
Homological processing of biomedical digital
images: automation and certification?

Jónathan Heras, Gadea Mata, Maŕıa Poza, and Julio Rubio

Department of Mathematics and Computer Science of University of La Rioja
{jonathan.heras, gadea.mata, maria.poza, julio.rubio}@unirioja.es

Abstract. In this paper a methodology to extract and compute ho-
mological information from biomedical images is proposed; automating
some processes, up to now, manually done. The main features of our ap-
proach are the usage of several programming languages (Java, Common
Lisp and Haskell) and the application of formal methods (namely theo-
rem provers) to verify the correctness of some of the automated process.
As case study to test the suitability of our approach, we have applied it
to measure the number of synapses of a neuron.

1 Introduction

In this work a methodology to deal with digital images is presented. The main
steps of our proposal are the following ones. First of all, we detect what kind
of homological information is needed in a concrete problem of image processing.
Secondly, the image is manipulated to get an image where the topological in-
formation is as explicit as possible. Afterwards, the size of the data is reduced,
ensuring that no relevant information is lost during the process. Eventually, a
computer algebra program is applied to compute the homological invariants of
the image.

The objectives of this kind of research are twofold: (1) automating some
tasks made up to now manually (or semi-automatically) by biologists and other
experimental scientists: tracing, marking, counting, and so on; and, (2) verifying
the correctness of the automated process.

Even if the latter objective could be considered as excessive, in fields where
the accuracy standards are not so high as in mathematics or theoretical computer
science, it is necessary to stress that the simplifications done by experimental
scientists are based on solid (even if heuristic) previous experience. If they must
trust computer programs, it is convenient to produce them in a reliable man-
ner, in such a way that scientists could be confident of the results mechanically
obtained.

In this paper we describe an instantiation of this methodology with the fol-
lowing features. The processed images are related to the synaptical structure
in neurons [2]; and the topological invariant to be computed is the number of

? Partially supported by Ministerio de Ciencia e Innovación, project MTM2009-13842-
C02-01, and by European Community FP7, STREP project ForMath, n. 243847.

connected components (useful to determine the evolution of the density of the
occurrence of synapses in neurons, under the effect of some drugs).

The digital images obtained experimentally are handled by means of the
ImageJ Java environment [24], producing a bitmap file where connected com-
ponents should be counted. From the previous file an incidence matrix is con-
structed, which is processed through a Haskell program [17], to obtain a smaller
matrix with the same homological information (we are using here Discrete Morse
Theory, as is explained in [25]). The correctness of these Haskell programs are
being analyzed by using the Coq proof assistant [5,3], and more specifically the
SSReflect environment [9]. The matrices obtained by means of the Haskell pro-
grams are given as input to the fKenzo system [10,14], a user interface for the
Kenzo program [7], which actually computes the homological information.

The rest of this paper is organized as follows. First of all, our concrete biomed-
ical problem is stated in Section 2. The role played by Algebraic Topology in this
problem is presented in Section 3. The process which is followed to reduce digital
images keeping their homological information in a reliable manner is introduced
in Section 4. Our methodology, as a whole, to automating and certifying the
study of biomedical images is presented in Section 5. The paper ends with a
section of Conclusions and Further work and the bibliography.

2 Digital Imaging for Synapse Counting

Synapses are the points of connection between neurons. The synapses have two
sides: presynaptic and postsynaptic, these names indicate the direction of in-
formation flow, which is from “pre” to “post”. The relevance of synapses comes
from the fact that they are related to the computational capabilities of the brain.

The possibility of changing the number of synapses may be an important as-
set in the treatment of neurological diseases, such as Alzheimer, see [27]. There-
fore, we can claim that an efficient, reliable and automatic method for counting
synapses is instrumental in the study of tools which allow one to increase the
number of synaptical contacts.

2.1 Counting synapses manually

Let us briefly explain the methodology which was followed, up to now, to count
the number of synapses in a neuron. This process can be split into two parts:
(1) obtaining several images of the same neuron in a concrete moment, and,
(2) processing such images to count the number of synapses. We are mainly
interested in the latter part.

