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This work is dedicated to our colleague and friend Mirian Andrés. She
started this research but passed away at the age of only 29 due to a car
accident. Mirian, the best friend for your friends, we do not forget you.

Abstract In this paper we present a complete formalization of the Normali-
zation Theorem, a result in Algebraic Simplicial Topology stating that there
exists a homotopy equivalence between the chain complex of a simplicial set,
and a smaller chain complex for the same simplicial set, called the normali-
zed chain complex. Even if the Normalization Theorem is usually stated as a
higher-order result (with a Category Theory flavor) we manage to give a first-
order proof of it. To this aim it is instrumental the introduction of an algebraic
data structure called simplicial polynomial. As a demonstration of the validity
of our techniques we developed a formal proof in the ACL2 theorem prover.

1 Introduction

The Normalization Theorem is an important result in Algebraic Simplicial
Topology explaining that, in order to obtain the homology groups of a space,
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one can work with a chain complex (called normalized) smaller than the stan-
dard chain complex constructed from all the simplexes of the space.

In this paper we present a complete formal proof of the Normalization
Theorem. As a demonstration of the soundness of our approach we have wri-
tten a complete development of the formal proof in the ACL2 theorem prover.

The interest of this work stems from three sources. First, it constitutes a
good example of using efficiently first-order logic in a context where a higher-
order approach could seem more natural, due to the character of the math-
ematics formalized. Second, our proof validates some formulas found experi-
mentally, giving an explicit version of the Normalization Theorem, unknown
in the literature (up to our knowledge). And third, the Normalization The-
orem is the basis for some design decisions in the Kenzo computer algebra
system, a program for computing in Algebraic Topology. This last point is
further explained in the next paragraphs.

The origin of this work comes from a Computer Algebra system called
Kenzo [Dousson et al. 1999], a Common Lisp program created by F. Sergeraert
around 1990 and devoted to computing homology groups of topological spaces.
In other words, Kenzo is a system devoted to Algebraic Topology, the branch of
mathematics dealing with algebraic structures (groups, rings,. . . ) associated
to topological spaces. Usually, the topological spaces are presented under a
combinatorial form as simplicial complexes or simplicial sets. The objective
of Algebraic Topology is to classify or to distinguish topological spaces by
observing the algebraic structures associated to them, which are, in principle,
amenable to a systematic treatment (algebra would be considered, in this
sense, easier than topology). One feature of Algebraic Topology is that, in
order to get information from spaces of finite dimension, it is required to
pass through some infinite dimensional spaces (as loop spaces for instance;
see [May 1967] for details). This explains why Sergeraert chose Common Lisp
as implementation language for Kenzo: he used functional programming to
encode infinite sets needed in Algebraic Topology constructions.

Although Kenzo is a very reliable system which has been intensively tested,
and is in production several years ago, it turns out that Kenzo was able to
compute new results (“new” in the sense that no known theoretical result can
be used to confirm it). Then, some concrete outputs of the program cannot be
tested, that is, compared with any expected value.

This is the reason why a project to apply formal methods to the study of
Kenzo as a software system was launched some years ago [Lambán et al. 2003,
Domı́nguez et al. 2007]. Eventually, this research line arrived to the formaliza-
tion of some parts of Algebraic Topology and Homological Algebra by using
proof assistants as Isabelle/HOL [Aransay et al. 2008,Aransay et al. 2010] or
Coq [Domı́nguez and Rubio 2010]. A different approach to using Coq to im-
plement in constructive type theory some features of Kenzo can be found in
[Coquand and Spiwack 2007].

When talking about mechanized theorem proving and Kenzo, it is easy
to think about ACL2 [Kaufmann et al. 2000]. ACL2 is, at the same time, a
programming language, a logic for specifying and proving properties of the
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programs defined in the language and a theorem prover supporting mecha-
nized reasoning in the logic. The ACL2 programming language is an extension
of an applicative subset of Common Lisp, and the logic is first-order, in which
formulas do not have quantifiers and all the variables in them are implicitly
universally quantified. It includes axioms for propositional logic, equality and
for a number of predefined Common Lisp functions and data types. Rules of
inference of the logic include those for propositional calculus, equality, instan-
tiation and induction.

The previous discussion on Kenzo however shows the limitations of an
ACL2 approach to verify Kenzo properties, since Kenzo uses higher order
functional programming, while ACL2 is, essentially, a first order tool. This
constraint has not been an obstacle for us to effectively use ACL2 to study
first order fragments of Kenzo [Mart́ın-Mateos et al. 2009,Heras et al. 2010].

The ACL2 proof of the Normalization Theorem described in this paper (a
preliminary version of this work was presented in [Lambán et al. 2011]) differs
from previous ACL2 formalizations in two aspects.

The first peculiarity of this paper is that the formalized algorithm is not
directly used in Kenzo. It is rather a precondition for Kenzo, because only nor-
malized chain complexes are dealt with in that system. Thus, our ACL2 proof
certifies that the encoding strategy applied in Kenzo is reliable. In addition, if
in some future development the non-normalized chain complex is needed, then
our ACL2 proof will provide a certified transfer to the Kenzo coding style (for
a different but related problem, where algorithms involving non-normalized
objects are needed, see [Romero 2007], pp. 102–104).

The second differential feature of the problem tackled in this paper is that,
in principle, it is a higher order result, because it quantifies over every simplicial
set (which, in general, would be characterized by predicates).

The key point of this paper is that, for this concrete result, first order is
enough. It is not due to a simulation of higher order logic in ACL2 by means
of encapsulates [Kaufmann et al. 2000] (although this technique will be also
used in our development, in order to present our statements in a standard
mathematical terminology). A symbolic setting is introduced in which the
theorem can be proved by using only simplification and induction on lists,
the kind of proofs ACL2 was designed for. We think that this approach could
be useful in other related results, because it is based on some features of the
simplicial category. Thus, this work could be considered a first milestone to
formalize simplicial topology in a first order frame.

The organization of the paper is as follows. In Section 2 we introduce both
the problem (including the minimal mathematical machinery needed to state
and understand the main theorem) and the strategy of the solution we are
proposing for it. The symbolic framework based on simplicial polynomials is
then described in Section 3. It is applied to give a proof of the Normalization
Theorem in Section 4. The statement of the Normalization Theorem in Section
4 is expressed in terms of the first order concepts introduced in Section 3;
then, in Section 5 we reformulate it by using ACL2 encapsulates, providing
a statement more readable from the point of view of standard mathematical
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textbooks. Section 6 is devoted to put the proof in context, illustrating that
our approach is not so-original: higher order logic is avoided due to working
with a concrete category of pre-sheaves.

The last section in the paper deals with conclusions and further work. In
addition, we include two appendices. In Appendix A we give a short recipe
allowing an interested reader to check on his own computer the formalized
proof, even if he is not an ACL2 user. Appendix B contains a sample ACL2
session showing the literal output for an automatic proof of one formalized
theorem.

2 Presentation of the problem and the solution

In this section we introduce the mathematical preliminaries required to under-
stand the problem, and we give some clues about the nature of the formali-
zation developed. More concretely, the most important simplicial concepts
needed to state the main theorem are presented in subsections from 2.1 to 2.5.
(More details on simplicial topology can be found, for instance, in [May 1967].)
Subsection 2.6 and 2.7 explain the big lines of the proof and some formaliza-
tion issues, respectively. Finally, in subsection 2.8, an example of a (simple)
proof is described, in order to illustrate our methods.

2.1 Simplicial sets

Definition 1 A simplicial set K is a graded set {Kn}n∈N together with func-
tions:

∂ni : Kn → Kn−1, n > 0, i = 0, . . . , n,
ηni : Kn → Kn+1, n ≥ 0, i = 0, . . . , n,

subject to the following equations:

(1) ∂n−1i ∂nj = ∂n−1j ∂ni+1 if i ≥ j,
(2) ηn+1

i ηnj = ηn+1
j+1 η

n
i if i ≤ j,

(3) ∂n+1
i ηnj = ηn−1j−1 ∂

n
i if i < j,

(4) ∂n+1
i ηnj = ηn−1j ∂ni−1 if i > j + 1,

(5) ∂n+1
i ηni = ∂n+1

i+1 η
n
i = idn

The functions ∂ni and ηni are called face and degeneracy maps, respectively.
The function idn denotes the identity function on Kn.

The elements of Kn are called n-simplexes (or simplexes of dimension n).
A n-simplex x is degenerate if x = ηn−1i y for some simplex y, and for some
degeneracy map ηn−1i ; otherwise x is non degenerate.

Although we have not enough room here to illustrate the notion of sim-
plicial set, let us try to explain where the identities come from. If we think
that n-simplexes are non-decreasing integer lists of length n + 1, and we in-
terpret a face operator ∂ni as erasing the element at position i in a list (the
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first element is that at index 0), and a degeneracy operator ηni as repeating
the element at position i, the equalities obtained are exactly those of Defi-
nition 1. With this interpretation, non-degenerate simplexes are those lists
strictly increasing, while the degenerate simplexes have some repetition. This
kind of simplicial set (whose simplexes are lists) is called simplicial complex
[De Loera et al. 2010]. It can be considered that a simplicial set is an abstrac-
tion of a simplicial complex, where simplexes are no more lists, but whatever
elements.

If no confusion can arise, usually we remove the superindex in the face and
degeneracy operators, writing simply ∂i and ηi, respectively.

2.2 Chain complexes and homology groups

A simplicial set is a combinatorial model of a topological space. Algebraic
Topology associates algebraic objects to topological spaces. This is the reason
of the following definitions.

Let K be a simplicial set. For each n ∈ N, let us consider Z[Kn], the free
Abelian group generated by the n-simplexes Kn, denoted by Cn(K). Then,
the elements of such a group are formal linear combinations

∑r
j=1 λjxj , where

λj ∈ Z and xj ∈ Kn,∀j = 1, . . . , r. These linear combinations are called chains
of simplexes or, in short, chains.

Now, if n > 0, we introduce a homomorphism dn : Cn(K) → Cn−1(K),
first defining it over each generator, and then extending it by linearity. Given
x ∈ Kn, define dn(x) =

∑n
i=0(−1)i∂i(x). It can be proved that equation (1) in

the definition of simplicial set implies that dn ◦ dn+1 = 0,∀n ∈ N. That is to
say, the family {dn}n∈N defines a differential (or boundary) homomorphism
on the graded group {Cn(K)}n∈N. Or, still in other words, the family of pairs
{(Cn(K), dn)}n∈N is the chain complex associated to the simplicial set K,
denoted by C(K).

Let C = {(Cn, dn)}n∈N be a general chain complex (that is, each Cn is
an Abelian group, and each dn is a homomorphism such that the boundary
condition holds). The boundary property dn ◦ dn+1 = 0 implies Im(dn+1) ⊆
Ker(dn), and since we are working with Abelian groups, it is possible to con-
sider the quotient group Ker(dn)/Im(dn+1). It is called the n-th homology
group of the chain complex C, denoted by Hn(C). In the particular case where
C = C(K) (K being a simplicial set) we call it the (simplicial) n-th homology
group of K, denoted by Hn(K). Much effort is devoted in Algebraic Topology
to study and determine such homology groups. And it is also the main object
to be computed by means of Kenzo.

2.3 Normalized chain complexes

There is an alternative way to associate a chain complex to a simplicial set
K. Given n ∈ N, let us denote by KD

n and KND
n the sets of degenerate and
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non-degenerate n-simplexes of K, respectively (note that this gives a disjoint
partition of the whole set Kn). We now consider the following Abelian free
groups: Dn(K) = Z[KD

n ], that is to say the Abelian group freely generated
by degenerate simplexes. Conditions (3)-(4)-(5) in Definition 1 imply that the
differential dn is well defined on D(K) (that is, if we take a combination
c =

∑m
j=1 λjxj where every xj is degenerated, then dn(c) ∈ Dn−1(K)). Thus,

the chain complex D(K) is a subcomplex of C(K), and we can obtain the
quotient chain complex C(K)/D(K), which is denoted by CN (K) and is called
the normalized chain complex of the simplicial set K.

