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Abstract. A methodology to study digital images by means of simplicial
complexes, a basic notion in Algebraic Topology, is presented in this
report. Moreover, a formalization in both the ACL2 Theorem Prover
and the proof assistant Coq of the correctness of our algorithms is given.

1 Introduction

Algebraic Topology is a complex and abstract mathematical subject; however,
some of its techniques can be applied to different contexts such as coding the-
ory [15], data analysis [8], robotics [10] or digital image analysis [6,7] (in this
last case, in particular in the study of medical images [14]).

Here, we are going to focus on the application of Algebraic Topology to the
study of binary digital images. In the Algebraic Topology framework, binary
digital images can be studied using simplicial complexes. This section is devoted
to present a technique based on simplicial complexes to study binary digital
images. In particular, we study monochromatic (black and white) digital images
by means of algorithms related to simplicial complexes.

It is worth noting that if we want to apply our method in real life problems
(for instance, in the study of medical images), we must be completely sure that
the results produced by our programs are correct. Therefore, the formal verifica-
tion of our programs with a Theorem Prover tool is significant. In particular, we
have used both the ACL2 Theorem Prover [9] and the proof assistant Coq [4,2]
as well as the SSREFLECT extension [5] and the libraries it provides.

The rest of this report is organized as follows. Section 2 introduces the ba-
sic background about simplicial complexes and some algorithms about them.
Section 3 presents the technique and the algorithms that we apply to analyze
digital images by means of simplicial complexes. Remarks about the formaliza-
tions of our method in ACL2 and CoQ/SSREFLECT are provided respectively
in sections 4 and 5. This report ends with a section of Conclusions and Further
work.

* Partially supported by Ministerio de Ciencia e Innovacién, project MTM2009-13842-
C02-01, and by European Community FP7, STREP project ForMath.



2 Mathematical Preliminaries

In this section, we briefly provide the minimal mathematical background needed
in the rest of the paper. We mainly focus on definitions. Many good textbooks
are available for these definitions and results about them, the main one being
maybe [11].

Let us start with the basic terminology. Let V be an ordered set, called the
vertex set. An (ordered abstract) simplex over V is any ordered finite subset of
V. An (ordered abstract) n-simplex over V is a simplex over V whose cardinality
is equal to n+ 1. Given a simplex « over V', we call faces of « to all the subsets
of a.

Definition 1 An (ordered abstract) simplicial complex over V is a set of sim-
plexes K over V such that it is closed by taking faces (subsets); that is to say:

Vaoel,if Ca=p0ek

Let K be a simplicial complex. Then the set S,,(K) of n-simplexes of K is the
set made of the simplexes of cardinality n 4+ 1 of K.

Example 2 Let us consider V = (0,1,2,3,4,5,6).

The small simplicial complex drawn in Figure 1 is mathematically defined as
the object:

7( )
:(0,3),(1,2),(1,3),(2,3),(3,4), (4,5), (4,6), (5,6),

Fig. 1. Butterfly Simplicial Complex

Note that, because the vertex set is ordered the list of vertices of a simplex is
also ordered, which allows us to use a sequence notation (...) and not a subset
notation {...} for a simplex and also for the vertex set V. It is also worth noting
that simplicial complexes can be infinite. For instance if V' = N and the simplicial
complex K is {(n)}nen U {(n — 1,n)},>1, the simplicial complex obtained can
be seen as an infinite bunch of segments.



Definition 3 A facet of a simplicial complex I over V is a maximal simplex
with respect to the subset relation, C, among the simplexes of K.

Example 4 The facets of the small simplicial complex depicted in Figure 1 are:

{(0,3),(1,3),(2,3),(3,4),(0,1,2),(4,5,6) }

Let us note that a finite simplicial complex can be generated from its facets
taking the set union of the power set of each one of their facets. In general, we
have the following definition.

Definition 5 Let S be a finite sequence of simplexes, then the set union of the
power set of each one of the elements of S is, trivially, a simplicial complex called
the simplicial complex associated with S.

It is worth noting that the same simplicial complex can be generated from two
different sequences of simplexes; in addition, the minimal sequence of simplexes
which generates a finite simplicial complex is the sequence of its facets.

Then, the following algorithm can be defined.

Algorithm 6
Input: a sequence of simplexes S.
Output: the associated simplicial complex with S.

The correctness of this algorithm was verified both in ACL2 and Coq [3].

