ACL2 verification of Simplicial Complexes programs for the Kenzo system¹

Jónathan Heras, Vico Pascual and Julio Rubio

Departamento de Matemáticas y Computación Universidad de La Rioja Spain

February 10, 2011

¹Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European

Commission FP7, STREP project ForMath

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

(日本) (日本) (日本)

Algebraic Topology and Digital Images

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

Algebraic Topology and Digital Images

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

≡v

Algebraic Topology and Digital Images

Algebraic Topology and Digital Images

Algebraic Topology and Digital Images

イロナ イヨナ イミナ イヨナ

イロナ イヨナ イミナ イヨナ

• Goal:

• A new certified program for Simplicial Complexes

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

Kenzo

- Symbolic Computation System devoted to Algebraic Topology
- Homology groups unreachable by any other means

Kenzo

- Symbolic Computation System devoted to Algebraic Topology
- Homology groups unreachable by any other means
- A Common Lisp package

• Kenzo

- Symbolic Computation System devoted to Algebraic Topology
- Homology groups unreachable by any other means
- A Common Lisp package
- Works with the main mathematical structures in Simplicial Algebraic Topology

入 (得) (ま) (ま)

Kenzo

- Symbolic Computation System devoted to Algebraic Topology
- Homology groups unreachable by any other means
- A Common Lisp package
- Works with the main mathematical structures in Simplicial Algebraic Topology
- Increasing the reliability of Kenzo by means of Theorem Provers:
 - Isabelle
 - Coq
 - ACL2

(日本) (日本) (日本)

• Kenzo

- Symbolic Computation System devoted to Algebraic Topology
- Homology groups unreachable by any other means
- A Common Lisp package
- Works with the main mathematical structures in Simplicial Algebraic Topology
- Increasing the reliability of Kenzo by means of Theorem Provers:
 - Isabelle
 - Coq
 - ACL2 simplicial structures

・ 同 ト ・ ヨ ト ・ ヨ ト

ACL2

• ACL2 (A Computational Logic for an Applicative Common Lisp)

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

ACL2

- ACL2 (A Computational Logic for an Applicative Common Lisp)
- ACL2
 - Programming Language
 - First-Order Logic
 - Theorem Prover

▲ 同 ▶ ▲ 三 ▶

- (∃) }

ACL2

ACL2

- ACL2 (A Computational Logic for an Applicative Common Lisp)
- ACL2
 - Programming Language
 - First-Order Logic
 - Theorem Prover
- Proof techniques:
 - Simplification
 - Induction
 - "The Method"

< ∃ →

(日) (三)

Goal

Goal

• Goal:

• New Kenzo module for Simplicial Complexes certified in ACL2

Table of Contents

- 1 Mathematical concepts
- 2 New Kenzo Module
- ③ Certification of programs
- 4 Conclusions and further work

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

Table of Contents

- 1 Mathematical concepts
- 2 New Konzo Module
- 3 Certification of programs
- 4 Conclusions and further work

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V.

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V.

Definition

Let α and β be simplexes over V, we say α is a face of β if α is a subset of β .

Definition

Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V.

Definition

Let α and β be simplexes over V, we say α is a face of β if α is a subset of β .

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

$$\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$$

Let \mathcal{K} be a simplicial complex. Then the set $S_n(\mathcal{K})$ of n-simplexes of \mathcal{K} is the set made of the simplexes of cardinality n + 1.

J. Heras, V. Pascual and J. Rubio

イロト イポト イヨト イヨト

$$V = (0, 1, 2, \dots, 24, 25)$$

$$\mathcal{K} = \text{vertices} \cup \text{edges} \cup \text{triangles}$$

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

< 177 ▶

3 × 4 3 ×

Definition

The facets of a simplicial complex ${\cal K}$ are the maximal simplexes of the simplicial complex.

The facets are the triangles

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

(日本) (日本) (日本)

Simplicial Sets

Definition

A simplicial set K, is a union $K = \bigcup_{q \ge 0} K^q$, where the K^q are disjoints sets, together with functions:

$$egin{aligned} &\partial_i^q: \mathcal{K}^q o \mathcal{K}^{q-1}, \quad q > 0, \quad i = 0, \dots, q, \ &\eta_i^q: \mathcal{K}^q o \mathcal{K}^{q+1}, \quad q \ge 0, \quad i = 0, \dots, q, \end{aligned}$$

subject to the relations:

イロナ イヨナ イヨナ イヨト

From Simplicial Complexes to Simplicial Sets

simplexes of cardinality n + 1 of C. In addition, let a simplex $\{v_0, \ldots, v_q\}$ the *face* and *degeneracy* operators are defined as follows:

$$\begin{array}{lll} \partial_{i}(\{v_{0},\ldots,v_{i},\ldots,v_{q}\}) &=& \{v_{0},\ldots,v_{i-1},v_{i+1},\ldots,v_{q}\}\\ \eta_{i}(\{v_{0},\ldots,v_{i},\ldots,v_{q}\}) &=& \{v_{0},\ldots,v_{i},v_{i},\ldots,v_{q}\} \end{array}$$

J. Heras, V. Pascual and J. Rubio

Goals

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

Goals

- New Kenzo module:
 - program1: facets \rightarrow simplicial complex
 - program2: simplicial complex \rightarrow simplicial set

・回 と ・ ヨ と ・ ヨ と

Goals

- New Kenzo module:
 - program1: facets → simplicial complex
 - program2: simplicial complex \rightarrow simplicial set
- Certification of the correctness of the programs in ACL2

< ∃ →

(日) (三)

Table of Contents

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

Program1: Simplicial Complex from facets

simplicial-complex-generator: • *Input:* a list of simplexes Output: a simplicial complex
Program1: Simplicial Complex from facets

- simplicial-complex-generator: *Input:* a list of simplexes *Output:* a simplicial complex
 - simplicial-complex-generator-with-duplicates: *Input:* a list of simplexes *Output:* a list of simplexes with the properties of simplicial complexes but with duplicates

Program1: Simplicial Complex from facets

- simplicial-complex-generator: *Input:* a list of simplexes *Output:* a simplicial complex
 - simplicial-complex-generator-with-duplicates: *Input:* a list of simplexes *Output:* a list of simplexes with the properties of simplicial complexes but with duplicates
 - simplicial-complex-generator-from-simplex: *Input:* a simplex *Output:* a simplicial complex

▲ 同 ▶ ▲ 三 ▶

> (setf image-sc (simplicial-complex-generator '((0 1 6) (0 5 6) (2 3 9) (2 8 9) (4 5 11) (4 10 11) (6 7 13) (6 12 13) (11 12 16) (11 15 16) (13 14 18) (13 17 18) (16 17 21) (16 20 21) (18 19 23) (18 22 23) (21 22 25) (21 24 25))) ((0 1 6) (0 1) (0 6) (1 6) (0) (1) (6) (0 5 6) (0 5) (5 6) ...)

J. Heras, V. Pascual and J. Rubio

イロン (得) イヨン (ヨ)

Program2: Simplicial Set from Simplicial Complex

• ss-from-sc: *Input:* a simplicial complex *Output:* a simplicial set

Program2: Simplicial Set from Simplicial Complex

 ss-from-sc: Input: a simplicial complex Output: a simplicial set

• Kenzo function build-smst:

(build-smst
 :basis basis
 :face face
 ...)

- basis: a function returning the list of simplexes in a dimension
- face: a function for face operation
- degeneracy: not included

Simplicial set canonically associated to image-sc:

> (setf image-ss (ss-from-sc image-sc)) 🛠 [K1 Simplicial-Set]

Simplicial set canonically associated to image-sc: > (setf image-ss (ss-from-sc image-sc)) ✤ [K1 Simplicial-Set] > (basis image-ss 0) ✤ ((0) (1) (2) (3) (4) (5) (6) (7) (8) (9) ...)

```
Simplicial set canonically associated to image-sc:
> (setf image-ss (ss-from-sc image-sc)) 🖁
[K1 Simplicial-Set]
> (basis image-ss 0) 🛧
((0) (1) (2) (3) (4) (5) (6) (7) (8) (9) ...)
> (homology image-ss 0 2) 🛧
Homology in dimension 0:
Component Z
Component Z
Homology in dimension 1:
Component Z
Component Z
Component Z
H_0(image) = \mathbb{Z} \oplus \mathbb{Z} and H_1(image) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}
```

Table of Contents

- 3 Certification of programs

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

simplicial-complex-generator program:

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

simplicial-complex-generator program:

• Follows simple inductive schemas

simplicial-complex-generator program:

- Follows simple inductive schemas
- Inefficient

Input of a list of 11613 simplexes:

> (simplicial-complex-generator ...) Error: Stack overflow (signal 1000) [condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]

simplicial-complex-generator program:

- Follows simple inductive schemas
- Inefficient

Input of a list of 11613 simplexes:

> (simplicial-complex-generator ...) 🗜 Error: Stack overflow (signal 1000) [condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]

optimized-simplicial-complex-generator:

simplicial-complex-generator program:

- Follows simple inductive schemas
- Inefficient

Input of a list of 11613 simplexes:

> (simplicial-complex-generator ...) 🗜 Error: Stack overflow (signal 1000) [condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]

optimized-simplicial-complex-generator:

• Equivalent efficient program

(同) (ヨ) (ヨ)

simplicial-complex-generator program:

- Follows simple inductive schemas
- Inefficient

Input of a list of 11613 simplexes:

> (simplicial-complex-generator ...) 🗜 Error: Stack overflow (signal 1000) [condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]

optimized-simplicial-complex-generator:

- Equivalent efficient program
- Memoization technique

(日) (三)

Situation:

simplicial-complex-generator program is

• optimized-simplicial-complex-generator program is

Situation:

simplicial-complex-generator program is
 specially designed to be proved;

- optimized-simplicial-complex-generator program is
 - designed to be efficient;

Situation:

- simplicial-complex-generator program is
 - specially designed to be proved;
 - programmed in ACL2 (and, of course, Common Lisp);

- optimized-simplicial-complex-generator program is
 - designed to be efficient;
 - written in Common Lisp;

Situation:

- simplicial-complex-generator program is
 - specially designed to be proved;
 - programmed in ACL2 (and, of course, Common Lisp);
 - not efficient;

- optimized-simplicial-complex-generator program is
 - designed to be efficient;
 - written in Common Lisp;
 - efficient;

(日) (三)

Situation:

- simplicial-complex-generator program is
 - specially designed to be proved;
 - programmed in ACL2 (and, of course, Common Lisp);
 - not efficient;
 - tested;
- optimized-simplicial-complex-generator program is
 - designed to be efficient;
 - written in Common Lisp;
 - efficient;
 - tested;

(同) (ヨ) (ヨ)

Situation:

- simplicial-complex-generator program is
 - specially designed to be proved;
 - programmed in ACL2 (and, of course, Common Lisp);
 - not efficient;
 - tested;
 - proved in ACL2
- optimized-simplicial-complex-generator program is
 - designed to be efficient;
 - written in Common Lisp;
 - efficient;
 - tested;
 - unproved

(同) (ヨ) (ヨ)

 optimized-simplicial-complex-generator "equivalent to" simplicial-complex-generator

- optimized-simplicial-complex-generator "equivalent to" simplicial-complex-generator
- Not a proof of the equivalence

- optimized-simplicial-complex-generator "equivalent to" simplicial-complex-generator
- Not a proof of the equivalence
- Automated testing

A Common Lisp (but not ACL2) program

(同) (ヨ) (ヨ)

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes \mathcal{K} over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes \mathcal{K} over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

• simplex: simplex-p

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

- simplex: simplex-p
- list of simplexes: list-of-simplexes-p
- without duplicates: without-duplicates-p

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

- simplex: simplex-p
- list of simplexes: list-of-simplexes-p
- without duplicates: without-duplicates-p
- face: subsetp-equal (ACL2)

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

- simplex: simplex-p
- list of simplexes: list-of-simplexes-p
- without duplicates: without-duplicates-p
- face: subsetp-equal (ACL2)
- member: member-equal (ACL2)

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes \mathcal{K} over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

ACL2 Lemma

Let Is be a list of simplexes, then (simplicial-complex-generator Is) builds a set of simplexes.

```
(defun set-of-simplexes-p (ls)
  (and (list-of-simplexes-p ls) (without-duplicates-p ls)))
(defthm simplicial-complex-generator-constructs-simplicial-complex-1
  (implies (list-of-simplexes-p ls)
        (set-of-simplexes-p (simplicial-complex-generator ls))))
```

25/31

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

ACL2 Lemma

Let x be a simplex and Is be a list of simplexes, if x is in (simplicial-complex-generator Is) and y is a face of x, then y is in (simplicial-complex-generator Is).

ロメスロシスティスティ

Definition

An ordered (abstract) simplicial complex over V is a set of simplexes K over V satisfying the property:

 $\forall \alpha \in \mathcal{K}, \text{ if } \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{K}$

ACL2 Lemma

Let *ls* be a list of simplexes and let *s* be an element of the simplicial complex constructed with the simplicial-complex-generator function taking as argument *ls*; then, *s* is a face of some of the simplexes of *ls*.

くロッ (得) (言) (言)

ACL2 Theorem

Let *Is* be a list of simplexes, then (*simplicial-complex-generator Is*) constructs the simplicial complex associated with *Is*.

Proof

Apply the three previous lemmas

Theorem for Simplicial Sets from Simplicial Complexes

Proving truthfulness of Kenzo statements like:

> (setf image-ss (ss-from-sc image-sc)) [K1 Simplicial-Set]

where image-sc is a simplicial complex

▲ 同 ▶ ▲ 三 ▶ 26/31

Theorem for Simplicial Sets from Simplicial Complexes

Proving truthfulness of Kenzo statements like:

```
> (setf image-ss (SS-from-SC image-sc)) \ 
[K1 Simplicial-Set]
```

where image-sc is a simplicial complex

ACL2 Theorem

Let sc be a simplicial complex, then (ss-from-sc sc) constructs a simplicial set.

