Towards a certified computation of homology groups for digital images*

J. Heras¹, M. Dénès², G. Mata¹, A. Mörtberg³, M. Poza¹ and V. Siles³

¹Department of Mathematics and Computer Science, University of La Rioja -²INRIA Sophia-Antipolis - ³University of Gothenburg

4th International Workshop on Computational Topology in Image Context (CTIC 2012)

^{*}Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7. STREP project ForMath. n. 243847

- R. Mikhailov and J. Wu. On homotopy groups of the suspended classifying spaces. Algebraic and Geometric Topology 10(2010), 565 625.
- Computable aim (without computers!)
- Theorem 5.4: Let A_4 be the 4-th alternating group. Then $\pi_4(\Sigma K(A_4, 1)) = \mathbb{Z}_4$

(日) (注) (日)

- R. Mikhailov and J. Wu. On homotopy groups of the suspended classifying spaces. Algebraic and Geometric Topology 10(2010), 565 – 625.
- Computable aim (without computers!)
- Theorem 5.4: Let A_4 be the 4-th alternating group. Then $\pi_4(\Sigma K(A_4, 1)) = \mathbb{Z}_4$
- A. Romero and J. Rubio. Homotopy groups of suspended classifying spaces: an experimental approach. To appear in Mathematics of Computation.
 - Kenzo computing homotopy groups
 - $\pi_4(\Sigma K(A_4,1)) = \mathbb{Z}_{12}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- R. Mikhailov and J. Wu. On homotopy groups of the suspended classifying spaces. Algebraic and Geometric Topology 10(2010), 565 – 625.
- Computable aim (without computers!)
- Theorem 5.4: Let A_4 be the 4-th alternating group. Then $\pi_4(\Sigma K(A_4, 1)) = \mathbb{Z}_4$
- A. Romero and J. Rubio. Homotopy groups of suspended classifying spaces: an experimental approach. To appear in Mathematics of Computation.
 - Kenzo computing homotopy groups
 - $\pi_4(\Sigma K(A_4,1)) = \mathbb{Z}_{12}$

To make a long story short: Kenzo solution was the correct one

・ 同 ト ・ ヨ ト ・ ヨ ト

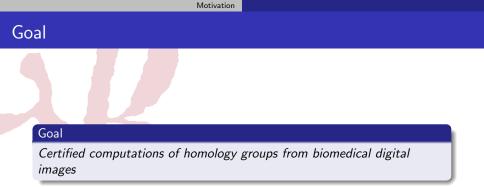
- R. Mikhailov and J. Wu. On homotopy groups of the suspended classifying spaces. Algebraic and Geometric Topology 10(2010), 565 625.
- Computable aim (without computers!)
- Theorem 5.4: Let A_4 be the 4-th alternating group. Then $\pi_4(\Sigma K(A_4, 1)) = \mathbb{Z}_4$
- A. Romero and J. Rubio. Homotopy groups of suspended classifying spaces: an experimental approach. To appear in Mathematics of Computation.
- Kenzo computing homotopy groups
- $\pi_4(\Sigma K(A_4,1)) = \mathbb{Z}_{12}$

To make a long story short: Kenzo solution was the correct one

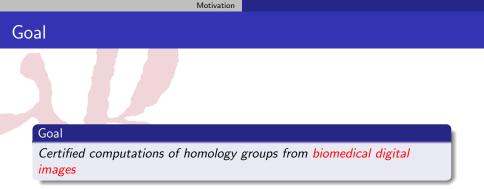
In that situation

Analyze correctness of programs to ensure correctness of mathematical results

イロン イボン イヨン

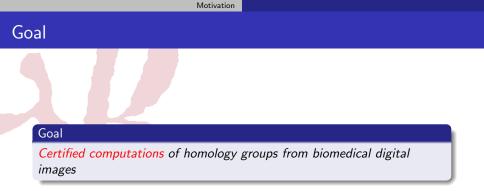


イロナ イヨナ イヨナ イヨナ



• Need of trustworthy tools

イロナ イヨナ イヨナ イヨト



- Need of trustworthy tools
- Formally verified using an interactive proof assistant