In a nutshell, the process to obtain the images is as follows. Hippocampal
neuron cultures are permeabilized and treated with two different primary mark-
ers, bassoon and synapsin. These antibodies recognize specifically the presy-
naptic structures. Then is necessary a secondary antibody couple attached to
fluochromes (red and green) making this two synaptic proteins visible under the
fluorescence microscope. Finally, the two markers are photographed in two gray

scale images as can be seen in Figure 1. A more detailed description of this
process is given in [6].

After obtaining the two images, they are processed in order to count the
synapses of the neuron. To this aim, the image processing program ImageJ [24]
is used.

Fig. 1. Neuron with bassoon and synapsin antibody markers

The first step consists in overlapping the images with the two markers using
the red channel for the image with the bassoon antibody marker and the green
channel for the image with the synapsin one. The result, as can be seen in
Figure 2, is an image with red, green and yellow points. In our case, we are
interested in the colocalization of red and green point, that is yellow points,
which are the candidates to be the synapses of the neuron.

Fig. 2. Overlapping of both markers

Subsequently, using the image of the right side of Figure 2, the structure of
the neuron is determined using the pencil tool of the ImageJ program. Finally,
the synapses of the neuron (the yellow points which are inside the structure
previously marked) are manually counted one by one.

2.2 The SynapsesCountJ plug-in

A manual counting of synapses is impractical since it implies a considerable
time investment. Moreover, this process is not applied just over a neuron but a

battery of neurons in order obtain results about the evolution of the density of
the occurrence of synapses in neurons under the effect of some drugs. Therefore,
we have undertaken the task of automating this counting process as much as
possible.

As a first step, a new ImageJ plug-in called SynapsesCountJ [21] has been
developed. This plug-in improves the interaction with the ImageJ system to
count synapses. The SynapsesCountJ plug-in works as follows.

First of all, using the NeuronJ plug-in [22], we determine the dendrites of the
neuron, that is, the branches of the neuron. This is a semi-automatic step since
the NeuronJ plug-in is able to perform a neuron tracing just choosing two points
of a dendrite. Therefore, the effort of determining the structure of a neuron is
considerably reduced.

Afterwards, the images with the two markers and the one with the structure
are overlapped using the SynapsesCountJ plug-in. In this case, we use the red
channel for the image with the bassoon marker, the green channel for the image
with the synapsin marker and the blue channel for the image with the neuron
dendrites, see Figure 3.

Fig. 3. Overlapping markers and structure

Now, we have an image where the synapse candidates are the white points.
However, it is worth noting that the synapses are not only the fully white points,
but also the ones whose color is close enough to white. So, SynapsesCountJ users
must select a range of white values; then, the plug-in extracts the points in that
range of values and inverts the colors in order to show the synapses as black
points, see Figure 4.

At this point, the effort of counting the synapsis of a neuron is reduced to
measure the number of connected components of the final image. To this aim
several techniques can be applied, in particular we are going to use a well-known
Algebraic Topology tool.

Fig. 4. Synapses using different ranges

3 The role of Algebraic Topology

In this section, we briefly provide the minimal standard background about Alge-
braic Topology needed in the rest of the paper. We mainly focus on definitions.
Many good textbooks are available for these definitions and results about them,
for instance [20].

3.1 Mathematical Preliminaries

Simplicial complexes are at the heart of Computational Algebraic Topology,
since they give a concrete, combinatorial description of otherwise rather abstract
objects which makes many important topological computations possible.

Let us start with some basic terminology. Let V be an ordered set, called the
vertex set. An (abstract) simplex over V is any finite subset of V . An (abstract)
n-simplex over V is a simplex over V whose cardinality is equal to n+ 1. Given
a simplex α over V , we call subsets of α faces of α.

Definition 1 An (ordered abstract) simplicial complex over V is a set of sim-
plices K over V such that it is closed by taking faces (subsets); that is to say, if
α ∈ K all the faces of α are in K, too.

Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the
set made of the simplices of cardinality n+ 1.