3 The framework to study digital images

Let n be any positive integer. An n-zel g in an Euclidean n-space, R", is a
closed unit n-dimensional (hyper)cube ¢ C R™ whose 2" vertices have natural
coordinates (more precisely, an n-zel in R™ is a cartesian product like [i1,41 +
1] X [ig, 42 + 1] X ... X [in, 45 + 1]). In this memoir, a pizel is a 2-xel in R?. We
define an n-dimensional binary image or nD-image, to be a finite set of n-xels
in R™.

An nD-image 7 can, of course, be represented by a finite n-dimensional array
of 1’s and 0’s in which each 1 represents an n-xel in D and each 0 represents
an n-xel that is not in D. Let us focus on the study of nD-images by means of
simplicial complexes. Firstly, we present the study for the cases of 2D-images
and eventually the general case.

As we have just said, a 2D-image D can be represented by a finite 2-dimensional
array of 1’s and 0’s in which each 1 represents a pixel in D and each 0 repre-
sents a pixel that is not in D (in a monochromatic 2D-image D, black pixels are
represented by 1’s, on the contrary white pixels are represented by 0’s).

Let D be a 2D-image codified as a 2-dimensional array of 1’s and 0’s. We
want to associate a simplicial complex with D. From a digital image, there
are several ways of constructing a simplicial complex (see [1]). The approach



that we have followed here consists of obtaining from D the facets of one of
its associated simplicial complexes. Subsequently, applying Algorithm 6 (the
algorithm which constructs a simplicial complex from a sequence of simplexes),
we obtain a simplicial complex associated with D.

The process that we have followed to obtain the facets from a 2D-image D is
as follows. Let V = (N,N) be the vertex set, that is, a vertex, in this case, is a
pair of natural numbers. Let p = (a,b) be the coordinates of a pixel in D (that
is, the position of the pixel in the 2-dimensional array associated with D). From
p we can obtain two 2-simplexes that are two facets of the simplicial complex
associated with D. Namely, from p = (a,b) we obtain the following facets: the
triangles ((a,b), (a+1,b),(a+1,0+1)) and ((a,d), (a,b+1), (a+1,b+1)). If we
repeat the process for the coordinates of all the pixels in D, we obtain the facets
of a simplicial complex associated with D, that will be denoted by Kap (D).

Therefore, we can define the following algorithm.

Algorithm 7

Input: a 2D-image D represented by means of a 2-dimensional array of 1’s and
0’s.

Output: the facets of Kop (D), a simplicial complex associated with D.

Example 8 Consider the 2D-image depicted in the left side of Figure 2. This
image can be codified by means of the 2-dimensional array: ((1,0), (0,1)), then,
the coordinates of the black pixels are (0,0) and (1,1). Therefore, applying
Algorithm 7 we obtain the facets of Kop(D):

(((0,0), (0,1),(1,1)), ((0,0), (1,0), (1, 1)), (1, 1), (1,2),(2,2)), ((1,1), (2, 1), (2, 2))).

(0,0 (1,0)

Algorithm 7

— (0,

1,1 (2,1

(1,2) (2,2)

Fig. 2. On the left, a digital image; on the right, its simplicial complex repre-
sentation

Once we have the simplicial complex associated with the digital image, we
can compute the homology groups of the image from the simplicial complex.
As we said previously, several simplicial complexes can be associated with a
digital image, but all of them are homomorphic (see [1]); then, we can define the
homology groups of a 2D-image as follows:



Definition 9 Given a 2D-image D, the n-homology group of D, H, (D) is the
n-homology group of the simplicial complex Kop(D):

H, (D) = H,,(K2p(D)).

Subsequently, we can interpret properties about the digital image from its
homology groups. 2D-images are embedded in R? then its homology groups
vanish for dimensions greater than 2 and they are torsion-free from dimensions
0 to dimension 1; that is, their homology groups are either null or a direct sum of
Z components from dimension 0 to dimension 1. The number of Z components
of the homology groups of dimension 0 and 1 measures respectively the number
of connected components and the number of holes of the image.

The method presented here for 2D-images can be generalized to nD-images
with n > 2. An nD-image can be represented by a finite n-dimensional array of
1’s and 0’s in which each 1 represents an n-xel in D and each 0 represents an
n-xel that is not in D.

Let D be an nD-image, from the coordinates of each n-xel in D (its position
in the n-dimensional array associated with D), we can obtain a triangulation by
means of n-simplexes, see [12], which are facets of a simplicial complex associated
with D. If we repeat the process for the coordinates of all the n-xels in D, we
obtain the facets of a simplicial complex associated with D. Then, applying
Algorithm 6, we can obtain the simplicial complex associated with D. Therefore,
the two following algorithms can be defined.