・ ・ 回 ト ・ ヨ ト ・ ヨ ト

Interactive Proof Assistants

- What is an Interactive Proof Assistant?
 - Software tool for the development of formal proofs
 - Man-Machine collaboration:
 - Human: design the proofs
 - Machine: fill the gaps
 - Examples: Isabelle, Hol, ACL2, Coq, ...

4/25

< A >

Interactive Proof Assistants

- What is an Interactive Proof Assistant?
 - Software tool for the development of formal proofs
 - Man-Machine collaboration:
 - Human: design the proofs
 - Machine: fill the gaps
 - Examples: Isabelle, Hol, ACL2, Coq, ...
- Applications:
 - Mathematical proofs:
 - Four Color Theorem
 - Fundamental Theorem of Algebra
 - Kepler conjecture
 - Software and Hardware verification:
 - C compiler
 - AMD5K86 microprocessor
 - . . .

1 2 1 4 2 5

COQ/SSReflect

• Coq:

- An Interactive Proof Assistant
- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof

・回 と ・ ヨ と ・ ヨ と

COQ/SSReflect

• Coq:

- An Interactive Proof Assistant
- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof
- SSReflect:
 - $\bullet~\mathsf{Extension}$ of Coq
 - Developed while formalizing the Four Color Theorem by G. Gonthier
 - Currently, it is used in the formalization of Feit-Thompson Theorem

(同) (ヨ) (ヨ)

COQ/SSReflect

• Coq:

- An Interactive Proof Assistant
- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof
- SSReflect:
 - $\bullet~\mathsf{Extension}$ of Coq
 - Developed while formalizing the Four Color Theorem by G. Gonthier
 - Currently, it is used in the formalization of Feit-Thompson Theorem
- Demo

・ 同 ト ・ ヨ ト ・ ヨ ト

The ForMath project

The ForMath project:

- European project
- ForMath: Formalization of Mathematics

< 🗇 >

- (∃) }

6/25

1 ×

The ForMath project

The ForMath project:

- European project
- ForMath: Formalization of Mathematics
- Develop libraries of formalized mathematics:
 - Algebra
 - Linear Algebra
 - Real number computation
 - Algebraic Topology

3.5

The ForMath project

The ForMath project:

- European project
- ForMath: Formalization of Mathematics
- Develop libraries of formalized mathematics:
 - Algebra
 - Linear Algebra
 - Real number computation
 - Algebraic Topology

General Goal

An Algebraic Topology library formalized in $\mathrm{Coq}/\mathrm{SSReflect}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Table of Contents

- 1 Digital Algebraic Topology in COQ/SSREFLECT
- 2 Computing homology with COQ/SSREFLECT
- 3 Computing Discrete Vector Fields
- 4 Conclusions and Further work

> < 同 > < 三 > < 三 >

Table of Contents

1 Digital Algebraic Topology in COQ/SSREFLECT

- 2 Computing homology with Coq/SSReflect
- 3 Computing Discrete Vector Fields
- 4 Conclusions and Further work

・ 同 ト ・ ヨ ト ・ ヨ ト

Verification in $\mathrm{Coq}/\mathrm{SSReflect}$

Algebraic Topology notions already formalized in COQ/SSREFLECT:

E + 4 E +

9/25

< 🗇 >

Algebraic Topology notions already formalized in COQ/SSREFLECT:

```
Simplicial Complexes:
(* V is the vertex set *)
Variable V : finType.
(* A simplex over V is a finite subset of V *)
Definition simplex := {set V}.
(* Simplicial Complex *)
Definition simplicial_complex (c : {set simplex}) :=
   forall x, x in c \rightarrow forall y : simplex, y subset x \rightarrow y in c.
(* Generation of simplicial complex from a list of simplices *)
Definition create_sc (s : seq simplex) : {set simplex} :=
 \bigcup_(sp <- s) powerset sp.</pre>
```

Lemma create_sc_correct : forall s, simplicial_complex (create_sc s).

