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1. INTRODUCTION

Scientific computing is an outstanding tool to assist researchers in experimental sciences.
When applied to biomedical problems, the accuracy and reliability of the computations are
particularly important. Thus, the possibility of increasing the trust in scientific software by
means of mechanized theorem proving technology becomes an interesting area of research.

In this paper, we explore this path to certify image processing procedures. In particular,
we have chosen the Coq proof assistant [Bertot and Castéran 2004] to certify the programs
which allow us to analyse images obtained from neuron cultures [Cuesto et al. 2011]. The
techniques that we use to deal with these images are based on Computational Algebraic
Topology. Nowadays, computing in Algebraic Topology has an increasing importance in
applied mathematics [Edelsbrunner and Harer 2010]; namely, in the context of digital im-
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age processing (see [Ayala et al. 2003] and the series of conferences called Computational
Topology in Image Context). The key observation of our approach is that, after a suitable
preprocessing, the solution of a biological problem (namely, the number of synapsis in a pic-
ture of a neuron) can be identified with the computation of a topological invariant (the rank
of a homology group). Then, all our efforts are concentrated on computing, in a certified
manner, such an invariant.

Since the size of real-life biomedical images is too big to handle them directly, we propose
a reduction strategy, that allows us to work with smaller data structures, but preserving
all their homological properties. To this aim, we use the notion of discrete vector field
[Forman 1998], following very closely an algorithm due to Romero and Sergeraert [Romero
and Sergeraert 2010].

In order to verify the correctness of these procedures, it is necessary the formalisation
of a certain amount of mathematics. The most significant piece of mathematics formalised
in this paper is the so-called Basic Perturbation Lemma (or BPL, in short). The proof of
this theorem has been already implemented in the Isabelle/HOL proof assistant [Aransay
et al. 2008]. The BPL formalisation presented in this paper is much shorter and compact
than that of [Aransay et al. 2008]. There are two reasons for this improvement of the formal
proof. The former is that we have followed a new and shorter proof of the BPL (due again
to Romero and Sergeraert [Romero and Sergeraert 2012]). The latter is that we have built
our formal proof on the powerful SSReflect library [Gonthier and Mahboubi 2010] of Coq
(on the contrary, much of the infrastructure required was defined from scratch in [Aransay
et al. 2008]).

Apart from the efficiency in the writing of proofs, using SSReflect also has other conse-
quences. Since SSReflect is designed to deal only with finite structures, the proof of the BPL
presented here only applies over finitely generated groups (the proof formalised in [Aransay
et al. 2008] does not have this limitation). Furthermore, dealing with finite structures, and
inside the constructive logic of Coq, eases the executability of the proofs, and thus the
generation of certified programs (the same tasks in Isabelle/HOL pose more difficulties, see
[Aransay et al. 2010]). However, it is worth mentioning that this limitation does not mean
any special hindrance in our work, because digital images are always finite structures.

In order to prove the correctness of the generated programs, we must establish, and keep,
a link among the initial biomedical picture, and the final smaller data structure where the
homological calculations are carried out. This implies a big amount of processing, and does
not allow us to execute all the steps inside Coq (the full path has been travelled, but only in
toy examples). Then we have appealed to a programming language, Haskell [Hutton 2007]
in our case, to integrate computation and deduction.

Haskell appears in two different steps of our methodology. In the early stages of de-
velopment, Haskell prototypes of the algorithms are systematically tested by using the
QuickCheck tool [Claessen and Hughes 2000]. This allows us to discharge many small and
common errors, which could hinder the proving process in Coq. In the final computational
step, Haskell is used as an oracle for Coq. The most hard parts of the calculation (in
our case, an important bottleneck is computing inverse matrices) are delegated to Haskell
programs; the results of these Haskell programs are then proved correct within Coq.

With this hybrid technique, we have got the objective of computing, in a certified way,
the homology of actual biomedical images coming from neurological experiments.

The rest of this paper is organized as follows. Section 2 is devoted to present a running
example, coming from the biomedical context, as a test-case for our development. The
formalisation of an algorithm to build a discrete vector field associated with a matrix, using
SSReflect, is explained in Section 3. This vector field computation will be used in Section 4
to reduce the chain complex associated with a digital image. The reduction process is based
on an essential lemma in Algorithmic Homological Algebra called the Basic Perturbation
Lemma. We also include in that section a proof of such a lemma. In Section 5, we explain
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Fig. 1. Computing homology from a digital image.

how the certified programs can be used to effectively compute the homology of images. The
paper ends with a section of conclusions and further work, and the bibliography.

The complete source code of our formalisation and the Haskell programs can be seen at
http://www.unirioja.es/cu/cedomin/crship/.

2. CERTIFIED IMAGE PROCESSING

The discipline of Algebraic Digital Topology, or more specifically, the computation of homol-
ogy groups from digital images is mature enough (see, for instance, [Ziou and Allili 2002],
one among many good references) to go one step further and investigate the possibility of
certified computations (i.e., computation formally verified by proving its correctness using
an interactive proof assistant) in digital topology, as it happens in other areas of computer
mathematics (see [Gonthier 2008]).

In a very rough manner, the process to be verified is reflected in Figure 1. Putting it into
words, we firstly pre-process a biomedical image to obtain a monochromatic image. From
the black pixels of such a monochromatic image a cubical/simplicial complex is obtained (by
means of a triangulation procedure); subsequently, from the cubical/simplicial complex, its
boundary (or incidence) matrices are constructed, and finally, homology can be computed.
If we work with coefficients over a field (and it is well-known that it is enough to take as
coefficients the field Z2, when working with 2D and 3D digital images [Ayala et al. 2003])
and if only the degrees of the homology groups (as vector spaces) are looked for, then having
a program able to compute the rank of a matrix is sufficient to accomplish the whole task.
In this process, the matrix obtained from the image can be huge. In this case, a process
of reduction of the matrix without losing the homological properties of the image can be
applied first to compute the homology. In this paper, we particularise this architecture with
a real problem that appeared in a biomedical application and with the Coq proof assistant
and its SSReflect library as programming and verifying tool.

Biomedical images are a suitable benchmark for testing our programs, the reason is
twofold. First of all, the amount of information included in this kind of images is usually
quite big. Then, a process able to reduce those images but keeping the homological properties
can be really useful. Secondly, software systems dealing with biomedical images must be
trustworthy. This is our case since we have formally verified the correctness of our programs.

As an example, we can consider the problem of counting the number of synapses in
a neuron. Synapses [Bear et al. 2006] are the points of connection between neurons and
are related to the computational capabilities of the brain. The possibility of changing the
number of synapses may be an important asset in the treatment of neurological diseases,
such as Alzheimer, see [Selkoe 2002]. Therefore, we can claim that an efficient, reliable
and automatic method to count synapses is instrumental in the study of the evolution of
synapses in scientific experiments.

Up to now, the study of the synaptic density evolution of neurons was a time-consuming
task since it was performed, mainly, manually. To overcome this issue, an automatic method
was presented in [Heras et al. 2011]. Briefly speaking, such a process can be split into two
parts. Firstly, from three images of a neuron (the neuron with two antibody markers and
the structure of the neuron), we obtain a monochromatic image, see Figure 2. In such an
image, each connected component represents a synapse. So, the problem of measuring the
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Fig. 2. Synapses extraction from three images of a neuron. The same images with higher resolution can be
seen in http://www.unirioja.es/cu/joheras/synapses/.

number of synapses is translated into a question of counting the connected components of
a monochromatic image.