Let K be a simplicial complex over V . Let n and i be two integers such
that n ≥ 1 and 0 ≤ i ≤ n. Then the face operator ∂ni is the linear map ∂ni :
Sn(K) → Sn−1(K), defined by: ∂ni ((v0, . . . , vn)) = (v0, . . . , vi−1, vi+1, . . . , vn);
the i-th vertex of the simplex is removed, so that an (n−1)-simplex is obtained.

Now, we are going to introduce a central notion in Algebraic Topology. We
assume as known the notions of ring, module over a ring and module morphism
(see [16] for details). We will consider that the ground ring is Z, the most common
case in Algebraic Topology.

Definition 2 A chain complex C∗ is a pair of sequences (Cn, dn)n∈Z where for
every n ∈ Z: the component Cn is a Z-module (the chain group of dimension

n); the component dn is a module morphism dn : Cn → Cn−1 (the differential
map); and, the composition dn−1dn is null, dn−1dn = 0.

The n-homology group of C∗, denoted by Hn(C∗), is defined as the quotient
Ker dn/Im dn+1.

Intuitively, homology groups measure n-dimensional holes in topological spaces.
For instance, H0, H1 and H2 measure respectively the number of connected com-
ponents, the number of holes and the number of cavities of a space.

Once we have defined the notions of simplicial complexes and chain com-
plexes, we can define the link between them.

Definition 3 Let K be a simplicial complex over V . Then the chain complex
C∗(K) canonically associated with K is defined as follows. The chain group Cn(K)
is the free Z module generated by Sn(K). In addition, let (v0, . . . , vn) be an n -
simplex of K, the differential of this simplex is defined as: dn :=

∑n
i=0(−1)i∂ni .

The homology groups of a simplicial complex K are the ones of the chain
complex C∗(K): Hn(K) = Hn(C∗(K)).

The above definitions are classical notions from Algebraic Topology. However,
in spite of being abstract concepts, they can be used to analyze digital images.
There are several methods to construct a simplicial complex from a digital im-
age [1]. Then, let us explain one of these methods to construct the simplicial
complex associated with a monochromatic two dimensional image.

3.2 From Digital Images to Simplicial Complexes

Let I be a monochromatic image, to construct the simplicial complex associated
with I, denoted by KI , we proceed as follows. Each black pixel of I is divided
into two 2-simplexes (triangles), in turn each one of those 2-simplexes consists of
three 1-simplexes (edges) and three 0-simplexes (vertices); the simplicial complex
KI is the union of all those simplexes. An example can be seen in Figure 5; and
a more detailed description of this process is explained in [11]. The homology
groups of a 2D-image I are the ones of the simplicial complex KI .

Fig. 5. A digital image and its simplicial complex representation

Eventually, we can interpret properties about a digital image from its ho-
mology groups. 2D-images are embedded in R2 then its homology groups vanish

for dimensions greater than 2 and they are torsion-free from dimension 0 to di-
mension 1; that is, their homology groups are either null or a direct sum of Z
components in dimensions 0 and 1. The number of Z components of the homol-
ogy groups of dimension 0 and 1 measures respectively the number of connected
components and the number of holes of the image. For instance, the homology
groups of the image of Figure 5 are H0 = Z⊕Z and H1 = Z⊕Z⊕Z; so, the image
has two connected components and three holes. Therefore, applying the method
presented in this subsection, we can reduce the problem of counting synapses of
the images of Figure 4 to compute H0 of such pictures.

We have presented a method to obtain a simplicial complex associated with
a 2D-image, this process can be generalized to higher-dimensional images [23].

3.3 The fKenzo system

fKenzo [14] is a graphical user interface of the Kenzo system [7], a Common Lisp
Computer Algebra system devoted to Algebraic Topology which was developed
by Francis Sergeraert. The fKenzo system is organized through modules which
can not only provide access to part of the Kenzo functionality, like the computa-
tion of homology groups of iterated loop spaces, but also include features which
enhance the capabilities of Kenzo, like the connection with the GAP system to
compute the homology of Eilenberg MacLane spaces of finite cyclic groups, a
more detailed description about these additional features can be seen in [12].

One of the fKenzo modules allows one to analyze monochromatic digital
images applying the methodology explained in the previous subsection. Figure 6
shows the computation of the homology groups of a small cat image in fKenzo
which has 4 connected components and 5 holes. These properties are interpreted
from the homology groups of the image as we have seen previously.