イロナ イボト イヨト イヨト

Algebraic Topology notions already formalized in COQ/SSREFLECT:

```
Boundary Matrices of Simplicial Complexes:
```

```
Lemma incidence_matrices_sc_product:
forall (V:finType) (n:nat) (sc: {set (simplex V)}),
   simplicial_complex sc ->
       (incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.
```

(同) (ヨ) (ヨ)

Algebraic Topology notions already formalized in COQ/SSREFLECT:

```
Boundary Matrices of Simplicial Complexes:
```

```
Lemma incidence_matrices_sc_product:
forall (V:finType) (n:nat) (sc: {set (simplex V)}),
   simplicial_complex sc ->
       (incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.
```

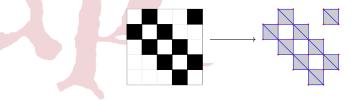
Homology:

Definition Homology := ((lker g) :\: (limg f)).

```
Definition dim_homology (mxf:'M[K]_(v1,v2)) (mxg:'M[K]_(v2,v3)) :=
v2 - \rank mxg - \rank mxf.
```

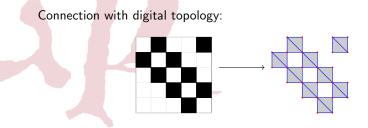
```
Lemma dimHomologyrankE: mxf *m mxg = 0 ->
\dim Homology (LinearApp mxf) (LinearApp mxg) = dim_homology mxf mxg.
```

Connection with digital topology:



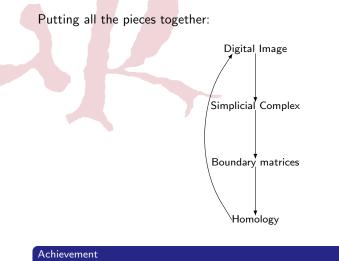
ヨト・モト

< 🗇 >



- An image is represented by means of a list of lists of booleans
- Function createfacets generates a list of simplexes from an image
- Correctness of createfacets has been proved

< 🗇 🕨

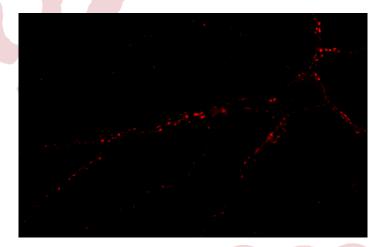


Certified computation of Homology from digital images

J. Heras et al.

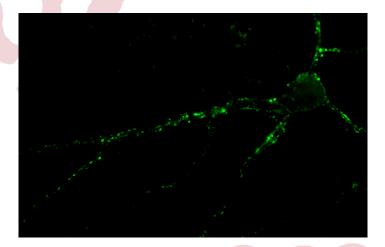
イロン (得) イヨン (ヨ)

- Synapses are the points of connection between neurons
- Relevance: Computational capabilities of the brain
- Procedures to modify the synaptic density may be an important asset in the treatment of neurological diseases
- An automated and reliable method is necessary

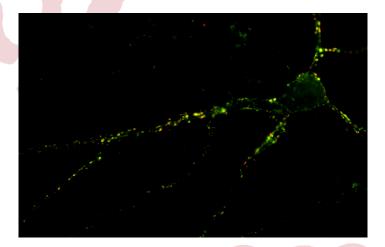


< 🗇 >

→ Ξ →

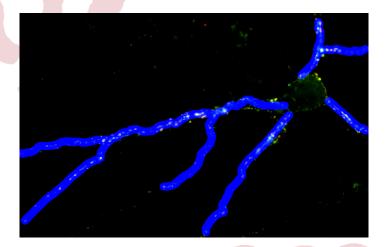


< ∃ →



4 同

- < ∃ →



(同) (ヨ) (ヨ)