In the context of Algebraic Digital Topology, this issue can be tackled by means of the
computation of the homology group H0 of the monochromatic image. This task can be
performed in Coq through the formally verified programs presented in [Heras et al. 2012a].
Nevertheless, such programs are not able to handle images like the one of the right side
of Figure 2 due to its size (the images contain up to 106 pixels). It is worth noting that
Coq is a Proof Assistant and not a Computer Algebra system; and, in general, efficiency
of algorithms is pushed into the background of this kind of systems. However, there is an
effort towards the efficient implementations of mathematical algorithms running inside Coq,
as shown by recent works on efficient real numbers [Krebbers and Spitters 2011], machine
integers and arrays [Armand et al. 2010] or an approach to compiled execution of internal
computations [Grégoire and Leroy 2002].

In our case, we apply a reduction process of the data structures but without loosing the
homological properties to overcome the efficiency problem. In particular, we are focused
on the formalisation of discrete vector fields, a powerful notion that has been welcomed
in the study of homological properties of digital images, see [Cazals et al. 2003; Gyulassy
et al. 2008; Jerse and Kosta 2010]. The importance of discrete vector fields, which were first
introduced in [Forman 1998], stems from the fact that they can be used to considerably
reduce the amount of information of a discrete object but preserving homological properties.
Using this approach, we can successfully compute the homology of the previous biomedical
image in just 25 seconds, a remarkable time for an execution inside Coq. Besides, we have
proved using this proof assistant that the homological properties of the initial digital image
and the reduced one are preserved.

3. DISCRETE VECTOR FIELDS

In this section, we include the basic definitions which, mainly, come from the algebraic
setting of Discrete Morse Theory presented in [Romero and Sergeraert 2010]. In addition,
we present an algorithm to construct an admissible discrete vector field from a matrix. Then,
a formalisation in Coq of this algorithm is provided. Finally, we introduce the fundamental
notions in the Effective Homology theory [Rubio and Sergeraert 2002] and state the theorem
where Discrete Morse Theory and Effective Homology converge.

3.1. Basic mathematical definitions

We assume as known the notions of ring, module over a ring and module morphism (see,
for instance, [Jacobson 1989]). First of all, let us introduce one of the main notions in the
context of Algebraic Topology: chain complexes.
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Definition 1. A chain complex C∗ is a pair (C, d), where C = {Cn}n∈Z is a family
of R-modules and d = {dn : Cn → Cn−1}n∈Z is family of module morphisms, called the
differential map, such that dn−1 ◦ dn = 0, for all n ∈ Z. In many situations the ring R
is either the integer ring, R = Z, or the field Z2. Usually, we denote the chain complex
C∗ = (Cn, dn)n∈Z. A chain complex is free ( of finite type) if its modules are free (finitely
generated).

The image Bn = im dn+1 ⊆ Cn is the (sub)module of n-boundaries. The kernel Zn =
ker dn ⊆ Cn is the (sub)module of n-cycles. Given a chain complex C∗ = (Cn, dn)n∈Z, the
identities dn−1 ◦ dn = 0 mean the inclusion relations Bn ⊆ Zn: every boundary is a cycle
(the converse in general is not true). Thus the next definition makes sense.

Definition 2. The n-homology group of C∗, denoted by Hn(C∗), is defined as the quo-
tient Hn(C∗) = Zn/Bn.

Chain complexes have a corresponding notion of morphism.

Definition 3. Let C∗ = (Cn, dn)n∈Z and D∗ = (Dn, d̂n)n∈Z be two chain complexes. A
chain complex morphism f : C∗ → D∗ is a family of module morphisms, f = {fn : Cn →
Dn}n∈Z, satisfying the relation fn−1 ◦ dn = d̂n ◦ fn, for all n ∈ Z. Usually, the sub-indexes

are skipped, and we just write f ◦ d = d̂ ◦ f .

Let us state now the main notions coming from the algebraic setting of Discrete Morse
Theory [Romero and Sergeraert 2010].

Definition 4. Let C∗ = (Cn, dn)n∈Z be a free chain complex with a distinguished Z-
basis βn ⊂ Cn, for all n ∈ Z; every basis component σ ∈ βn is an n-cell or simply a cell. A
discrete vector field V on C∗ is a collection of pairs V = {(σi, τi)}i∈I (where I is a finite
set) satisfying the conditions:

•Every σi is some element of βn, in which case τi ∈ βn+1. The degree n depends on i and
in general is not constant.
•Every component σi is a regular face of the corresponding τi (regular face means that the

coefficient of σi in dn+1(τi) is 1 or −1).
•Each cell of C∗ appears at most one time in any of the two components of a pair in V .

It is not compulsory that all the cells of C∗ appear in the vector field V .

Definition 5. A cell χ which does not appear in a discrete vector field V = {(σi, τi)}i∈I
is called a critical cell. The elements σi and τi in the vector field are called source and target
cells, respectively.

From a discrete vector field V on a chain complex, we can introduce the notion of V -paths.

Definition 6. A V -path of degree n and length m is a sequence ((σik , τik))0≤k<m sat-
isfying:

•Every pair (σik , τik) is a component of V and τik is an n-cell.
• For every 0 < k < m, the component σik is a face of τik−1

(the coefficient of σik in
dn(τik−1

) is non-null) different from σik−1
.

Definition 7. A discrete vector field V is admissible if for every n ∈ Z, a function
λn : βn → N is provided satisfying the following property: every V -path starting from σ ∈ βn
has a length bounded by λn(σ).

In this way, infinite paths are avoided in an admissible discrete vector field. This condition
will play a key role in the proof of one of the most important results of our formalisation:
the Vector Field Reduction Theorem, see Theorem 13.
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Fig. 3. A chain complex, an admissible discrete vector field on it, and the reduction.

An admissible discrete vector field provides a decomposition of the generators of the chain
complex into “useless” elements (in the sense, that they can be removed without changing
its homology) and critical elements (those whose removal could modify the homology).

Example 8. Let us consider the free chain complex C∗ represented in the left side of
Figure 3. The 0-cells of C∗ are the vertices v0, v1, v2 and v3; and the 1-cells are the edges
e0, e1, e2 and e3, there is not any other cell in the chain complex. The differential map
of C∗ for the 0-cells is the null map and the differential map for the 1-cells is defined
as d1(ei) = 1 × ei+1 − 1 × ei with i ∈ {0, 1, 2, 3}. The admissible discrete vector field
V = {(v0, e0), (v1, e1), (v2, e2)} of C∗ is represented in the centre of Figure 3. In this case,
the critical cells are v3 and e3.

If we consider the case of finite type chain complexes, where there is a finite number
of generators in each degree (as in the previous example), the differential maps can be
represented as matrices.

Definition 9. Let C∗ = (Cn, dn)n∈Z be a finite type chain complex with a distinguished
Z-basis βn ⊂ Cn, for all n ∈ Z. Assuming an ordering on the generators of the same
dimension and ∀n ∈ Z, we define the differential matrix associated with dn as an m1×m2
matrix Mn (where m1 and m2 are respectively the number of elements of βn−1 and βn)
such that the element of position (i, j) of Mn is the value of the i-th element of βn−1 when
applying dn to the j-th element of βn.

When working with matrices, the concept of admissible discrete vector field can be re-
worded in the following way (these are the definitions used in our actual formalisation).

Definition 10. Let M be a matrix with coefficients in Z, and with m rows and n
columns. A discrete vector field V for M is a set of pairs of natural numbers {(ai, bi)}i∈I
satisfying, for all i ∈ I, the following conditions:

• 1 ≤ ai ≤ m and 1 ≤ bi ≤ n.
•M [ai, bi] = ±1.
•The indexes ai (resp. bi) are pairwise different.

