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@ Theorem 5.4: Let Ay be the 4-th alternating group. Then m4(XK(As,1)) = Zs

@ A. Romero and J. Rubio. Homotopy groups of suspended classifying spaces: an

experimental approach. To appear in Mathematics of Computation.
@ Kenzo computing homotopy groups
o 7|'4(Z‘K(A47 1)) = Z1»

To make a long story short: Kenzo solution was the correct one

In that situation

Analyze correctness of programs to ensure correctness of mathematical results
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@ What is an Interactive Proof Assistant?

e Software tool for the development of formal proofs
o Man-Machine collaboration:

e Human: design the proofs
@ Machine: fill the gaps

e Examples: Isabelle, Hol, ACL2, Coq, ...
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Interactive Proof Assistants

@ What is an Interactive Proof Assistant?
e Software tool for the development of formal proofs
o Man-Machine collaboration:

e Human: design the proofs
@ Machine: fill the gaps

e Examples: Isabelle, Hol, ACL2, Coq, ...

@ Applications:

o Mathematical proofs:
o Four Color Theorem
o Fundamental Theorem of Algebra
o Kepler conjecture

e Software and Hardware verification:
o C compiler
o AMD5K86 microprocessor
o ...
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CoQ/SSREFLECT

e Coq:
e An Interactive Proof Assistant
e Based on Calculus of Inductive Constructions
o Interesting feature: program extraction from a constructive
proof
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o Developed while formalizing the Four Color Theorem by G.
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proof
@ SSREFLECT:

e Extension of CoQ
o Developed while formalizing the Four Color Theorem by G.

Gonthier
o Currently, it is used in the formalization of Feit-Thompson

Theorem

@ Demo
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Motivation Interactive Proof Assistants

The ForMath project

The ForMath project:
@ European project
@ ForMath: Formalization of Mathematics

@ Develop libraries of formalized mathematics:

Algebra

Linear Algebra

Real number computation
Algebraic Topology

General Goal
An Algebraic Topology library formalized in COQ/SSREFLECT
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Verification in COQ/SSREFLECT

Algebraic Topology notions already formalized in CoQ/SSREFLECT:
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Digital Algebraic Topology in CoQ/SSREFLECT [EAVEIGITEl W) Wfo} SREFLECT

Verification in COQ/SSREFLECT

Algebraic Topology notions already formalized in CoQ/SSREFLECT:

Simplicial Complexes:

(* V is the vertex set *)
Variable V : finType.

(* A simplex over V is a finite subset of V %)
Definition simplex := {set V}.

(* Simplicial Complex *)
Definition simplicial_complex (c : {set simplex}) :=
forall x, x \in ¢ -> forall y : simplex, y \subset x -> y \in c.

(* Generation of simplicial complex from a list of simplices *)

Definition create_sc (s : seq simplex) : {set simplex} :=
\bigcup_(sp <- s) powerset sp.

Lemma create_sc_correct : forall s, simplicial_complex (create_sc s).
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Verification in COQ/SSREFLECT

Algebraic Topology notions already formalized in CoQ/SSREFLECT:

Boundary Matrices of Simplicial Complexes:

Lemma incidence_matrices_sc_product:
forall (V:finType) (n:nat) (sc: {set (simplex V)}),
simplicial_complex sc ->
(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.
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Verification in COQ/SSREFLECT

Algebraic Topology notions already formalized in CoQ/SSREFLECT:

Boundary Matrices of Simplicial Complexes:

Lemma incidence_matrices_sc_product:
forall (V:finType) (n:nat) (sc: {set (simplex V)}),
simplicial_complex sc ->
(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.

Homology:

Variable (K : fieldType) (V1 V2 V3 : vectType K)
(f : linearApp V1 V2) (g : linearApp V2 V3).

Definition Homology := ((lker g) :\: (limg £)).

Definition dim_homology (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v2,v3)) :=
v2 - \rank mxg - \rank mxf.

Lemma dimHomologyrankE: mxf *m mxg = 0 ->
\dim Homology (LinearApp mxf) (LinearApp mxg) = dim_homology mxf mxg.
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Verification in COQ/SSREFLECT

Connection with digital topology:

| N
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Digital Algebraic Topology in CoQ/SSREFLECT [EAVEIGITEl TN, WOleleyiSiSih i amolean

Verification in COQ/SSREFLECT

Connection with digital topology:

| N

@ An image is represented by means of a list of lists of booleans
@ Function createfacets generates a list of simplexes from an image

@ Correctness of createfacets has been proved
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Verification in COQ/SSREFLECT

Putting all the pieces together:

Digital Image

Simplicialr Complex

4 .
Boundary matrices

Hom’ology

Achievement

Certified computation of Homology from digital images
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Testing our framework: Counting synapses

@ Synapses are the points of connection between neurons
@ Relevance: Computational capabilities of the brain

@ Procedures to modify the synaptic density may be an
important asset in the treatment of neurological diseases

