Computability of Homology groups

Jónathan Heras ${ }^{1}$
Department of Mathematics and Computer Science of University of La Rioja jonathan.heras@unirioja.es

Abstract

Some notes about the computability of homology groups of chain complexes. These notes are based on $[3,6,5,7,1,4,2]$.

1 Group theory

Theorem 1 (First Isomorphism Theorem). Let G and H be groups, and let $\varphi: G \rightarrow H$ be a surjective homomorphism, then $H \simeq G / \operatorname{ker} \varphi$.

The above theorem corresponds with first_isog SSREFLECT theorem.
Theorem 2. Let G be a group and $N \unlhd G$. Then, the map

$$
\begin{aligned}
\pi: G & \rightarrow G / N \\
g & \mapsto g N
\end{aligned}
$$

is a surjective homomorphism. Moreover, $\operatorname{ker} \pi=N$.
The above theorem corresponds with ker_coset SSREFLECT theorem.
Definition 1. The direct product of several groups G_{1}, \ldots, G_{n} is the Cartesian product endowed with an operation defined elementwise. The direct sum of the groups G_{1}, \ldots, G_{n} is denoted by $G_{1} \times \ldots \times G_{n}$.

When the groups involved are abelian and written with additive notation, it is common to use the terminology direct sum instead of direct product and use the notation $G \oplus H$ instead of $G \times H$.

Lemma 1 (Lemma 3.6.1 of [3]). If H_{i} is a subgroup of an Abelian group G_{i}, then

$$
\frac{G_{1} \oplus G_{2}}{H_{1} \oplus H_{2}} \simeq \frac{G_{1}}{H_{1}} \oplus \frac{G_{2}}{H_{2}} .
$$

2 Free Abelian Groups

Definition 2. Let G be an Abelian group, a subset S of G is linearly independent if whenever x_{1}, \ldots, x_{n} are distinct elements of S and r_{1}, \ldots, r_{n} are elements in \mathbb{Z}, if

$$
r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}=0
$$

then $r_{i}=0$ for all i.
A basis for G is a linearly independent set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ such that each $g \in G$ can be written uniquely as a finite sum

$$
g=\sum_{i=1}^{n} r_{i} x_{i}, \quad r_{i} \in \mathbb{Z}
$$

An abelian group G is free if it has a basis.
Proposition 1 (Proposition 3.5.2 of [3]). Let G be an Abelian group and let x_{1}, \ldots, x_{n} be distinct nonzero elements of G. The following conditions are equivalent:

1. The set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis of G.
2. The map

$$
\left(r_{1}, \ldots, r_{n}\right) \mapsto r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{n} x_{n}
$$

is an isomorphism from \mathbb{Z}^{n} to G.
3. For each i, the map $r \mapsto r x_{i}$ is injective, and $M=\mathbb{Z} x_{1} \oplus \ldots \oplus \mathbb{Z} x_{n}$.

Definition 3. Let G be an Abelian group and S a subset of G; then, the subgroup generated by S is

$$
\mathbb{Z} S:=\left\{n_{1} x_{1}+n_{2} x_{2}+\cdots+n_{d} x_{d} \mid d \geq 0, n_{i} \in \mathbb{Z}, \text { and } x_{i} \in S\right\}
$$

An abelian group is said to be finitely generated if it is generated by a finite subset.

Remark 1. Every finite group is finitely generated.
Definition 4. Let G be an Abelian group. An element $g \in G$ has finite order if $n g=0$ for some positive integer n. The set of all elements of finite order in G is a subgroup T of G, called the torsion subgroup. We say that G is a torsion group if $G=T$. If T vanishes, we say G is torsion free.

Remark 2. G / T is torsion free.
Remark 3. A free abelian group is necessarily torsion free.
Proposition 2 (Proposition 3.5.5 of [3]). Any two bases of a finitely generated free Abelian group have the same cardinality.

Definition 5. The rank of a finitely generated free abelian group is the cardinal of any basis.