Fig. 6. Computation of Homology groups of a small cat

Therefore, using the fKenzo system we are able to compute the homology
groups of images such as the ones presented in Figure 4. However, computing
those homology groups can take a lot of time, due to the huge amount of infor-
mation of the biomedical images; then, a safe reduction image processing which
keeps the homological information is necessary.

4 Towards certification: methodology

The tool that we have used to deal with the problem of reducing digital images is
based on Discrete Morse Theory [8]; in particular, we have worked in an algebraic
setting of the Discrete Morse Theory which was described in [25]. The aim of
Discrete Morse Theory is to find simplicial collapses that transform a simplicial
complex K to a smaller complex which keeps the relevant information.

First of all, let us show the general idea with an example. The bases of the
simplicial complex depicted in the left side of Figure 7 are made of 16 vertices,
32 edges and 16 triangles. So, the associated chain complex is

· · · ← 0
d0←− Z16 d1←− Z32 d2←− Z16 d3←− 0← · · ·

with the differential map as explained in Definition 3.

We can reduce the amount of information keeping the homological properties
using admissible discrete vector fields. Vector fields are a tool to cancel “useless”
information. If we want to design an admissible discrete vector field, we can
decide the only allowed vectors are oriented leftward or downward because it is
enough to avoid loops. In the example, the vector field can be seen in the second
image of Figure 7. There are only two critical cells, remain one vertex and one
edge. So, the reduced chain complex is

· · · ← 0
d0←− Z d1←− Z d2←− 0← · · ·

with the null map between both copies of Z. Therefore, H0 = Z (one connected
component) and H1 = Z (one hole).

Fig. 7. Simplicial Complex with an admissible discrete vector field

4.1 Basic notions on Algebraic Discrete Morse Theory

Definition 4 An algebraic cellular complex (ACC) C = (Cn, dn, βn)n∈Z is a
chain complex (Cn, dn)n∈Z with a distinguished basis {βn}n∈Z in every chain
group.

Let C be an ACC. A (p − 1)−cell σ is said to be a face of a p-cell τ if the
coefficient of α in dpτ is non-null. It is a regular face if this coefficient is 1 or −1.

Definition 5 A discrete vector field V on an ACC C = (Cp, dp, βp)p∈Z is a
collection of pairs V = {(σi, τi)}i∈β satisfying the conditions: every σi is some
p-cell, in which case the other corresponding component τi is a (p+1)-cell; every
component σi is a regular face of the corresponding component τi; and a cell of
C appears at most one time in the vector field.

A cell χ which does not appear in a discrete vector field V = {(σi, τi)}i∈β is
called a critical cell.

However, not all the vector fields are able to reduce chain complexes (for
instance the ones that produce loops), we need an additional admissibility prop-
erty.

Definition 6 If V = {(σi, τi)}i∈β is a vector field on an ACC C = (Cp, dp, βp)p∈Z,
a V -path of degree p is a sequence π = ((σik , τik))0≤k<m satisfying: every pair
((σik , τik)) is a component of the vector field V and the cell τik is a p-cell; for
every 0 < k < m, the component σik is a face of τik−1

, non necessarily regular,
but different from σik−1

.
A discrete vector field V on an algebraic cellular complex C = (Cp, dp, βp)p∈Z

is admissible if for every p ∈ Z, a function λp : βp → Z is provided satisfying the
following property: every V -path starting from σ ∈ βp has a length bounded by
λp(σ).

Once we have defined the notion of a discrete vector field, we can explain
that an admissible discrete vector field, V on an ACC C, defines a reduction
generated by the critical p-cells. Firstly, let us introduce the notion of reduction.

Definition 7 A reduction between two chain complexes C∗ and D∗ (which is
denoted by C∗⇒⇒D∗) is a triple (f, g, h) where: (a) the components f : C∗ → D∗
and g : D∗ → C∗ are chain complex morphisms; (b) the component h : C∗ →
C∗+1 is a graded group morphism of degree +1; and (cc) the following relations
are satisfied: (1) fg = idD∗ ; (2) dC∗h+hdC∗ = idC∗−gf ; (3) fh = 0; (4) hg = 0;
and (5) hh = 0.