- Counting synapses:
 - Measure the number of connected components of the image
 - Good benchmark to test our framework: computation of H_0

- Counting synapses:
 - Measure the number of connected components of the image
 - Good benchmark to test our framework: computation of H₀
 - SynapCountJ: software to measure synaptic density evolution

Table of Contents

igital Algebraic Topology in $\mathrm{Coq}/\mathrm{SSReFLECT}$

(2) Computing homology with COQ/SSReflect

3 Computing Discrete Vector Fields

4 Conclusions and Further work

・ 同 ト ・ ヨ ト ・ ヨ ト

Demo

イロナ イヨナ イヨナ イヨト

Computing inside COQ

• Coq is a Proof Assistant and not a Computer Algebra system

(同) (ヨ) (ヨ)

Computing inside COQ

CoQ is a Proof Assistant and not a Computer Algebra system
Efficient implementations of mathematical algorithms inside CoQ is an ongoing effort

< 🗇 🕨

4 3 5

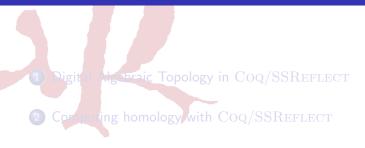
Computing inside COQ

- ullet CoQ is a Proof Assistant and not a Computer Algebra system
- Efficient implementations of mathematical algorithms inside COQ is an ongoing effort
- Achieving a better efficiency:
 - Extraction mechanism
 - $\bullet\,$ Internal compilation of $\rm COQ$ terms to $\rm OCAML$
 - Sparse matrices
 - Better representations for images
 - Reduction of matrices keeping the same homological information

Computing inside COQ

- ullet CoQ is a Proof Assistant and not a Computer Algebra system
- Efficient implementations of mathematical algorithms inside COQ is an ongoing effort
- Achieving a better efficiency:
 - Extraction mechanism
 - $\bullet\,$ Internal compilation of $\rm COQ$ terms to $\rm OCAML$
 - Sparse matrices
 - Better representations for images
 - Reduction of matrices keeping the same homological information

Table of Contents



- 3 Computing Discrete Vector Fields
- 4 Conclusions and Further work

• (1) • (

Discrete Vector Fields + Effective Homology

Reduction process:

• (Algebraic setting of) Discrete Morse Theory

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology. 2010. http://arxiv.org/abs/1005.5685v1

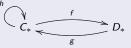
- Effective Homology

J. Rubio and F. Sergeraert. Constructive Algebraic Topology. Bulletin des Sciences Mathématiques, 2002, vol. 126, pp. 389-412

Effective Homology

Definition

A reduction ρ between two chain complexes $C_* \neq D_*$ (denoted by $\rho : C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$



satisfying the following relations:

1)
$$fg = Id_{D_*}$$

$$2) \quad d_C h + h d_C = \operatorname{Id}_{C_*} -gf;$$

3)
$$fh = 0;$$
 $hg = 0;$ $hh = 0.$

Theorem

If $C_* \Rightarrow D_*$, then $C_* \cong D_* \oplus A_*$, with A_* acyclic, which implies that $H_n(C_*) \cong H_n(D_*)$ for all n.

J. Heras et al.

Definition

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z} -basis $\beta_p \subset C_p$. A discrete vector field V on C_* is a collection of pairs $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ satisfying the conditions:

- Every σ_i is some element of β_p , in which case $\tau_i \in \beta_{p+1}$. The degree p depends on i and in general is not constant.
- Every component σ_i is a regular face of the corresponding τ_i .
- Each generator (cell) of C_{*} appears at most one time in V.