Proposition 3 (Grushko theorem). Let G and H be finitely generated groups. Then $\operatorname{rank}(G \oplus H)=\operatorname{rank}(G)+\operatorname{rank}(H)$.
is p_rank_dprod SSREFLECT theorem?.
Proposition 4 (Corollary 3.5.8 of [3]). Every subgroup of a finitely generated abelian group is finitely generated.

Proposition 5. Any quotient of a finitely generated Abelian group is finitely generated Abelian (simply take the images of the generators in the quotient).

Theorem 3 (Corollary 10.16 of [7]). Let G be an Abelian Group and H be a subgroup G such that G / H is free abelian, then H is a direct summand of G - that is, $G=H \oplus K$ where $K \leqslant G$ and $K \simeq G / H$.

Theorem 4 (Theorem 8.5 of [5]). Let G be a finitely generated Abelian group, and let T be the torsion subgroup of G. Then T is finite and G / T is free.

Lemma 2 (Lemma 11.1 of [6]). Let G be a free Abelian group of rank n. If H is a subgroup of G, then H is free of rank $r \leq n$.

Lemma 3 (Lemma 11.2 of [6]). If G is a free abelian group, any subgroup H of G is free.

Theorem 5 (Theorem 11.3 of [6]). Let G and H be free abelian groups of ranks n and m respectively; let $f: G \rightarrow H$ be a homomorphism. Then there are basis for G and H such that, relative to these basis, the matrix of f has the form

$$
B=\left(\begin{array}{ccc|c}
b_{1} & & & \\
& \ddots & & 0 \\
& & b_{k} & \\
\hline & & & 0
\end{array}\right)
$$

where $b_{i} \geq 1$ and $b_{1}\left|b_{2}\right| \ldots \mid b_{k}$.
Theorem 6 (Theorem 4.2 of [6], Theorem 3.5.13 of [3]). Let F be a free Abelian group whose rank is n and R be a subgroup of F; then there is a basis e_{1}, \ldots, e_{n} for F and integers t_{1}, \ldots, t_{k} such that

1. $t_{1} e_{1}, \ldots t_{k} e_{k}$ is a basis for R.
2. $t_{1}\left|t_{2}\right| \ldots \mid t_{k}$.

Theorem 7 (The fundamental theorem of finitely generated abelian groups, Theorem 4.3 of [6], Theorem 3.6.2 of [3]). Let G be a finitely generated abelian group. Let T be its torsion subgroup; then,

1. there is a free abelian subgroup H of G having finite rank β such that $G=$ $H \oplus T$.
2. There are finite cyclic groups T_{1}, \ldots, T_{k} where T_{i} has order $t_{i}>1$ such that $t_{1}\left|t_{2}\right| \ldots \mid t_{k}$ and

$$
T=T_{1} \oplus \ldots \oplus T_{k}
$$

3. The numbers β and t_{1}, \ldots, t_{k} are uniquely determined by G.

3 Homology

Definition 6. A chain complex \mathcal{C} is a sequence

$$
\cdots \rightarrow C_{p+1} \xrightarrow{\partial_{p+1}} C_{p} \xrightarrow{\partial_{p}} C_{p-1} \rightarrow \cdots
$$

of abelian groups C_{i} and homomorphisms ∂_{i}, indexed on the integers, such that $\partial_{p} \circ \partial_{p+1}=0 \forall p$.

The p-th homology group of \mathcal{C} is defined by the equation

$$
H_{p}(\mathcal{C})=\operatorname{ker} \partial_{p} / i m \partial_{p+1}
$$

From now on, we will denote $\operatorname{ker} \partial_{p}$ and im ∂_{p+1} by Z_{p} and B_{p} respectively. In addition, we will consider a chain complex \mathcal{C} where each group C_{p} is free of finite rank.

Definition 7. Let W_{p} consist of all elements c_{p} of C_{p} such that some non-zero multiple of c_{p} belongs to B_{p} - that is,

$$
W_{p}=\left\{c_{p} \in C_{p} \mid \exists \lambda \in \mathbb{Z} \backslash\{0\}, \lambda c_{p} \in B_{p}\right\}
$$

This group is called the group of weak boundaries.