(A) < (A)

Main Tools

ACL2 Theorem

Let K be a Kenzo object implementing a simplicial set. If for every natural number $q \ge 2$ and for every geometric simplex gmsm in dimension q the following properties hold:

$$\textbf{0} \ \forall i,j \in \mathbb{N} : i < j \leq q \rightarrow \partial_i^{q-1} \circ (\partial_j^q \textit{gmsm}) = \partial_{j-1}^{q-1} \circ (\partial_i^q \textit{gmsm}),$$

2 $\forall i \in \mathbb{N}, i \leq q: \partial_i^q \text{gmsm} \text{ is a simplex of } \mathcal{K} \text{ in dimension } q-1,$

then:

 \mathcal{K} is a simplicial set.

J. Heras, V. Pascual and J. Rubio, *Proving with ACL2 the correctness of simplicial sets in the Kenzo system*. In LOPSTR 2010, Lecture Notes in Computer Science. Springer-Verlag.

・ロ・・(部・・モー・・モー)
Main Tools

ACL2 Theorem

Let K be a Kenzo object implementing a simplicial set. If for every natural number $q \ge 2$ and for every geometric simplex gmsm in dimension q the following properties hold:

$$\textbf{0} \ \forall i,j \in \mathbb{N} : i < j \leq q \rightarrow \partial_i^{q-1} \circ (\partial_j^q \textit{gmsm}) = \partial_{j-1}^{q-1} \circ (\partial_i^q \textit{gmsm}),$$

2)
$$\forall i \in \mathbb{N}$$
, $i \leq q$: ∂_i^q gmsm is a simplex of \mathcal{K} in dimension $q - 1$,

then:

 \mathcal{K} is a simplicial set.

- J. Heras, V. Pascual and J. Rubio, *Proving with ACL2 the correctness of simplicial sets in the Kenzo system*. In LOPSTR 2010, Lecture Notes in Computer Science. Springer-Verlag.
- Generic instantiation tool:
 - Development of a generic theory
 - Instantiation of definitions and theorems for different implementations

F. J. Martín-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A Generic Instantiation Tool and a Case Study: A Generic Multiset Theory. Proceedings of the Third ACL2 workshop. Grenoble, Francia, pp. 188–203, 2002.

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

Generic simplicial set theory

• Generic simplicial set theory for simplicial complexes:

From 4 definitions and 4 theorems

Generic simplicial set theory

- Generic simplicial set theory for simplicial complexes:
 - From 4 definitions and 4 theorems
 - Instantiates 3 definitions and 7 theorems (+ 89 definitions and 969 theorems)

4 3 5

(日) (三)

Generic simplicial set theory

• Generic simplicial set theory for simplicial complexes:

- From 4 definitions and 4 theorems
- Instantiates 3 definitions and 7 theorems (+ 89 definitions and 969 theorems)

ACL2 Theorem

Let sc be a simplicial complex, then (ss-from-sc sc) constructs a simplicial set.

Table of Contents

- 4 Conclusions and further work

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

Conclusions and Further Work

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

Conclusions and Further Work

- Conclusions:
 - New module for the Kenzo system

Digital Image -Simplicial Complex → Simplicial Sets → Homology

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:
 - Efficient algorithm in the ACL2 system

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:
 - Efficient algorithm in the ACL2 system
 - Equivalence between the new algorithm and the previous one

> (同) (三) (三)

Digital Image Simplicial Complex Simplicial Sets Homology

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:
 - Efficient algorithm in the ACL2 system
 - Equivalence between the new algorithm and the previous one

* ・ 同 ト ・ ヨ ト ・ ヨ ト

- Conclusions:
 - New module for the Kenzo system
 - Certification of the correctness of the new programs
- Further Work:
 - Efficient algorithm in the ACL2 system
 - Equivalence between the new algorithm and the previous one
 - $\bullet \ \ Digital \ \ Images \rightarrow \ \ Simplicial \ \ Complexes$
 - $\bullet \ \ Simplicial \ Sets \rightarrow Homology$

(日本) (日本) (日本)

ACL2 verification of Simplicial Complexes programs for the Kenzo system

Jónathan Heras, Vico Pascual and Julio Rubio

Departamento de Matemáticas y Computación Universidad de La Rioja Spain

February 10, 2011

J. Heras, V. Pascual and J. Rubio

ACL2 verification of Simplicial Complexes

・ 同 ト ・ ヨ ト ・ ヨ ト