Definition

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z} -basis $\beta_p \subset C_p$. A discrete vector field V on C_* is a collection of pairs $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ satisfying the conditions:

- Every σ_i is some element of β_p , in which case $\tau_i \in \beta_{p+1}$. The degree p depends on i and in general is not constant.
- Every component σ_i is a regular face of the corresponding τ_i .
- Each generator (cell) of C_{*} appears at most one time in V.

Definition

A V-path of degree p and length m is a sequence $\pi = ((\sigma_{i_k}, \tau_{i_k}))_{0 \le k < m}$ satisfying:

- Every pair (σ_{ik}, τ_{ik}) is a component of V and τ_{ik} is a p-cell.
- For every 0 < k < m, the component σ_{ik} is a face of τ_{ik-1}, non necessarily regular, but different from σ_{ik-1}.

イロン イボン イヨン イヨン

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

イロナ イボト イヨト イヨト

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a critical cell.

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a critical cell.

Theorem

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ be a free chain complex and $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ be an admissible discrete vector field on C_* . Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_p, d_p) \Rightarrow (C_p^c, d_p')$ where $C_p^c = \mathbb{Z}[\beta_p^c]$ is the free \mathbb{Z} -module generated by the critical p-cells.

 $\ldots \leftarrow \mathbb{Z}^m \xleftarrow{M} \mathbb{Z}^n \leftarrow \ldots$

Vector fields and integer matrices

M is one of the boundary matrices of the chain complex:

J. Heras et al.

Towards a certified computation of homology groups for digital images

(同) (ヨ) (ヨ)

M is one of the boundary matrices of the chain complex:

$$\ldots \leftarrow \mathbb{Z}^m \xleftarrow{M} \mathbb{Z}^n \leftarrow \ldots$$

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

$$1 \leq \mathsf{a}_i \leq \mathsf{m} \text{ and } 1 \leq \mathsf{b}_i \leq \mathsf{n}$$

4 Non existence of loops

イロン (得) イヨン (ヨ)

M is one of the boundary matrices of the chain complex:

$$\ldots \leftarrow \mathbb{Z}^m \xleftarrow{M} \mathbb{Z}^n \leftarrow \ldots$$

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

- $1 \leq a_i \leq m \text{ and } 1 \leq b_i \leq n$
- 2 The entry $M[a_i, b_i]$ of the matrix is ± 1
- The indices a_i (resp. b_i) are pairwise different
- On existence of loops

・ロ・・ (日・・ (日・・ (日・)

M is one of the boundary matrices of the chain complex:

$$\ldots \leftarrow \mathbb{Z}^m \xleftarrow{M} \mathbb{Z}^n \leftarrow \ldots$$

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

$$1 \leq \mathsf{a}_i \leq \mathsf{m} \text{ and } 1 \leq \mathsf{b}_i \leq \mathsf{n}$$

On existence of loops

イロト イポト イヨト イヨト

M is one of the boundary matrices of the chain complex:

$$\ldots \leftarrow \mathbb{Z}^m \xleftarrow{M} \mathbb{Z}^n \leftarrow \ldots$$

Definition

An admissible vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

$$1 \leq \mathsf{a}_i \leq \mathsf{m} \text{ and } 1 \leq \mathsf{b}_i \leq \mathsf{n}$$

4 Non existence of loops

```
Definition admissible_dvf (M: 'M['F_2]_(m,n)) (V: seq ('I_m * 'I_n)) (
    ords : simpl_rel 'I_m) :=
    all [pred p | M p.1 p.2 == 1] V &&
    uniq (map (@fst _ _) V) && uniq (map (@snd _ _) V) &&
    all [pred i | ~~ (connect ords i i)] (map (@fst _ _) V).
```

イロナ イボト イヨト イヨト

Romero-Sergeraert algorithms

Algorithm (Romero-Sergeraert 2010)

Input: A matrix M Output: An admissible discrete vector field for M

- Implemented with the function gen_adm_dvf
- Verified in COQ/SSREFLECT
- Lemma admissible_gen_adm_dvf m n (M : 'M['F_2]_(m,n)) : let (V,ords) := gen_adm_dvf M in admissible M V ord.