Lemma 4.

$$
B_{p} \leqslant W_{p} \leqslant Z_{p} \leqslant C_{p}
$$

Proof.
$Z_{p} \leqslant C_{p}$. It comes from the definition of Z_{p}.
$B_{p} \leqslant W_{p}$. It is trivial, just take $\lambda=1$.
$W_{p} \leqslant Z_{p} . C_{p}$ is free, then C_{p} is torsion free (remark 3). So, $\lambda c_{p} \neq 0 \forall \lambda \neq 0$ and $c_{p} \neq 0$. Using the definition of $W_{p}, \forall c_{p} \in W_{p} \exists \lambda \neq 0$ such that $\lambda c_{p} \in B_{p}$. Now, as $\partial_{p} \partial_{p+1}=0$ then $\partial_{p}\left(\lambda c_{p}\right)=0$ implies that $\lambda \partial_{p}\left(c_{p}\right)=0$, then, $\partial_{p}\left(c_{p}\right)=0$. Therefore, $\lambda c_{p} \in \operatorname{ker} \partial_{p}=Z_{p}$.

Lemma 5 (Decomposition of Z_{p}). W_{p} is a direct summand of Z_{p} - that is, there exist a subgroup V_{p} of Z_{p} such that

$$
Z_{p}=V_{p} \oplus W_{p}
$$

Proof. First of all, let us note that $H_{p}=Z_{p} / B_{p}$ is a finitely generated abelian group (Propositions 4 and 5), then it can be written as the direct sum $F_{p} \oplus$ T_{p} where F_{p} is a free subgroup of H_{p} and T_{p} is the torsion subgroup of H_{p} (Theorem 7 (1)).

Consider now, the natural projection q from Z_{p} to H_{p} / T_{p}. This projection can be seen as the composition of the 2 projections q_{1} and $q_{2}: q=q_{2} \circ q_{1}$ such that:

$$
\begin{aligned}
& Z_{p} \xrightarrow{q_{1}} H_{p}=Z_{p} / B_{p} \xrightarrow{q_{2}} H_{p} / T_{p} \\
& c_{p} \mapsto \stackrel{c_{p}}{ } \\
& \mapsto \widetilde{c_{p}}
\end{aligned}
$$

The kernel of this projection is $\operatorname{ker}(q)=\left\{c_{p} \in Z_{p} \mid q\left(c_{p}\right)=0\right\}$.
Let us note that $\forall c_{p} \in \operatorname{ker}(q), \overline{c_{p}} \subseteq T$ (use Theorem 2). As T_{p} is a torsion group, $\overline{c_{p}}$ is an element of finite order (Definition 4) in H_{p}. Then, there exist $\lambda \in \mathbb{Z} \backslash\{0\}$ such that $\lambda \overline{c_{p}}=\overline{0_{p}}=B_{p}$. That is, there is a $b_{p} \in B_{p}$ such that $\lambda c_{p}=b_{p}$. Therefore,

$$
\operatorname{ker}(q)=\left\{c_{p} \in Z_{p} \mid \exists \lambda \neq 0, \lambda c_{p} i n B_{p}\right\}=W_{p}
$$

Using now Theorem 1 , we obtain $Z_{p} / W_{p} \simeq H_{p} / T_{p} . H_{p} / T_{p}$ is finitely generated and torsion free. Then, using Theorem $4, H_{p} / T_{p}$ is free; so, Z_{p} / W_{p} is free. Now, by Theorem $3, Z_{p}=V_{p} \oplus W_{p} \simeq Z_{p} / W_{p} \oplus W_{p}$.