Algorithm 10
Input: the coordinates of an n-xel.
Output: a triangulation of the n-xel by means of n-simplexes.

Algorithm 11

Input: an nD-image D represented by means of a n-dimensional array of 1’s and
0’s.

Output: the facets of K,,p(D), a simplicial complex associated with D.

4 Formalization in the ACL2 Theorem Prover

As we just said, we want to formalize in ACL2 the correctness of Algorithm 7;
namely, our implementation of that algorithm by means of a Common Lisp
function called genera-facets-image-2d.

From now on, we define the necessary functions to establish the correctness
of our program. First of all, we need some auxiliary functions which define the
necessary concepts to prove our theorems. These definitions are based on both
Algorithm 7 and the notions for digital images. Namely, we need to define the
notion of 2D-image.

As we said in Section 3, a 2D-image D is represented by means of a finite
2-dimensional array (that is a list of lists) of 1’s and 0’s where each 1 represents a
pixel in D and each 0 represents a pixel that is not in D. The 2d-imagep function



is a function that checks if its argument is a list of lists of 1’s and 0’s. This
function uses the 1ist-0-1-p function that checks if its argument is a list of 1’s
and 0’s.

(defun list-0-1-p (list)
(if (endp list)
(equal list nil)
(if (endp (cdr list))
(and (equal (cdr list) nil)
(or (equal (car list) 0) (equal (car list) 1)))
(and (or (equal (car list) 0) (equal (car list) 1))
(1ist-0-1-p (cdr 1list))))))

(defun 2d-imagep (list)
(if (endp list)
(equal list nil)
(and (list-0-1-p (car list)) (2d-imagep (cdr list)))))

Subsequently, we define the genera-facets-image-2d function and all its aux-
iliary functions in ACL2. Let us show in detail these definitions.

First of all, we define the 1ist-up-i-j and list-down-i-j functions which are
used to generate from a pair of natural numbers (i, j) the simplexes ((¢,7), (i +
1,7),(i+ 1,5+ 1)) and ((¢,5), (4,5 + 1), (¢ + 1,5 + 1)) respectively.

o e
(list (list i j) (List (1+ i) j) (List (1+ i) (1+ j))))

(defun list-down-i-j (i j)
(list (list i j) (list i (1+ j)) (List (1+ i) (1+ j))))

From the above two functions, we can define a function, called genera-facets-i-j
which from the pair (i,j) generates the pair of simplexes (((z,7), (: +1,7), (¢ +
Lj+1)),((,5), (6,5 +1),(i+1,j+1)))

(defun genera-facets-i-j (i j)
(list (list-up-i-j i j) (list-down-i-j i j)))

Now, we can define the genera-facets-image-2d function which generates the
simplexes of a list of lists of 0’s and 1’s 1ol.

(defun genera-facets-image-2d (1lol)
(genera-facets-image-aux lol 0))

The above function calls the more general function genera-facets-image-aux
which takes two arguments: a list of lists of 0’s and 1’s 1ol and a natural number
j. The function genera-facets-image-aux must be understood as the procedure
which generates the simplexes of the list of lists of 0’s and 1’s 1ol which is the
sublist located from position j of another list of lists of 0’s and 1’s, let us called

it lol-main.



(defun genera-facets-image-aux (lol j)
(if (endp lol)
nil
(append (genera-facets-list (car lol) 0 j)
(genera-facets-image-aux (cdr lol) (1+ j)))))

For each one of the lists of 0’s and 1’s of 1ol and the position of that list
in lol-main, the above function invokes the function genera-facets-list. The
function genera-facets-1list must be understood as the procedure which gener-
ates the simplexes of the list of 0’s and 1’s 1ist which is the sublist located from
position 7 of the list of position j of lol-main.

(defun genera-facets-list (list i j)
(if (endp list)
nil
(if (equal (car list) 1)
(append (genera-facets-i-j i j) (genera-facets-list (cdr list) (1+ i) j))
(genera-facets-list (cdr list) (1+ i) j))))

Once we have defined our programs in ACL2 we can prove theorems about
them. To be more concrete, we have proved both the correctness a the complete-
ness of our program genera-facets-image-2d.

First of all we state the ACL2 theorem which ensures the completeness of
genera-facets-image-2d.

ACL2 Theorem 12 Let image be a 2D-image represented by means of a 2 di-
mensional array, then, Vi, j € N such that the value of the image in position (i, j)
of the array is 1, then, the simplexes ((, §), (i4+1, ), (i+1, j+1)) and ((4, 5), (¢, 7+
1), (i+1,7+1)) are in the list generated by the genera-facets-image-2d function
taking as input image.

