users/lrg/coq/MSR/coqfinitgroup/branches/linalg/") ***
*** End: ***
*)

9

Part II

Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq.
Require Import paths fintype tuple finset.

Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.

(*
State the lemma tuto_orP, Prove lemmas "tuto_andP" and "tuto_orP".*)

(* Prove the lemma tuto_iffP by case analysis on the boolean
value "b". Retry the proof, this time by case analysis on the
hypothesis "reflect P b".*)

(* Sequences *)

(* Program the function tuto_cat catenating two sequences.*)

(* Prove the lemma:*)
Lemma tuto_size_cat : forall (A : Type) (s1 s2 : seq A),

size (tuto_cat s1 s2) = size s1 + size s2.

(* Program the function "tuto_last", such that
"(tuto_last A (x : A)(s : seq A))"
returns the last element of the sequence s if s is not empty
and else returns x. Prove the lemma:*)

Lemma tuto_last_cat : forall x s1 s2,
last x (s1 ++ s2) = last (last x s1) s2.

(* Program the functions tuto_take (resp. tuto_drop),
of type forall A : Type, nat -> seq A -> seq A,
such that (tuto_take n s) (resp. (tuto_drop n s))
compute the prefix of s of size n (resp. the postfix of s skipping
the n first elements), with default value s (resp. the empty
sequence "[::]"). Prove:*)

Lemma tuto_cat_take_drop : forall A (s : seq A),
take n0 s ++ drop n0 s = s.

(*Program the tuto_rot function such that (tuto_rot n s) is
the circular permutation of s of order n. Prove that:*)

10

Lemma tuto_rot_addn : forall A m n (s : seq A),
m + n <= size s -> rot (m + n) s = rot m (rot n s).

(* For this last proof, you will need more lemmas about the function
programmed in this exercise. Use the \ssr Search command to find
the statements you need.*)

(*Program a function tuto_count which computes the number of
elements of a sequence which satisfy a boolean predicate.*)

Prove that:
Lemma tuto_count_predUI : forall a1 a2 s,
count (predU a1 a2) s + count (predI a1 a2) s

= count a1 s + count a2 s.

(* where predU is the boolean predicate union of its two
arguments, and predI is the boolean predicate intersection of its
two arguments.*)

(* Look for the definition of the filter function. Prove that:*)

Lemma count_filter : forall s, count s = size (filter s).

(* Prove the lemma tuto_pathP by induction on the path.*)

(* Prove the following lemmas:*)

Lemma tuto_eqxx : forall (T : eqType) (x : T), x == x.

Lemma tuto_predU1l : forall (T : eqType) (x y : T) (b : bool),
x = y -> (x == y) || b.

Lemma tuto_predD1P : forall (T : eqType) (x y : T) (b : bool),
reflect (x <> y /\ b) ((x != y) && b).

Lemma tuto_eqVneq : forall (T : eqType) (x : T), {x = y} + {x != y}.

(* Hint: Consider using the view mechanisms for equivalence, goal and
assumption interpretation.*)

(* Remark : try starting the proof of eqVneq by the tactic:
move=> T x y; case: eqP.

What happens?*)

11

Part III

Require Import ssreflect eqtype ssrbool ssrnat.
Set Implicit Arguments.
Unset Strict Implicit.
Import Prenex Implicits.

Fixpoint eb (n:nat) : bool :=
match n with 0 => true | 1 => false | S (S p) => eb p end.

Lemma ebSn : forall n, eb n.+1 = ~~ eb n.
Proof.
move => n; elim: n => [| p Hp]; first by [].
by rewrite Hp negb_involutive.
Qed.

Lemma neg_ebS : forall n, eb n = ~~eb (n.+1).
by move => n; rewrite ebSn negb_involutive.
Qed.

Lemma ebP : forall n, reflect (exists k, n = 2 * k) (eb n).
move => n; have tmp : reflect (exists k, n = 2 * k) (eb n) *

reflect (exists k, n.+1 = 2 * k) (eb n.+1); last by case: tmp.
elim: n => [| p Hp].
split.
by apply: ReflectT; exists 0.

apply: ReflectF; move => [[| v]]; first by [].
by rewrite !mulSn mul0n addSn addnS.

move: Hp => [Hp1 Hp2] /=; split; first by [].
case: Hp1 => [x | nx]; [apply: ReflectT | apply: ReflectF].
by case: x => [k q]; rewrite q; exists k.+1; rewrite mulnS.

move => [[| k]]; first by rewrite muln0.
by rewrite mulnS; move => [[q]]; case: nx; exists k.
Qed.

Lemma ebmul : forall n m, eb n -> eb (n*m).
Proof.
move => n m p; move/ebP: p => [k p]; apply/ebP; exists (k * m).
by rewrite mulnA p.

Qed.

Lemma ebmulr : forall n m, eb (n*m) -> eb n || eb m.
move => n m; case hn: (eb n); first by [].

12

rewrite orb_false_l; case hm: (eb m); first by [].
have {hn} hn:= negbT hn; have {hm} hm:= negbT hm.
rewrite -ebSn in hn; rewrite -ebSn in hm.
move/ebP: (hn) => [kn qn].
move/ebP: (hm) => [km qm].
move/ebP=> [kmn qmn].
have :eb (n.+1 * m.+1) by apply: ebmul.
rewrite mulnS mulSn neg_ebS -addnS -addSn qn qm qmn; case/negP.
by rewrite -!muln_addr; apply/ebP; exists (kn + (km + kmn)).
Qed.

Lemma mmnn2: forall m n, m * m = 2 * (n * n) -> n = 0.

move => m; elim: m {-2} (m) (leqnn m).
move => m; rewrite leqn0; move/eqP => ->.
rewrite muln0; move => [| n]; first by [].
by rewrite !mulSn.

move => m’ Hm’ m mm’ n q.
have evm : eb m.
have evmm : eb (m * m) by apply/ebP; exists (n * n).
by have := ebmulr evmm; case/orP.

case nn0 : (n == 0); first by apply/eqP.
have {nn0} nn0:= neq0_lt0n nn0.
have cmp : n * n < m * m.
rewrite q; apply: ltn_Pmull; first by [].
by rewrite muln_gt0 nn0.

have cmp’ : n < m.
case cmp’: (n < m); first by [].
have {cmp’} := negbT cmp’; rewrite -ltnNge ltnS => cmp’.
move: (cmp’); rewrite - (@leq_pmul2l m).
move => cmp2; move: (cmp’).
rewrite -(@leq_pmul2r n) => //.
move => cmp3; move: cmp; rewrite ltnNge; move/negP => h; case: h.
by apply: leq_trans cmp3.

rewrite lt0n; apply/negP; move/eqP => q’; move: cmp.
by rewrite q’ muln0 ltn0.

move/ebP: evm => [km qm].
move/eqP: q; rewrite qm -mulnA eqn_mul2l /= (mulnC km) -mulnA eq_sym => q.
have nm : n <= m’.
by rewrite -ltnS; apply: leq_trans mm’.

have := (Hm’ n nm km (eqP q)).
by move => q’; move : cmp’; rewrite qm q’ muln0 ltn0.
Qed.

13

