Computability of Homology groups

Jónathan Heras¹

Department of Mathematics and Computer Science of University of La Rioja jonathan.heras@unirioja.es

Abstract. Some notes about the computability of homology groups of chain complexes. These notes are based on [3,6,5,7,1,4,2].

1 Group theory

Theorem 1 (First Isomorphism Theorem). Let G and H be groups, and let $\varphi : G \to H$ be a surjective homomorphism, then $H \simeq G/\ker \varphi$.

The above theorem corresponds with first_isog SSREFLECT theorem.

Theorem 2. Let G be a group and $N \leq G$. Then, the map

$$\begin{array}{c} \pi: G \to G/N \\ g \mapsto gN \end{array}$$

is a surjective homomorphism. Moreover, ker $\pi = N$.

The above theorem corresponds with ker_coset SSREFLECT theorem.

Definition 1. The direct product of several groups G_1, \ldots, G_n is the Cartesian product endowed with an operation defined elementwise. The direct sum of the groups G_1, \ldots, G_n is denoted by $G_1 \times \ldots \times G_n$.

When the groups involved are abelian and written with additive notation, it is common to use the terminology direct sum instead of direct product and use the notation $G \oplus H$ instead of $G \times H$.

Lemma 1 (Lemma 3.6.1 of [3]). If H_i is a subgroup of an Abelian group G_i , then

$$\frac{G_1 \oplus G_2}{H_1 \oplus H_2} \simeq \frac{G_1}{H_1} \oplus \frac{G_2}{H_2}.$$

2 Free Abelian Groups

Definition 2. Let G be an Abelian group, a subset S of G is linearly independent if whenever x_1, \ldots, x_n are distinct elements of S and r_1, \ldots, r_n are elements in \mathbb{Z} , if

 $r_1 x_1 + r_2 x_2 + \dots + r_n x_n = 0,$

then $r_i = 0$ for all *i*.

A basis for G is a linearly independent set $S = \{x_1, \ldots, x_n\}$ such that each $g \in G$ can be written uniquely as a finite sum

$$g = \sum_{i=1}^{n} r_i x_i, \quad r_i \in \mathbb{Z}$$

An abelian group G is free if it has a basis.

Proposition 1 (Proposition 3.5.2 of [3]). Let G be an Abelian group and let x_1, \ldots, x_n be distinct nonzero elements of G. The following conditions are equivalent:

- 1. The set $S = \{x_1, \ldots, x_n\}$ is a basis of G.
- 2. The map

 $(r_1,\ldots,r_n)\mapsto r_1x_1+r_2x_2+\cdots+r_nx_n$

is an isomorphism from \mathbb{Z}^n to G.

3. For each *i*, the map $r \mapsto rx_i$ is injective, and $M = \mathbb{Z}x_1 \oplus \ldots \oplus \mathbb{Z}x_n$.

Definition 3. Let G be an Abelian group and S a subset of G; then, the subgroup generated by S is

$$\mathbb{Z}S := \{ n_1 x_1 + n_2 x_2 + \dots + n_d x_d \mid d \ge 0, n_i \in \mathbb{Z}, and x_i \in S \}.$$

An abelian group is said to be finitely generated if it is generated by a finite subset.

Remark 1. Every finite group is finitely generated.

Definition 4. Let G be an Abelian group. An element $g \in G$ has finite order if ng = 0 for some positive integer n. The set of all elements of finite order in G is a subgroup T of G, called the torsion subgroup. We say that G is a torsion group if G = T. If T vanishes, we say G is torsion free.

Remark 2. G/T is torsion free.

Remark 3. A free abelian group is necessarily torsion free.

Proposition 2 (Proposition 3.5.5 of [3]). Any two bases of a finitely generated free Abelian group have the same cardinality.

Definition 5. The rank of a finitely generated free abelian group is the cardinal of any basis.

Proposition 3 (Grushko theorem). Let G and H be finitely generated groups. Then $rank(G \oplus H) = rank(G) + rank(H)$.

is p_rank_dprod SSREFLECT theorem?.

Proposition 4 (Corollary 3.5.8 of [3]). Every subgroup of a finitely generated abelian group is finitely generated.

Proposition 5. Any quotient of a finitely generated Abelian group is finitely generated Abelian (simply take the images of the generators in the quotient).

Theorem 3 (Corollary 10.16 of [7]). Let G be an Abelian Group and H be a subgroup G such that G/H is free abelian, then H is a direct summand of G - that is, $G = H \oplus K$ where $K \leq G$ and $K \simeq G/H$.

