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Abstract. In this work we present a formalization of the Rank Nullity

theorem of Linear Algebra in Isabelle/HOL. The formalization is of in-
terest because of various reasons. First, it has been carried out based
on the representation of mathematical structures proposed in the HOL
Multivariate Analysis library of Isabelle/HOL (which is part of the stan-
dard distribution of the proof assistant). Hence, our proof shows the ad-
equacy of such an infrastructure for the formalization of Linear Algebra.
Moreover, we have enriched the proof with an additional formalization
of its computational meaning; to this purpose, we chose to implement
the Gauss-Jordan elimination algorithm for matrices over �elds, prove it
correct, and then apply the Isabelle code generation facility that permits
to execute the formalized algorithm. For the algorithm to be code gener-
ated, we use again the implementation of matrices available in the HOL
Multivariate Analysis library, and enrich it with some necessary features.
We report on the precise modi�cations that we had to introduce to get
code execution from the original representation, and also on the perfor-
mance of the code obtained. We also present an alternative veri�ed type
re�nement of vectors and matrices that outperforms the original version.
This re�nement performs well enough as to be applied to the computa-
tion of the rank of some biomedical digital images. Our work proves itself
as a suitable basis for the formalization of Linear Algebra algorithms in
HOL theorem provers that can be successfully applied for computations
of real case studies.
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Introduction

In standard mathematical practice, formalization of results and execution of al-
gorithms are usually (and unfortunately) rather separate concerns. Computer
Algebra systems (CAS) are commonly seen as black boxes in which one has to
trust, despite some well-known major errors in their computations, and mathe-
matical proofs are more commonly carried out by mathematicians with pencil &
paper, and sometimes formalized with the help of a proving assistant. Neverthe-
less, some of the features of each of these tasks (formalization and computation)



are considered as a burden for the other one; computation demands optimized
versions of algorithms, and very usually ad hoc representations of mathematical
structures, and formalization demands more intricate concepts and de�nitions
in which proofs have to rely on.

In this paper, we present a case study in which we aim at developing a formal-
ization in Linear Algebra in which computations are still posible. From an ex-
isting library in the Isabelle/HOL distribution (HOL Multivariate Analysis [15],
HMA in the sequel), which has been fruitfully applied in the formalization of
major mathematical results (both in this system and also in HOL-Light, that
shares a similar representation), we formalize a mathematical result, known as
the �Rank Nullity theorem�.

The result is of interest by itself in Linear Algebra (some textbooks name it
the Fundamental theorem of Linear Algebra) but it is even more interesting if
we consider that each linear form between �nite dimensional vector spaces can
be represented by means of a matrix wrt to some provided bases. Every matrix
over a �eld can be turned into a matrix in reduced row echelon form (rref, from
here on) by means of operations that preserve the behavior of the linear form,
but change the underlying bases; the number of non zero rows of such matrix
is equal to the rank of the (original) linear form; the number of zero rows is the
dimension of its kernel.

The best-known algorithm for the computation of the rref of a matrix is
the Gauss-Jordan elimination method. Interestingly, we have implemented the
algorithm over the representation of matrices in the HMA library; this repre-
sentation was introduced by J. Harrison in HOL-Light and successfully applied
in the formalization of Mathematics in various theorem provers, because of its
succinctness and its taking advantage of the underlying type system; vectors are
represented as functions over an underlying �nite type; matrices as vectors of
vectors. A priori, �nite (enumerable) types have nice computational features,
since mathematical and logical operations (traversing, epsilon operator, univer-
sal or existential quanti�ers) over them can be executed. Nevertheless, and to
the best of our knowledge, this idea has not been explored before, and requires
additional features that we present here. In this work, we link the original state-
ment of the Rank Nullity theorem together with the Gauss-Jordan elimination
algorithm, and can use both tools to produce certi�ed computations of the rank
and kernel of linear forms.

As we will illustrate with some examples, the performance of the algorithm is
rather poor, mainly because of the data structure used to represent matrices; the
executable algorithm cannot be used for real applications, but only for tests (for
instance, it could be used for experimental testing or as a reference algorithm for
more optimized versions of it). Therefore, we introduce a data type re�nement
that allows us to obtain a version of the algorithm performing nicely in matrices
of a considerable size (but still far from specialized Computer Algebra libraries).