There exists an alternative isomorphic description of the normalized chain
complex CN (K). It consists of defining as CNn (K) the free Abelian group
Z[KND

n ] generated by non-degenerate simplexes. Then, to get an actual chain
complex, it is necessary to redefine the differential map dn by erasing, in the
image, the generators which are degenerate. With this description the group
CNn (K) is no more a quotient, but a subgroup of Cn(K). Observe however that
CN (K) is not in general a chain subcomplex of C(K) (because some faces of
a non-degenerate simplex can be degenerate simplexes).

2.4 The Normalization Theorem

With any of the two descriptions of the normalized chain complex CN (K),
there exists a canonical epimorphism f : C(K)→ CN (K). If CN (K) is consi-
dered a quotient, the map f is nothing but the canonical projection. If CN (K)
is described as a free graded group, then f(

∑r
j=1 λjxj) consists simply of

erasing in the combination the terms λjxj where xj is a degenerate simplex.

Note that the map f respects in both cases the differentials; that is to say,
fn−1 ◦ dn = dNn ◦ fn,∀n > 0, where dN denotes the differential of CN (K). Or
still in other words, f is a chain morphism.

This canonical chain morphism f preserves the homological information,
and this is established by the normalization theorem.

Theorem 1 (Normalization Theorem) For all simplicial set K, the canonical
homomorphism f : C(K)→ CN (K) induces group isomorphisms Hn(C(K)) ∼=
Hn(CN (K)),∀n ∈ N.

The theorem explains that, from the computational point of view, it is the
same to work with C(K) or with CN (K). This justifies Sergeraert’s decision
of working in Kenzo only with the smaller chain complex CN (K) to compute
homology groups of a simplicial set K.

One proof of the Normalization Theorem can be found in [Mac Lane 1963],
pages 236-237. It consists of filtering the big group Cn(K) by considering
sequentially n-simplexes of the form ηn−1x, then of the form ηn−2x or ηn−1x,
and so on. In each step, the homological information is preserved. And finally
f is described as the composition of all these homology-preserving maps.
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2.5 Statement of the theorem to formalize

It is not difficult to give a more precise proof (and statement) of the normaliza-
tion theorem using the notion of reduction. (In [Romero 2007], pages 102-104,
a proof similar to Mac Lane’s one is converted into an algorithm constructing
a reduction, in a slightly different context.)

Definition 2 A reduction is a 5-tuple (C,C ′, f, g, h)

C

f
++

h 88 C ′

g

jj

where C = (M,d) and C ′ = (M ′, d′) are chain complexes, f : C → C ′ and
g : C ′ → C are chain morphisms, h = (hi : Mi → Mi+1)i∈N is a family of
homomorphisms (called homotopy operator), which satisfy the following pro-
perties for all i ∈ N:

(a) fi ◦ gi = idM ′
i
,

(b) di+2 ◦ hi+1 + hi ◦ di+1 + gi+1 ◦ fi+1 = idMi+1
,

(c) fi+1 ◦ hi = 0,
(d) hi ◦ gi = 0,
(e) hi+1 ◦ hi = 0

This concept precisely describes a situation where the homological infor-
mation is preserved. More concretely, if (C,C ′, f, g, h) is a reduction, then fn
induces an isomorphism of groups (with gn defining the corresponding inverse)
between Hn(C) and Hn(C ′),∀n > 0.

Therefore the following statement describes a stronger version of the nor-
malization theorem.

Theorem 2 (Normalization Reduction) For all simplicial sets K, there
exists a reduction (C(K), CN (K), f, g, h) where f is the canonical chain epi-
morphism.

2.6 Plan for the formalized proof

Instead of trying a proof based on Mac Lane’s ideas, we formalized a diffe-
rent proof, with the additional goal of applying it to study an experimental
result presented in [Rubio and Sergeraert 1990]. There, after running several
examples, it was conjectured that some possible formulas for the Normalization
Theorem could be:

• gm =
∑

(−1)
∑p

i=1 ai+bi ηap . . . ηa1∂b1 . . . ∂bp
where the indexes range over 0 ≤ a1 < b1 < . . . < ap < bp ≤ m, with
0 ≤ p ≤ (m+ 1)/2.



8 Laureano Lambán et al.

• hm =
∑

(−1)ap+1+
∑p

i=1 ai+bi ηap+1ηap . . . ηa1∂b1 . . . ∂bp
where the indexes range over 0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ m,
with 0 ≤ p ≤ (m+ 1)/2.

We will prove in ACL2 that, with some recursive versions of these formulas,
the equalities (a), (b) and (c) in Definition 2 hold. This result is the most
difficult one in all our formalization. To stress the complexity of this task, let
us observe that the sum for gm has 2m terms, while that for hm has 2m+1 − 1
terms.

Let us call prereduction to a 5-tuple (C,C ′, f, g, h) as in the definition of
reduction, but where equalities (d) and (e) are possibly not satisfied 1. Then,
the following result can be used to construct, from our previous explicit for-
mulas, a reduction linking C(K) and CN (K).

Theorem 3 Let (C,C ′, f, g, h0) be a prereduction. Then, an algorithm pro-
duces a reduction (C,C ′, f, g, h).

Let us explain the proof of this last theorem, because it will serve us later
to illustrate how ACL2 can be effectively used in this kind of higher-order
reasoning (observe that C and C ′ can be supported by infinite sets, defined by
predicates, and that the construction of h from (f, g, h0) would require higher
order functional programming).

First, we define: h1 := h0 − h0gf . This new homomorphism of degree
+1 satisfies conditions (a)-(b)-(c) in the definition of reduction. For instance:
dh1 + h1d = d(h0 − h0gf) + (h0 − h0gf)d = dh0 − dh0gf + h0d − h0gfd =
dh0−dh0gf+h0d−h0dgf = dh0+h0d−(dh0+h0d)gf = id−gf−(id−gf)gf =
id−gf−gf+gfgf = id−gf−gf+gf = id−gf , and so condition (b) is satisfied
for the new homotopy h1. In addition: h1g = (h0 − h0gf)g = h0g − h0gfg =
h0g − h0g = 0.

Now, with this kind of simple rewritings, it is easy to verify that all the
properties of a reduction are obtained with the following homotopy operator:
h := h1dh1.

2.7 Formalization issues

Summarizing the previous subsection, our problem is to prove in ACL2 the
Normalization Theorem (in its strong version providing a reduction, as in
Theorem 2). In addition, our proof should be based on the explicit formulas
experimentally found in [Rubio and Sergeraert 1990].

As already mentioned, the statement in Theorem 2 is clearly of second-
order. It quantifies over all simplicial sets. But a simplicial set is given by a

1 One of the anonymous referees observed that, to be a prereduction, it is enough for
the tuple (C,C′, f, g, h) to satisfy the properties (a) and (b), because the formula h1 :=
(1 − gf)h(1 − gf) gives the properties (c) and (d) for h1. In our concrete situation, the
definitions of f and h satisfy already Property (c), fh = 0, and thus our weaker result is
enough in our case.
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collection of predicates (defining, ∀n ∈ N, the set of n-simplexes, that can be
an infinite set) and of functions ∂ni , ηni . To deal with these structures as first-
class citizens (to pass them as arguments to functions, and to produce them
as outputs of functions) Kenzo uses higher-order functional programming.

Higher order can be simulated in ACL2 by means of encapsulates, a mecha-
nism to introduce abstract functions with constraints. For instance, a generic
definition of a reduction can be encoded in an encapsulate. Then, properties
obtained from that encapsulate can be applied to any reduction. In Section 5
we will use this technique to produce in ACL2 a presentation of the Norma-
lization Theorem close to the one usually found in textbooks. Furthermore,
we prove there Theorem 3, by guiding the theorem prover.

However, to give a proof of Theorem 2, a greater degree of automation
would be desirable, because the mathematical proof is much more complicated
than that of Theorem 3. To this aim, we have devised an ACL2 proof free of
encapsulates. That is to say, a purely first order proof. The idea is as follows.

Let us define a simplicial operator as any sequence of face and degeneracy
maps. For instance, ∂5η3∂1∂2η4 is such a simplicial operator. Observe that,
as dimensions are dropped (there are no superindexes), this expression de-
notes a functional object in each valid dimension (at least dimension 5 in the
example), and for every simplicial set on which it is applied. Now, if equali-
ties in Definition 1 are considered as rewriting rules (reading them from left
to right) then there exists a canonical form for each simplicial operator (see
[Andrés et al. 2007] for a complete development of this idea, formalized in
ACL2). Let us show this conversion to canonical form step by step in our
running example: ∂5η3∂1∂2η4 = η3∂4∂1∂2η4 = η3∂1∂5∂2η4 = η3∂1∂2∂6η4 =
η3∂1∂2η4∂5 = η3∂1η3∂2∂5 = η3η2∂1∂2∂5.

Thus any simplicial operator can be encoded, in a unique way, as a pair
of lists of natural numbers: the first list being a strictly decreasing list of
natural numbers, and the second one strictly increasing. In our example:
((3 2) (1 2 5)). Let us call such pairs simplicial terms, using a terminology
borrowed from algebraic polynomial theory (see, for instance, the formaliza-
tion in [Medina-Bulo et al. 2010]). Note that although a simplicial term is a
simplicial operator, we call it in a special way to emphasize the fact that it
is in canonical form. Simplicial terms can be composed (by using again the
simplicial identities of Definition 1) and so they are endowed with a monoid
structure (the unity being the pair with two empty lists).

Now, let us observe that the formulas for gm and hm in the previous sub-
section can be interpreted as linear combinations of simplicial terms. Thus it
is sensible to try the proof in the ring freely generated by simplicial terms. We
will call the elements of this ring simplicial polynomials. The ACL2 formaliza-
tion of simplicial polynomials presented here is similar to the formalization of
polynomials over the rational field developed in [Medina-Bulo et al. 2010].

Simplicial polynomials can be interpreted functionally only over a single
chain complex C(K). This implies, for instance, that the canonical projection
f cannot be represented inside this framework (since it links two different chain
complexes, namely C(K) and CN (K)). In Section 4, we manage to reformulate
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the properties of a reduction in the simplicial polynomials setting. Then, in
Section 5, we use the encapsulation principle to recover the standard statement
of the results (in terms of functional objects).

2.8 An example at work

The intuitive idea underlying our approach is that if we prove a result by only
using the simplicial equalities of Definition 1, then the scope of the proof is
the whole category of Simplicial Sets. Let us see it in action with the following
example. (In Appendix B we give an ACL2 session corresponding to this same
theorem.)

Theorem 4 dn ◦ dn+1 = 0,∀n ∈ N.

Let us start from the definition:

dn+1 =

n+1∑
i=0

(−1)i∂n+1
i = (−1)n+1∂n+1

n+1 +

n∑
i=0

(−1)i∂n+1
i .

Now, we do a forbidden operation: remove the superindexes in the last ex-
pression. This allows us a recursive definition of the differential: dn+1 =
(−1)n+1∂n+1+

∑n
i=0(−1)i∂i = (−1)n+1∂n+1+dn. Analogously: dn = (−1)n∂n

+ dn−1.

By applying the formal properties of the simplicial ring, we obtain: dn ◦
dn+1 = [(−1)n∂n + dn−1][(−1)n+1∂n+1 + dn] = −∂n∂n+1 + (−1)n∂ndn +
(−1)n+1dn−1∂n+1 + dn−1dn. And then, using the induction hypothesis dn ◦
dn+1 = −∂n∂n+1 + (−1)n∂ndn + (−1)n+1dn−1∂n+1.

It is not difficult to prove, also by induction, the following auxiliary result.

Lemma 1 ∂ndn = (−1)n∂n∂n+1 + dn−1∂n+1.

And therefore, we conclude that dn ◦ dn+1 = 0.

