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Motivation

Motivation

R. Mikhailov and J. Wu. On homotopy groups of the suspended classifying

spaces. Algebraic and Geometric Topology 10(2010), 565 – 625.

Computable aim (without computers!)

Theorem 5.4: Let A4 be the 4-th alternating group. Then π4(ΣK(A4, 1)) = Z4

A. Romero and J. Rubio. Homotopy groups of suspended classifying spaces: an

experimental approach. To appear in Mathematics of Computation.

Kenzo computing homotopy groups

π4(ΣK(A4, 1)) = Z12

To make a long story short: Kenzo solution was the correct one

In that situation

Analyze correctness of programs to ensure correctness of mathematical results
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Motivation

Goal

Goal

Certified computations of homology groups from biomedical digital
images

Need of trustworthy tools

Formally verified using an interactive proof assistant
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Motivation Interactive Proof Assistants

Interactive Proof Assistants

What is an Interactive Proof Assistant?

Software tool for the development of formal proofs
Man-Machine collaboration:

Human: design the proofs
Machine: fill the gaps

Examples: Isabelle, Hol, ACL2, Coq, . . .

Applications:
Mathematical proofs:

Four Color Theorem
Fundamental Theorem of Algebra
Kepler conjecture

Software and Hardware verification:

C compiler
AMD5K86 microprocessor
. . .
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Motivation Interactive Proof Assistants

Coq/SSReflect

Coq:

An Interactive Proof Assistant
Based on Calculus of Inductive Constructions
Interesting feature: program extraction from a constructive
proof

SSReflect:

Extension of Coq
Developed while formalizing the Four Color Theorem by G.
Gonthier
Currently, it is used in the formalization of Feit-Thompson
Theorem

Demo
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Motivation Interactive Proof Assistants

The ForMath project

The ForMath project:

European project

ForMath: Formalization of Mathematics

Develop libraries of formalized mathematics:

Algebra
Linear Algebra
Real number computation
Algebraic Topology

General Goal

An Algebraic Topology library formalized in Coq/SSReflect
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Digital Algebraic Topology in Coq/SSReflect Verification in Coq/SSReflect

Verification in Coq/SSReflect

Algebraic Topology notions already formalized in Coq/SSReflect:
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Digital Algebraic Topology in Coq/SSReflect Verification in Coq/SSReflect

Verification in Coq/SSReflect

Algebraic Topology notions already formalized in Coq/SSReflect:

Simplicial Complexes:

(* V is the vertex set *)

Variable V : finType.

(* A simplex over V is a finite subset of V *)

Definition simplex := {set V}.

(* Simplicial Complex *)

Definition simplicial_complex (c : {set simplex}) :=

forall x, x \in c -> forall y : simplex, y \subset x -> y \in c.

(* Generation of simplicial complex from a list of simplices *)

Definition create_sc (s : seq simplex) : {set simplex} :=

\bigcup_(sp <- s) powerset sp.

Lemma create_sc_correct : forall s, simplicial_complex (create_sc s).
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Digital Algebraic Topology in Coq/SSReflect Verification in Coq/SSReflect

Verification in Coq/SSReflect

Algebraic Topology notions already formalized in Coq/SSReflect:

Boundary Matrices of Simplicial Complexes:

Lemma incidence_matrices_sc_product:

forall (V:finType) (n:nat) (sc: {set (simplex V)}),

simplicial_complex sc ->

(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.
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Verification in Coq/SSReflect

Algebraic Topology notions already formalized in Coq/SSReflect:

Boundary Matrices of Simplicial Complexes:

Lemma incidence_matrices_sc_product:

forall (V:finType) (n:nat) (sc: {set (simplex V)}),

simplicial_complex sc ->

(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.

Homology:

Variable (K : fieldType) (V1 V2 V3 : vectType K)

(f : linearApp V1 V2) (g : linearApp V2 V3).

Definition Homology := ((lker g) :\: (limg f)).

Definition dim_homology (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v2,v3)) :=

v2 - \rank mxg - \rank mxf.