The paper is divided as follows; in Section 1 we describe the Isabelle features
in which our development is based on. In Section 2 we present the Rank Nullity
theorem, as well as its Isabelle formalization. In Section 3 we introduce the notion



of rref and the formalization of the Gauss-Jordan algorithm. In Section 4 we
present the choices and setup of the Isabelle code generation tool that enable to
execute operations and algorithms. In Section 5 we bring together the previous
ingredients and present the generated SML code from the original algorithm.
Additionally, we present a re�nement that enabled us to improve the performance
of the certi�ed algorithm. In Section 6 we draw some conclusions and present
related works, as well as possible future research lines.

1 Isabelle/HOL

Isabelle [21] is a generic interactive proving assistant, on top of which di�erent
logics can be implemented; the most explored of these variety of logics is Higher-
Order logic (or HOL), and it is also the one where a greater number of tools
(code generation, automatic proof procedures) are available. We do not aim at
presenting here the fundamentals of Isabelle/HOL, just to introduce the main
features that are used in our work.

The HOL type system is rather simple; it is based on non-empty types, func-
tion types (⇒) and type constructors κ that can be applied to already existing
types (nat, bool) or type variables (α, β). Types can be also introduced by enu-
meration (bool) or by induction, as lists (by means of the datatype command).
Additionally, new types can be also de�ned as non-empty subsets of already ex-
isting types by means of the typedef command; the command takes a set de�ned
by comprehension over a given type {x :: α. P x}, and de�nes a new type σ. We
will refer to this new type as abstract, and to the underlying one as concrete
(this notation is particular of the code generation setting, where the abstract
type cannot be directly code generated, whereas the concrete one, under precise
assumptions, can be; see [8] for details).

Isabelle also introduces type classes in a similar fashion to Haskell; a type
class is de�ned by a collection of operators (over a single type variable) and
premises over them. For instance, the HMA library has a type class �eld for such
algebraic structure. Concrete types (real, rat) can be proved to be instances of a
given type class (�eld in our example). Type classes can be also used to impose
additional restrictions over type variables; for instance, the expression (x :: α ::
�eld) imposes that the type variable α poses the structure and properties stated
in the �eld type class, and can be later replaced exclusively by types which are
instances of such type class.

1.1 HOL Multivariate Analysis library

The HOL Multivariate Analysis library is a set of Isabelle theories which con-
tains a wide range of results in di�erent mathematical �elds such as Analysis,
Topology or Linear Algebra. They are greatly inspired by the impressive work of
J. Harrison in HOL-Light [10], which includes proofs of intricate theorems (such
as the Stone-Weierstrass theorem) and that has also been successfully used as
a basis for the Flyspeck project [11], aiming at a formally veri�ed proof of the



Kepler conjecture by T. Hales. Among the fundamentals of the library, one of the
keys is the representation of n-dimensional vectors over a given type (Fn, where
F stands for a generic �eld, or in Isabelle jargon a type variable α :: �eld) taking
into account that the HOL type system lacks of dependent types. A detailed
explanation can be found in [9, Section 2]. The idea is to represent vectors over
α by means of functions from a �nite type variable β :: �nite to α; for proving
purposes, this type de�nition is usually su�cient; if we need to introduce vectors
of a concrete dimension n, β can be replaced by a (�nite) type of such cardinality
(we present in Section 4 a possible representation of such types).

The Isabelle type de�nition is as follows; the functions vec-nth and vec-lambda
are the morphisms between the abstract data type vec and the underlying con-
crete data type, functions with �nite domain:

typedef (α,β) vec = UNIV :: ((β::finite) ⇒ α) set

morphisms vec-nth vec-lambda ..

The previous type also admits in Isabelle the shorter notation αˆβ. The
idea of using underlying �nite types for vectors' indexes has great advantages,
as already pointed out by Harrison, from the formalization point of view. For
instance, the type system enforces that operations on vectors (such as addition or
multiplication) are only performed over vectors of equal dimension, i.e., vectors
which indexing types are exactly the same (this would not be the case if we
were to use, for instance, lists as vectors). Moreover, the functional �avor of
operations and properties over vectors is kept (for instance, vector addition can
be de�ned in a pointwise manner).