Note that this kind of (heuristic) reasoning is fully first-order (even more:
it is simply based on simplification and induction, the kind of reasoning ACL2
was designed for). We made, in the previous arguments, several logical simpli-
fications: first, the simplicial set K has been skipped; second, simplexes have
been skipped too (because the extensional equality between functions can in
this case be reduced to the syntactic equality between symbolic expressions).
Finally, dimensions (superindexes) are skipped, since there is always an im-
plicit dimension from where the result is true. Simplicial polynomials are the
right data structures to efficiently deal in ACL2 with this kind of inferences.
In Section 6, this way of working will be explained in terms of well-known
properties of the simplicial category.
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3 The ring of simplicial polynomials

This section and the following ones are devoted to describe our ACL2 forma-
lization. Some comments are required about the way of presenting the (rather
heavy) notations in this kind of research. The syntax of ACL2 terms and
formulas is that of Common Lisp, and thus they are written using prefix no-
tation. For the sake of readability, in this paper the ACL2 definitions and
formulas will be presented using a notation closer to the usual mathema-
tical notation than its original Common Lisp syntax. For example, some of
the functions will be used in infix notation. When needed, we will show
the correspondence between the ACL2 functions and the mathematical no-
tation used instead. Also, we will skip many details and some of the func-
tion definitions will be omitted. The complete source files containing the
ACL2 formalization and proof of the Normalization Theorem are accessible
at: http://www.glc.us.es/fmartin/acl2/fantist. It is worth noting that
some of the functions explained here are not explicit in those source files. The
reason is that many functions and theorems are generated automatically from
some ACL2 macros programmed by us (details on this will be given in Sub-
section 3.2). To ease the reading of the paper we have also enumerated the
complete list of ACL2 definitions, including those automatically generated, in
the web page.

In this section we describe the framework of simplicial polynomials. As
pointed out in Section 2, simplicial polynomials are symbolic expressions repre-
senting sums of face and degeneracy maps composites. This set of expressions
can be endowed with a ring structure, where we will carry out, in a convenient
way, most of the proofs needed for our main result. In Section 5, we will show
that these simplified (and first-order) framework is enough for our purposes,
lifting our results to a more standard mathematical formalization of the result.

3.1 Simplicial terms

A simplicial term is a two-element list. Its two elements are lists of natural
numbers: the first one (called list of degeneracies) is strictly decreasing and
the second one (called list of faces) is strictly increasing. Simplicial terms
represent composites of face and degeneracy maps in a canonical order, but
without explicit mentioning of the dimension of the operators. For example, the
simplicial term ((4 2 1) (1 3 4)) represents the composite η4η2η1∂1∂3∂4.
That is, degeneracy and face maps are represented simply as natural numbers.
In our ACL2 formalization, the function st-p recognizes those ACL2 objects
that represent simplicial terms (in this paper st-p(t) will be denoted as t ∈ T ).

The main operation between simplicial terms is composition. Since we are
dealing with terms in canonical form (w.r.t. the simplicial identities applied
from left to right), this operation has to be defined in such a way that its result
is returned also in canonical form. Let us explain with an example how this
composition operation works. Consider the two simplicial terms η5η3∂2∂3 and
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η5η4η1∂1∂4. To compose these two terms we first compose ∂2∂3 with η5η4η1.
Applying the simplicial identities (3), (4) and (5), the result is the composite
of a list of degeneracies and a list of faces: η3η2 and ∂2, respectively. Then we
compose η5η3 with η3η2, and applying the simplicial identity (2) we obtain
η5η4η3η2. Analogously, we compose ∂2 with ∂1∂4 and applying the simplicial
identity (1) we obtain ∂1∂3∂4. Thus, the final result of the composition is
η5η4η3η2∂1∂3∂4.

This example shows us that we need a number of auxiliary functions
implementing the intermediate compositions. For example the function
ln-cmp-ld-ln computes the degeneracies component obtained when compo-
sing a list of faces ld with a list of degeneracies ln (for that, we need the
auxiliary function ln-cmp-d-ln that computes the degeneracies component
obtained composing one face map d with a list of degeneracies ln):

Definition:
ln-cmp-d-ln(d,ln) :=

if endp(ln) then nil
elseif d < first(ln)

then cons(first(ln)−1,ln-cmp-d-ln(d,rest(ln)))
elseif d > first(ln)+1

then cons(first(ln),ln-cmp-d-ln(d−1,rest(ln)))
else rest(ln)

Definition:
ln-cmp-ld-ln(ld,ln) :=

if endp(ld) then ln
else ln-cmp-d-ln(first(ld),ln-cmp-ld-ln(rest(ld),ln))

In a similar way, we can define a function ld-cmp-ld-ln computing the
faces component resulting when composing a list of faces with a list of de-
generacies. And also two functions cmp-ln-ln and cmp-ld-ld computing the
composition of two lists of degeneracies and the composition of two list of
faces, respectively. With all these functions, we can define the composition (in
canonical form) of two simplicial terms t1 and t2:

Definition: [t1 · t2]
cmp-st-st(t1,t2) :=

list(cmp-ln-ln(first(t1),
ln-cmp-ld-ln(second(t1),first(t2))),

cmp-ld-ld(ld-cmp-ld-ln(second(t1),first(t2)),
second(t2)))

Note the expression [t1 · t2] with the square brackets in the first line of
the definition above. In general, this is the way we will introduce the notation
subsequently used in the paper for a defined function, when it is different from
the actual ACL2 prefix notation in the sources.
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3.2 Simplicial polynomials and ring properties

As we have seen in Section 2, functions generated from degeneracy and face
maps can be linearly extended to Cn(K), the free Abelian group Z[Kn]. Thus,
it makes sense to deal with symbolic expressions representing linear combina-
tions (with integer coefficients) of simplicial terms. In this context, a monomial
is defined to be a (dotted) pair of an integer and a simplicial term, and a sim-
plicial polynomial is simply a list of monomials. For example, the expressions
p1 = 3 ·η4η1∂3∂6∂7−2 ·η1∂3∂4 and p2 = η3∂4∂6 +2 ·η1∂3∂4 are both simplicial
polynomials.

As with simplicial terms, in our ACL2 representation we will only con-
sider simplicial polynomials in canonical form: a true list of monomials, with
non-null coefficients, and strictly increasingly ordered with respect to a fixed
ordering on terms. The functions sm-p and sp-p recognizes those ACL2 objects
representing monomials and simplicial polynomials, respectively:

Definition: [m ∈M]
sm-p(m) := consp(m) ∧ car(m) ∈ Z ∧ car(m) 6= 0 ∧ cdr(m) ∈ T

Definition: [p ∈ P]
sp-p(p) :=

if endp(p) then p = nil
elseif endp(rest(p))

then first(p) ∈M ∧ rest(p) = nil
else first(p) ∈M ∧ cdr(first(p))≺tcdr(second(p)) ∧ sp-p(rest(p))

In this definition, ≺t (st-< in the source code) is a total strict ordering
on terms that compares them with respect to the ACL2 function lexorder, a
total order on ACL2 objects. In fact, any total order between simplicial terms
would do for our purpose.

Note that face and degeneracy maps can be seen as particular cases of sim-
plicial polynomials. For example ∂3 is represented by the simplicial polynomial
((1 . (nil (3)))). These particular polynomials are given respectively by
the functions di(i) and ni(i) in our formalization, although we will denote
them here as ∂i and ηi, respectively. We will also denote the polynomial with
no terms by 0 (represented by nil). In general, in this paper we will use
boldface to denote polynomials.

Note the advantages of considering the representation of simplicial poly-
nomials in a canonical form: we can check that two polynomials represent
the same function simply by using equal, the ACL2 syntactic equality. Of
course, there is a price to pay for this clean treatment of the equality: it will
make the definitions of operations between polynomials (and the proof of their
properties) more difficult, since we have to return the results also in canonical
form.

The first operation we define on simplicial polynomials is addition, the
usual sum of linear combinations. In our example, the addition of p1 and p2
is the polynomial η3∂4∂6 + 3 · η4η1∂3∂6∂7.
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The function add-sp-sp defines polynomial addition, iteratively adding
the monomials of one of the polynomials to the other. In order to return its
result in canonical form, addition of a monomial to a polynomial (function
add-sm-sp) is defined “inserting” the monomial in the right position of the
polynomial (with respect to the term ordering), taking care also of possible
cancellations:

Definition: [m+ p]
add-sm-sp(m,p) :=

if car(m) = 0 then p
elseif endp(p)

then list(m)
elseif cdr(m)≺tcdr(first(p))

then cons(m,p)
elseif cdr(first(p))≺tcdr(m)

then cons(first(p),add-sm-sp(m,rest(p)))
elseif car(m) + car(first(p)) = 0

then cdr(p)
else cons(cons(car(m) + car(first(p)),cdr(m)), rest(p))

Definition: [p1 + p2]
add-sp-sp(p1,p2) :=

if endp(p1) then p2
else first(p1) + add-sp-sp(rest(p1),p2))

We now define the composition (or product) of two polynomials. This ope-
ration computes the simplicial polynomial that represents the composition of
the functions represented by its inputs. For example, the composition of p1
and p2 is the polynomial −2 · η1∂3∂4∂6− 4 · η2η1∂2∂3∂4∂5 + 3 · η4η1∂4∂6∂7∂8 +
6 · η4η2η1∂2∂3∂4∂7∂8.

The function cmp-sp-sp defines polynomial composition. It uses polyno-
mial addition together with the auxiliary functions cmp-sm-sp, computing the
composition of a monomial and a polynomial, and cmp-sm-sm, computing the
composition of two monomials (which in turn uses the composition of simpli-
cial terms defined above):

Definition: [m1 ·m2]
cmp-sm-sm(m1,m2) :=

cons(car(m1) · car(m2), cdr(m1) · cdr(m2))

Definition: [m · p]
cmp-sm-sp(m,p) :=

if endp(p) then 0
else m · first(p) + cmp-sm-sp(m,rest(p)))

Definition: [p1 · p2]
cmp-sp-sp(p1,p2) :=

if endp(p1) then 0
else first(p1) · p2 + cmp-sp-sp(rest(p1),p2))
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Another operation on polynomials, that we will use later, is what we call
the scalar product of a polynomial by an integer, obtained multiplying its
coefficients by that integer and formalized by the function scl-prd-sp. As in
the previous case, we use the auxiliary function scl-prd-sm to compute the
scalar product of a monomial by an integer:

Definition: [k ·m]
scl-prd-sm(k,m) :=

cons(k · car(m), cdr(m))

Definition: [k · p]
scl-prd-sp(k,p) :=

if k 6∈ Z− {0} then 0
elseif endp(p)

then p
else k · first(p) + scl-prd-sp(k,rest(p))

We now describe the properties we proved to conclude that the set of sim-
plicial polynomials together with the addition and composition operations is
a ring. But before this, we present the statement of the theorems showing
that the set of simplicial terms together with the composition operation is a
monoid. That is, composition is a closed operation on simplicial terms, asso-
ciative and with an identity element (namely the list (nil nil), returned by
the 0-ary function st-id and denoted here as idT ):

Theorem: st-p-cmp-st-st
(t1 ∈ T ∧ t2 ∈ T ) → t1 · t2 ∈ T

Theorem: cmp-st-st-associative
(t1 ∈ T ∧ t2 ∈ T ∧ t3 ∈ T ) → (t1 · t2) · t3 = t1 · (t2 · t3)

Theorem: cmp-st-st-identity
idT ∈ T ∧ (t1 ∈ T → t1 · idT = t1 ∧ idT · t1 = t1)

It should be noted that the proof of the associativity of cmp-st-st is not
trivial at all, motivated again by the fact that the function returns its result
in canonical form.

Once proved the monoid properties of simplicial terms, we prove that
the set of simplicial polynomials has a ring structure with respect to addi-
tion and composition. The additive identity is 0, defined by the 0-ary func-
tion add-sp-sp-id. The inverse (w.r.t. addition) of a polynomial is sim-
ply the scalar product of the polynomial by −1, defined by the function
inv-add-sp-sp. Also, the composition identity is the polynomial ((1 . (nil

nil))), defined by the 0-ary function cmp-sp-sp-id and denoted here as id
(representing the identity function).