Given two source cells a and a′ of V such that a 6= a′, we say that a > a′ if a vector
(a, b) is present in V and M [a′, b] is non-null (i.e. if there is an elementary V -path from a
to a′). A discrete vector field V for M is admissible if this binary relation on source cells
transitively generates a partial order (i.e. if there is no loop a1 > a2 > . . . > ak = a1).

3.2. Romero-Sergeraert’s algorithm

All the algorithms devoted to construct admissible discrete vector fields share the same goal:
the construction of an admissible discrete vector field as big as possible (see for instance
[Kozlov 2007] or [Lewiner et al. 2004]). Some of them return a vector field quickly, but
others spend more time to compute it. Let us emphasize that the latter ones are notable
because the search has been more thorough, so the number of vectors will be higher. We
are interested in an algorithm which not only gives us a big vector field but also does not
spend too much time to compute it. The Romero-Sergeraert algorithm (from now on RS
algorithm) does not always build the biggest vector field possible, but the number of vectors
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is quite close to the biggest one. Furthermore, in many cases, it returns the best possible
vector field. Moreover, it is fast enough to obtain the vector field in our application domain.
Due to these reasons, the RS algorithm has been chosen to make our computations.

Briefly, the RS algorithm builds an admissible discrete vector field by running through
the rows of a matrix. It looks for the first element in the row which verifies the admissibility
property with respect to the elements previously included in the discrete vector filed. We
define the RS algorithm as follows.

Algorithm 11 (The RS Algorithm). .
Input: a matrix M with coefficients in Z.
Output: an admissible discrete vector field V for M and a list of relations r between row
indexes.
Description:

(1 ) Initialise the vector field V to the void vector field and the relations r to empty.
(2 ) For every row i of M :

2.1. For every column j, which is different from the second components of V , such that
M [i, j] = 1 or M [i, j] = −1:

Look for the rows k 6= i such as M [k, j] 6= 0 and obtain the relations i > k.
Then, build the transitive closure of r and these relations.

If there is no loop in that transitive closure:
then: Add (i, j) to V , let r be that transitive closure, and repeat from Step
2 with the next row.
else: Repeat from Step 2.1. with the next column.

In general, this algorithm can be applied over matrices with coefficients in a ring. In that
case, the condition M [i, j] = 1 ∨M [i, j] = −1 will be replaced by M [i, j] is a unit of the
ring. Specifically, if we work with a field F , instead of a ring, every non-null element is a
unit. In our particular case, as the homology groups of 2D images are torsion-free, we will
work with the field Z2. Therefore, the selected vectors are entries whose value is 1. From
now on, we will work with Z2.

Let us mention that it is relevant sorting the admissible discrete vector field because we
will sort the matrix prior to reducing it. For every vector (a, b), the value of the function
λ(a), which gives us the longest path from a, is computed. In our case, as we build the
transitive closure, it is the maximum length of the relations which start with a. Then, we
sort the vector field by the values of λ in decreasing order. If we have two equal values of λ,
the chosen order is not relevant. Then, the rows and columns of the matrix are sorted using
the ordered vector field. This reordered matrix will have a lower triangular matrix with 1’s
in the diagonal as upper-left submatrix of dimension the number of vectors in the vector
field.

3.3. Formalisation of the RS algorithm in SSReflect

The development of a formally certified implementation of the RS algorithm was presented
in [Heras et al. 2012b]. It followed the methodology presented in [Mörtberg 2010]. Firstly, the
programs were implemented in Haskell [Hutton 2007], a lazy functional programming lan-
guage. Subsequently, our implementation was intensively tested using QuickCheck [Claessen
and Hughes 2000], a tool which automatically tests properties about programs implemented
in Haskell. Finally, the correctness of our programs was verified using the Coq [Bertot and
Castéran 2004] proof assistant and its SSReflect library [Gonthier and Mahboubi 2010]. In
this section, we briefly show the last step of this process.

First of all, we define the data types related to our programs. A matrix is represented
by means of a list of lists of the same length over Z2 (encoded using the unit ring type
associated with the booleans), a vector field is a sequence of natural pairs, and finally, the
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relations are a list of lists of natural numbers. The notation a:T means that the variable a
has type T, and the function rowseqmx M i returns the i-th row of the matrix M.

Definition Z2:= bool_cunitRingType.
Definition matZ2 := seqmatrix bool_cunitRingType.
Definition is_matrix m n (M:matZ2) := M = [::] \/

[/\ m = size M & forall i, i < m -> size (rowseqmx M i) = n].
Definition vectorfield:= seq (prod nat nat).
Definition orders:= seq(seq nat).

Then, we have defined a function called Vecfieldadm (this function is a boolean-valued
theorem) that checks if an element vf: vectorfield satisfies the properties of an admissible
discrete vector field with respect to a matrix M: matZ2 and a list of relations r: orders.

Definition Vecfieldadm (M: matZ2)(vf: vectorfield)(r:orders) :=
(longmn (size M) (getfirstElemseq vf)) /\
(longmn (size (nth [::] M 0)) (getsndElemseq vf)) /\
(uniq (getfirstElemseq vf)) /\
(uniq (getsndElemseq vf)) /\
(forall i j:nat, (i,j) \in vf -> compij i j M = true) /\
(forall i j m:nat, (i,j)\in vf -> i!=m -> compij m j M != false -> (i::

m::nil)\in r) /\
(forall a b s p, (a::s) \in r -> (last 0%N s = b)

-> (b::p) \in r -> ((a::s) ++ p) \in r) /\
(norep r) /\
(ordered glMax vf r).

Let us note that the first five conditions come from the three properties of a discrete
vector field (see Definition 10). The next three conditions are linked with the relations. The
first one gives us the link between the vector field and the relations. The second one verifies
that we are constructing the transitive closure. And the last one states the admissibility
property. It makes sure that every sequence of r has not repeated elements. Finally, it is
checked that vf is ordered taking into account the glMax function, which returns the longest
path associated with a cell, and the relations r.

The RS algorithm has been implemented using two functions: genDvf, which constructs
an admissible discrete vector field, and genOrders, which generates the relations. As we have
explained in the last paragraph of the previous subsection, the discrete vector field generated
by the RS algorithms must be reordered, this is achieved thanks to the function dvford.
The correctness of this program has been proved in the theorem dvfordisVecfieldadm –
this theorem establishes that given a matrix M, the output produced by dvford satisfies the
properties specified in Vecfieldadm.

Variable M: matZ2.
Variable m n: nat.
Hypotheses ismatrix: is_matrix m n M.
Theorem dvfordisVecfieldadm: Vecfieldadm M (dvford M)(genOrders M).

The proof of the above theorem has been split into a series of lemmas which correspond to
each one of the properties that should be fulfilled to have an admissible discrete vector field.
For instance, the lemma associated with the first property of the definition of a discrete
vector field is the following one.

Lemma propSizef(M:matZ2): (longmn (size M) (getfirstElemseq (genDvf M))).

Both the functions which implement the RS algorithm and the ones needed to specify
the properties of admissible discrete vector fields are defined using a functional style; that
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is, our programs are defined using pattern-matching and recursion. Therefore, in order to
reason about our recursive functions, we need elimination principles which are fitted for
them. To this aim, we use the tool presented in [Barthe and Courtieu 2002] to reason about
complex recursive definitions in Coq.

For instance, in our development of the implementation of the RS algorithm, we have
defined a function, called subm, which takes as arguments a natural number n and a matrix
M and removes the first n rows of M. The inductive scheme associated with subm is set as
follows.