Corollary 1. $H_{p} \simeq Z_{p} / W_{p} \oplus W_{p} / B_{p}$.
Proof. $H_{p}=Z_{p} / B_{p}=\left(V_{p} \oplus W_{p}\right) / B_{p} \simeq V_{p} \oplus W_{p} / B_{p} \simeq Z_{p} / W_{p} \oplus W_{p} / B_{p}$.
Remark 4. Z_{p} / W_{p} is free and W_{p} / B_{p} is a torsion group.
Lemma 6. Let $\left\{e_{1}^{p}, \ldots, e_{n_{p}}^{p}\right\}$ and $\left\{e_{1}^{p-1}, \ldots, e_{n_{p-1}}^{p-1}\right\}$ be basis of C_{p} and C_{p-1} respectively; such that the matrix of C_{p} relative to these basis has the normal form:

Then, the following hold:

1. $e_{k_{p}+1}^{p}, \ldots, e_{n_{p}}^{p}$ is a basis for Z_{p}.
2. $b_{1}^{p} e_{1}^{p-1}, \ldots, b_{k_{p}}^{p} e_{k_{p}}^{p-1}$ is a basis for B_{p-1}.
3. $e_{1}^{p-1}, \ldots, e_{k_{p}}^{p-1}$ is a basis for W_{p-1}.

Proof. Let $c_{p} \in C_{p}$ - that is, $c_{p}=\sum_{i=1}^{n_{p}} a_{i} e_{i}^{p}$, then $\partial_{p}\left(c_{p}\right)=\sum_{i=1}^{k_{p}} b_{i}^{p} a_{i} e_{i}^{p-1}$.

1. $\partial_{p}\left(c_{p}\right)=0 \Leftrightarrow \forall i=1, \ldots, k_{p} a_{i}=0$. Then, a basis for Z_{p} is $e_{k_{p}+1}^{p}, \ldots, e_{n_{p}}^{p}$.
2. $\forall c_{p-1} \in B_{p-1}, \exists c_{p} \in C_{p}$ such that $\partial_{p}\left(c_{p}\right)=c_{p-1}$. Then, there exists $\left\{a_{i}\right\}_{i \in\left\{1, \ldots, k_{p}\right\}}$ such that

$$
c_{p-1}=\sum_{i=1}^{k_{p}} b_{i}^{p} a_{i} e_{i}^{p-1}
$$

And, $\forall i \in\left\{1, \ldots, k_{p}\right\}, b_{i}^{p} \neq 0$; therefore, $b_{1}^{p} e_{1}^{p-1}, \ldots, b_{k_{p}}^{p} e_{k_{p}}^{p-1}$ is a basis of B_{p-1}.
3. $W_{p-1}=\left\{c_{p-1} \in C_{p-1} \mid \exists \lambda \in \mathbb{Z} \backslash\{0\}, \lambda c_{p-1} \in B_{p-1}\right\}$. By (2), $\forall i \in\left\{1, \ldots, k_{p}\right\}$ $b_{i}^{p} e_{i}^{p-1} \in B_{p-1}$; then, $\left\{e_{i}^{p-1}\right\}_{i \in\left\{1, \ldots, k_{p}\right\}} \subseteq W_{p-1}$.
Conversely, let $c_{p-1}=\sum_{i=1}^{n_{p-1}} a_{i}^{\prime} e_{i}^{p-1} \in W_{p-1}$. Then, $\exists \lambda \neq 0, \exists c_{p} \in C_{p}$ such that $\lambda c_{p-1}=\partial_{p}\left(c_{p}\right) \in B_{p-1}$. So,

$$
\lambda \sum_{i=1}^{n_{p-1}} a_{i}^{\prime} e_{i}^{p-1}=\sum_{i=1}^{k_{p}} b_{i}^{p} a_{i} e_{i}^{p-1}
$$

Then, $a_{i}^{\prime}=0 \forall i \in\left\{k_{p}+1, \ldots, n_{p-1}\right\}$; therefore, $e_{1}^{p-1}, \ldots, e_{k_{p}}^{p-1}$ is a finite set of generators of W_{p}. In addition, as these elements appear in the basis of Z_{p}, they are linearly independent; so, they constitute a basis of W_{p-1}.
Theorem 8. $H_{p}(\mathcal{C}) \simeq \mathbb{Z}^{n_{p}-k_{p}-k_{p+1}} \oplus \mathbb{Z} / b_{1}^{p+1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / b_{k_{p+1}}^{p+1} \mathbb{Z}$
Proof. $H_{p}(\mathcal{C}) \simeq Z_{p} / W_{p} \oplus W_{p} / B_{p}$.
First of all, let us see that $Z_{p} / W_{p} \simeq \mathbb{Z}^{n_{p}-k_{p}-k_{p+1}} . Z_{p} / W_{p}$ is free; so, $Z_{p} / W_{p} \simeq$ \mathbb{Z}^{d} where d is the rank of Z_{p} / W_{p}.

