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Abstract. Some notes about the computability of homology groups of
chain complexes. These notes are based on [3,6,5,7,1,4,2].

1 Group theory

Theorem 1 (First Isomorphism Theorem). Let G and H be groups, and
let ϕ : G→ H be a surjective homomorphism, then H ' G/ kerϕ.

The above theorem corresponds with first_isog SSReflect theorem.

Theorem 2. Let G be a group and N E G. Then, the map

π : G→ G/N
g 7→ gN

is a surjective homomorphism. Moreover, kerπ = N .

The above theorem corresponds with ker_coset SSReflect theorem.

Definition 1. The direct product of several groups G1, . . . , Gn is the Cartesian
product endowed with an operation defined elementwise. The direct sum of the
groups G1, . . . , Gn is denoted by G1 × . . .×Gn.

When the groups involved are abelian and written with additive notation, it
is common to use the terminology direct sum instead of direct product and use
the notation G⊕H instead of G×H.

Lemma 1 (Lemma 3.6.1 of [3]). If Hi is a subgroup of an Abelian group Gi,
then

G1 ⊕G2

H1 ⊕H2
' G1

H1
⊕ G2

H2
.

2 Free Abelian Groups

Definition 2. Let G be an Abelian group, a subset S of G is linearly indepen-
dent if whenever x1, . . . , xn are distinct elements of S and r1, . . . , rn are elements
in Z, if

r1x1 + r2x2 + · · ·+ rnxn = 0,

then ri = 0 for all i.



A basis for G is a linearly independent set S = {x1, . . . , xn} such that each
g ∈ G can be written uniquely as a finite sum

g =

n∑
i=1

rixi, ri ∈ Z

An abelian group G is free if it has a basis.

Proposition 1 (Proposition 3.5.2 of [3]). Let G be an Abelian group and
let x1, . . . , xn be distinct nonzero elements of G. The following conditions are
equivalent:

1. The set S = {x1, . . . , xn} is a basis of G.
2. The map

(r1, . . . , rn) 7→ r1x1 + r2x2 + · · ·+ rnxn

is an isomorphism from Zn to G.
3. For each i, the map r 7→ rxi is injective, and M = Zx1 ⊕ . . .⊕ Zxn.

Definition 3. Let G be an Abelian group and S a subset of G; then, the sub-
group generated by S is

ZS := {n1x1 + n2x2 + · · ·+ ndxd | d ≥ 0, ni ∈ Z, and xi ∈ S}.

An abelian group is said to be finitely generated if it is generated by a finite
subset.

Remark 1. Every finite group is finitely generated.

Definition 4. Let G be an Abelian group. An element g ∈ G has finite order if
ng = 0 for some positive integer n. The set of all elements of finite order in G
is a subgroup T of G, called the torsion subgroup. We say that G is a torsion
group if G = T . If T vanishes, we say G is torsion free.

Remark 2. G/T is torsion free.

Remark 3. A free abelian group is necessarily torsion free.

Proposition 2 (Proposition 3.5.5 of [3]). Any two bases of a finitely gener-
ated free Abelian group have the same cardinality.

Definition 5. The rank of a finitely generated free abelian group is the cardinal
of any basis.

Proposition 3 (Grushko theorem). Let G and H be finitely generated groups.
Then rank(G⊕H) = rank(G) + rank(H).

is p_rank_dprod SSReflect theorem?.

Proposition 4 (Corollary 3.5.8 of [3]). Every subgroup of a finitely generated
abelian group is finitely generated.



Proposition 5. Any quotient of a finitely generated Abelian group is finitely
generated Abelian (simply take the images of the generators in the quotient).

Theorem 3 (Corollary 10.16 of [7]). Let G be an Abelian Group and H be
a subgroup G such that G/H is free abelian, then H is a direct summand of G
- that is, G = H ⊕K where K 6 G and K ' G/H.

Theorem 4 (Theorem 8.5 of [5]). Let G be a finitely generated Abelian group,
and let T be the torsion subgroup of G. Then T is finite and G/T is free.

Lemma 2 (Lemma 11.1 of [6]). Let G be a free Abelian group of rank n. If
H is a subgroup of G, then H is free of rank r ≤ n.

Lemma 3 (Lemma 11.2 of [6]). If G is a free abelian group, any subgroup H
of G is free.

Theorem 5 (Theorem 11.3 of [6]). Let G and H be free abelian groups of
ranks n and m respectively; let f : G→ H be a homomorphism. Then there are
basis for G and H such that, relative to these basis, the matrix of f has the form

B =



b1
. . . 0

bk

0 0


where bi ≥ 1 and b1|b2| . . . |bk.