Functional Scheme subm_ind := Induction for subm Sort Prop.

The statement of the principle generated by this inductive scheme is the following one:

forall P : nat -> matZ2 -> matZ2 -> Prop,
(forall (n : nat) (m : matZ2), m = [::] -> P n [::] [::]) ->
(forall (n : nat) (m : matZ2) (a : seqZ2) (b : matZ2),
m = a :: b -> n = 0 -> P 0 (a :: b) [::]) ->
(forall (n : nat) (m : matZ2) (a : seqZ2) (b : matZ2), m = a :: b ->
forall p : nat, n = p.+1 -> P p b (subm p b) ->
P p.+1 (a :: b) (a :: subm p b)) -> forall (n : nat) (m : matZ2),
P n m (subm n m)

Then, when we need to reason about subm, we can apply this scheme with the corre-
sponding parameters using the instruction functional induction. However, as we have
previously said both our programs to define the RS algorithm and the ones which specify
the properties to prove are recursive. Then, in several cases, it is necessary to merge several
inductive schemes to induct simultaneously on several variables. For instance, let M be a
matrix and M ′ be a submatrix of M where we have removed the (k − 1) first rows of M ;
then, we want to prove that ∀j, M(i, j) = M ′(i − k + 1, j). This can be stated in Coq as
follows.

Lemma Mij_subM (i k: nat) (M: matZ2):
k <= i -> k != 0 -> let M’ := (subm k M) in
M i j == M’ (i - k + 1) j.

To prove this lemma it is necessary to induct simultaneously on the parameters i, k,
and M, but the inductive scheme generated from subm only applies induction on k and M.
Therefore, we have to define a new recursive function, called Mij_subM_rec, to provide a
proper inductive scheme.

Fixpoint Mij_subM_rec (i k: nat) (M: matZ2) :=
match k with
|0 => M
|S p => match M with

|nil => nil
|hM::tM => if (k == 1)

then a::b
else (Mij_subM_rec p (i- 1) tM)

end
end.

Then, the function Mij_subM_rec is used as an inductive scheme for the proof of Lemma
Mij_subM. This style of proving functional programs in Coq is the one followed in the
development of the proof of Theorem dvfordisVecfieldadm.
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3.4. Vector Field Reduction theorem

In this section, we state the theorem where Discrete Morse Theory and Effective Homology
converge. First, we introduce reductions [Rubio and Sergeraert 1997], one of the fundamental
notions in the Effective Homology theory.

Definition 12. A reduction ρ between two chain complexes C∗ = (Cn, dn)n∈Z and

D∗ = (Dn, d̂n)n∈Z, denoted by ρ : C∗⇒⇒D∗, is a triple ρ = (f, g, h) where f : C∗ → D∗
and g : D∗ → C∗ are chain complex morphisms, h = {hn : Cn → Cn+1}n∈Z is a family of
module morphism, and the following properties are satisfied:

1) f ◦ g = id;
2) g ◦ f + d ◦ h+ h ◦ d = id;
3) f ◦ h = 0; h ◦ g = 0; h ◦ h = 0.

The importance of reductions lies in the fact that given a reduction ρ : C∗⇒⇒D∗, then
Hn(C∗) is isomorphic to Hn(D∗) for every n ∈ Z. Very frequently, D∗ is a much smaller
chain complex than C∗, so we can compute the homology groups of C∗ much faster by
means of those of D∗.

Theorem 13 (Vector Field Reduction Theorem). Let C∗ = (Cn, dn)n∈Z be a
free chain complex and V be an admissible discrete vector field on C∗. Then, the vector
field V defines a canonical reduction ρ : (Cn, dn)n∈Z⇒⇒ (Cc

n, d
c
n)n∈Z where Cc

n = Z[βc
n] is the

free Z-module generated by βc
n, the critical n-cells of C∗.

Therefore, the bigger the admissible discrete vector field V the smaller the chain complex
Cc
∗.
A quite direct proof of the Vector Field Reduction Theorem based on the Basic Pertur-

bation Lemma appeared in [Romero and Sergeraert 2010].

Theorem 14 (Basic Perturbation Lemma, BPL). Let ρ = (f, g, h) :

(C, d)⇒⇒ (Ĉ, d̂) be a reduction, and δ be a perturbation of d, that is, δ is a mor-
phism such that d + δ is a differential map for C. Furthermore, the function δ ◦ h is
assumed locally nilpotent, in other words, for every x ∈ C there exists m ∈ N (in general,

m can depend on x) such that (δ ◦ h)m(x) = 0. Then, a perturbation δ̂ can be defined for

the differential d̂ and a new reduction ρ′ : (C, d+ δ)⇒⇒ (Ĉ, d̂+ δ̂) can be constructed.

The proof of the Vector Field Reduction theorem based on the BPL is quite simple. Let
us explain this proof in a nutshell. First of all, we consider a particular chain complex (C, %)
with the same underlying graded module than (C, d), but with a simplified differential map.
Namely, each component %n : Cn → Cn−1 is defined in the following way. It is clear that
the vector field V defines a canonical decomposition of Cn depending on the generators are
source, target, or critical cells. Then, %n apply to 0 the source and critical cells. If τ is a
target cell, there is a unique vector (σ, τ) ∈ V . Then, %n(τ) = ε(σ, τ)σ, where ε(σ, τ) is the
coefficient 1 or −1 of σ in dn(τ). A homotopy operator h is defined in the same way as %
but in the reverse direction (i.e. hn(σ) = ε(σ, τ)τ).

Then, we can define an initial reduction, ρ = (f, g, h) : (C, %)⇒⇒ (Cc, 0), of the previous
chain complex to the chain complex which modules are generated by the critical cells and
which differential map is null. Now, let us define the morphism P = (d− %) which is clearly
a perturbation of %. If the nilpotency condition is satisfied, then the BPL produces the
required reduction. The composition (d−%)◦h is not null only for source cells. For a source
cell σ, the images ((d− %) ◦ h)m(σ) correspond to walking V -paths starting at this cell. As
the vector field is admissible, the length of these paths is bounded, the image goes eventually
to zero, and the nilpotency condition is obtained.
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Again, in the case of finite type chain complexes which differentials are represented as
matrices, given an admissible discrete vector field for those matrices, we can construct
new matrices taking into account the critical components. These smaller matrices define
chain complexes which preserve the homological properties. This is the equivalent version
of Theorem 13 for finite type chain complexes. A detailed description of the process can be
seen in [Romero and Sergeraert 2010].

4. BASIC PERTURBATION LEMMA

In this section, we introduce a formalisation in SSReflect of the BPL, a central lemma in
Algorithmic Homological Algebra – in particular, it has been intensively used in the Kenzo
Computer Algebra system [Dousson et al. 1998]. In the literature, there are several ways
of proving this lemma (see, for instance [Barnes and Lambe 1991; Rubio and Sergeraert
1997]). There are also works related to the formalisation of the BPL. For instance, the non-
graded case of this lemma is proved in Isabelle/HOL [Aransay et al. 2008]. Furthermore, a
particular case of the BPL is also proved in Coq using bicomplexes [Domı́nguez and Rubio
2011]. Now, we show a formalisation of the general case in SSReflect but with finite type
structures. Let us recall that SSReflect only works with finite types; so, it can seem that
this technology can restrict our development. Nevertheless, this approach is enough because
we are interested in applying the BPL to the computation of the homology associated with
a digital image – a case where we have a finite type chain complex. Indeed, in this context,
this lemma is applied to a reduction where most of the differentials are null.