Theorem 4 (Theorem 8.5 of [5]). Let G be a finitely generated Abelian group, and let T be the torsion subgroup of G. Then T is finite and G/T is free.

Lemma 2 (Lemma 11.1 of [6]). Let G be a free Abelian group of rank n. If H is a subgroup of G, then H is free of rank $r \leq n$.

Lemma 3 (Lemma 11.2 of [6]). If G is a free abelian group, any subgroup H of G is free.

Theorem 5 (Theorem 11.3 of [6]). Let G and H be free abelian groups of ranks n and m respectively; let $f : G \to H$ be a homomorphism. Then there are basis for G and H such that, relative to these basis, the matrix of f has the form

where $b_i \ge 1$ and $b_1 | b_2 | ... | b_k$.

Theorem 6 (Theorem 4.2 of [6], Theorem 3.5.13 of [3]). Let F be a free Abelian group whose rank is n and R be a subgroup of F; then there is a basis e_1, \ldots, e_n for F and integers t_1, \ldots, t_k such that

1. $t_1e_1, ..., t_ke_k$ is a basis for *R*. 2. $t_1|t_2|...|t_k$.

Theorem 7 (The fundamental theorem of finitely generated abelian groups, Theorem 4.3 of [6], Theorem 3.6.2 of [3]). Let G be a finitely generated abelian group. Let T be its torsion subgroup; then,

- 1. there is a free abelian subgroup H of G having finite rank β such that $G = H \oplus T$.
- 2. There are finite cyclic groups T_1, \ldots, T_k where T_i has order $t_i > 1$ such that $t_1|t_2|\ldots|t_k$ and

$$T = T_1 \oplus \ldots \oplus T_k.$$

3. The numbers β and t_1, \ldots, t_k are uniquely determined by G.

3 Homology

Definition 6. A chain complex C is a sequence

$$\cdots \to C_{p+1} \xrightarrow{\partial_{p+1}} C_p \xrightarrow{\partial_p} C_{p-1} \to \cdots$$

of abelian groups C_i and homomorphisms ∂_i , indexed on the integers, such that $\partial_p \circ \partial_{p+1} = 0 \ \forall p$.

The p-th homology group of C is defined by the equation

$$H_p(\mathcal{C}) = \ker \partial_p / im \ \partial_{p+1}.$$

From now on, we will denote ker ∂_p and im ∂_{p+1} by Z_p and B_p respectively. In addition, we will consider a chain complex C where each group C_p is free of finite rank.

Definition 7. Let W_p consist of all elements c_p of C_p such that some non-zero multiple of c_p belongs to B_p - that is,

$$W_p = \{ c_p \in C_p | \exists \lambda \in \mathbb{Z} \setminus \{0\}, \lambda c_p \in B_p \}.$$

This group is called the group of weak boundaries.

Lemma 4.

$$B_p \leqslant W_p \leqslant Z_p \leqslant C_p$$

Proof.

 $Z_p \leqslant C_p$. It comes from the definition of Z_p . $B_p \leqslant W_p$. It is trivial, just take $\lambda = 1$. $W_p \leqslant Z_p$. C_p is free, then C_p is torsion free (remark 3). So, $\lambda c_p \neq 0 \ \forall \lambda \neq 0$ and

 $c_p \neq 0$. Using the definition of W_p , $\forall c_p \in W_p \exists \lambda \neq 0$ such that $\lambda c_p \in B_p$. Now, as $\partial_p \partial_{p+1} = 0$ then $\partial_p (\lambda c_p) = 0$ implies that $\lambda \partial_p (c_p) = 0$, then, $\partial_p (c_p) = 0$. Therefore, $\lambda c_p \in \ker \partial_p = Z_p$.

Lemma 5 (Decomposition of Z_p **).** W_p is a direct summand of Z_p - that is, there exist a subgroup V_p of Z_p such that

$$Z_p = V_p \oplus W_p.$$

Proof. First of all, let us note that $H_p = Z_p/B_p$ is a finitely generated abelian group (Propositions 4 and 5), then it can be written as the direct sum $F_p \oplus T_p$ where F_p is a free subgroup of H_p and T_p is the torsion subgroup of H_p (Theorem 7 (1)).