For example, two of the properties proved are the commutativity of addi-
tion and the right distributivity of the composition with respect to addition:

Theorem: add-sp-sp-commutative
(p1 ∈ P ∧ p2 ∈ P) → p1 + p2 = p2 + p1
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Theorem: cmp-sp-sp-add-sp-sp-distributive-r
(p1 ∈ P ∧ p2 ∈ P ∧ p3 ∈ P) → p1 · (p2 + p3) = (p1 · p2) + (p1 · p3)

We do not list here all the properties we proved, establishing the ring
structure of the set of simplicial polynomials, but we refer the reader to the
sources for a detailed description. All those ring properties are essential in our
formalization, since the proofs of the results presented in the following section
are mostly done by induction and by using the ring theorems as rewrite rules.

It is worth pointing out that we proved all these theorems as (functional)
instances of a more general formalization. In the sources, the reader will find
the development of a general theory about the ring of linear combinations (with
integer coefficients) of elements of a generic monoid. The ring of simplicial
polynomials is just a particular instance of this generic theory, obtained using
encapsulation in combination with the functional instantiation inference rule
of ACL2. (A related development for polynomials in commutative algebra can
be found in [Medina-Bulo et al. 2010].)

In ACL2, the encapsulation principle allows one to introduce partially de-
fined functions, consistently assuming only certain properties about them. A
derived rule of inference, functional instantiation, provides a limited higher-
order-like reasoning mechanism allowing to instantiate the function symbols of
a previously proved theorem, replacing them with other function symbols, pro-
vided it can be proved that the new functions satisfy the constraints assumed
on the replaced functions.

Thus, a generic monoid is defined via the encapsulation principle, assuming
about it only the monoid properties. From this, generic linear combinations
with integer coefficients, its addition and its multiplication, are defined, and
then the ring properties of these operations are proved. This allows us to
derive (by functional instantiation) the ring properties for the set of linear
combinations of elements of any concrete monoid. In particular, since the set
of simplicial terms is proved to be a monoid with respect to composition,
the ring properties of simplicial polynomials can be directly derived from the
generic theory. In our case, this instantiation has been done in a convenient
and almost automatic way, using an instantiation tool previously developed
by some of the authors [Mart́ın-Mateos et al. 2002].

3.3 Well-formedness properties of simplicial polynomials

Recall from the discussion in subsection 2.7, that simplicial polynomials are
intended to represent functions on chains. Nevertheless, not every simplicial
polynomial can be interpreted consistently as a function on chains. Think for
example in the simplicial term η5η2η1∂1∂3. Interpreted as a composition of
simplicial maps, it could not be applied to elements of C4(K), since in that
case, η5 would have to be applied to a chain in C4(K) and that is impossible,
regardless of the superindex this degeneracy map might have. Nevertheless,
this simplicial term may be interpreted as a function on C7(K), for example.
When a simplicial term, interpreted as a composition of simplicial maps, can
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be applied to chains of dimension m, we say that the simplicial term is valid
for m. The simplicial term of the example is valid for every dimension m > 4.

If we consider now simplicial polynomials, other problems appear. Even if
a simplicial polynomial contains, for a given dimension, only valid simplicial
terms for that dimension, it may be the case that still it cannot be inter-
preted in a consistent way as a function on chains. Consider for instance the
polynomial η5η2η1∂1∂3 + η3η2∂1∂3. Its two terms are valid, for example, in
dimension 7, but the first term would give us a function from C7(K) to C8(K)
and the second term a function from C7(K) to C7(K). Thus, they cannot be
added consistently. The degree of a simplicial term is the difference between
its number of degeneracies and its number of faces (or, equivalently, it is the
“dimension jump” of every function it may represent). It is clear that another
restriction we must impose on a simplicial polynomial, in order to being able
to interpret it as a function on chains, is that all its terms must have the same
degree (what we will call a uniform polynomial).

We have formalized in ACL2 those restrictions by means of three func-
tions valid-sp, uniform-sp and degree-sp, whose definitions we omit here:
valid-sp(p,m) checks whether all the simplicial terms in p are valid for di-
mension m, uniform-sp(p) checks if all the terms in p have the same degree
and degree-sp(p) is the common degree of the terms of a uniform polynomial
(or 0 if it is the zero polynomial). We will say that a polynomial is well-formed
for dimension m when it is valid for m and uniform.

It is important to note that well-formedness is not needed to prove the
ring properties of simplicial polynomials, which are true for every polynomial,
well-formed or not. But it will be needed in Section 5, where we will interpret
simplicial polynomials as functions on chains.

4 Formal proofs in the polynomial framework

As sketched in Section 2, our main goal is to prove the Normalization Theorem
(in its strong version), by explicitly giving a reduction (C(K), CN (K), f, g, h).

Unfortunately, we cannot directly state this theorem in the simplicial poly-
nomial framework. There are several reasons for this. For example, f is defined
to be the canonical chain epimorphism, from C(K) to CN (K). This function
can be described as the operation of erasing all the degenerate simplexes of a
chain (recall from Subsection 2.1: a linear combination of simplexes with inte-
ger coefficients). Since a simplicial polynomial does not have an explicit men-
tioning of the arguments on which the function that it represents is supposed
to be applied, this epimorphism cannot be described as a simplicial polyno-
mial. Also, we should not forget that in our polynomial setting we dropped
any explicit mentioning of the dimensions of the face and degeneracy maps
involved, and these dimensions are explicit in the definition of simplicial set
(Definition 1).

But fortunately, we can do most of the work (or at least, the hard part)
using simplicial polynomials in a convenient way, as we will describe. The idea
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is to define polynomial versions for the differential d and for g and h, and
prove, in the simplicial polynomial ring, their main properties.

4.1 The polynomials dm, gm and hm

First, let us recall the definitions (parameterized by m ∈ N) for the differential
dm and for the conjectured definitions of gm and hm, given in Section 2:

• dm =
∑m
i=0(−1)i∂i

• gm =
∑

(−1)
∑p

i=1 ai+biηap . . . ηa1∂b1 . . . ∂bp , where the indexes range over
the ai and bi such that 0 ≤ a1 < b1 < . . . < ap < bp ≤ m, with 0 ≤ p ≤
(m+ 1)/2.

• hm =
∑

(−1)ap+1+
∑p

i=1 ai+biηap+1ηap . . . ηa1∂b1 . . . ∂bp , where the indexes
range over 0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ m, with 0 ≤ p ≤
(m+ 1)/2.

Note that, viewed as symbolic expressions, the above define three families
of simplicial polynomials. In order to translate them to ACL2, we found an
essential hindrance: ACL2 does not admit iterative definitions, and therefore
it is mandatory to work with an equivalent recursive definition. At the end
of the way, it will give to our proof a recursive flavor, and so differences with
the above mentioned Mac Lane’s proof [Mac Lane 1963] could be unnoticed.
However, our proof was directly inspired by these summations, and carried out
following combinatorial clues given by them. (In fact, after our formalization
was completed, we found the paper [Epstein 1966], where David Epstein gave
formulas very close to our recursive versions of the summations.)

We first introduce the recursive polynomials (that is, the polynomial for
m will be defined in terms of the polynomial for m− 1) and then explain with
some detail the translation from the summations to the recursive polynomials.
The case of the function diff-pol, defining the differential dm, is easy and
does not deserve a thoughtful explanation:

Definition: [dm]
diff-pol(m) :=

if m 6∈ N+ then ∂0

else (−1)m · ∂m+ diff-pol(m− 1)

For the definition of gm, let pi,j denote the polynomial ηi∂j , when i < j.
Consider the following recursive definition:

Definition: [gm]
G-pol(m) :=

if m 6∈ N+ then id
else G-pol(m− 1) · (id− pm−1,m)

Some explanation is needed to show why this definition can be consid-
ered as a recursive version implementing the explicit formula conjectured in
[Rubio and Sergeraert 1990], that we repeat here to ease the reading:
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gm =
∑

(−1)
∑p

i=1 ai+biηap . . . ηa1∂b1 . . . ∂bp , where the indexes range over the
ai and bi such that 0 ≤ a1 < b1 < . . . < ap < bp ≤ m, with 0 ≤ p ≤ (m+ 1)/2.

Let us first observe that, by applying the simplicial identities:

ηap . . . ηa1∂b1 . . . ∂bp = ηa1∂b1 . . . ηap∂bp = pa1,b1 . . . pap,bp

Therefore, gm is the simplicial polynomial whose monomials are (up to
sign, +1 or −1) all the simplicial terms which are a product of disjoint terms
pi,j (we called two terms pi1,j1 and pi2,j2 disjoint terms if i1 < j1 < i2 < j2)
with subindexes less or equal than m. This is the idea allowing us to define
our recursive version of gm, as explained below.

The composite terms pa1,b1 . . . pap,bp can be grouped into two disjoint fami-
lies, expressing gm as a sum of two polynomials:

– Products where bp < m, whose addition gives rise to gm−1 (including
p = 0), and

– Products where its last factor is pα,m, with α ∈ {0, . . . ,m − 1}. Then we
claim that the corresponding polynomial obtained by adding all the factors
in this family is equal to −gm−1pm−1,m. That is, if α = m− 1 the product
has the adequate shape, and the sign changes because 2m − 1 is an odd
number; if α < m − 1 we can write pα,m = pα,m−1pm−1,m, and the sign
changes because the second subindex has been decreased by one.

Thus, gm = gm−1 − gm−1pm−1,m = gm−1(Id − pm−1,m) which is the im-
plemented recursive definition.

For example, this is the result obtained when we compute g3 using the
above definition: idT − η0∂1 + η0∂2 − η0∂3 − η1∂2 + η1∂3 − η2∂3 + η2η0∂1∂3.

For the recursive definition of hm, we first define a new family of parame-
terized polynomials, denoted qm, in the following way:

Definition: [qm]
Q-pol(m) :=

if m 6∈ N+ then 0
else −Q-pol(m− 1) · pm−1,m + (−1)m−1 · ηm · gm−1 · pm−1,m

Now we define hm in the following recursive way:

Definition: [hm]
H-pol(m) :=

if m 6∈ N+ then η0

else H-pol(m− 1) + (−1)m · ηm + qm

Let us prove here that this recursive definition is equivalent to
hm =

∑
(−1)ap+1+

∑p
i=1 ai+biηap+1

ηap . . . ηa1∂b1 . . . ∂bp , where the indexes range
over 0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ m, with 0 ≤ p ≤ (m + 1)/2
(the formula conjectured in [Rubio and Sergeraert 1990]).

As in the case of gm, we can describe hm as the polynomial having mono-
mials extracted (up to sign) from the expressions: ηap+1

pa1,b1 . . . pap,bp , where
0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ m.

Again, we have two disjoint families of monomials:
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– Products where bp < m, whose addition corresponds to hm−1 + (−1)mηm
(including p = 0), and

– Products where its last factor is pα,m.

Let us add all the polynomials in the second family producing a polynomial
called q̂m. The polynomial q̂m can be, in turn, decomposed into two families:
monomials starting from ηm (according to the discussion on gm, they corres-
pond to ηm(gm − gm−1) = −ηmgm−1pm−1,m) and monomials starting from
ηk with k < m, which can be expressed as −q̂m−1pm−1,m (since ηk . . . pα,m =
ηk . . . pα,m−1pm−1,m, provided that ηk . . . pα,m−1 appears in q̂m−1; observe that
the sign changes due to the decreasing of the subindex).

This discussion proves that q̂m is equal to the polynomial qm defined above,
and shows the validity of the expression hm = hm−1 + (−1)mηm + qm.

As an example, the following is the computation of h3 using the above
definition: η0−η1 +η1η0∂1−η1η0∂2 +η1η0∂3 +η2 +η2η0∂2−η2η0∂3−η2η1∂2 +
η2η1∂3 − η3 + η3η0∂3 − η3η1∂3 + η3η2∂3 − η3η2η0∂1∂3.