Lemma dimHomologyrankE: mxf *m mxg = 0 ->

\dim Homology (LinearApp mxf) (LinearApp mxg) = dim_homology mxf mxg.
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Digital Algebraic Topology in Coq/SSReflect Verification in Coq/SSReflect

Verification in Coq/SSReflect

Connection with digital topology:
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Digital Algebraic Topology in Coq/SSReflect Verification in Coq/SSReflect

Verification in Coq/SSReflect

Connection with digital topology:

An image is represented by means of a list of lists of booleans

Function createfacets generates a list of simplexes from an image

Correctness of createfacets has been proved
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Digital Algebraic Topology in Coq/SSReflect Verification in Coq/SSReflect

Verification in Coq/SSReflect

Putting all the pieces together:

Digital Image

Simplicial Complex

Boundary matrices

Homology

Achievement

Certified computation of Homology from digital images
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Digital Algebraic Topology in Coq/SSReflect Testing our framework in a biomedical context

Testing our framework: Counting synapses

Synapses are the points of connection between neurons

Relevance: Computational capabilities of the brain

Procedures to modify the synaptic density may be an
important asset in the treatment of neurological diseases

An automated and reliable method is necessary
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Digital Algebraic Topology in Coq/SSReflect Testing our framework in a biomedical context

Testing our framework: Counting synapses

Counting synapses:

Measure the number of connected components of the image
Good benchmark to test our framework: computation of H0

SynapCountJ: software to measure synaptic density evolution
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Computing homology with Coq/SSReflect
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Computing homology with Coq/SSReflect Demo

Demo

Demo
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Computing homology with Coq/SSReflect Computing inside Coq

Computing inside Coq

Coq is a Proof Assistant and not a Computer Algebra system

Efficient implementations of mathematical algorithms inside
Coq is an ongoing effort

Achieving a better efficiency:

Extraction mechanism
Internal compilation of Coq terms to OCaml
Sparse matrices
Better representations for images
Reduction of matrices keeping the same homological
information

J. Heras et al. Towards a certified computation of homology groups for digital images 13/25



Computing homology with Coq/SSReflect Computing inside Coq

Computing inside Coq

Coq is a Proof Assistant and not a Computer Algebra system

Efficient implementations of mathematical algorithms inside
Coq is an ongoing effort

Achieving a better efficiency:

Extraction mechanism
Internal compilation of Coq terms to OCaml
Sparse matrices
Better representations for images
Reduction of matrices keeping the same homological
information

J. Heras et al. Towards a certified computation of homology groups for digital images 13/25



Computing homology with Coq/SSReflect Computing inside Coq

Computing inside Coq

Coq is a Proof Assistant and not a Computer Algebra system

Efficient implementations of mathematical algorithms inside
Coq is an ongoing effort

Achieving a better efficiency:

Extraction mechanism
Internal compilation of Coq terms to OCaml
Sparse matrices
Better representations for images
Reduction of matrices keeping the same homological
information

J. Heras et al. Towards a certified computation of homology groups for digital images 13/25



Computing homology with Coq/SSReflect Computing inside Coq

Computing inside Coq

Coq is a Proof Assistant and not a Computer Algebra system

Efficient implementations of mathematical algorithms inside
Coq is an ongoing effort

Achieving a better efficiency:

Extraction mechanism
Internal compilation of Coq terms to OCaml
Sparse matrices
Better representations for images
Reduction of matrices keeping the same homological
information

J. Heras et al. Towards a certified computation of homology groups for digital images 13/25



Computing Discrete Vector Fields
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Computing Discrete Vector Fields Discrete Vector Fields + Effective Homology

Discrete Vector Fields + Effective Homology

Reduction process:

(Algebraic setting of) Discrete Morse Theory

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental

Algebraic Topology. 2010. http://arxiv.org/abs/1005.5685v1

Effective Homology

J. Rubio and F. Sergeraert. Constructive Algebraic Topology. Bulletin des

Sciences Mathématiques, 2002, vol. 126, pp. 389-412

J. Heras et al. Towards a certified computation of homology groups for digital images 15/25

http://arxiv.org/abs/1005.5685v1


Computing Discrete Vector Fields Effective Homology

Effective Homology

Definition

A reduction ρ between two chain complexes C∗ y D∗ (denoted by ρ : C∗⇒⇒D∗) is a
triple ρ = (f , g , h)

C∗

h

�� f
++
D∗

g

kk

satisfying the following relations:

1) fg = IdD∗ ;

2) dC h + hdC = IdC∗ −gf ;

3) fh = 0; hg = 0; hh = 0.