Applying Proposition 3, $\operatorname{rank}\left(Z_{p}\right)=\operatorname{rank}\left(Z_{p} / W_{p}\right)+\operatorname{rank}\left(W_{p}\right)$; then,

$$
\operatorname{rank}\left(Z_{p} / W_{p}\right)=\operatorname{rank}\left(Z_{p}\right)-\operatorname{rank}\left(W_{p}\right) .
$$

Using Lemma 6, $\operatorname{rank}\left(Z_{p}\right)=\sharp\left|\left\{e_{k_{p}+1}^{p}, \ldots, e_{n_{p}}^{p}\right\}\right|=n_{p}-k_{p}$; and $\operatorname{rank}\left(W_{p}\right)=$ $\sharp\left|\left\{e_{1}^{p}, \ldots, e_{k_{p+1}}^{p}\right\}\right|=k_{p+1}$. Then $\operatorname{rank}\left(Z_{p} / W_{p}\right)=n_{p}-k_{p}-k_{p+1}$; so,

$$
Z_{p} / W_{p} \simeq \mathbb{Z}^{n_{p}-k_{p}-k_{p+1}}
$$

Now, let us prove $B_{p} / W_{p} \simeq \mathbb{Z} / b_{1}^{p+1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / b_{k_{p+1}}^{p+1} \mathbb{Z}$.

$$
\begin{aligned}
W_{p} / B_{p} & =\frac{e_{1}^{p+1} \mathbb{Z} \oplus \ldots \oplus e_{k_{p+1}}^{p+1} \mathbb{Z}}{b_{1}^{p+1} e_{1}^{p+1} \mathbb{Z} \oplus \ldots \oplus b_{k_{p+1}}^{p+1} e_{k_{p+1}^{p+1}} \mathbb{Z}} \\
& \simeq \frac{e_{1}^{p+1} \mathbb{Z}}{b_{1}^{p+1} e_{1}^{p+1} \mathbb{Z}} \oplus \ldots \oplus \frac{e_{k_{p+1}}^{p+1}}{b_{k_{k p}}^{p+1} e_{k p p+1}^{p+1} \mathbb{Z}} \\
& \simeq \mathbb{Z} / b_{1}^{p+1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / b_{k_{p+1}}^{p+1} \mathbb{Z}
\end{aligned}
$$

Observe that $v \mathbb{Z} \simeq d v \mathbb{Z}$ since $r \mapsto r v+d v \mathbb{Z}$ is a surjective \mathbb{Z}-module homomorphism with kernel $d \mathbb{Z}$.

Therefore,

$$
H_{p}(\mathcal{C}) \simeq \mathbb{Z}^{n_{p}-k_{p}-k_{p+1}} \oplus \mathbb{Z} / b_{1}^{p+1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / b_{k_{p+1}}^{p+1} \mathbb{Z}
$$

References

1. S. Alairangues. Modeles et Invariants Topologuiques en Imagerie Numérique. PhD thesis, L’Université Bourdeaux I, 2005. http://sylvie.alayrangues.free.fr/ SiteLabo/Memoire/SAthese-all.pdf.
2. D. Boltcheva et al. Constructive Mayer-Vietoris Algorithm: Computing the Homology of Unions of Simplicial Complexes. Technical Report RR-7471, INRIA, 2010. http://hal.inria.fr/inria-00542717/en/.
3. F. M. Goodman. Algebra, Abstract and Concrete. SemiSimple Press, 2011. http: //www.math.uiowa.edu/~goodman/algebrabook.dir/algebrabook.html.
4. T. Kaczynski, K. Mischaikov, and M. Mrozek. Computational Topology. Springer, 2004.
5. S. Lang. Algebra. Springer, 2002.
6. J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
7. J. J. Rotman. An introduction to the theory of groups. Springer, 1995.