4.2 The main theorems

Having defined the functions, the following are the ACL2 theorems establishing
the main properties (regarding the Normalization Theorem) of those polyno-
mials:

Theorem: cmp-diff-pol-diff-pol=0
m ∈ N → dm · dm+1 = 0

Theorem: G-pol-on-degenerate=0
(m ∈ N ∧ i ∈ N ∧ i < m) → gm · ηi = 0

Theorem: G-pol-and-diff-pol-commute
m ∈ N → dm · gm = gm−1 · dm

Theorem: H-pol-property-b
m ∈ N+ → dm+1 · hm + hm−1 · dm = id− gm
We emphasize the fact that in these formulas, + and · respectively denote

addition and composition of simplicial polynomials. That is, we prove that the
above equalities hold in the ring of simplicial polynomials.

These properties are polynomial versions of some of the results we need
to prove Theorem 2. In particular, cmp-diff-pol-diff-pol=0 is the polyno-
mial version of the result establishing that dm is a differential homomorphism;
theorem G-pol-on-degenerate=0 gives the behavior of gm on degenerate sim-
plexes; G-pol-and-diff-pol-commute is the polynomial version of the result
that states that gm is a chain morphism; and H-pol-property-b will be essen-
tial to prove property (b) required in the definition of reduction.

These four theorems, although with substantial differences in its diffi-
culty, have been proved in a similar way: we apply induction on the natu-
ral numbers and use the properties of the simplicial polynomial ring and
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the simplicial identities, to prove the inductive case. To illustrate this, we
describe in the following subsection a sketch of the proof of the theorem
G-pol-and-diff-pol-commute2. We hope this description will give the reader
a flavor of how we prove properties in the ring of simplicial polynomials.

The proof of the theorem H-pol-property-b is by far the most difficult,
and we omit its description here due to the lack of space. We urge the interested
reader to consult the source files.

4.3 A sketch of a proof of dm · gm = gm−1 · dm

Let us first give some lemmas that will be used in the proof. First, the following
lemma establishes that gm and ∂k commute when m < k:

Lemma: G-pol-and-faces-commute
(m ∈ N ∧ k ∈ N ∧ m < k) → ∂k · gm = gm · ∂k

This property is easily proved by induction on m, and expanding the defi-
nition of gm.

Now we prove a lemma that establishes how we can commute dm and pi,j
when m < i < j. Again, this property is easily proved by induction on m, and
expanding the definition of dm:

Lemma: pij-pol-and-diff-pol-commute
(n ∈ N ∧ i ∈ N ∧ j ∈ N ∧ m < i ∧ i < j) → pi−1,j−1 · dm = dm · pi,j
Let us now describe the proof of G-pol-and-diff-pol-commute, which is

proved by induction on m:

• Base case: m = 0. This is trivial, since d0 · id = id · d0.
• Inductive case: suppose m > 0 and dm−1 ·gm−1 = gm−2 ·dm−1. We will see

how we can rewrite dm · gm to gm−1 ·dm. First, we expand the definitions
of gm and dm, and apply ring properties:

dm·gm = dm·gm−1·(id−pm−1,m) = (dm−1+(−1)m∂m)·gm−1·(id−pm−1,m)

= dm−1 · gm−1 · (id− pm−1,m) + (−1)m · ∂m · gm−1 · (id− pm−1,m)

We apply lemma G-pol-and-faces-commute above and the induction hy-
pothesis, rewriting the last expression:

gm−2 · dm−1 · (id− pm−1,m) + (−1)m · gm−1 · ∂m · (id− pm−1,m)

Note that using the simplicial identity (5), it is easy to prove ∂m · (id −
pm−1,m) = 0; using this identity and then applying distributivity, we ob-
tain:

gm−2 · dm−1 · (id− pm−1,m) = gm−2 · (dm−1 − dm−1 · pm−1,m)

2 A sketch of the proof of the theorem cmp-diff-pol-diff-pol=0 was also given in Sec-
tion 2 and its concrete ACL2 realization is presented in Appendix B.
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Expanding the second occurrence of dm−1 and applying distributivity, we
have:

gm−2 · (dm−1 − (−1)m−1 · ∂m−1 · pm−1,m − dm−2 · pm−1,m)

Now, by the lemma pij-pol-and-diff-pol-commute, we have that dm−2 ·
pm−1,m is equal to pm−2,m−1 · dm−2; and applying the simplicial identity
(5) we prove ∂m−1 · pm−1,m = ∂m. So we can simplify the last expression
(contracting also the definition of dm) to the following:

gm−2 · (dm − pm−2,m−1 · dm−2)

Finally, it is not difficult to prove (using the simplicial identities) that
pm−2,m−1 · dm−2 is equal to pm−2,m−1 · dm; applying this to the last ex-
pression and factoring out dm we obtain:

gm−2 · (id− pm−2,m−1) · dm = gm−1 · dm

The mechanical proof of G-pol-and-diff-pol-commute is carried out in
ACL2 in a very similar way to the hand proof described above, guiding the
prover with the appropriate lemmas and applying the same rewriting steps
(although not necessarily in the same direction). As pointed out in Section
3, the polynomial ring properties, used as rewriting rules, are an essential
component in this proof.

5 Reformulating the statement

As we have seen, simplicial polynomials give us a convenient framework for
reasoning about the simplicial maps and how they combine according to the
simplicial identities. In this framework we have proved non-trivial properties
about those combinations, needed for the proof of the Normalization Theorem.
Nevertheless, being symbolic expressions, what we have proved is not a com-
plete and faithful formalization of the standard formulation of this theorem in
Simplicial Topology. For example, we have not defined notions like simplicial
sets, chain complexes or degenerate simplexes.

In this section we show a formalization of the Normalization Theorem in
ACL2, as close as possible to the standard mathematical formulation presented
in Section 2. We will also show how the theorems proved in the polynomial
framework can be translated and used in this formalization.

5.1 Simplicial sets and chain complexes

It is clear that the first step in our formalization has to be the definition of
the notion of simplicial set, as presented in Definition 1. Since the theorem we
want to prove is a result on any simplicial set, we introduce a generic simplicial
set using the ACL2 encapsulation principle.
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A simplicial set can be defined by means of three functions K, d and n.
The function K is a predicate with two arguments, with the idea that K(m,x)
holds if and only if x ∈ Km. The functions d and n have both three arguments
and they represent the face and degeneracy maps, respectively. The intended
meanings for d(m,i,x) and n(m,i,x) are respectively ∂mi (x) and ηmi (x). To be
generic, the only assumed properties about K, d and n are those stating well-
defineness and the simplicial identities. They are introduced via encapsulate:

Assumption: d-well-defined
(x ∈ Km ∧ m ∈ N+ ∧ i ∈ N ∧ i ≤ m) → ∂mi (x) ∈ Km−1

Assumption: n-well-defined
(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ i ≤ m) → ηmi (x) ∈ Km+1

Assumption: simplicial-id1
(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ j ≤ i ∧ i < m ∧ 1 < m)
→ ∂m−1i (∂mj (x)) = ∂m−1j (∂mi+1(x))

Assumption: simplicial-id2
(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ i ≤ j ∧ j ≤ m)
→ ηm+1

i (ηmj (x)) = ηm+1
j+1 (ηmi (x))

Assumption: simplicial-id3
(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ i < j ∧ j ≤ m)
→ ∂m+1

i (ηmj (x)) = ηm−1j−1 (∂mi (x))

Assumption: simplicial-id4
(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ j + 1 < i ∧ i− 1 ≤ m)
→ ∂m+1

i (ηmj (x)) = ηm−1j (∂mi−1(x))

Assumption: simplicial-id5
(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ i ≤ j ≤ i+ 1 ∧ i ≤ m)
→ ∂m+1

j (ηmi (x)) = x

These assumptions are a formalization of the standard definition of simpli-
cial set, as given in any textbook, and constitute the basis where we will state
the Normalization Theorem. To differentiate from the polynomial framework,
we will call this the “standard framework”.

The next step is to define chain complexes in this standard framework.
Since chains are linear combinations of simplexes of a given dimension, it is
natural to represent them as lists whose elements are (dotted) pairs formed by
an integer and a simplex. As with simplicial polynomials, we will consider only
chains in canonical form: their elements must have non-null coefficients and
have to be increasingly ordered with respect to a strict ordering. The following
function sc-p defines chains in a given dimension m. It uses the function ss-p

recognizing the dotted pairs formed by a non-null integer and a m-simplex,
and the function ss-< implementing a strict ordering between such pairs (note
that these functions take the dimension m as an argument):
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Definition:
ss-p(m,s) := (consp(s) ∧ car(s) ∈ Z− {0} ∧ cdr(s) ∈ Km)

Definition:
sc-p(m,c) :=

if endp(c) then c = nil
elseif endp(cdr(c))

then ss-p(m,first(c)) ∧ rest(c) = nil
else ss-p(m,first(c)) ∧ ss-<(m,first(c),second(c)) ∧

sc-p(m,rest(c))

As with polynomials, the main advantage of considering chains in canonical
form is that we can check its equality using equal.

The main operations on chains are addition and scalar product by an in-
teger, for each dimension m. The ACL2 functions for these operations are
add-sc-sc(m,c1,c2) and scl-prd-sc(m,k,c). We omit their definitions here,
because they are very similar to the corresponding operations on polynomials.
In this paper we will use c1 + c2 and k · c, respectively, for those operations
on chains. Note that, for the sake of readability, we omit the dimension and
that we abuse of the notation using the same notation as with polynomials.
Anyway, the precise meaning of every use of these symbols will be clear from
the context.

We have proved that the set of chains of a given dimension is an Abelian
group with respect to addition, where the identity in this group is the zero
chain (represented as nil and denoted here as 0). It is worth mentioning that,
as we did in the case of polynomials, these definitions and theorems about
chains were automatically generated as a particular instance of a more generic
theory about the free Abelian group generated by a generic basis.

Simplicial maps can be linearly extended on chains. For example, this is
the definition of c-d, the face map extended to chains:

Definition: [∂mi (c)]
c-d(m,i,c) :=

if endp(c) then c
else cons(car(first(c)),∂mi (cdr(first(c)))) + c-d(m,i,rest(c)))

Note that this function is not a simple “mapcar” on the simplexes of a
chain, since the result is returned in canonical form. In a similar way, we
define c-n, the extension of the degeneracy map to chains. We will use the
same notation (∂mi (c) and ηmi (c)) to denote these maps both on simplexes and
on chains.

5.2 Evaluation of simplicial polynomials

As we have said before, our intention is to translate the theorems described
in Section 3 from the polynomial framework to the standard framework. The
key point here is to interpret a simplicial polynomial as a function on chains
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of a given dimension. Recall from subsection 3.3 that this will be only possible
when the polynomial is well-formed for that dimension.