Theorem 6 (Theorem 4.2 of [6], Theorem 3.5.13 of [3]). Let F be a free
Abelian group whose rank is n and R be a subgroup of F ; then there is a basis
e1, . . . , en for F and integers t1, . . . , tk such that

1. t1e1, . . . tkek is a basis for R.
2. t1|t2| . . . |tk.

Theorem 7 (The fundamental theorem of finitely generated abelian
groups, Theorem 4.3 of [6], Theorem 3.6.2 of [3]). Let G be a finitely
generated abelian group. Let T be its torsion subgroup; then,

1. there is a free abelian subgroup H of G having finite rank β such that G =
H ⊕ T .

2. There are finite cyclic groups T1, . . . , Tk where Ti has order ti > 1 such that
t1|t2| . . . |tk and

T = T1 ⊕ . . .⊕ Tk.

3. The numbers β and t1, . . . , tk are uniquely determined by G.



3 Homology

Definition 6. A chain complex C is a sequence

· · · → Cp+1
∂p+1−−−→ Cp

∂p−→ Cp−1 → · · ·

of abelian groups Ci and homomorphisms ∂i, indexed on the integers, such that
∂p ◦ ∂p+1 = 0 ∀p.

The p-th homology group of C is defined by the equation

Hp(C) = ker ∂p/im ∂p+1.

From now on, we will denote ker ∂p and im ∂p+1 by Zp and Bp respectively.
In addition, we will consider a chain complex C where each group Cp is free of
finite rank.

Definition 7. Let Wp consist of all elements cp of Cp such that some non-zero
multiple of cp belongs to Bp - that is,

Wp = {cp ∈ Cp|∃λ ∈ Z \ {0}, λcp ∈ Bp}.

This group is called the group of weak boundaries.

Lemma 4.

Bp 6Wp 6 Zp 6 Cp

Proof. .

Zp 6 Cp. It comes from the definition of Zp.
Bp 6Wp. It is trivial, just take λ = 1.
Wp 6 Zp. Cp is free, then Cp is torsion free (remark 3). So, λcp 6= 0 ∀λ 6= 0 and

cp 6= 0. Using the definition of Wp, ∀cp ∈ Wp ∃λ 6= 0 such that λcp ∈ Bp.
Now, as ∂p∂p+1 = 0 then ∂p(λcp) = 0 implies that λ∂p(cp) = 0, then,
∂p(cp) = 0. Therefore, λcp ∈ ker ∂p = Zp.

Lemma 5 (Decomposition of Zp). Wp is a direct summand of Zp - that is,
there exist a subgroup Vp of Zp such that

Zp = Vp ⊕Wp.

Proof. First of all, let us note that Hp = Zp/Bp is a finitely generated abelian
group (Propositions 4 and 5), then it can be written as the direct sum Fp ⊕
Tp where Fp is a free subgroup of Hp and Tp is the torsion subgroup of Hp

(Theorem 7 (1)).
Consider now, the natural projection q from Zp to Hp/Tp. This projection

can be seen as the composition of the 2 projections q1 and q2: q = q2 ◦ q1 such
that:



Zp
q1−→ Hp = Zp/Bp

q2−→ Hp/Tp
cp 7→ cp 7→ c̃p

The kernel of this projection is ker(q) = {cp ∈ Zp|q(cp) = 0}.
Let us note that ∀cp ∈ ker(q), cp ⊆ T (use Theorem 2). As Tp is a torsion

group, cp is an element of finite order (Definition 4) in Hp. Then, there exist
λ ∈ Z \ {0} such that λcp = 0p = Bp. That is, there is a bp ∈ Bp such that
λcp = bp. Therefore,

ker(q) = {cp ∈ Zp|∃λ 6= 0, λcpinBp} = Wp.

Using now Theorem 1, we obtain Zp/Wp ' Hp/Tp. Hp/Tp is finitely gener-
ated and torsion free. Then, using Theorem 4, Hp/Tp is free; so, Zp/Wp is free.
Now, by Theorem 3, Zp = Vp ⊕Wp ' Zp/Wp ⊕Wp.

Corollary 1. Hp ' Zp/Wp ⊕Wp/Bp.

Proof. Hp = Zp/Bp = (Vp ⊕Wp)/Bp ' Vp ⊕Wp/Bp ' Zp/Wp ⊕Wp/Bp.