4.1. Mathematical proof of the BPL

The proof of the BPL (explained in [Romero and Sergeraert 2012]) is based on two results.
The former, named Decomposition Theorem, builds a decomposition of a chain complex
from a reduction of it. The latter is a Generalisation of the Hexagonal Lemma.

Theorem 15 (Decomposition Theorem). Let ρ = (f, g, h) : (C, d)⇒⇒ (Ĉ, d̂) be a
reduction. This reduction can be used to obtain a decomposition Cn = An⊕Bn⊕C ′n where:
C ′n = im gn, An ⊕ Bn = ker fn, An = ker fn ∩ kerhn, Bn = ker fn ∩ ker dn, the module

morphisms fn and gn induce isomorphisms between C ′n and Ĉn, and the arrows dn and
hn−1 induce module isomorphisms between An and Bn−1.

These properties are illustrated in the diagram represented in Figure 4. It is a simple
exercise of elementary linear algebra to prove the equivalence between the diagram of Figure
4 and the initial reduction.

The Hexagonal Lemma [Romero and Sergeraert 2010] allows us to reduce only a module
of a chain complex in a particular degree. It is possible to generalize this lemma applying
the reduction to every degree simultaneously [Romero and Sergeraert 2010].

Theorem 16 (Generalisation of the Hexagonal Lemma). Let C∗ =
(Cn, dn)n∈Z be a chain complex. We assume that every module is decomposed
Cn = An ⊕ Bn ⊕ C ′n. The differential map dn are then decomposed in 3 × 3 block
matrices [dn,i,j ]1≤i,j≤3. If every component dn,2,1 : An → Bn−1 is an isomorphism, then
the chain complex can be canonically reduced to a chain complex (C ′n, d

′
n). The components

of the desired reduction are:

d′n = dn,3,3 − dn,3,1d−1n,2,1dn,2,3 fn = [ 0 −dn,3,1d−1n,2,1 1 ]

gn =

−d−1n,2,1dn,2,3
0
1

 hn−1 =

0 d−1n,2,1 0
0 0 0
0 0 0


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f ∼= g f ∼= g f ∼= g f ∼= g

A = ker f ∩ kerh C ′ = im g B = ker f ∩ ker d

Fig. 4. Decomposition Theorem diagram.

Again, it is not difficult to check that the displayed formulas satisfy the relations of a
reduction stated in Definition 12.

With these two auxiliary lemmas, it is possible to obtain a proof of the BPL. The process

is the following one. Given a reduction ρ = (f, g, h) : (C, d)⇒⇒ (Ĉ, d̂) and a perturbation δ of
the differential d such that δ ◦h is locally nilpotent, it is necessary to build a new reduction

ρ′ = (f ′, g′, h′) : (C, d+ δ)⇒⇒ (Ĉ, d̂+ δ̂).

The reduction ρ : C∗⇒⇒ Ĉ∗ allows us to apply the Decomposition Theorem and to obtain
the diagram of Figure 4 where C = A⊕B⊕C ′. Then, the differential (d+δ) can be depicted
in nine blocks following that decomposition. If the component (d+δ)21 : A→ B is invertible
then the Generalisation of Hexagonal Lemma can be applied and the BPL is proved.

We have that (d+ δ)21 = d21 + δ21 = d21 + δ21 ◦ h12 ◦ d21 = (id+ δ21 ◦ h12) ◦ d21. Then,
as d21 is invertible (in fact, h12 is its inverse), we focus on proving that the other member
of the product, namely (id+ δ21 ◦ h12), is invertible.

As δ◦h is locally nilpotent, i.e. for every x ∈ C, there exists m ∈ N satisfying (δ◦h)m(x) =
0, we obtain that in particular (δ21 ◦ h12)m(x) = 0 since the unique non-null component of
h is h12. Then, the inverse of (id+ δ21 ◦ h12) is

∑∞
i=1(−1)i(δ21 ◦ h12)i.

4.2. Formalisation of the BPL

The formalisation of the proof of the BPL in SSReflect requires to restrict the data structures
to finite type chain complex. These structures are presented in Subsection 4.2.2. Then, the
Decomposition Lemma and the Generalized Hexagonal Lemma are formalised in Subsection
4.2.3 and 4.2.4. These two results are the key ingredients used in the formalisation of the
BPL – included in Subsection 4.2.5. Before that, we start providing a brief explanation
about the formalisation of the kernel of a map in SSReflect. The representation chosen for
this well-known notion in mathematics has important consequences in the rest of structures
used in the formalisation of the proof.
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4.2.1. The kernel of a map. The kernel of a finite map is defined by the kernel of the matrix
which represents this map. This is defined in SSReflect in the following way.

Definition kermx m n (A: ’M_(m,n)): ’M_m :=
copid_mx (\rank A) *m invmx (col_ebase A).

The kernel of a matrix A is defined as the inverse of col_ebase (the extended column basis
of A), with the top \rank A rows zeroed out – this is achieved thanks to the multiplication
of such inverse by a square diagonal matrix with 1’s on all but the first \rank A coefficients
on its main diagonal (copid_mx (\rank A)). In other words, the kernel of a matrix A is a
square matrix whose row space consists of some u such that u *m A = 0. This property is
expressed in the following lemma.

Lemma mulmx_ker m n (A : ’M_(m, n)) : kermx A *m A = 0.

Two comments are required about this definition. Firstly, the kernel consists of the el-
ements that are made null when they are applied to the left. In our mathematical proofs
of Section 4.1 the kernel consists of the elements that are made null when applied to the
right. Secondly, in our Coq development, we have chosen to delete the top \rank A null
rows of the kernel kermx A. If we worked with the original definition of kermx A, we would
obtain partial identities instead of identities, for instance, in the proofs of the equalities in
Theorem 15.

Definition ker_min (m n : nat) (M : ’M_(m,n)) :=
(castmx ((Logic.eq_refl (m-\rank M)),(\rank M) + (m-(\rank M))) = m)
(row_mx (@const_mx _ (m-\rank M) (\rank M) 0) 1%:M)) *m (kermx M).

The previous definition consists of the product of a row matrix with the kernel. The row
matrix is composed by a block of zeros with m-\rank M rows and \rank M columns and an
identity matrix of dimension \rank M. Let us note that the cast (a coercion which allows us
to change an entity of one data type into another) in the definition is necessary so that the
product can be properly defined. In particular, the type \rank M + m-\rank M does not
reduce to m, but is just provably equal. Anyway, both definitions, kermx M and ker_min M,
generate the same space as we can see in the following lemma.

Lemma ker_min_kermx (m n : nat) (M : ’M_(m,n)) :
(kermx M :=: (ker_min M))%MS.

4.2.2. Main mathematical structures. Let us define a finite type chain complex with elements
in a field.

Variable K: fieldType.
Record FGChain_Complex :=
{m: Z -> nat;
diff: forall i: Z, ’M[K]_(m (i + 1), m i);
boundary: forall i: Z, (diff (i + 1)) *m (diff i) = 0}.

Some comments about this definition are necessary. The chain complex definition contains
a function denoted by m which obtains the number of generators for each degree. Then, we
can define the differentials using the matrix representation of these maps forall i: Z
, ’M[K]_(m (i + 1), m i). Two important design decisions have been included in this
definition. Due to the definition of the kernel of a matrix in SSReflect we will work with
transposed matrices. This implies that the product is also reversed. Furthermore, the degrees
of the differentials have been increased in one unit. This is an alternative definition to the
usual one which considers the differential in degree i as a function from degree i+1 to degree
i [Domı́nguez and Rubio 2011]. It is clear that as we are considering the definition for all
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the integers, both definitions are equivalent. However, with our version, a Coq technical
problem, related to indexes, is easily avoided – the concrete problem will be described in
the following paragraphs.