@ An automated and reliable method is necessary
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Testing our framework: Counting synapses

Bsar,
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Testing our framework: Counting synapses

o Counting synapses:

e Measure the number of connected components of the image
e Good benchmark to test our framework: computation of Hy
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Digital Algebraic Topology in COQ/SSREFLECT [EEESSli-RIITa i1y S0Velg T REWoTTeTy s [T Relo iy 5

Testing our framework: Counting synapses

o Counting synapses:

e Measure the number of connected components of the image
e Good benchmark to test our framework: computation of Hy
e SynapCountJ: software to measure synaptic density evolution
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Computing homology with CoQ/SSREFLECT

Demo
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Computing inside CoQ

o CoQ is a Proof Assistant and not a Computer Algebra system
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Computing homology with CoQ/SSREFLECT Computing inside CoQ

Computing inside CoQ

o CoQ is a Proof Assistant and not a Computer Algebra system

o Efficient implementations of mathematical algorithms inside
CoQ is an ongoing effort
@ Achieving a better efficiency:

Extraction mechanism

Internal compilation of COQ terms to OCAML
Sparse matrices

Better representations for images

Reduction of matrices keeping the same homological
information
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© Computing Discrete Vector Fields
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(@] [T-A DSV A IS Discrete Vector Fields + Effective Homology

Discrete Vector Fields + Effective Homology

Reduction process:
o (Algebraic setting of ) Discrete Morse Theory

@ A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental
Algebraic Topology. 2010. http://arxiv.org/abs/1005.5685v1

o Effective Homology

@ J. Rubio and F. Sergeraert. Constructive Algebraic Topology. Bulletin des
Sciences Mathématiques, 2002, vol. 126, pp. 389-412
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Computing Discrete Vector Fields Effective Homology

Effective Homology

A reduction p between two chain complexes Cy y Dy (denoted by p: C,=> D) is a
triple p = (f, g, h)
h

(N f

o C. T
satisfying the following relations:
1) fg=Idp,;

2) dch+ hdc = Idc, —gf;
3) fh=0; hg=0; hh=0.

v
Theorem

If C« = D, then C« = D, & A«, with Ay acyclic, which implies that
Hn(Cx) =2 Hn(Dy) for all n.
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Computing Discrete Vector Fields Discrete Vector Fields

Discrete Vector Fields

Definiti

Let Ci = (Cp, dp)pez a free chain complex with distinguished Z-basis 8, C Cp. A
discrete vector field V on C, is a collection of pairs V = {(oj; 7;)}ici satisfying the

conditions:

@ Every o; is some element of B, in which case T; € Bp11. The degree p depends
on i and in general is not constant.

@ Every component o; is a regular face of the corresponding ;.

@ Each generator (cell) of Ci appears at most one time in V.
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Computing Discrete Vector Fields Discrete Vector Fields

Discrete Vector Fields

Definition

Let Ci = (Cp, dp)pez a free chain complex with distinguished Z-basis 8, C Cp. A
discrete vector field V on C, is a collection of pairs V = {(oj; 7;)}ici satisfying the

conditions:

@ Every o; is some element of B, in which case T; € Bp11. The degree p depends
on i and in general is not constant.

@ Every component o; is a regular face of the corresponding ;.

@ Each generator (cell) of Ci appears at most one time in V.

4

A V-path of degree p and length m is a sequence ™ = ((oj,, i, ))o<k<m satisfying:

@ Every pair (o), 7 ) is a component of V and T;,_is a p-cell.

@ For every 0 < k < m, the component o, is a face of T;, _,, non necessarily

regular, but different from o;, ..

17
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Computing Discrete Vector Fields Discrete Vector Fields

Discrete Vector Fields

Definition

A discrete vector field V is admissible if for every p € Z, a function \p : Bp — N is
provided satisfying the following property: every V-path starting from o € [, has a
length bounded by \p (o).
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Computing Discrete Vector Fields Discrete Vector Fields

Discrete Vector Fields

Definition

A discrete vector field V is admissible if for every p € Z, a function \p : Bp — N is
provided satisfying the following property: every V-path starting from o € [, has a
length bounded by \p (o).

Definition

A cell o which does not appear in a discrete vector field V is called a critical cell.
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Computing Discrete Vector Fields Discrete Vector Fields

Discrete Vector Fields

Definition

A discrete vector field V is admissible if for every p € Z, a function \p : Bp — N is
provided satisfying the following property: every V-path starting from o € [, has a
length bounded by \p (o).

Definition

A cell o which does not appear in a discrete vector field V is called a critical cell.