To state this theorem in ACL2, we need the ACL2 functions: (natp n),
which is a test function returning t if n is a natural number and nil other-
wise; (nth i 1s), which returns the value of position i (a natural number) of
the list 1s; and, (member-equal x 1s), which returns t if x is equal to some of
the elements of 1s (a list).

(defthm genera-facets-image-2d-completeness
(implies (and (2d-imagep image)
(natp i)
(natp j)
(equal (nth i (nth j image)) 1))
(and (member-equal (list-up-i-j i j) (genera-facets-image-2d image))
(member-equal (list-down-i-j i j) (genera-facets-image-2d image)))))

Once we have proved the completeness of our program, we must prove its
correctness. This task is handled by means of the following lemmas.

ACL2 Theorem 13 Let image be a 2D-image represented by means of a 2 di-
mensional array and simplex be an element of the output generated by genera-facets-image-2d
taking as input image. Then if simplex is of the form ((¢,7), (i+1,7), (i+1,j+1))



with 4 and j natural numbers, then the element ((¢,7),(¢,7+1),(¢+1,j+1)) is
also in the output generated by genera-facets-image-2d taking as input image.

To state this theorem in ACL2 we need some auxiliary functions. Namely,
member-list-up, which returns t if its input is a list of the form ((z,7), (i +
1,7),(i + 1,5+ 1)) and nil otherwise; and list-down, which from a list of the
form ((z,7), (i4+1,7), (¢ +1,5+1)) returns the list ((z,7), (4,5 +1), i+ 1,5+ 1)).

(defthm genera-facets-image-correctness-1
(implies (and (2d-imagep image)
(member-equal simplex (genera-facets-image-2d image))
(member-list-up simplex))
(member-equal (list-down simplex) (genera-facets-image-2d image))))

ACL2 Theorem 14 Let image be a 2D-image represented by means of a 2 di-
mensional array and simplex be an element of the output generated by genera-facets-image-2d
taking as input image. Then if simplex is of the form ((i,7), (i,5+1), (i+1,j+1))
with ¢ and j natural numbers, then the element ((¢,7),(i+1,7),(¢+1,5+1)) is
also in the output generated by genera-facets-image-2d taking as input image.
To state this theorem in ACL2 we need some auxiliary functions. Namely,
member-list-down, which returns t if its input is a list of the form ((4, ), (¢,j +
1),(i+ 1,57+ 1)) and nil otherwise; and list-up, which from a list of the form
((¢,4), (4,5 +1), (i 4+ 1,45+ 1)) returns the list ((4,7), (¢ +1,7), (¢ + 1,5+ 1)).

(defthm genera-facets-image-correctness-2
(implies (and (2d-imagep image)
(member-equal simplex (genera-facets-image-2d image))
(member-list-down simplex))
(member-equal (list-up simplex) (genera-facets-image-2d image))))

ACL2 Theorem 15 Let image be a 2D-image represented by means of a 2 di-
mensional array and simplex be an element of the output generated by genera-facets-image-2d
taking as input image of the form ((¢,7), (i +1,7),(i+ 1,5+ 1)) or ((¢,5), (¢,7 +
1),(i4+ 1,5 + 1)) with ¢ and j natural numbers. Then, the element of position
(i,7) of image is 1.
To state this theorem in ACL2 we use some ACL2 functions which have not
been used previously: caar which returns the first element of the first element of
a list and cadar which returns the second element of the first element of a list.

(defthm genera-facets-image-correctness-3
(implies (and (2d-imagep image)
(member-equal simplex (genera-facets-image-2d image)))
(equal (nth (caar simplex) (nth (cadar simplex) image)) 1)))

Let us present some remarks about the proof of these theorems which state
both the completeness and the correctness of the genera-facets-image-2d pro-
gram.
First of all, it is worthwhile noting that the implementation of the genera-facets-image-2d
function, and its auxiliar ones, follows simple recursive schemas, that are suitable
for the induction heuristics of the ACL2 theorem prover.



Let us present now some particularity of the auxiliary lemmas needed in our
development of the proof of the main theorems. As we have seen in the defini-
tion of genera-facets-image-aux, this function invokes the genera-facets-list
function with arguments (car 1list), 0 and j. Therefore, it is sensible to think
that in the proof of our theorems we are going to need some auxiliary lemmas
such as:

(thm (implies (and (list-0-1 x) (natp j)
(member-equal simplex (genera-facets-list x 0 j)))
(equal (nth (caar simplex) x) 1))

that is to say, a lemma which involves a call to (genera-facets-list x 0 j).
However, ACL2 has some problems to find a proof of theorems such as the
previous one, since it does not find a good inductive schema for reasoning. On
the contrary, for ACL2 is much more easier to find a proof of theorems such as:

(thm (implies (and (list-0-1 x) (matp i) (natp j)
(member-equal simplex (genera-facets-list x i j)))
(equal (nth (- (caar simplex) i) x) 1))

that is to say, lemmas that are general cases of the previous ones.