The representation of matrices is then performed in a natural way based on
the one of vectors by iterating the previous construction (matrices over a type
α will be terms of type αˆmˆn, where m and n stand for �nite type variables).

In the HMA library already appear some de�nitions and properties of ma-
trices de�ned in this way (multiplication, invertible matrices, the relationship
between linear forms and matrices, determinants). Nevertheless, we missed some
other standard results in Linear Algebra, that we had to introduce, such as the
notion of coordinates wrt a particular (not the canonical one) basis, the in�uence
of changes of bases over a given matrix, or the elementary row (and column) op-
erations over matrices (exchanging rows, multiplying a row by a constant and
adding to a row another one multiplied by a constant). Elementary operations
also give place to the notion of elementary matrices; indeed, these are the in-
vertible matrices; each elementary matrix represents a change of bases.

Another subject that has not been explored neither in the Isabelle HMA
library, nor in the HOL-Light one, is the executability of the previous data types
and operations. As we will see in Section 4, the �nite type class falls short for
enabling executability of some operations over vectors and matrices, and some
additional type classes have to be used.

Finally, another aspect that has not been explored in the HMA library is nu-
merical Linear Algebra. There is no implementation of common algorithms such
as Gaussian elimination or diagonalization. We aim at showing that the HMA



library provides a framework where algorithms over matrices can be formalized,
executed and coupled with its mathematical meaning.

1.2 Code generation

Isabelle/HOL o�ers a facility to generate code from speci�cations of data types,
type classes and de�nitions over them, as long as these elements have an exe-
cutable representation in the target languages (SML, Haskell, OCaml or Scala).
The code generator is part of the trusted kernel of Isabelle [7].

As we explained before, the vec type is an abstract type, produced as a sub-
set of the concrete type of functions from a �nite type to a variable type; this
type cannot be directly mapped to an SML type, since its de�nition, a priori,
could involve HOL logical operators unavailable in SML. In the code generation
process, a data type re�nement from the abstract to the concrete type must be
de�ned; the concrete type is then the one chosen to appear in the target pro-
gramming language. A similar re�nement is carried out over the operations of
the abstract type; de�nitions over the concrete data type (functions, in our case)
have to be produced, and proved equivalent (modulo type morphisms) to the
ones over the abstract type. The general idea is that formalizations have to be
carried out over the abstract representation, whereas the concrete representa-
tions are exclusively used during the code generation process. The methodology
also admits iterative re�nements, as long as their equivalence is always proved.
A detailed explanation of the methodology can be found in [7]; an interesting
case study in [5].

In Section 5 we present two di�erent re�nements of the vec Isabelle type; the
�rst one uses functions over �nite domains, and is thought for simplicity. The
second one uses immutable arrays (represented in the Isabelle type iarray) and
presents a remarkable performance when generated to SML.

2 The Rank Nullity theorem of Linear Algebra

The Rank Nullity theorem is a well-known result in Linear Algebra; it states
that the dimension of a �nite-dimensional vector space V is equal to the sum of
the dimensions of the range of f and its kernel, being f any linear form from
V to a vector space W . Several textbooks impose the additional restriction of
W being also �nite-dimensional, but this restriction (as can be observed in the
Isabelle formalization) is only needed in the version of the theorem for matrices
representing linear forms (otherwise, we would have a matrix with an in�nite
number of columns representing the linear form).

The Isabelle statement of the result is as follows:

theorem rank_nullity_theorem:

assumes "linear (f::(α::{euclidean_space}) => (β::{real_vector}))"
shows "DIM (α) = dim {x. f x = 0} + dim (range f)"



Following the ideas in the HMA library, the vector spaces are represented by
means of types belonging to such type classes; the �nite-dimensional premise on
the source vector space is part of the de�nition of the type class euclidean-space
(in the hierarchy of algebraic structures of the HMA library [16], this is the
�rst type class to include the requisite of being �nite-dimensional). Accordingly,
real-vector is the type class representing vector spaces over R. The operator dim
represents the dimension of a subset of a type, whereas DIM is equivalent to
dim but referred to the carrier set of that type.