To define the functional behaviour of a simplicial polynomial, we simply
apply the operations indicated in the symbolic expression. For example, the
following function eval-ld is the evaluation of a list of faces ld on a chain c
of dimension m (where ld is expected to be valid for dimension m):

Definition:
eval-ld(ld,m,c) :=

if endp(ld) then c
else c-d(m-len(rest(ld)),first(ld),eval-ld(rest(ld),m,c)))

In a similar way, we can define the evaluation of a list of degeneracies
of a given dimension. Extending these, we define the evaluation of simplicial
terms (eval-st) and the evaluation of monomials (eval-sm). Finally, we define
eval-sp, the evaluation of a polynomial on a chain in a given dimension:

Definition:
eval-sp(p,m,c) :=

if endp(p) then 0
else eval-sm(first(p),m,c) + eval-sp(rest(p),m,c))

The key properties of the evaluation function we have just defined is that
for a given dimension, it behaves consistently with respect to the operations
of the ring of simplicial polynomials, whenever the input polynomials are well-
formed for that dimension:

Theorem: eval-sp-add-sp-sp
(p1 ∈ P ∧ p2 ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ uniform-sp(p1) ∧
uniform-sp(p2) ∧ valid-sp(p1,m) ∧ valid-sp(p2,m) ∧
(endp(p1) ∨ endp(p2) ∨ degree-sp(p1) = degree-sp(p2)))
→ eval-sp(p1 + p2,m,c) = eval-sp(p1,m,c) + eval-sp(p2,m,c))

Theorem: eval-sp-scl-prd-sp
(p ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ uniform-sp(p) ∧
valid-sp(p,m) ∧ k ∈ Z)
→ eval-sp(k · p,m,c) = k·eval-sp(p,m,c)

Theorem: eval-sp-cmp-sp-sp
(p1 ∈ P ∧ p2 ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ uniform-sp(p1) ∧
uniform-sp(p2) ∧ valid-sp(p1,m+degree-sp(p2)) ∧ valid-sp(p2,m))
→ eval-sp(p1 · p2,m,c) =

eval-sp(p1,m+degree-sp(p2),eval-sp(p2,m,c))

These properties allow us to translate in a convenient way the proper-
ties proved in the polynomial framework to the corresponding properties in
the standard framework. We can illustrate this by showing how we prove the
differential property. Recall that the precise definition (without removing the
superindexes) of the differential homomorphism is dm(c) =

∑m
i=0(−1)i∂mi (c).
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The following is the corresponding ACL2 definition in the standard framework.
Note that we need an auxiliary function diff-aux to deal properly with the
superindex:

Definition:
diff-aux(m,i,c) :=

if i 6∈ N+ then ∂m0 (c)
else (−1)i · ∂mi (c) + diff-aux(m,i− 1,c))

Definition: [dm(c)]
diff(m,c) := diff-aux(m,m,c)

The following theorem establishes the connection between the differential
polynomial and the differential function, via eval-sp:

Theorem: eval-sp-diff-pol
(m ∈ N+ ∧ c ∈ Cm(K)) → eval-sp(dm,m,c) = dm(c)

Now, from the theorem cmp-diff-pol-diff-pol=0 in Section 3, using the
theorem eval-sp-cmp-sp-sp and previously proving that dm is a polynomial
well-formed for dimension m and with degree −1, we can easily prove the
differential property for the function dm:

Theorem: diff-diff=0
(m ∈ N+ ∧ c ∈ Cm+1(K)) → dm(dm+1(c)) = 0

5.3 The normalized chain complex

We now describe the formalization of the normalized chain complex CN (K).
First of all we define degenerate simplexes, those that can be obtained applying
a degeneracy map to another simplex:

Definition: [x ∈ KD
m ]

Kd(m,x) := ∃y,i (i ∈ N ∧ i < m ∧ y ∈ Km−1 ∧ ηm−1i (y) = x)

The existential quantifier in this definition is introduced using defun-sk,
which is the way ACL2 provides support for first-order quantification. This
macro allows (by means of a choice axiom) to define functions whose body has
an outermost quantifier.

Having defined degenerate simplexes, we define non-degenerate simplexes
simply as the negation of that property:

Definition: [x ∈ KND
m ]

Kn(m,x) := x ∈ Km ∧ x 6∈ KD
m

Since normalized chains are linear combinations of non-degenerate sim-
plexes of a given dimension, we represent them in the same way as we represent
general chains, but in this case requiring non-degenerate generators. As with
general chains, the theory of normalized chains is obtained as an instance of
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the generic theory of freely generated groups. That is, this instantiated theory
contains the definitions and properties showing that normalized chains to-
gether with addition is an Abelian group. We also proved that it is a subgroup
of Cm(K) so it makes sense to denote c1 + c2 the addition of two normalized
chains c1 and c2; and k · c the scalar product of an integer k and a normalized
chain c. Since in our representation an element x of CNm (K) is also an element
of Cm(K) (that is to say, there is a canonical implicit inclusion from CNm (K)
to Cm(K), as sets), then any function defined on Cm(K) can also be consi-
dered defined on CNm (K); analogously, any function ranging over CNm (K) will
be interpreted, implicitly, as ranging over Cm(K), too.

We define the canonical epimorphism f : C(K)→ CN (K) as the function
that, given an element of Cm(K), returns the normalized chain obtained elimi-
nating its degenerate addends. In our formalization, the following function
F-norm defines f (here SSn-P checks the property of being a non-degenerate
addend, and it uses the function Kn above):

Definition: [fm(c)]
F-norm(m,c) :=

if endp(c) then 0
elseif SSn-P(m,first(c))

then first(c) + F-norm(m,rest(c)))
else F-norm(m,rest(c))

A key property relating the canonical chain epimorphism f and the diffe-
rential on C(K) is the following: fm−1(dm(fm(c))) = fm−1(dm(c)). Intuitively,
this means that if we apply normalization on the result of the differential of a
chain, we obtain the same result as if we apply the same operation previously
normalizing the chain. A sketch of the proof of this result is the following: given
a chain c ∈ Cm(K), we can write it as the result of summing its normalization
and a linear combination of degenerate simplexes: c = fm(c)+

∑
k λk ·η

m−1
ik

(y).

Thus, dm(c) = dm(fm(c))+
∑
k λk ·dm(ηm−1ik

(y)). From the definition of dm and

applying the simplicial identities, it can be proved that dm(ηm−1j (y)) is still a
linear combination of degenerate simplexes (this is the essential property pro-
ving that the degenerate chain complex D(K), introduced in Subsection 2.1, is
a chain subcomplex of C(K)). Thus,

∑
k λk ·dm(ηm−1ik

(y)) is a linear combina-
tion of degenerate simplexes and therefore fm−1(dm(c)) = fm−1(dm(fm(c))).
The following theorem establishes this result:

Theorem: diff-n-F-norm
(m ∈ N+ ∧ c ∈ Cm(K)) → fm−1(dm(fm(c))) = fm−1(dm(c))

Let us now define the differential operation of the normalized chain complex
CN (K), denoted as dNm(c). We will define it as the result of applying the
differential dm, and after that, normalizing with fm−1.

Definition: [dNm(c)]
diff-n(m,c) := fm−1(dm(c))



28 Laureano Lambán et al.

The differential property for d in C(K) (theorem diff-diff=0 in the last
subsection), together with the property diff-n-F-norm, allows us to prove the
differential property for dN in CN (K), since for all c ∈ CNm (K), dNm(dNm+1(c)) =
fm−1(dm(fm(dm+1(c)))) = fm−1(dm(dm+1(c))) = fm−1(0) = 0. The following
theorem establishes it:

Theorem: diff-n-diff-n=0
(m ∈ N+ ∧ c ∈ CNm+1(K)) → dNm(dNm+1(c)) = 0

5.4 A prereduction (C(K), CN (K), f, g, h0)

Once f is defined, it remains to define in the standard framework the functions
g and h of the reduction given in the strong version of the Normalization The-
orem. It turns out that the direct translation of the polynomial hm (a function
that we will call h0, due to the notation used in Subsection 2.1 to state The-
orem 3) will only meet the properties required for being a prereduction(recall
from Subsection 2.1: only properties (a), (b) and (c) in the Definition 2 are
required). In the next subsection we will see how it is possible to derive from
h0 a function h that, together with f and g, constitute a reduction from C(K)
to CN (K).

So let us first introduce the definitions of the functions gm and h0m in the
framework of the standard formalization of simplicial sets. As expected, their
definitions closely resembles the corresponding definition in the polynomial
framework. Nevertheless in this case, we have to introduce auxiliary functions
to properly deal with the superindexes:

Definition:
G-aux(m,n,c) :=

if n 6∈ N+ then c
else G-aux(m,n− 1,c− ηm−1n−1 (∂mn (c)))

Definition: [gm(c)]
G(m,c) := G-aux(m,m,c)

Definition:
Q-aux(m,n,c) :=

if n 6∈ N+ then 0
else −Q-aux(m,n− 1,ηm−1n−1 (∂mn (c))) +

(−1)n−1 · ηmn (G-aux(m,n− 1,ηm−1n−1 (∂mn (c))))

Definition:
H0-aux(m,n,c) :=

if n 6∈ N+ then ηm0 (c)
else H0-aux(m,n− 1,c) + (−1)n · ηmn (c) + Q-aux(m,n,c)

Definition: [h0m(c)]
H0(m,c) := H0-aux(m,m,c)
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Following the lines discussed in Subsection 5.2, we can prove the following
theorems relating, via eval-sp, the functions gm and h0m just defined to the
corresponding polynomial definitions:

Theorem: G-eval-sp-G-pol
(m ∈ N ∧ c ∈ CNm (K)) → eval-sp(gm,c) = gm(c)

Theorem: H0-eval-sp-H-pol
(m ∈ N ∧ c ∈ Cm(K)) → eval-sp(hm,c) = h0m(c)

These correspondences allow us to translate the polynomial properties
shown in Subsection 4.2 to analogue properties in the standard formalization:

Theorem: G-and-diff-commute
(m ∈ N+ ∧ c ∈ Cm(K)) → gm−1(dm(c)) = dm(gm(c))

Theorem: diff-H0-H0-diff-G-id
(m ∈ N+ ∧ c ∈ Cm(K)) → dm+1(h0m(c)) + h0m−1(dm(c)) = c− gm(c)

Also, translating the property a G-pol-on-degenerate=0, and applying it
to the definition of fm, it is straightforward to prove that gm “embeds” fm:

Theorem: G-embeds-F-norm
(m ∈ N ∧ c ∈ Cm(K)) → gm(fm(c)) = gm(c)

These translated properties are not yet the properties we intend to prove,
since they do not mention the normalized chains CN (K). But, together with
some properties of the canonical chain epimorphism, it is all what we need to
show that (C(K), CN (K), f, g, h0) is a prereduction.

Let us see this in detail:

• f is a chain morphism:

Theorem: F-chain-morphism
(m ∈ N+ ∧ c ∈ Cm(K)) → dNm(fm(c)) = fm−1(dm(c))

This a direct consequence of diff-n-F-norm, since for all c ∈ CNm (K), we
have dNm(fm(c)) = fm−1(dm(fm(c))) = fm−1(dm(c)).

• g is a chain morphism:

Theorem: G-chain-morphism
(m ∈ N+ ∧ c ∈ CNm (K)) → gm−1(dNm(c)) = dm(gm(c))

This property is an easy consequence of G-and-diff-commute and
G-embeds-F-norm.

• Property (a) in the definition of reduction:

Theorem: F-G-H0-property-a
(m ∈ N ∧ c ∈ CNm (K)) → fm(gm(c)) = c

This property is easily obtained from the definitions of gm and fm.
• Property (b) in the definition of reduction:
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Theorem: F-G-H0-property-b
(m ∈ N+ ∧ c ∈ Cm(K))
→ dm+1(h0m(c)) + h0m−1(dm(c)) = c− gm(fm(c))

Obtained from G-embeds-F-norm and diff-H0-H0-diff-G-id.
• Property (c) in the definition of reduction:

Theorem: F-G-H0-property-c
(m ∈ N ∧ c ∈ Cm(K)) → fm+1(h0m(c)) = 0

Easily obtained from the definitions of fm and h0m.

5.5 A reduction (C(K), CN (K), f, g, h)

As we have said, the functions f , g and h0 defined in the previous subsections
do not necessarily verify properties (d) and (e) required in the definition of
reduction (Definition 2). Thus, the final step in our formalization will be to
define a new function h such that, while preserving properties (b) and (c), also
holds properties (d) and (e). This can be done applying a two-step transfor-
mation to h0, as explained at the end of Subsection 2.1, in the sketch of the
proof of Theorem 3.

First, we define a function h1 transforming h0 in the following way:

Definition: [h1m(c)]
H1(m,c) := h0m(c)− h0m(gm(fm(c)))

We will see that h1 holds property (d), but in general, does not hold pro-
perty (e). To get property (e), we obtain the function h transforming h1 in the
following way:

Definition: [hm(c)]
H(m,c) := h1m(dm+1(h1m(c)))

All the theorems regarding these transformations can be proved in ACL2
using only rewriting. To illustrate the type of reasoning we needed in this last
step of our formalization, let us show a proof sketch of the fact that after the
first transformation (from h0 to h1), we preserve properties (b) and (c) and
we get property (d):

• The proof of property (b) for h1 is as follows (compare with the informal
explanation given at the end of Subsection 2.1; now we are supported by
formal lemmas already encoded in ACL2). Expanding the definition of h1

in dm+1(h1m(c)) + h1m−1(dm(c)), we obtain:

dm+1(h0m(c)) + h0m(dm(c))− (dm+1(h0m(gm(fm(c)))) + h0m(gm(fm(dm(c))))

Now, using the property (b) for h0 and the properties G-and-diff-commute
and G-embeds-F-norm in the last subsection, we get:

c− gm(fm(c))− (dm+1(h0m(gm(c))) + h0m(dm(gm(c))))
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By using again property G-embeds-F-norm and property (b) for h0, we get
c− gm(fm(c))− gm(c) + gm(fm(gm(c))). Finally, applying property (a), we
get c− gm(c).