Now, we can define the notions of chain complex morphism and homotopy operator for
the FGChain_Complex structure.

Record FGChain_Complex_Morphism (A B: FGChain_Complex) :=
{FG : forall i: Z, ’M[K]_(m A i, m B i);
FG_well_defined: forall i: Z, (diff A i) *m (FG i) =

(FG (i+1)) *m (diff B i)}.

Record FGHomotopy_operator (A: FGChain_Complex) :=
{Ho: forall i:Z, ’M[K]_(m A i, m A (i+1)%Z)}.

With these previous structures, we can define the notion of a reduction for a finite type
chain complex.

Record FGReduction :=
{C : FGChain_Complex;
D : FGChain_Complex;
F : FGChain_Complex_Morphism C D;
G : FGChain_Complex_Morphism D C;
H : FGHomotopy_operator C;
ax1 : forall i:Z, (M G i) *m (M F i) = 1%:M;
ax2 : forall i:Z, (M F (i+1)) *m (M G (i+1)) +

((Ho H (i+1)) *m (diff C (i+1))) +
((diff C i) *m (Ho H i)) = 1%:M;

ax3 : forall i:Z, (Ho H i) *m (M F (i+1)) = 0;
ax4 : forall i:Z, (M G i) *m (Ho H i) = 0;
ax5 : forall i:Z, (Ho H i) *m (Ho H (i+1)) = 0}.

We are going to focus our attention on the (diff C i)*m (Ho H i) component of the def-
inition of a reduction. This product is possible without casts. If we consider the mathemat-
ically equivalent definition with the differential in degree i as a matrix ’M_(m i,m(i-1)),
then the corresponding component would be (diff C i)*m (Ho H (i-1)). In this case a
cast would be required to transform elements in degree (i-1+1) into elements in degree i.
Using such a definition this kind of casts would populate the development; however, using
our alternative definition, we avoid the use of casts.

4.2.3. Formalisation of the Decomposition Theorem. In this subsection, we focus on proving
the Decomposition Theorem. The powerful SSReflect library on matrices makes this de-
velopment easier. Given a reduction rho: FGReduction K we define the decomposition of
(C rho) through an isomorphism between the module with (m (C rho)i) generators and
the module built from the sum of three set of generators. The first morphism of the isomor-
phism reflects a change of basis between both modules (where we work with the canonical
basis in the first one) taking into account how the second one is divided:

Definition Fi_isom (i: Z):=
(col_mx (ker_min (row_mx (FG (F rho) (i+1)) (Ho (H rho) (i+1))))

(col_mx (ker_min (row_mx (FG (F rho) (i+1)) (diff (C rho) i)))
(FG (G rho) (i+1)))).

In this definition, it is necessary to note that the row space of the column matrix col_mx
A B is the sum of the row spaces of the matrices A and B, and that the intersection of

kernels of two matrices A and B generates the same space that the kernel of a row matrix
row_mx A B.
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The definition of the inverse morphism Gi_isom is obtained knowing that it is a row
matrix composed by three blocks and using the second property of the reduction definition.
Then, applying the change of basis to the source chain complex of the reduction (C rho)
we obtain a new reduction between the decomposed chain complex and the second chain
complex of the reduction (D rho). It is not difficult to prove that the components of that
reduction are:

D_rho_base i =

(
0 D_aux i 0
0 0 0
0 0 diff (D rho)(i+1)

)
F_rho_base i =

(
0
0
id

)

G_rho_base i = ( 0 0 id ) H_rho_base i =

(
0 0 0

H_aux i 0 0
0 0 0

)
These components directly reflect the structure included in Figure 4. Finally, the two

isomorphisms included in that diagram are easily obtained from these components using
the properties of the redefined reduction.

4.2.4. Formalisation of the Generalisation of the Hexagonal Lemma. The first step in the formal-
isation of the Generalisation of the Hexagonal Lemma is defining its hypotheses. As every
module is divided into three parts, every differential consists of nine blocks.

Variables (m1 m2 m3: Z -> nat).
Variable Di: forall i: Z,
’M[K]_(m1(i+1)+(m2(i+1)+m3(i+1)), (m1 i)+((m2 i)+(m3 i))).

Hypothesis boundary: forall i:Z, Di (i+1) *m Di i = 0.
Definition CH:= Build_FGChain_Complex boundary.

We recall that we are working with transposed matrices. Consequently, the block (1, 2) of
each differential, denoted by d12, will be an isomorphism.

Variable d12_1: forall i: Z, ’M[K]_(m2 i, m1 (i + 1)).
Hypothesis d12_invertible:
forall i: Z, (d12 (i+1)) *m (d12_1 (i+1)) = 1%:M /\

(d12_1 (i+1)) *m (d12 (i+1)) = 1%:M.

Afterwards, we define the morphisms fi and gi and the homotopy operator hi to build
a reduction of the chain complex CH. These maps are detailed in the proof of Theorem 16.
For instance, we define gi i = ((-(d32 i)*(d12_1 i))0 1). Let us remark that (gi i)
is a matrix whose type is: ’M_(m3(i+1), m1(i+1)+m2(i+1)+m3(i+1)). In this way (gi i)
is defined between the modules of degree (i+1) instead of the ones of degree i. This allows
us to avoid casts as in the case of the definition of the differential. Then, the rest of the
components of the reduction are defined accordingly. Finally, the proof of the reduction
properties are obtained using essentially rewriting tactics, allowing us to build the required
reduction rhoHL.

4.2.5. Putting together the pieces to obtain a formalisation of the BPL. In order to obtain a
formalisation of the BPL, we, firstly, define the hypotheses of the lemma. Those are a
reduction and a perturbation of the first chain complex of the reduction.

Variable K: fieldType.
Variable rho: FGReduction K.
Variable delta: forall i:Z, ’M[K]_(m (C rho)(i+1), m (C rho) i).
Hypothesis boundary_dp: forall i:Z,
(diff (C rho) (i+1) + delta (i+1)) *m (diff (C rho) i + delta i) = 0.
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In addition, we will assume the nilpotency hypothesis. Let us note that pot_matrix is a
function which we have defined to compute the power of a matrix.

Variable (n: nat).
Hypothesis nilpotency_hp: forall i: Z,
(pot_matrix (delta i *m Ho (H rho) i) n = 0).

With these hypotheses, we have to define a reduction from the chain complex with the
differential of (C rho) perturbed by delta. Firstly, we apply the Decomposition Lemma
over the reduction rho, this allows us to decompose each (diff (C rho)i) in the 9 blocks
given in the proof of the lemma (see Subsection 4.2.3). The isomorphism given by Fi_isom
and Gi_isom are used to decompose the perturbation in 9 blocks.

Definition deltai_new (i:Z):=
(Fi_isom rho (i+1)) *m (delta (i+1)) *m (Gi_isom rho i).

Let us note that the differential deltai_new has moved up one degree with respect to
delta. In this way, we obtain a division in 9 blocks of the chain complex Di_pert i:=
diff (C rho)(i+1)+ delta(i+1).

Then, the Generalisation of the Hexagonal Lemma can be applied if the block (1, 2) of that
chain complex is invertible. Following the chain of equalities included in the mathematical
proof of this lemma, it is enough to prove that 1%:M + H_aux * deltai_new21 has an
inverse. To this aim, the following lemma is useful – the lemma is proved using the powerful
bigop library of SSReflect [Bertot et al. 2008].