There is one remarkable result that we didn't found in any textbook, but
that proved crucial in the formalization of the theorem. Its Isabelle statement
reads as follows:

lemma inj_on_extended:

assumes lf: "linear f" and f: "finite C"

and ind_C: "independent C" and C_eq: "C = B ∪ W"

and disj_set: "B ∩ W = {}" and span_B: "{x. f x = 0} ⊆ span B"

shows "inj_on f W"

The result claims that any linear form f is injective over any collection (W )
of linearly independent elements whose images are a basis of the range; this is
required to prove that, given {e1 . . . em} a basis of ker f , when we complete this
basis up to a basis {e1 . . . en} of the vector space V , the linear form f is injective
over the elements W = {em+1 . . . en} and therefore its cardinality is the same
than the one of {fem+1 . . . fen} (and equal to the dimension of the range of f).1

The Isabelle statement of the Rank Nullity theorem over matrices turns out
to be direct; we make use of a result in the HMA library (labeled as matrix-
works) which states that, given a linear form f , f(x :: realˆn) is equal to the
(matrix by vector) product of the matrix associated to f and x. The picture
has slightly changed wrt the Isabelle statement of the Rank Nullity theorem;
where the source and target vector spaces were, respectively, an Euclidean space
and a real vector space (of any dimension), they are now replaced by a realˆnˆm
matrix, i.e., the vector spaces realˆn and realˆm.

lemma rank_nullity_theorem_matrices:

�xes A::"real^α^β"
shows "DIM (real^α) = dim (null_space A) + dim (col_space A)"

This statement is used to compute the dimensions of the rank and kernel
of linear forms by means of their associated matrices. It exploits the fact that
the rank of a matrix is de�ned to be the dimension of its column space, aka as
column rank, which is the vector space generated by its columns; this dimension
is also equal to the ones of the row space and of the range space. The previous
formalization [1] is part of the Isabelle repository; thanks to the infrastructure
in the HMA library, it summed up only nine pages of Isabelle sources.

1 In our opinion, this result is a typical example of a property that is unavoidable in
a formalized proof, but usually skipped in paper & pencil proofs.



3 The Gauss-Jordan elimination method

There are several ways of computing the dimension of the range (and conse-
quently of the kernel) of a linear form. In our development we chose the Gauss-
Jordan elimination method. The main reason is that this has several di�erent
applications; it can be used to solve systems of linear equations (Nipkow [20]
veri�ed the Gauss-Jordan elimination algorithm to this aim; the version used
in that work is very succinct, but works exclusively for input square matrices
with unique solution); Gauss-Jordan elimination also performs quite well in the
computation of inverse matrices and can be used in the computation of deter-
minants. The algorithm may not be optimal for any of those problems (indeed,
it is not), but algorithmic re�nements could be used in later stages to reach bet-
ter performing algorithms for each of the previous tasks, once the mathematical
properties of the original algorithm are stated and proved.

The Gauss-Jordan algorithm is based on the computation of the reduced row
echelon form of (probably non-square) matrices. The rref of a matrix is de�ned
as follows (obtained from [22]):

1. All rows consisting only of 0's appear at the bottom of the matrix.
2. In any nonzero row, the �rst nonzero entry is a 1. This entry is called a

leading entry.
3. For any two consecutive rows, the leading entry of the lower row is to the

right of the leading entry of the upper row.
4. Any column that contains a leading entry has 0's in all other positions.

The previous de�nition of rref is valid for non-square matrices. Interestingly,
the rref (R) of a matrix A can be obtained by performing exclusively row opera-
tions, in such a way that R = E1 . . . EkA, where Ei denote elementary matrices;
since elementary operations (and elementary matrices) preserve the rank of a
matrix, computing the rank of A can be reduced to computing the rank of R
(its number of nonzero rows).

One way to achieve the collection of elementary row operations that reach the
rref of a matrix is through the Gauss-Jordan elimination algorithm2; versions of
the algorithm abound in the literature; however, we preferred to introduce our
own version, thought to ease the formalization. In it, the algorithm is described
by means of exclusively elementary row operations, Ei so that the rank of a
matrix A is preserved because of the previous formula R = E1 . . . EkA. Addi-
tionally, the algorithm exploits the underlying (�nite) representation of matrices,
where both the indexes of rows and columns are represented by �nite types; the
type of columns indexes needs to be traversed, and thus it is restricted to be an
instance of the enum type class; this type class is part of the Isabelle library,
and represents types which carrier set is explicit.