• Property (c) holds as a direct consequence of the same property for h0:
fm+1(h1m(c)) = fm+1(h0m(c)− h0m(gm(fm(c)))) =
fm+1(h0m(c))− fm+1(h0m(gm(fm(c)))) = 0

• As for property (d), h1m(gm(c)) = h0m(gm(c)) − h0m(gm(fm(gm(c)))) and
since by property (a), we have fm(gm(c)) = c, then h1m(gm(c)) = 0.

The proof of the properties for the second transformation (from h1 to h)
is carried out with similar techniques. The interested reader may consult the
source files, where a more detailed description is given.

Finally, the following theorems establish that this final version for h (to-
gether with the already known definitions for f and g) holds properties (b),
(c), (d) and (e) in the definition of reduction:

Theorem: F-G-H-property-b
(m ∈ N+ ∧ c ∈ Cm(K)) → dm+1(hm(c)) + hm−1(dm(c)) = c− gm(fm(c))

Theorem: F-G-H-property-c
(m ∈ N ∧ c ∈ Cm(K)) → fm+1(hm(c)) = 0

Theorem: F-G-H-property-d
(m ∈ N ∧ c ∈ CNm (K)) → hm(gm(c)) = 0

Theorem: F-G-H-property-e
(m ∈ N ∧ c ∈ Cm(K)) → hm+1(hm(c)) = 0

Note that property (a) and the conditions for f and g being chain mor-
phisms do not have to be proved again, since h is not involved in them. Thus,
the above theorems are what was needed to complete our formalization of the
Normalization Theorem.

6 Putting the proof in context

In Section 5 a proof of the Normalization Theorem has been given. That
proof follows quite directly from results on simplicial polynomials presented in
Section 4. It is worth noting that a result whose statement is of higher-order,
admits one purely combinatorial proof, based on first-order logic. Section 4
means an important simplification of the proof, simplification which stems
from three sources:

1. Simplicial polynomials represent conveniently natural transformations be-
tween functors involved in the statement of the Normalization Theorem.

2. The very definition of CN (K) as a quotient of C(K) allows us to develop
most parts of the proof only in terms of C(K); the proof is ended by
combining the results on C(K) with the universal property of a quotient.
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3. Simplicial morphisms can be operated without any reference to the dimen-
sion, and the same applies to statements on these morphisms; in a further
step the validity of results can be instantiated over the corresponding ad-
missible dimensions.

Our aim was the formalization of the Normalization Theorem, and this has
been achieved and explained in previous sections. This section is devoted to
enlighten, in an informal style, the three points above. Most of the arguments
used here will be based on Category Theory concepts; therefore, a formal
treatment would require higher-order logic (and, accordingly, if one wants to
implement it, systems like Coq or Isabelle/HOL should be used).

6.1 Simplicial polynomials and natural transformations

The morphisms f , g and h appearing in the Normalization Theorem are natu-
ral transformations between the functors C(−) and CN (−) :

C(−), CN (−) : S → CC

where S is the category of simplicial sets and CC denotes the category of
chain complexes. More concretely, in each dimension n ≥ 0, they define nat-
ural transformations between Cn() and CNn (), arriving to the category AG of
Abelian groups.

Now, given two dimensions n and m we will prove the equivalence be-
tween the natural transformations from Cm(−) to Cn(−) and the simplicial
polynomials well-formed for dimension m and whose degree is n−m.

To explain that equivalence we are going to use the well-known description
of S as a pre-sheaves category (or, putting it in other words, a category of
contravariant functors with target in SET , the category of sets).

Let us denote by ∆ [Mac Lane and Moerdijk 1992] the category with ob-
jects all finite nonempty sets of the form [n] = {0, . . . , n}, n ≥ 0, and with
morphisms α : [n] → [m] all the order preserving functions. There exist two
relevant families of morphisms in ∆: the injections εni : [n − 1] → [n], which
skip the element i ∈ [n]; and the surjections δnj : [n + 1] → [n], which cover
j ∈ [n] twice. It is important to note that a morphism α : [n]→ [m] in ∆ can
be decomposed (uniquely) as

α = εis . . . εi1δjt . . . δj1 ,

where 0 ≤ i1 < . . . < is ≤ m, 0 ≤ jt < . . . < j1 ≤ n and m = n+ (s− t).
This factoring property (together with a set of equalities similar to the

simplicial identities) establishes the equivalence between ∆([n], [m]) and the
simplicial operators valid for dimension m and whose degree is n−m.

A simplicial object in a category C is a contravariant functor from ∆ to C.
If we consider the category SET as C, it is well-known [May 1967] that there
exists a canonical equivalence between the category S and the (pre-sheaves)
category of simplicial objects in SET : SS = [∆op,SET ], where ∆op denotes
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the opposite category of ∆. (In general, [C,D] denotes the category of functors
from a category C to a category D, being the arrows natural transformations.)
Let us remark that the decomposition of morphisms in ∆ implies that, in
order to define a functor over ∆, it is enough to provide the image for the
two distinguished families of morphisms: δni and εnj . Thus, a simplicial set K

can be interpreted as a contravariant functor, denoted by K and defined as:
K([n]) = Kn, K(δni ) = ηni and K(εni ) = ∂ni .

The (contravariant) representable functor ∆(−, [n]) : ∆op → SET in SS
defines in S a simplicial set, denoted by ∆[n] and called standard n-simplex,
where the elements of ∆[n]m = ∆([m], [n]) are usually represented by lists of
m+ 1 non-decreasing numbers chosen from [n].

Using the above description of the simplicial category S, it is not difficult
to prove the following result.

Lemma 2 (Yoneda Lemma for Simplicial Sets) There exists a natural one to
one correspondence between ∆([n], [m]) and S(∆[n], ∆[m]), the set of simpli-
cial maps from ∆[n] to ∆[m].

Proof The proof consists of linking the natural one to one correspondence
provided by the Yoneda Lemma in SS (applied to standard simplexes):

SS(∆[n],∆[m]) ∼= ∆(−, [m])([n]) = ∆([n], [m]),

with the equivalence between S and SS, that is:

SS(∆[n],∆[m]) = S(∆[n], ∆[m]).

ut

We can re-interpret the previous results in terms of integer lists. A non-
decreasing list l ∈ ∆[m]n (identified with the corresponding function l : [n]→
[m]) is equivalent to a map lS : ∆[n]→ ∆[m] between lists of any length, given
by: lS = {lSr : ∆[n]r → ∆[m]r ; r ≥ 0}, where lSr ((e0, . . . , er)) = (le0 , . . . , ler ).
In other words: lSr (e) = l ◦ e and l = lSn (Id[n]).

Now, for each n ≥ 0, let us consider the functor (−)n : S → SET , asso-
ciating to each simplicial set K the set Kn of its n-simplexes. Using the equiv-
alence between S and SS, these functors correspond to the (covariant) repre-
sentable functors:

SS(∆[n],−) : SS → SET .

Thus, since (−)n ∼= SS(∆[n],−), we obtain the following result.

Lemma 3 (Yoneda Lemma for [S,SET ]) Given n,m ≥ 0, there exists a na-
tural one to one correspondence between ∆([n], [m]) and [S,SET ]((−)m, (−)n).

Proof The proof is again based on linking the natural one to one correspon-
dence provided by the Yoneda Lemma, this time in [SS,SET ]:

[S,SET ]((−)m, (−)n) ∼= [SS,SET ](SS(∆[m],−),SS(∆[n],−)) ∼=
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∼= SS(∆[n],−)(∆[m]) = SS(∆[n],∆[m])

with the following equivalence extracted from the proof of Lemma 2 above:
SS(∆[n],∆[m]) ∼= ∆([n], [m]). ut

Moreover, these equivalences are compatible with morphism composition.
Translating the previous lemma to the language of integer lists, a list l ∈

∆([n], [m]) is equivalent to a natural transformation: l[S,SET ] : (−)m → (−)n.
Over an standard simplex, this natural transformation is given by a func-

tion: l
[S,SET ]
∆[r] : ∆[r]m → ∆[r]n such that l

[S,SET ]
∆[r] (l′) = l′ ◦ l. The initial list is

recovered from the natural transformation because: l = l
[S,SET ]
∆[m] (Id[m]). Let us

stress that l[S,SET ] and lS correspond with the right and left product (compo-
sition) by l, respectively.

These well-known results allow us to represent the considered natural trans-
formations as simplicial terms or, with the contravariant version, as morphisms
in the category ∆. In this paper the covariant version has been favored, because
it eases the interpretation as functions evaluated over simplexes.

In summary, the natural transformations from (−)m to (−)n can be safely
represented as integer lists (or, equivalently, as simplicial terms). But the
arrows occurring in the Normalization Theorem are natural transformations
Φ : Cm(−)→ Cn(−) between objects in [S,AG]. The functor Ck(−) : S → AG
is equal to the composite of (−)k : S → SET and the free functor SET → AG.
Since (−)∗ are representable functors, the group of natural transformations be-
tween the functors Cm(−) and Cn(−) in [S,AG] is the free group generated
by the natural transformations from (−)m to (−)n in [S,SET ]. It implies that
a natural transformation Φ : Cm(−) → Cn(−) is characterized by its image
on only one element of the free group Z[∆[m]n] (exactly by Φ∆[m](Id[m])).
Thus, the studied natural transformations can be represented by means of lin-
ear combinations of functions from ∆([n], [m]) or, in the covariant version, as
linear combinations of simplicial terms valid for dimension m and with degree
n−m; that is to say as simplicial polynomials, as we claimed.

6.2 The normalized chain complex

In our approach to the problem, in order to build for each simplicial set K a
reduction (f, g, h) : C(K) → CN (K), we have defined, by means of explicit
formulas, two families of simplicial polynomials gm and hm (see Subsection
4.1). For the sake of simplicity, let us denote by G in this subsection the
function defined on C(K) by gm. Observe that the expression for G (as in the
case of the homotopy operator h) is independent from the simplicial set K
(and from the evaluation of simplicial operators over simplexes), while f (the
canonical projection) requires for its definition a test function, determining
whether a given simplex is degenerate or not. This implies that f depends on
K, and, as a consequence, it cannot be represented as a simplicial polynomial.

This is the reason why in the formal proof the morphism f does not appear
until Section 5. However, the very definition of CN (K) as a quotient in the
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category of chain complexes (recall: CN (K) = C(K)/D(K)) establishes that
to define a chain morphism from CN (K) to another chain complex C amounts
to defining a chain morphism form C(K) to C which is null on D(K). In
particular, the morphism G : C(K)→ C(K) is null on degenerated simplexes
(it has been proved in ACL2 by using the G-pol-on-degenerate=0 property)
and it allows us to define g : CN (K) → C(K) as the unique chain morphism
such that g ◦ f = G, identifying f with the canonical quotient map.

Let us note that, in Section 5, a version slightly different has been used,
considering CN (K) as a retract of C(K) in the category of graded Abelian
groups. In other words, we take as definition CNn (K) = Z[KND

n ]. In this case,

we have the diagram C(K)

f
--
CN (K),

i

ll with an explicit definition

of f , introducing dN := f ◦ d ◦ i and checking that G = G ◦ i ◦ f , we obtain a
chain morphism g := G ◦ i. With this presentation the required prereduction
properties follow easily from others proved in the simplicial framework.