Remark 4. Zp/Wp is free and Wp/Bp is a torsion group.

Lemma 6. Let {ep1, . . . , epnp
} and {ep−11 , . . . , ep−1np−1

} be basis of Cp and Cp−1
respectively; such that the matrix of Cp relative to these basis has the normal
form:

ep1 · · · e
p
kp
epkp+1 · · · epnp



ep−11 bp1
...

. . . 0

ep−1kp
bpkp

ep−1kp+1

... 0 0
ep−1np−1

Then, the following hold:

1. epkp+1, . . . , e
p
np

is a basis for Zp.

2. bp1e
p−1
1 , . . . , bpkp

ep−1kp
is a basis for Bp−1.

3. ep−11 , . . . , ep−1kp
is a basis for Wp−1.

Proof. Let cp ∈ Cp - that is, cp =
np∑
i=1

aie
p
i , then ∂p(cp) =

kp∑
i=1

bpi aie
p−1
i .

1. ∂p(cp) = 0⇔ ∀i = 1, . . . , kp ai = 0. Then, a basis for Zp is epkp+1, . . . , e
p
np

.



2. ∀cp−1 ∈ Bp−1, ∃cp ∈ Cp such that ∂p(cp) = cp−1. Then, there exists
{ai}i∈{1,...,kp} such that

cp−1 =

kp∑
i=1

bpi aie
p−1
i .

And, ∀i ∈ {1, . . . , kp}, bpi 6= 0; therefore, bp1e
p−1
1 , . . . , bpkp

ep−1kp
is a basis of

Bp−1.
3. Wp−1 = {cp−1 ∈ Cp−1|∃λ ∈ Z \ {0}, λcp−1 ∈ Bp−1}. By (2), ∀i ∈ {1, . . . , kp}
bpi e

p−1
i ∈ Bp−1; then, {ep−1i }i∈{1,...,kp} ⊆Wp−1.

Conversely, let cp−1 =
np−1∑
i=1

a′ie
p−1
i ∈ Wp−1. Then, ∃λ 6= 0, ∃cp ∈ Cp such

that λcp−1 = ∂p(cp) ∈ Bp−1. So,

λ

np−1∑
i=1

a′ie
p−1
i =

kp∑
i=1

bpi aie
p−1
i .

Then, a′i = 0 ∀i ∈ {kp + 1, . . . , np−1}; therefore, ep−11 , . . . , ep−1kp
is a finite set

of generators of Wp. In addition, as these elements appear in the basis of Zp,
they are linearly independent; so, they constitute a basis of Wp−1.

Theorem 8. Hp(C) ' Znp−kp−kp+1 ⊕ Z/bp+1
1 Z⊕ . . .⊕ Z/bp+1

kp+1
Z

Proof. Hp(C) ' Zp/Wp ⊕Wp/Bp.
First of all, let us see that Zp/Wp ' Znp−kp−kp+1 . Zp/Wp is free; so, Zp/Wp '

Zd where d is the rank of Zp/Wp.
Applying Proposition 3, rank(Zp) = rank(Zp/Wp) + rank(Wp); then,

rank(Zp/Wp) = rank(Zp)− rank(Wp).

Using Lemma 6, rank(Zp) = ]|{epkp+1, . . . , e
p
np
}| = np − kp; and rank(Wp) =

]|{ep1, . . . , e
p
kp+1
}| = kp+1. Then rank(Zp/Wp) = np − kp − kp+1; so,

Zp/Wp ' Znp−kp−kp+1

Now, let us prove Bp/Wp ' Z/bp+1
1 Z⊕ . . .⊕ Z/bp+1

kp+1
Z.

Wp/Bp =
ep+1
1 Z⊕...⊕ep+1

kp+1
Z

bp+1
1 ep+1

1 Z⊕...⊕bp+1
kp+1

ep+1
kp+1

Z

' ep+1
1 Z

bp+1
1 ep+1

1 Z ⊕ . . .⊕
ep+1
kp+1

Z

bp+1
kp+1

ep+1
kp+1

Z

' Z/bp+1
1 Z⊕ . . .⊕ Z/bp+1

kp+1
Z

Observe that vZ ' dvZ since r 7→ rv + dvZ is a surjective Z-module homo-
morphism with kernel dZ.

Therefore,

Hp(C) ' Znp−kp−kp+1 ⊕ Z/bp+1
1 Z⊕ . . .⊕ Z/bp+1

kp+1
Z.
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