Theorem

If C∗⇒⇒D∗, then C∗ ∼= D∗ ⊕ A∗, with A∗ acyclic, which implies that
Hn(C∗) ∼= Hn(D∗) for all n.
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Computing Discrete Vector Fields Discrete Vector Fields

Discrete Vector Fields

Definition

Let C∗ = (Cp , dp)p∈Z a free chain complex with distinguished Z-basis βp ⊂ Cp . A

discrete vector field V on C∗ is a collection of pairs V = {(σi ; τi )}i∈I satisfying the

conditions:

Every σi is some element of βp , in which case τi ∈ βp+1. The degree p depends
on i and in general is not constant.

Every component σi is a regular face of the corresponding τi .

Each generator (cell) of C∗ appears at most one time in V .

Definition

A V -path of degree p and length m is a sequence π = ((σik , τik ))0≤k<m satisfying:

Every pair (σik , τik ) is a component of V and τik is a p-cell.

For every 0 < k < m, the component σik is a face of τik−1
, non necessarily

regular, but different from σik−1
.
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Computing Discrete Vector Fields Discrete Vector Fields

Discrete Vector Fields

Definition

A discrete vector field V is admissible if for every p ∈ Z, a function λp : βp → N is
provided satisfying the following property: every V -path starting from σ ∈ βp has a
length bounded by λp(σ).

Definition

A cell σ which does not appear in a discrete vector field V is called a critical cell.

Theorem

Let C∗ = (Cp , dp)p∈Z be a free chain complex and V = {(σi ; τi )}i∈I be an admissible
discrete vector field on C∗. Then the vector field V defines a canonical reduction
ρ = (f , g , h) : (Cp , dp)⇒⇒ (C c

p , d
′
p) where C c

p = Z[βc
p ] is the free Z-module generated

by the critical p-cells.
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Computing Discrete Vector Fields Discrete Vector Fields

Vector fields and integer matrices

M is one of the boundary matrices of the chain complex:

. . .← Zm M←− Zn ← . . .

Definition

An admissible vector field V for M is nothing but a set of integer pairs {(ai , bi )}
satisfying these conditions:

1 1 ≤ ai ≤ m and 1 ≤ bi ≤ n

2 The entry M[ai , bi ] of the matrix is ±1

3 The indices ai (resp. bi ) are pairwise different

4 Non existence of loops

Definition admissible_dvf (M: ’M[’F_2]_(m,n)) (V: seq (’I_m * ’I_n)) (

ords : simpl_rel ’I_m) :=

all [pred p | M p.1 p.2 == 1] V &&

uniq (map (@fst _ _) V) && uniq (map (@snd _ _) V) &&

all [pred i | ~~ (connect ords i i)] (map (@fst _ _) V).
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Computing Discrete Vector Fields Discrete Vector Fields

Romero-Sergeraert algorithms

Algorithm (Romero-Sergeraert 2010)

Input: A matrix M
Output: An admissible discrete vector field for M

Implemented with the function gen_adm_dvf

Verified in Coq/SSReflect

Lemma admissible_gen_adm_dvf m n (M : ’M[’F_2]_(m,n)) :

let (V,ords) := gen_adm_dvf M in admissible M V ord.

Algorithm (Romero-Sergeraert 2010)

Input: A matrix M and an admissible discrete vector field of M
Output: A reduced matrix M′

Already implemented

Verification in Coq/SSReflect is an ongoing work
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Results

Some remarkable results have been obtained:

500 randomly generated images:

Initial size of matrices: ∼ 100× 300→∼ 12 seconds
After reduction process: ∼ 5× 50→ milliseconds
Most of reduced matrices were null

Biomedical images:

Initial size of matrices: ∼ 700× 1400→∞
After reduction process just 25 seconds
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