6.3 Simplicial terms and dimension

The equivalence between natural transformations and simplicial polynomials
described in Subsection 6.1 allowed us to reduce the initial problem to deal
with simplicial polynomials plus one dimension. Our ACL2 proof, described
in Section 4, was however carried out over simplicial polynomials without any
dimension information. The reason for this third, and last, simplification is
now explained. Let us interpret εi (which skips the element i ∈ N) and δj
(which cover j ∈ N twice) as order-preserving maps from N to N. We denote by
N the monoid of maps generated (by composition) from {εi, δj ;∀i, j ∈ N}. The
elements of N are exactly the order-preserving maps from N to N containing
a finite amount of information: they stabilize from a given number (that is,
a function γ : N → N such that there exists r0 ∈ N satisfying γ(r + 1) =
γ(r) + 1,∀r > r0). The elements in N can be represented in canonical form
as explained for morphisms of the category ∆. This proves that, as monoids,
there is a canonical isomorphism between N and our monoid of simplicial
terms (the isomorphism being simply induced by contravariance).

In Section 4 we have worked with simplicial terms without dimension, that
is to say with maps in N and not in ∆. We can now think in N as a (monoidal)
category with only one object, and morphisms the elements of the monoid.
We can consider the functor (−)# : ∆ → N which completes each morphism
α : [n]→ [m] of ∆, by stabilizing it in the following way: α#(k) = α(k) if k ≤ n
and α#(k) = m + (k − n) if k > n. This is actually a functor; in particular,
(α ◦ β)# = α# ◦ β#. Moreover (−)# is faithful, that is to say: given two
morphisms α, β : [n] → [m] such that α# = β# then α = β. In others words,
equational reasoning about simplicial operators can be safely simulated over
simplicial terms, without any reference to the dimensions where the simplicial
operators apply. The same argument can be used in the ring of simplicial
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polynomials (defined as the free Abelian group on the monoid of simplicial
terms), showing that any chain of equalities deduced from combinations over
morphisms of the monoidal category N also holds in the valid dimensions.
Thus, the complete proof of the Normalization Theorem can be developed in
a first order setting by using equational reasoning on simplicial polynomials
without explicit dimensions, as it has been done in ACL2 in Section 4, and
it can be expressed as in Section 5 by simply adding the validity condition
among terms and dimensions.

7 Conclusions and further work

In this paper we have formalized the Normalization Theorem, an important re-
sult in simplicial topology establishing a link between the two chain complexes
that can be naturally associated to a simplicial set. An outstanding feature
of our formalization is that it has been carried out in a first-order logic, even
though in principle a higher-order setting could be considered more natural
to state it. As a demonstration of this characteristic we have implemented the
whole proof in the ACL2 theorem prover (we hope the techniques introduced
have been explained in this paper with enough detail to be re-produced in
other inductive reasoning environments, too).

Another interesting benefit obtained from our proof is that it was inspired
by some explicit formulas experimentally found in [Rubio and Sergeraert 1990],
showing the validity of the formulas, which kept up to now unproven.

To quantify the proof effort, the complete formalization contains 100 defini-
tions and 532 lemmas and theorems (with 89 non trivial proof hints explicitly
given), which gives an idea of the degree of automation of the proof. As for
the formalization development, we followed a standard interaction with the
theorem prover. That is, we first had an original hand proof of the result that
suggested the main definitions and lemmas. Some of these lemmas were not
proved in a first attempt and new lemmas are then suggested from the ins-
pection of the failed attempts. It is also worth pointing out that the whole
development has benefited from the use of our instantiation tool for generic
theories described in [Mart́ın-Mateos et al. 2002]. That allowed us to obtain
in an automated way, the definitions and theorems proving the ring of simpli-
cial polynomials and the Abelian group of chains and normalized chains, as
instances of generic theories (we have not included these automatically gene-
rated definitions and lemmas in the statistics above).

The planned future work is trying to extend the techniques introduced here
(based on simplicial polynomials) to other problems in simplicial topology. Our
next objective is the Eilenberg-Zilber Theorem ([May 1967], [Epstein 1966]). It
is a very important result giving a reduction between the chain complex of a
Cartesian product of simplicial sets, CN (A×B), and the tensor product of the
corresponding chain complexes of the factors, CN (A)⊗CN (B). The associated
algorithm (in its most explicit version, arrows f , g, h are described by explicit
formulas; see the Appendix in [Real 2000]) is very important in Kenzo, being
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responsible for a great part of the (exponential) complexity of many Kenzo
programs. Thus the task of formalizing it can be considered a good next step
for our project. The results in Section 6 show that there are categorical reasons
to think that the Eilenberg-Zilber Theorem could be tackled in a first order
setting. From the ACL2 point of view, the challenge is that in the Eilenberg-
Zilber Theorem there are two simplicial sets involved, and then the scope of
our techniques should be significantly extended to be applied in that case.

Acknowledgements We thank the anonymous referees for their careful revision and useful
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Appendix A: Checking the formalized proof

To check our formalized proof in ACL2, the system has to be properly installed
and the books that come with the distribution certified. Details about the
installation of ACL2 can be obtained in section Obtaining and Installing at
the web page http://www.cs.utexas.edu/users/moore/acl2/

The complete source files with the ACL2 formalization of the Normalization
Theorem are accessible at: http://www.glc.us.es/fmartin/acl2/fantist
in a file named fantist.tgz. This file should be expanded with the command:

...> tar -xzvf fantist.tgz

This command builds the directory fantist with the whole formalization.
To certify the formalization, the following command should be executed in

the fantist directory:

...> cd fantist

.../fantist> make -s all

This command certifies all the books. It generates files .o, .cert and .date

for every book in the distribution. A file .log is also created containing the
ACL2 certification output corresponding to every book.

Appendix B: ACL2 proof of CMP-DIFF-POL-DIFF-POL=0

ACL2 !>(DEFTHM CMP-DIFF-POL-DIFF-POL=0
(IMPLIES (NATP N)

(EQUAL (CMP-SP-SP (DIFF-POL N)
(DIFF-POL (1+ N)))

(ADD-SP-SP-ID)))
:HINTS (("Goal" :IN-THEORY (ENABLE (DI)))))
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[Note: A hint was supplied for our processing of the goal above.
Thanks!]

By the simple :definition NATP and the :executable-counterpart of
ADD-SP-SP-ID we reduce the conjecture to

Goal’
(IMPLIES (AND (INTEGERP N) (<= 0 N))

(EQUAL (CMP-SP-SP (DIFF-POL N)
(DIFF-POL (+ 1 N)))

NIL)).

This simplifies, using the :compound-recognizer rules
NATP-COMPOUND-RECOGNIZER and ZP-COMPOUND-RECOGNIZER, the :definition
DIFF-POL, primitive type reasoning, the :rewrite rules |1-1+N|,
ADD-SP-SP-COMMUTATIVE, CMP-SP-SP-ADD-SP-SP-DISTRIBUTIVE-R,
COMMUTATIVITY-2-OF-+, DIFF-POL-SP, SCL-PRD-SP-CMP-SP-SP-2, SP-P-DI
and SP-P-SCL-PRD-SP and the :type-prescription rule EXP-1, to

Goal’’
(IMPLIES (AND (INTEGERP N) (<= 0 N))

(NOT (ADD-SP-SP (CMP-SP-SP (DIFF-POL N) (DIFF-POL N))
(SCL-PRD-SP (EXP-1 (+ 1 N))

(CMP-SP-SP (DIFF-POL N)
(DI (+ 1 N))))))).

Name the formula above *1.

Perhaps we can prove *1 by induction. Three induction schemes are
suggested by this conjecture. Subsumption reduces that number to one.

We will induct according to a scheme suggested by (DIFF-POL N). This
suggestion was produced using the :induction rule DIFF-POL. If we
let (:P N) denote *1 above then the induction scheme we’ll use is
(AND (IMPLIES (AND (NOT (ZP N)) (:P (+ -1 N)))

(:P N))
(IMPLIES (ZP N) (:P N))).

This induction is justified by the same argument used to admit DIFF-POL.
When applied to the goal at hand the above induction scheme produces
four nontautological subgoals.

Subgoal *1/4
(IMPLIES (AND (NOT (ZP N))

(NOT (ADD-SP-SP (CMP-SP-SP (DIFF-POL (+ -1 N))
(DIFF-POL (+ -1 N)))

(SCL-PRD-SP (EXP-1 (+ 1 -1 N))
(CMP-SP-SP (DIFF-POL (+ -1 N))

(DI (+ 1 -1 N))))))
(INTEGERP N)
(<= 0 N))

(NOT (ADD-SP-SP (CMP-SP-SP (DIFF-POL N) (DIFF-POL N))
(SCL-PRD-SP (EXP-1 (+ 1 N))

(CMP-SP-SP (DIFF-POL N)
(DI (+ 1 N))))))).

But simplification reduces this to T, using the :compound-recognizer
rules NATP-COMPOUND-RECOGNIZER and ZP-COMPOUND-RECOGNIZER, the :definitions
ADD-SP-SP, DIFF-POL and SCL-PRD-SP, the :executable-counterparts of
ADD-SP-SP-ID, CONSP, SP-P and ZIP, linear arithmetic, primitive type
reasoning, the :rewrite rules |1-1+N|, ADD-SP-SP-COMMUTATIVE,
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ADD-SP-SP-COMMUTATIVE-2, ADD-SP-SP-NOT-CONSP,
CMP-DIFF-POL-DIFF-POL=0-LEMMA-INDUCT-CASE,
CMP-SP-SP-ADD-SP-SP-DISTRIBUTIVE-L, CMP-SP-SP-ADD-SP-SP-DISTRIBUTIVE-R,
DIFF-POL-SP, EXP-1-PRODUCT-CONSECUTIVE, EXP-1-PRODUCT-EQUAL,
EXP-1-SUM-CONSECUTIVE, SCL-PRD-SP-1, SCL-PRD-SP-1-INVERSE,
SCL-PRD-SP-ADD-SP-SP-DISTRIBUTIVE-L, SCL-PRD-SP-ADD-SP-SP-DISTRIBUTIVE-R,
SCL-PRD-SP-ASSOCIATIVE, SCL-PRD-SP-CMP-SP-SP-1, SCL-PRD-SP-CMP-SP-SP-2,
SIMPLICIAL-EQ1, SP-P-ADD-SP-SP, SP-P-CMP-SP-SP, SP-P-DI and SP-P-SCL-PRD-SP
and the :type-prescription rule EXP-1.

Subgoal *1/3
(IMPLIES (AND (NOT (ZP N))

(< (+ -1 N) 0)
(INTEGERP N)
(<= 0 N))

(NOT (ADD-SP-SP (CMP-SP-SP (DIFF-POL N) (DIFF-POL N))
(SCL-PRD-SP (EXP-1 (+ 1 N))

(CMP-SP-SP (DIFF-POL N)
(DI (+ 1 N))))))).

But we reduce the conjecture to T, by the :compound-recognizer rule
ZP-COMPOUND-RECOGNIZER and primitive type reasoning.

Subgoal *1/2
(IMPLIES (AND (NOT (ZP N))

(NOT (INTEGERP (+ -1 N)))
(INTEGERP N)
(<= 0 N))

(NOT (ADD-SP-SP (CMP-SP-SP (DIFF-POL N) (DIFF-POL N))
(SCL-PRD-SP (EXP-1 (+ 1 N))

(CMP-SP-SP (DIFF-POL N)
(DI (+ 1 N))))))).

But we reduce the conjecture to T, by the :compound-recognizer rule
ZP-COMPOUND-RECOGNIZER and primitive type reasoning.

Subgoal *1/1
(IMPLIES (AND (ZP N) (INTEGERP N) (<= 0 N))

(NOT (ADD-SP-SP (CMP-SP-SP (DIFF-POL N) (DIFF-POL N))
(SCL-PRD-SP (EXP-1 (+ 1 N))

(CMP-SP-SP (DIFF-POL N)
(DI (+ 1 N))))))).

But simplification reduces this to T, using the :compound-recognizer
rule ZP-COMPOUND-RECOGNIZER, the :executable-counterparts of <, ADD-SP-SP,
BINARY-+, CMP-SP-SP, DI, DIFF-POL, EXP-1, INTEGERP, NOT, SCL-PRD-SP
and ZP and linear arithmetic.

That completes the proof of *1.

Q.E.D.

...

Time: 0.56 seconds (prove: 0.51, print: 0.03, other: 0.02)
CMP-DIFF-POL-DIFF-POL=0