Consider now, the natural projection q from Z_p to H_p/T_p . This projection can be seen as the composition of the 2 projections q_1 and q_2 : $q = q_2 \circ q_1$ such that:

$$\begin{array}{cccc} Z_p \xrightarrow{q_1} H_p = Z_p/B_p \xrightarrow{q_2} H_p/T_p \\ c_p & \mapsto & \overline{c_p} & \mapsto & \widetilde{c_p} \end{array}$$

The kernel of this projection is $\ker(q) = \{c_p \in Z_p | q(c_p) = 0\}.$

Let us note that $\forall c_p \in \ker(q), \overline{c_p} \subseteq T$ (use Theorem 2). As T_p is a torsion group, $\overline{c_p}$ is an element of finite order (Definition 4) in H_p . Then, there exist $\lambda \in \mathbb{Z} \setminus \{0\}$ such that $\lambda \overline{c_p} = \overline{0_p} = B_p$. That is, there is a $b_p \in B_p$ such that $\lambda c_p = b_p$. Therefore,

$$\ker(q) = \{c_p \in Z_p | \exists \lambda \neq 0, \lambda c_p i n B_p\} = W_p.$$

Using now Theorem 1, we obtain $Z_p/W_p \simeq H_p/T_p$. H_p/T_p is finitely generated and torsion free. Then, using Theorem 4, H_p/T_p is free; so, Z_p/W_p is free. Now, by Theorem 3, $Z_p = V_p \oplus W_p \simeq Z_p/W_p \oplus W_p$.

Corollary 1. $H_p \simeq Z_p/W_p \oplus W_p/B_p$.

Proof.
$$H_p = Z_p/B_p = (V_p \oplus W_p)/B_p \simeq V_p \oplus W_p/B_p \simeq Z_p/W_p \oplus W_p/B_p.$$

Remark 4. Z_p/W_p is free and W_p/B_p is a torsion group.

Lemma 6. Let $\{e_1^p, \ldots, e_{n_p}^p\}$ and $\{e_1^{p-1}, \ldots, e_{n_{p-1}}^{p-1}\}$ be basis of C_p and C_{p-1} respectively; such that the matrix of C_p relative to these basis has the normal form:

Then, the following hold:

1. $e_{k_p+1}^p, \ldots, e_{n_p}^p$ is a basis for Z_p . 2. $b_1^p e_1^{p-1}, \ldots, b_{k_p}^p e_{k_p}^{p-1}$ is a basis for B_{p-1} . 3. $e_1^{p-1}, \ldots, e_{k_p}^{p-1}$ is a basis for W_{p-1} .

Proof. Let $c_p \in C_p$ - that is, $c_p = \sum_{i=1}^{n_p} a_i e_i^p$, then $\partial_p(c_p) = \sum_{i=1}^{k_p} b_i^p a_i e_i^{p-1}$.

1. $\partial_p(c_p) = 0 \Leftrightarrow \forall i = 1, \dots, k_p \ a_i = 0$. Then, a basis for Z_p is $e_{k_p+1}^p, \dots, e_{n_p}^p$.

2. $\forall c_{p-1} \in B_{p-1}, \exists c_p \in C_p$ such that $\partial_p(c_p) = c_{p-1}$. Then, there exists $\{a_i\}_{i \in \{1,\dots,k_p\}}$ such that

$$c_{p-1} = \sum_{i=1}^{k_p} b_i^p a_i e_i^{p-1}.$$

And, $\forall i \in \{1, ..., k_p\}, b_i^p \neq 0$; therefore, $b_1^p e_1^{p-1}, ..., b_{k_p}^p e_{k_p}^{p-1}$ is a basis of

3.
$$\begin{split} & B_{p-1}. \\ & B_{p-1} = \{c_{p-1} \in C_{p-1} | \exists \lambda \in \mathbb{Z} \setminus \{0\}, \lambda c_{p-1} \in B_{p-1}\}. \text{ By } (2), \forall i \in \{1, \dots, k_p\} \\ & b_i^p e_i^{p-1} \in B_{p-1}; \text{ then, } \{e_i^{p-1}\}_{i \in \{1, \dots, k_p\}} \subseteq W_{p-1}. \end{split}$$
Conversely, let $c_{p-1} = \sum_{i=1}^{n_{p-1}} a'_i e^{p-1}_i \in W_{p-1}$. Then, $\exists \lambda \neq 0, \exists c_p \in C_p$ such

that $\lambda c_{p-1} = \partial_p(c_p) \in B_{p-1}^{i-1}$. So,

$$\lambda \sum_{i=1}^{n_{p-1}} a'_i e^{p-1}_i = \sum_{i=1}^{k_p} b^p_i a_i e^{p-1}_i$$

Then, $a'_i = 0 \ \forall i \in \{k_p + 1, \dots, n_{p-1}\}$; therefore, $e_1^{p-1}, \dots, e_{k_p}^{p-1}$ is a finite set of generators of W_p . In addition, as these elements appear in the basis of Z_p , they are linearly independent; so, they constitute a basis of W_{p-1} .