イロン (得) イヨン (ヨ)

Romero-Sergeraert algorithms

Algorithm (Romero-Sergeraert 2010)

Input: A matrix M Output: An admissible discrete vector field for M

- Implemented with the function gen_adm_dvf
- Verified in COQ/SSREFLECT

```
Lemma admissible_gen_adm_dvf m n (M : 'M['F_2]_(m,n)) :
let (V,ords) := gen_adm_dvf M in admissible M V ord.
```

Algorithm (Romero-Sergeraert 2010)

Input: A matrix M and an admissible discrete vector field of M Output: A reduced matrix M^\prime

- Already implemented
- Verification in COQ/SSREFLECT is an ongoing work

Results

Some remarkable results have been obtained:

- 500 randomly generated images:
 - Initial size of matrices: \sim 100 imes 300 ightarrow 12 seconds
 - After reduction process: $\sim 5 \times 50 \rightarrow$ milliseconds
 - Most of reduced matrices were null

(同) (ヨ) (ヨ)

Results

Some remarkable results have been obtained:

- 500 randomly generated images:
 - Initial size of matrices: \sim 100 imes 300 ightarrow 12 seconds
 - After reduction process: \sim 5 \times 50 \rightarrow milliseconds
 - Most of reduced matrices were null
- Biomedical images:
 - Initial size of matrices: \sim 700 \times 1400 \rightarrow ∞
 - After reduction process just 25 seconds

(同) (ヨ) (ヨ)

Table of Contents

3 Computing Discrete Vector Fields

4 Conclusions and Further work

ア ・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusions

• Towards an Algebraic Topology Formal library

Conclusions

- Towards an Algebraic Topology Formal library
- Certified computation of Homology from digital images

< 67 >

「てきとくまと

Conclusions

- Towards an Algebraic Topology Formal library
- Certified computation of Homology from digital images
- Discrete Vector Fields to deal with images

< 🗇 🕨

- (∃) }

23/25

< E >

- Towards an Algebraic Topology Formal library
- Certified computation of Homology from digital images ٥
- Discrete Vector Fields to deal with images
- Application to a biomedical problem: counting synapses

3.5

Further work

- Formalization aspects:
 - Correctness of reduction process
 - Integer homology computation

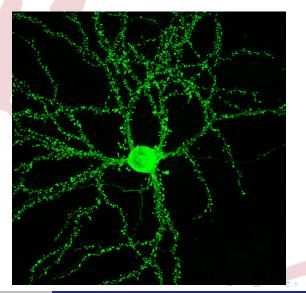
・ロ・・ (日・・ (日・・ (日・)

- Formalization aspects:
 - Correctness of reduction process
 - Integer homology computation
- Efficiency issues:
 - Better representations and more efficient algorithms

くロッ (得) (言) (言)

- Formalization aspects:
 - Correctness of reduction process
 - Integer homology computation
- Efficiency issues:
 - Better representations and more efficient algorithms
- Homology certified programs applied to more interesting biomedical cases:
 - Homology group in dimension 1 (structure detection)
 - Persistent Homology (denoising)

(日本) (日本) (日本)



J. Heras et al.

Towards a certified computation of homology groups for digital images

24/25

≣≯

Towards a certified computation of homology groups for digital images

J. Heras¹, M. Dénès², G. Mata¹, A. Mörtberg³, M. Poza¹ and V. Siles³

¹Department of Mathematics and Computer Science, University of La Rioja -²INRIA Sophia-Antipolis - ³University of Gothenburg

4th International Workshop on Computational Topology in Image Context (CTIC 2012)

J. Heras et al.

Towards a certified computation of homology groups for digital images

(周) (三) (三)