2 A somehow surprising point is that this algorithm is not even mentioned in [22], even
if a detailed description of elementary operations over matrices, rref or invertible ma-
trices is presented; this underscores our claim that algorithmic and its mathematical
meaning are often presented as di�erent subjects.



The algorithm is de�ned by the following simple steps; let A be a matrix; let
l be an index which stores the row where the pivot (the leading entry) should
be placed in the column j (the initial value of l is 0); let A i denote the row i of
the matrix; let us start from column j = 0:

1. check that column j has a nonzero element from row l onwards; if it hasn't,
skip to step 1 with A, index l and column j+1; if it has (let us name it ai,j)
skip to step 2;

2. the element ai,j is pivoted to the position al,j , by switching rows i and l;

3. A l is multiplied by the inverse of the pivoted element, now al,j ;

4. the rest of the rows (for instance, k) are applied the elementary row operation
Ak − (ak,j ∗A l);

5. skip to step 1, with the computed matrix, index l + 1 and column j + 1.

The algorithm is terminating, since the columns' indexes are elements of a
�nite (and enumerable) type. Additionally, it satis�es di�erent properties. For
instance, when applied from column 0 up to column k, the �rst k + 1 columns
will be in rref. Note that implicitly we are imposing additional premises in the
types indexing columns (and rows); it must have some notion of order, since the
proofs will be performed by induction over columns' indexes; we made use of
an additional type class mod-type, which resembles the structure Z/nZ, together
with some required arithmetic operations and conversion functions from it to the
integers. In particular, a representation of numeral types in the Isabelle library
(represented by the bit0 and bit1 type constructors over �nite types) which we
will use later for representing concrete matrices of a given dimension is instance
of this type class.

Additionally, the algorithm performs exclusively elementary row operations.
The crucial result in the formalization of the algorithm preserving the rank of
matrices is that elementary operations (i.e., invertible matrices) applied to a
matrix preserve its rank:

lemma invertible_matrix_mult_left_rank':

�xes A::"real^'n^'m" and P::"real^'m^'m"

assumes "invertible P" and "B = P ** A"

shows "rank B = rank A"

As a consequence of the previous result, we also proved that linear forms are
preserved by elementary operations (only the underlying bases change). Note
that the previous machinery is not particular to our formalization, but could be
also reused for di�erent algorithms in numerical Linear Algebra. We formalized
a result stating that the previous algorithm produces a rref.

Moreover, the presented version of the algorithm is executable, as long as the
types indexing rows and columns can be code generated; we present in Section 4
the details of such process.



4 Code generation from �nite types

Up to now, we have used in our development an abstract data type vec (and
its iterated construction for representing matrices), which underlying concrete
type is functions with an indexing type; the indexing type is instance of the
�nite, enum and mod-type type classes; these classes demand the universe of the
underlying type to be �nite, to have an explicit enumeration of their universe,
and some arithmetical possibilities.

The �nite type class is enough to generate code for some abstract data struc-
tures, such as �nite sets, which are later mapped in the target programming
language (for instance, SML) to data structures such as lists or red black trees
(see [19] for details and benchmarks). Our case study is a bit more demanding,
since the indexing types of vectors and matrices have to be also enumerable. The
enum type class allows us to execute operations such as matrix multiplication,
A ∗ B (as long as the type of columns in A is equal to the type of rows in B),
that a row consists exclusively of zeros (traversing its indexing type), algorithms
traversing the universe of the rows or columns indexing types, and also oper-
ations that involve logical operators (∀, ∃) or the Hilbert's ε operator, such as
�every element in a row is equal to zero� or �select the least position in a row
whose element is not zero�.

The standard setup of the Isabelle code generator for (�nite) sets is thought
for working with sets of generic types (for instance, sets of natural numbers),
mapping them to lists on the target programming language. This poses some
restrictions, since operations such as coset ∅ cannot be computed over arbitrary
types, whereas in an enumerable type this is equal to a set containing every
element of the enumerable type (and therefore, in the target programming lan-
guage, the result of the previous operation will produce a list containing every
element in the corresponding type). The particular setup enabling these kind of
calculations (only for enumerable types), which are ad-hoc for our case study,
can be found in the �le Code_Set of our development [2].