Theorem 8. $H_p(\mathcal{C}) \simeq \mathbb{Z}^{n_p - k_p - k_{p+1}} \oplus \mathbb{Z}/b_1^{p+1}\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/b_{k_{p+1}}^{p+1}\mathbb{Z}$

Proof. $H_p(\mathcal{C}) \simeq Z_p/W_p \oplus W_p/B_p$. First of all, let us see that $Z_p/W_p \simeq \mathbb{Z}^{n_p-k_p-k_{p+1}}$. Z_p/W_p is free; so, $Z_p/W_p \simeq$ \mathbb{Z}^d where d is the rank of Z_p/W_p . Applying Proposition 3, $rank(Z_p) = rank(Z_p/W_p) + rank(W_p)$; then,

$$rank(Z_p/W_p) = rank(Z_p) - rank(W_p)$$

Using Lemma 6, $rank(Z_p) = \sharp |\{e_{k_p+1}^p, \dots, e_{n_p}^p\}| = n_p - k_p;$ and $rank(W_p) =$ $\sharp |\{e_1^p, \dots, e_{k_{p+1}}^p\}| = k_{p+1}$. Then $rank(Z_p/W_p) = n_p - k_p - k_{p+1}$; so,

$$Z_p/W_p \simeq \mathbb{Z}^{n_p - k_p - k_{p+1}}$$

Now, let us prove $B_p/W_p \simeq \mathbb{Z}/b_1^{p+1}\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/b_{k_{p+1}}^{p+1}\mathbb{Z}$.

$$W_p/B_p = \frac{e_1^{p+1}\mathbb{Z} \oplus \dots \oplus e_{k_{p+1}}^{p+1}\mathbb{Z}}{b_1^{p+1}e_1^{p+1}\mathbb{Z} \oplus \dots \oplus b_{k_{p+1}}^{p+1}e_{k_{p+1}}^{p+1}\mathbb{Z}}$$
$$\simeq \frac{e_1^{p+1}\mathbb{Z}}{b_1^{p+1}e_1^{p+1}\mathbb{Z}} \oplus \dots \oplus \frac{e_{k_{p+1}}^{p+1}\mathbb{Z}}{b_{k_{p+1}}^{p+1}e_{k_{p+1}}^{p+1}}$$
$$\simeq \mathbb{Z}/b_1^{p+1}\mathbb{Z} \oplus \dots \oplus \mathbb{Z}/b_{k_{p+1}}^{p+1}\mathbb{Z}$$

Observe that $v\mathbb{Z} \simeq dv\mathbb{Z}$ since $r \mapsto rv + dv\mathbb{Z}$ is a surjective \mathbb{Z} -module homomorphism with kernel $d\mathbb{Z}$.

Therefore,

$$H_p(\mathcal{C}) \simeq \mathbb{Z}^{n_p - k_p - k_{p+1}} \oplus \mathbb{Z}/b_1^{p+1}\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/b_{k_{p+1}}^{p+1}\mathbb{Z}.$$

References

- S. Alairangues. Modeles et Invariants Topologuiques en Imagerie Numérique. PhD thesis, L'Université Bourdeaux I, 2005. http://sylvie.alayrangues.free.fr/ SiteLabo/Memoire/SAthese-all.pdf.
- D. Boltcheva et al. Constructive Mayer-Vietoris Algorithm: Computing the Homology of Unions of Simplicial Complexes. Technical Report RR-7471, INRIA, 2010. http://hal.inria.fr/inria-00542717/en/.
- 3. F. M. Goodman. *Algebra, Abstract and Concrete.* SemiSimple Press, 2011. http: //www.math.uiowa.edu/~goodman/algebrabook.dir/algebrabook.html.
- T. Kaczynski, K. Mischaikov, and M. Mrozek. Computational Topology. Springer, 2004.
- 5. S. Lang. Algebra. Springer, 2002.
- 6. J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
- 7. J. J. Rotman. An introduction to the theory of groups. Springer, 1995.