Lemma inverse_I_minus_M_big (M: ’M[R]_n): (pot_matrix M m = 0) ->
(\sum_(0<=i<m) (pot_matrix M i)) *m (1%:M - M) = 1%:M.

Now, applying the Generalisation of the Hexagonal Lemma rhoHL we build a reduction
quasi_bpl of the decomposed and perturbed chain complex.

The Generalisation of the Hexagonal Lemma proved in Subsection 4.2.3 builds a reduction
of the chain complex given as hypothesis but moved up in a degree. Moreover, the definition
of Di_pert has required us to define it moved up in a degree more. To sum up, we have
built a reduction from a perturbed chain complex but moved up two degrees Di_BPL_up i
:= (C rho)(i+1+1)+ delta(i+1+1). Finally, in order to obtain a reduction rho_BPL from
the initial chain complex (C rho) perturbed by delta, we can move down two degrees in
the reduction obtained. For instance, the differentials are defined as Di_BPL i:= castmx
(cast3 i,cast4 i)(Di_BPL_up(i-1-1)). In this way, we have avoided the use of casts
derived from the degrees until the last step of the proof.

4.3. Using the BPL to reduce the chain complex associated with a digital image

Different ways to represent matrices exist in a system. In SSReflect, there are two available
representations. The first one formalises a matrix as a function. This function determines
every element of the matrix through two indices (for its row and its column). With this ab-
stract representation it is not difficult to define different operations with matrices and prove
properties of them. Indeed, an extensive library on matrices is provided in SSReflect. For
this reason, this representation was chosen to prove the BPL. However, this representation
is not directly executable, since this matrix definition is locked to avoid the trigger of heavy
computations during deduction steps. To overcome this drawback, an alternative definition
which represents matrices as lists of lists was introduced in [Dénès et al. 2012]. This concrete
representation allows us to define operations which can be executed within Coq. Due to this
reason, this was the representation chosen for the implementation of the RS algorithm, see
Subsection 3.3. In the negative side, proving properties using this representation is much
harder, since we do not have the extensive SSReflect library at our disposal.
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In order to combine the best of both representations, a technique was introduced in [Dénès
et al. 2012]. In that work, two morphisms are defined: seqmx_of_mx from abstract to concrete
matrices and mx_of_seqmx from concrete to abstract matrices. The compositions of this
morphisms are identities. In this way, it is proved that these two matrix representations
are equivalent. Besides, these morphisms allow changing the representation when required.
We are going to use that idea to prove the Vector Field Reduction Theorem for a chain
complex generated from a digital monochromatic image. An alternative could consist in
implementing an unlocked version of the SSReflect matrix as a function. In that case, a new
library about matrices should be started from scratch.

The process begins by defining a new structure to represent a particular type of chain
complexes, called by us truncated chain complex. They consist only of two matrices d1,
d2: matZ2, whose product is null. These matrices are the only non-null components in the
differential map of a chain complex. In this way, the null elements of this chain complex are
not included in this definition. Besides, these matrices are represented using computable
structures. The companion notions of truncated chain complex morphism, truncated homo-
topy operator, and truncated reduction are also defined for this structure.

As an example of the previously mentioned technique, we include the following definitions
of two functions to sort a matrix, one for matrices represented as lists, and another one for
matrices represented as functions (an equivalence between them is also provided in our
development).

Definition reorderM (s1 s2: seq nat)(M: matZ2):=
(take_columns_s s2 (take_rows_s s1 M)).

Definition reorder_mx (s1:’S_m)(s2:’S_n)(M:’M[R]_(m,n)):=
col_perm s2 (row_perm s1 M).

Although these two definitions seem similar, they adopt different approaches. The first one
uses simple types which are closer to a standard implementation in traditional programming
languages. Indeed, that implementation is a direct translation of the one made in Haskell.
We will use this version to reorder the structures when we need to compute with them. For
instance, let chaincomplexd1d2 be an initial truncated chain complex which differential is
given by d1: matZ2, with m rows and n columns, and d2: matZ2 with n rows and p columns.
It corresponds to the representation of the initial digital image that we want to reduce. The
first definition is used to obtain the ordered list of lists d1’ and d2’ after computing an
ordered and admissible discrete vector field for d1.

The second definition uses the full power of dependent types and the structures and
properties developed in the SSReflect library. We will use this version when we need to
prove properties on the reordered structures. For instance, this definition is used to obtain
the boundary property of the truncated chain complex chaincomplexd1’d2’, or to define
an isomorphism between chaincomplexd1d2 and chaincomplexd1’d2’. Both proofs take
profit of properties on permutations included in the library.

We introduce just another example of the use of this approach. We need to prove that
the upper-left submatrix of d1’ is a lower triangular matrix (of dimension the number of
vectors in the admissible vector field, m1) with 1’s on its diagonal. In this case, the proof
needs reasoning on the functions included in the RS algorithm and quite a long battery
of ad-hoc lemmas on the computable structures are required. In a second step, we need to
prove that this matrix has an inverse. This second proof is easy using the results included
in the SSReflect library after changing the representation.

Now, if we want to apply the BPL, we need to build a chain complex from the ordered
truncated chain complex chaincomplexd1’d2’. This process requires some technical steps:
translate lists to SSReflect matrices, transpose the matrices, and complete with null matrices
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all the not provided components. In particular, from d’1 we define the following matrix
d’1_trmx which type is ’M[K]_(m1+(m - m1),m1+(n - m1)):

Definition d’1_trmx :=
trmx((mx_of_seqmx (m1 + (m - m1)) (m1 + (n - m1)) d’1)).

Then, we build the differential of a chain complex, denoted by CC_ordered, in the fol-
lowing way:

Definition diff_m:= fun i:Z => match i as
z return ((fun z0 : Z => ’M_(m_m (z0 + 1), m_m z0)) z) with
|(-1)%Z => d0_m
|0%Z => d’1_trmx
|1%Z => d’2_trmx
|2%Z => d3_m
|3%Z => dn_m
|_ => dn_m

end.

We have to highlight the differentials d0_m and d3_m because they are matrices with rows
and no columns or with columns and no rows. The rest of differentials will be matrices with
no rows and no columns.

We will obtain a reduction of this initial chain complex CC_ordered applying the BPL to
the following auxiliary reduction. Let us define a chain complex Dcc whose modules have
the same rank than the modules of CC_ordered, and whose differential has only one not
null component. This component of type ’M[K]_(m1+(m-m1),m1+(n-m1)) is defined by a
matrix hat_d1 whose upper-left block is the identity matrix of dimension m1 and which is
null in the rest of its blocks. The reduced chain complex Ccc has modules whose ranks are
determined by the critical cells found by the RS algorithm on d1. That is, the only not zero
ranks are m-m1, n-m1, and l. The differential of this reduced chain complex is null. Then, it
is easy to build a reduction between Dcc and Ccc having h_0 (extracted from the homotopy
operator given by trmx hat_d1) as its unique non-null component.

Now, we define a perturbation delta_m of Dcc. The non-null components of this pertur-
bation are:

Definition delta_1 := d’1_trmx - hat_d1.
Definition delta_2 := d’2_trmx.

Then, if we prove the nilpotency condition we can apply the BPL. This lemma directly
obtains the required reduction of CC_ordered. The natural number which allows us to prove
this property is m1.+2. As we are working with finite structures, this number can be taken
as a uniform bound for which the nilpotency condition is verified for all the elements in the
module.

Lemma nilpotency_hp_m : forall i:Z,
(pot_matrix(delta_m i *m (Ho (H reductionFG_gen) i))(m1.+2) = 0).