Another di�erent but related issue is the election of a concrete type to be
used as index of vectors and matrices; we already know that the type has to be
instance of the type classes �nite, enum and mod-type (indeed, mod-type can
be proved to be a subclass of enum, but we preferred to keep them both since
they served in our work for di�erent purposes). The Isabelle library contains
an implementation of numeral types used to represent �nite types of any cardi-
nality. It is based on the binary representation of natural numbers (by means
of the two type constructors, bit0 and bit1, applied to underlying �nite types,
and of a singleton type constructor num1 ). From the previous constructors, an
Isabelle type representing Z/5Z (or 5 in Isabelle notation) can be used, which
is internally represented as bit1 (bit0 (num1)). The representation of the (ab-
stract) type 5 is the set {0, 1, 2, 3, 4 :: 5}; its concrete representation is the subset
{0, 1, 2, 3, 4 :: int}. The integers as underlying type allow to reuse (with adequate
modi�cations) integer division in the resulting �nite types. As part of our devel-
opment, we had to prove that the num1, bit0 and bit1 type constructors were
instances of the enum type class.



The Isabelle library already provides basic arithmetic functions for the nu-
meral types, with de�nitions of addition, substraction, multiplication and divi-
sion. Note that, for these operations to be de�ned generally for every cardinal, the
cardinal of the �nite type must be computed on demand (adding 3 and 4 in type
5 must return 2). To this aim, the Isabelle library has a type class (card_UNIV )
for types whose cardinal is computable; we proved that the previous numeral
types were instances of such class, therefore enabling the computation of their
cardinals (see �le Numeral_Type_Addenda in [2] for the complete proofs).

5 Bringing it all back home: formalization and execution

In the previous section we have presented a setup to allow execution of the
vectors indexing types. Nevertheless, as we mentioned in our presentation of the
vec data type, this is itself an abstract type which also has to be re�ned to
concrete data types that can be code generated.

We present here two such re�nements. The �rst one consists in re�ning the
abstract type vec to its underlying concrete type functions (with �nite domain
in the index). We were aware of its not very encouraging performance, but the
closeness between both representations greatly simpli�es the process of formal-
izing the re�nement; at a low cost, an executable version of the algorithm can
be achieved, capable of computing the rref of matrices of small sizes.

The second data type re�nement is more informative; we re�ne the vec data
type to the Isabelle type iarray, representing immutable arrays (which are gen-
erated in SML to the Vector structure [23]).

In order to achieve the re�nement of abstract matrices to functions, the type
morphisms between the type vec and its counterpart (functions) have to be
labeled precisely in the code generator setup. Additionally, every operation over
the abstract data type has to be mapped to an operation over the concrete data
type (and their behavioral equivalence proved). As long as our algorithm is based
on (abstract) operations which are mapped to corresponding concrete operations,
the later ones will be correctly code generated. As dealing with matrices as
functions can become rather cumbersome, we also de�ned additional functions
for conversion between lists of lists and functions (so that the input and output
of the algorithm are presented to the user as lists of lists).

One subtlety appears at this step; from a given list of elements, a vector
of a certain dimension is to be produced; the user must add a type annotation
declaring of which dimension the generated vector has to be (in other words, the
size of the list needs to be known in advance).

Below we present examples of the evaluation (by means of SML generated
code) of the Gauss-Jordan algorithm to compute the dimension of the rank
(which is also the one of the column space) and the one of the null space of given
matrices of reals; the evaluation can be also performed in Isabelle (and therefore
the code generator would not intervene):

value[code] "rank (list_of_lists_to_matrix



[[1,0,0,7,5],[1,0,4,8,-1],[1,0,0,9,8],[1,2,3,6,5]]::real^5^4)"

value[code] "dim (null_space (list_of_lists_to_matrix

[[1,0,0,7,5],[1,0,4,8,-1],[1,0,0,9,8],[1,2,3,6,5]]::real^5^4))"

The previous computations have been carried out with matrices represented
as functions. They are almost instantaneous, but the computation of the algo-
rithm over matrices of size 10× 10 is already very lengthy (various minutes).