Taking this question into account in the development of our proofs, the certi-
fication of the completeness and correctness theorems does not mean any special
trouble.

In this way, we have proved the completeness and correctness of our imple-
mentation of Algorithm 7 by means of the program genera-facets-image-2d.

In the case of 3D-digital images the development is very similar and has not
involve any special hidrance.

5 Formalization in Coq/SSReflect

For the formalization of Algorithm 7 in CoQ, we decided to use the libraries
already provided in the SSREFLECT library.

First of all, we define the notion of digital image. A digital image is defined
as a sequence of sequences of boolean elements.

Definition image : Type := seq (seq bool).

Following, the same schema presented in the case of ACL2, we can define a
function which implements Algorithm 7.

Definition genera_facets_image_2d (image: image) :=
genera_facets_image_aux image O.

The ACL2 theorems presented in the previous section have been also formal-
ized in COQ/SSREFLECT.

SSReflect Theorem 16 Let image be a 2D-image represented by means of a
2 dimensional array, then, Vi, j € N such that the value of the image in position
(i,7) of the array is 1, then, the simplexes ((4,7), (¢ + 1,7), (i + 1,5 + 1)) and



((¢,7), (1,j41), (i+1, j+1)) are in the list generated by the genera facets_image 2d
function taking as input image.

Lemma genera_facets_image_2d_completeness : forall (image: image)
(i j:nat),
(nth nil (nth nil im i) j) -> ((List_up_i_j i j) \in (
genera_facets_image_2d image)) && ((list_down_i_j i j) \in (
genera_facets_image_2d image)).

SSReflect Theorem 17 Let image be a 2D-image represented by means of

a 2 dimensional array and simplex be an element of the output generated by
genera facets_image 2d taking as input image. Then if simplex is of the form
((4,7),(i+1,4),(i+ 1,5+ 1)) with ¢ and j natural numbers, then the element
((¢,7), (4, j4+1), (i+1, j+1)) is also in the output generated by genera facets_image.2d
taking as input image.

Lemma genera_facets_image_correctness_1 : forall (i j:nat) (image:
image): ((list_up_i_j i j)\in (genera_facets_image_2d image))
-> ((list_down_i_j i j)\in (genera_facets_image_2d image)) .

SSReflect Theorem 18 Let image be a 2D-image represented by means of

a 2 dimensional array and simplex be an element of the output generated by
genera-facets-image-2d taking as input image. Then if simplex is of the form
((4,4), (4, +1),(¢ + 1,4 + 1)) with ¢ and j natural numbers, then the element
((i,7), (i4+1,7), (i+1, j4+1)) is also in the output generated by genera-facets-image-2d
taking as input image.

Lemma genera_facets_image_correctness_2 : forall (i j:nat) (image:
image): ((list_down_i_j i j)\in (genera_facets_image_2d image
)) —> ((list_up_i_j i j)\in (genera_facets_image_2d image)).

SSReflect Theorem 19 Let image be a 2D-image represented by means of
a 2 dimensional array and simplex be an element of the output generated by
genera-facets-image-2d taking as input image of the form ((¢,7), (¢ + 1,7), (¢ +
1,5 +1)) or ((¢,4), (4,5 +1),(i+ 1,5+ 1)) with ¢ and j natural numbers. Then,
the element of position (¢,7) of image is 1.

Lemma genera_facets_image_correctness_3 : forall (i j:nat) (image:
image): ((list_up_i_j i j) \in (genera_facets_image_2d image)
) => (nth nil (ath nil s i) j).

In this way, we have proved the correctness of Algorithm 7 in CoQ.



6 Conclusions and further work

In this report, we have presented a methodology to study digital images by
means of simplicial complexes. Moreover, we have formalized in both the ACL2
Theorem Prover and the proof assistant Coq of the correctness of our algorithms.

As further work we can undertake the task of formalizing reduction algo-
rithms for digital images which keep topological properties: on the one hand, we
can verify algorithms which reduce the original image; on the other hand, we
can formalize the reduction of simplicial complexes applying techniques such as
Morse theory [13].

Another topic is related to the study of the feasibility of applying our methods
to the study of real medical images.
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