In the proof of this lemma, the only interesting case is when i=0, that is: pot_matrix(
delta_1 *m h_0)(m1.+2)= 0. Expanding the definitions using blocks, we obtain that the
only non-null blocks are pot_matrix(d11 - id)(m1.+2) and d21 *m pot_matrix(d11
- id)(m1.+1), where d11 and d21 are, respectively, the up-left and down-left blocks of
d’1_trmx.

Then, it suffices to prove that pot_matrix(d11 - id)(m1.+1)=0. Let us recall
that d11 is an upper triangular matrix with type ’M_m1. We define the notion
upper_triangular_up_to_k which given a natural number k and a matrix M determines
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whether the matrix is an upper triangular matrix with 0’s under and on the k-th diagonal.
This definition is formalised in SSReflect as follows.

Definition upper_triangular_up_to_k n k (M: ’M[F]_n) :=
forall (i j: ’I_n), j <= i + k -> M i j = 0.

We have developed a small library of properties on upper triangular matrices which
includes the following generalisation of the lemma to prove.

Lemma upper_triangular_pot_matrix_n n (M: ’M[F]_n) :
upper_triangular_up_to_k 0 M -> (pot_matrix M n.+1) = 0.

The BPL allows us to define a reduction red_BPL of CC_ordered. In order to obtain a
truncated reduction from this reduction we retrace the technical steps made to apply the
BPL: extract from this reduction the non-null maps, apply the transpose operation, and
change the matrix representation. For instance, the two components of the first truncated
chain complex in the reduction are defined in the following way.

Definition d’1_trmx_trmx:= seqmx_of_mx (trmx (diff (C red_BPL) 0)).
Definition d’2_trmx_trmx:= seqmx_of_mx (trmx (diff (C red_BPL) 1)).

It is necessary to stress that the obtained big truncated chain complex is composed of the
differentials where the transpose operation has been applied twice. Some casts are needed
in a last step in order to build a truncated reduction of the chain complex chaincomplexd
’1d’2.

Finally, to obtain the required reduction, it remains to compose the isomorphism between
the truncated chain complex chaincomplexd1d2 obtained from a digital image and the or-
dered truncated chain complex chaincomplexd1’d2’ with the reduction built as explained
in the last paragraph.

5. CERTIFIED COMPUTATION OF THE HOMOLOGY ASSOCIATED WITH A DIGITAL
IMAGE

From a theoretical point of view, our objective consists in developing a formal proof which
verifies that the homology of a chain complex produced by actual images as the one of
Figure 2 and its reduced chain complex have the same homology; this has been accomplished
in the previous sections. But, as we are working in a constructive setting, we could also
undertake the computation inside Coq of the reduced chain complex. In the development
included in the previous sections, we have developed a proof of the BPL for general (finite
type) chain complexes, providing a complete formalisation. The reduced matrix is then
obtained through the BPL, which does not use executable matrices. We recall that we have
worked with the matrix definition included in the SSReflect library in order to prove the
BPL and that this definition is locked to avoid the trigger of heavy computations during
deduction steps. It makes this general method not directly executable.

We can improve the previous approach, when particularising it to a concrete situation:
we consider truncated chain complexes obtained from digital images, and we obtain an
admissible discrete vector field using the RS algorithm on one of the matrices d1 of the
differential map. In this situation, it is possible to obtain a reduction of d1 using directly
the Hexagonal Lemma [Romero and Sergeraert 2010] (instead of the BPL). Concretely,
the initial matrix d1 is divided into 4 blocks and the reduced one is built by the formula
d22−d21∗d11−1∗d12. Finally, the reduction is extended to the other non-null matrix of the
differential in order to preserve the boundary condition. In order to obtain an executable
version of that reduction we have also formalised this simplified proof using computable
structures. With this version we are able to compute the whole process for toy examples.

When the size of the matrix grows, it is not possible to compute the full path directly
inside Coq. But we can calculate, in a certified manner within Coq, the homology of the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 M. Poza et al.

reduced matrix. That is the case of actual images as the one in Figure 2. In this case, the
original matrix has dimensions 690 × 1400 and the reduced one 97 × 500. This reduced
matrix has been obtained using the Haskell version of the algorithm formalised in Coq.
With the current state of the running machinery in Coq, the system is not able to compute
of the steps producing this reduced chain complex. The bottleneck of our development is
the definition of the inverse of a matrix. Although we have used a specialized function to
compute the inverse of a triangular matrix with 1’s on its diagonal, implemented in [Dénès
et al. 2013], the performance gain has not been enough in this particular application. (Let
us observe that this bottleneck occurs due to the difficulties of handling big data structures
in proofs assistants, and not due to theoretical complexity issues.) Finally, the solution
adopted was to use Haskell as an oracle. The process is the following. From the matrices of
the chain complex of a digital image, we delegate in Haskell the computation of the reduced
matrix and the matrices of the required reduction (they also include the inverse matrix in
their definition). Then, these matrices are brought into Coq which obtains the homology
(in 25 seconds) of the reduced matrix and automatically compute (using the vm_compute
tactic) the proofs (in 8 hours) of the reduction between both matrices. These running times
are clearly unsatisfactory (in our software in production, response times of seconds are
required). Thus, more research efforts are needed as we explain in the next section.

6. CONCLUSIONS AND FURTHER WORK

In this paper, we have reported on a research providing a certified computation of homology
groups associated with some digital images coming from a biomedical problem. The whole
Coq development contains approximately 45000 lines of code, 2500 theorems, and 1700
definitions. The main contributions allowing us to reach this challenging goal have been:

•The implementation in Coq of Romero-Sergeraert’s algorithm [Romero and Sergeraert
2010] computing a discrete vector field for a digital image.
•The complete formalisation in Coq of a proof of the Basic Perturbation Lemma (to be

compared with the one at [Aransay et al. 2008]).
•A methodology to overcome the problems of efficiency related to the execution of pro-

grams inside proof assistants; in this approach the programming language Haskell has
been used with two different purposes: as a fast prototyping tool and as an oracle.

Emphasis has been put in the execution of proofs inside Coq, to show explicitly the com-
putability of our approach, but without the aim of using any of these proofs as internal
decision procedures. Since the final execution on real examples requires using Haskell or-
acles, the question of why verifying the whole process (and not only the oracle programs)
arises. Our point of view is that both aspects are approaching different concerns about in-
creasing reliability: the verification of the complete path is related to the correctness of the
algorithm, while the oracle is ensuring correctness of the application on a series of concrete
instances (images), in a kind of formal testing. Thus, both contributions are relevant and
complementary.

As for future work, several problems remain open. The most evident one is obtaining a
better performance in the process. This can be undertaken at three different levels. First, by
using other algorithms to compute the main objects in our approach (discrete vector fields
of digital images, inverses of matrices, and so on). Second, by implementing more efficient
data structures, suitable for the theorem proving setting. For instance, we can explore recent
work on (experimental) native arrays [Boespflug et al. 2011] in Coq. Third, by improving
the running environments in proof assistants.

Another option consists in using the Coq extracting code mechanism [Letouzey 2008].
Nowadays, the functional languages available as output include Haskell. This line has not
been explored in this paper and it is proposed as future work. For instance, a performance
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comparison among the extracted code, the hand-written code and the direct execution inside
Coq could deserve attention.

Another line of research is to apply our methodology and techniques to other problems
related to the homological processing of biomedical images. The best candidate is persistent
homology, which has been already applied and formalised (see [Heras et al. 2013]). The
project would be to study whether our reduction strategy can be also profitable in this new
homological context.
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