The following re�nement was thought for improving performance. The Is-
abelle type iarray (the type itself is just a wrapper of lists) is code generated
to the SML Vector structure; the SML structure allows constant time for access
operations, improving, a priori, an implementation by lists. The code equations
that perform the data type and operations conversions can be found in �le Ma-
trix_To_IArray in [2]. As in our previous example, the data type re�nement de-
mands labeling the morphisms between the abstract type (vec) and the concrete
one (iarray), and introducing operations on iarrays that are proven equivalent
to the original abstract ones. These proofs were almost straightforward, since the
iarray and vec representations share a functional �avor (in the way of accessing
elements) that can be exploited in proofs.

Our Gauss-Jordan algorithm was implemented for matrices with entries over
a �eld ; in our execution experiments we carried out computations over the
Isabelle types real, rat (for Q) and bit (an implementation of Z/2Z); the Is-
abelle type real admits serialisations to an SML ad hoc type (quotients of SML
IntInf.int elements) and also to the SML Real.real type. The former o�ers arbi-
trary precision, but on a standard machine, using the optimizer compiler ML-
ton, only (randomly generated) matrices up to 100× 100 size can be computed
(Gauss-Jordan algorithm in Mathematica® becomes rather lengthy at sizes over
500× 500). Applying pro�ling techniques, we discovered that most of the com-
puting time was used not in matrix operations but in the ones related to quo-
tients operations (normalising quotients and the like3). The latter serialisation is
produced only for computing purposes, since it is inconsistent and su�ers from
numerical stability problems, but allows us to apply Gauss-Jordan elimination
to (randomly generated) matrices up to size 700× 700.

The rat type is also serialised to quotients of IntInf.int pairs; performance
is equal to the one obtained for the �rst serialisation of type real. Finally, we
created our custom serialisation of type bit ; the constants 0 :: bit and 1 :: bit
are mapped to 0 and 1 in IntInf.int ; operations over bit to arithmetic opera-
tions modulo 2 in IntInf.int. This serialisation proved empirically to perform
better than other options such as the SML type Bool, or using IntInf.int with
exhaustive de�nitions of the operations.

With this last serialisation and Poly/ML 5.5 we got to apply Gauss-Jordan
elimination, and compute the rank, of matrices of dimensions up to 2048 ×
2048 size; computing time grows linearly on the number of matrix entries, and
therefore RAM memory becomes the only limitation. For instance, we were able

3 Both MLton and Poly/ML make use of the GMP http://gmplib.org/ set of libraries
for arithmetic.

http://gmplib.org/


to compute the rank of the binary matrix representing the following digital
image (Fig. 1), captured with a confocal microscope from a neuronal culture.
The rank of such matrices permits us to compute the number of connected
components (and can be successfully applied to the computation of the number of
synapses in a neuron, automating a cumbersome task previously made �by hand�
by biologists). See [13] for details about this technique. Additional benchmarks

Fig. 1. Image (2048× 2048 px.) of a neuron captured with a confocal microscope.

and extensive details on the previous and some other tests can be found in a
separate report [3].

6 Related work and Further work

6.1 Related work

From the di�erent theorem provers available in the HOL family, the ones with
a better mathematical library are HOL-Light and Isabelle; this can be easily
checked by reading through their libraries, and corroborated by informal but
informative rankings such as [24]; our work here relies on the foundations that
both systems share and has reused successfully the mathematical machinery
that has been developed there; nevertheless, and to the best of our knowledge,
both of them lack of implementations of numerical Linear Algebra; moreover,
we do not know of any attempt of execution of the de�nitions available in that
libraries. From our point of view, our work is a starting point to �ll a gap
between formalization and execution that could aim at a greater use of these
already powerful libraries.