Let Ci = (Cp, dp)pez be a free chain complex and V = {(oj; 7i)}ic/ be an admissible
discrete vector field on Ci. Then the vector field V' defines a canonical reduction
p=(f,g,h): (Cp,dp)=>(C5,d,) where C5 = Z[B] is the free Z-module generated

P> 9p
by the critical p-cells.
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Computing Discrete Vector Fields Discrete Vector Fields

Vector fields and integer matrices

M is one of the boundary matrices of the chain complex:

M
R S/ AR e/ AL T

J. Heras et al. Towards a certified computation of homology groups for digital images 19/25



Computing Discrete Vector Fields Discrete Vector Fields

Vector fields and integer matrices

M is one of the boundary matrices of the chain complex:

M n

R S/ AR e/ AL T

An admissible vector field VV for M is nothing but a set of integer pairs {(a;, b;)}
satisfying these conditions:

Q 1<a<mand1<b;<n

@ The entry M|a;, b;] of the matrix is £1

© The indices a; (resp. b;) are pairwise different
@ Non existence of loops
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Vector fields and integer matrices

M is one of the boundary matrices of the chain complex:

M
R S/ AR e/ AL T

An admissible vector field V' for M is nothing but a set of integer pairs {(a;, b;)}
satisfying these conditions:

Q 1<a<mand1<b;<n

@ The entry M|a;, b;] of the matrix is 1

© The indices a; (resp. b;) are pairwise different
@ Non existence of loops
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Computing Discrete Vector Fields Discrete Vector Fields

Vector fields and integer matrices

M is one of the boundary matrices of the chain complex:

M
R S/ AR e/ AL T

Definition

An admissible vector field VV for M is nothing but a set of integer pairs {(a;, b;)}
satisfying these conditions:

Q 1<a<mand1<b;<n
@ The entry M|a;, b;] of the matrix is £1
© The indices a; (resp. b;) are pairwise different

@ Non existence of loops

Definition admissible_dvf (M: ’M[’F_2]_(m,n)) (V: seq (’I_m * ’I_n)) (
ords : simpl_rel ’I_m) :=
all [pred p | M p.1 p.2 == 1] V &&
uniq (map (@fst _ _) V) && uniq (map (@snd _ _) V) &&
all [pred i | “~ (connect ords i i)] (map (@fst _ _) V).
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Computing Discrete Vector Fields Discrete Vector Fields

Romero-Sergeraert algorithms

Algorithm (Romero-Sergeraert 2010)

Input: A matrix M
Output: An admissible discrete vector field for M

@ Implemented with the function gen_adm_dvf
@ Verified in CoQ/SSREFLECT

Lemma admissible_gen_adm_dvf m n (M : °M[’F_2]_(m,n))
let (V,ords) := gen_adm_dvf M in admissible M V ord.
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Computing Discrete Vector Fields Discrete Vector Fields

Romero-Sergeraert algorithms

Algorithm (Romero-Sergeraert 2010)

Input: A matrix M
Output: An admissible discrete vector field for M

@ Implemented with the function gen_adm_dvf
@ Verified in CoQ/SSREFLECT

Lemma admissible_gen_adm_dvf m n (M : °M[’F_2]_(m,n))
let (V,ords) := gen_adm_dvf M in admissible M V ord.

Algorithm (Romero-Sergeraert 2010)

Input: A matrix M and an admissible discrete vector field of M
Output: A reduced matrix M’

@ Already implemented
@ Verification in CoQ/SSREFLECT is an ongoing work
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Computing Discrete Vector Fields Discrete Vector Fields

Some remarkable results have been obtained:

@ 500 randomly generated images:

o Initial size of matrices: ~ 100 x 300 —~ 12 seconds
o After reduction process: ~ 5 x 50 — milliseconds
e Most of reduced matrices were null

J. Heras et al. Towards a certified computation of homology groups for digital images 21/25



Computing Discrete Vector Fields Discrete Vector Fields

Some remarkable results have been obtained:

@ 500 randomly generated images:
o Initial size of matrices: ~ 100 x 300 —~ 12 seconds
o After reduction process: ~ 5 x 50 — milliseconds
e Most of reduced matrices were null

@ Biomedical images:

o Initial size of matrices: ~ 700 x 1400 — oo
o After reduction process just 25 seconds
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Towards an Algebraic Topology Formal library
Certified computation of Homology from digital images
Discrete Vector Fields to deal with images

Application to a biomedical problem: counting synapses
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@ Formalization aspects:
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@ Integer homology computation

J. Heras et al. Towards a certified computation of homology groups for digital images 24/25



Conclusions and Further work Further work

Further work

@ Formalization aspects:
@ Correctness of reduction process
@ Integer homology computation

@ Efficiency issues:

@ Better representations and more efficient algorithms

J. Heras et al. Towards a certified computation of homology groups for digital images 24/25



Conclusions and Further work Further work

Further work

@ Formalization aspects:
@ Correctness of reduction process
@ Integer homology computation

@ Efficiency issues:
@ Better representations and more efficient algorithms
@ Homology certified programs applied to more interesting biomedical cases:

@ Homology group in dimension 1 (structure detection)

@ Persistent Homology (denoising)
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