Some other theorem provers have also formalized the computation of the
rank of linear forms; for instance, the SSRe�ect library of Coq contains the most
extensive e�ort to formalize �nite-dimensional Linear Algebra concepts, aiming
at providing a suitable library for the implementation of the classi�cation of
�nite simple groups. The whole library is based upon �nite-dimensional struc-
tures, and Coq itself is a constructive setting in which proofs and algorithms
are intertwined, so that one would (erroneously) expect that an implementa-
tion of Gauss-Jordan elimination over matrices should be executable; as it is
well known [12, Sect. 4], the extensive use of dependent types' features in the



representation of algebraic structures and matrices, which gives as a product
the simplicity of the proofs, comes at a cost: these de�nitions have been locked
to avoid the heavy computations that they would demand, since they may not
�nish in a reasonable amount of time.

The previous re�ection supports our claim that �nite functions as a working
type for executing matrices are not a good choice; in an e�ort to o�er executabil-
ity of some of the concepts in the SSRe�ect library, a new library CoqEAL [4]
has been carried out in which, by means of types and algorithms re�nements,
computable versions of, for instance, the rank of matrix, are provided.

6.2 Further work and Conclusions

We do not aim at presenting the previous development as a canonical approach to
the the task of bringing together mathematical formalization and execution, but
at showing that proving assistants are mature enough to enable the simultaneous
development of both �elds with some technical e�ort (that once carried out, can
be later reused in di�erent settings). Additionally, one of the �elds in which the
Isabelle/HOL tool is more actively growing at the moment is data types' and
algorithms' re�nements, with the ambitious goal of reducing the gap between
software formalization and working software.

The case study we have presented in this paper can be considered from at
least two di�erent points of view. First, as an experiment in Linear Algebra
formalization, for which the HMA library has shown to be a really adequate
framework. With some technical e�ort in the code generation process, we have
been capable of formalizing and executing the same �abstract� algorithm; in
addition to this, we have developed tools (de�nitions and proofs over row and
column elementary operations) that are applicable in the formalization of nu-
merical Linear Algebra. Second, as an e�ort to get competitive results from a
computational point of view; we have successfully applied some re�nement tech-
niques already available in Isabelle, obtaining formalized programs that can be
executed over matrices of a remarkable size.

Di�erent research lines stay ahead of us. Even if the performance of the
Gauss-Jordan formalized algorithm is quite satisfying, some re�nements could
be thought of to reduce the number of operations that it performs; the algorithm
could be implemented using block matrices that recursively decrease their size
after each iteration of the algorithm. This would reduce the number of operations
performed; on the other hand, it could demand the use of dependent types or
subtypes to de�ne submatrices (or some similar artifact), falling short of the
HOL type system.

Some other improvements of the algorithm are presented in the literature;
for instance, instead of pivoting the �rst nonzero element of a given column,
the maximum element of the same column can be pivoted (�partial pivoting�),
or even the maximum element in the whole submatrix (�total pivoting�); these
strategies are experimentally known to improve the performance of the algorithm
and specially its numerical stability. Instead of improving the performance of the
Gauss-Jordan elimination algorithm, an ad hoc algorithm computing the rank of



matrices could be implemented, and linked by a standard re�nement technique
with rank computation by Gauss-Jordan elimination.

There are further re�nement techniques in Isabelle that we would like to
explore as a natural continuation to our work. The work in [8] presents an in-
frastructure for lifting de�nitions from a concrete data type to an abstract one,
and for transferring proofs from the abstract setting to the concrete one. The
concept is really close to the one we have proposed in this paper, but at the mo-
ment the technology can be applied to Isabelle user de�ned types (as abstract
type) and its underlying concrete types or quotient types. In our setting, it could
have been used to lift de�nitions from functions to the type vec; it is also used
in the code generation process of some of the �elds that we used as examples.
Another interesting Isabelle tool that we would like to explore is Autoref [18];
according to the authors, the tool automatically re�nes algorithms over abstract
concepts to algorithms over concrete implementations; even if our underlying
algebraic structures (vectors or matrices) are not completely �abstract�, it could
be interesting to explore the feasibility of writing down Linear Algebra algo-
rithms in Isabelle in an almost imperative way (as they are usually presented in
textbooks) and rely on the automatic re�nement to translate these algorithms
to executable ones in a functional programming setting, very much in the spirit
of [17]. The previous tools and techniques could be applied to a wide range of
Linear Algebra algorithms, some of them rooted in variants of Gauss-Jordan
elimination.
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