Let C∗⇒⇒D∗ be a reduction, then C∗ and D∗ have canonically isomorphic
homology groups, see [26].

Theorem 1 (Vector-Field Reduction [25]) Let C = (Cp, dpβp)p∈Z be an
ACC and V = {σi, βi}i∈β be an admissible discrete vector field on C. Then
the vector field V defines a canonical reduction (Cp, dp)⇒⇒ (Ccp, d

′
p) where Ccp =

Z
[
βcp
]

is the free Z−module generated by the critical cells.

With this theorem, we are able to work with the chain complex generated by
the critical cells which is much smaller than the initial chain complex, knowing
that homological properties are preserved. Let us note that the larger is the
number of vectors which compose the vector field the smaller is the reduced
chain complex. So, we are interested in creating a vector field with many vectors
as possible.

4.2 Implementation, Testing and Certification

For algebraic cellular complexes coming from actual digital images, we can sum-
marize the reduction problem of an ACC C = (Cn, dn, βn)n∈Z by a vector field
as follows. It is worth noting that even the bigger digital images have always a
finite number of components, hence an ACC coming from a digital image always
have a finite number of components in each degree. In addition, the differential
map dn of the ACC can be represented by a finite matrix Mn. Then, the problem
of computing homology groups is translated to a problem of diagonalizing those
matrices, see [28].

From Mn, an admissible vector field V can be constructed. Subsequently,
using Mn and the vector field V , a new matrix M̂n (smaller than Mn) is obtained.

Thanks to the matrix M̂n the homology groups of C can be computed much
faster. In [25] the algorithms that compute both the admissible vector field and
the reduced matrix are explained; here, we just state them (Algorithm 2 invokes
Algorithm 1).

Algorithm 1 .
Input: an integer matrix M .
Output: an admissible vector field V .

Algorithm 2 .
Input: an integer matrix M .
Output: a reduced matrix M̂ .

These algorithms have been implemented as Haskell programs [17]. We have
chosen Haskell because both the code and the way of working is similar to the
ones of the Coq formal proof management system [5], which will be used to
certify the correctness of the programs.

After implementing Algorithm 2, and all its subalgorithms, we have spent
a long time testing our programs, as usual in software development. To this
aim, we have done two types of testing. On the one hand, an automatic testing
with examples generated from random images has been performed. On the other
hand, we have also tested our programs with QuickCheck [4], a tool which allows
one to automatically test properties about programs.

Let us focus on the testing performed via QuickCheck. The way of working is
as follows: firstly, a specification of the properties that the programs must fulfill
is given. Then, the system tests those properties with cases randomly generated.
For instance, we can define the following property.

. .

> prop-admissible-vf M = (int-matrix M) ==> (admissible (vectorCvd M)) z
> \emph{QuickCheck} prop-admissible-vf z
OK, passed 100 tests
. .

The above code must be read as follows. The first line states the property
called it prop-admissible-vf, that we want to test; in this case, we are interested
in checking that given an integer matrix M the function vectorCvd, which imple-
ments Algorithm 1, builds an admissible discrete vector field (admissible is a
test function that returns True if its argument is an admissible discrete vector
field and False otherwise). The second line is the QuickCheck invocation to test
the property prop-admissible-vf. The last line presents the result produced by
QuickCheck, which means that all the cases generated by QuickCheck satisfy
the property prop-admissible-vf. In this way, all the functions implemented in
Haskell have been tested.

The usage of QuickCheck can be considered as a good starting point towards
the formal verification of our programs. On the one hand, a specification of the
properties which must be satisfied by our programs is given (a necessary step in
the formalization process). On the other hand, before trying a formal verification
of our programs (a quite difficult task) we are testing them, a process which can
be useful in order to detect bugs.

Finally, the last step is the formalisation of the implementation of our algo-
rithm in the Coq Theorem Prover [5] using the SSReflect environment [9]. Once
this task is accomplished, we can claim that our programs are correct; that is to
say, they always produce the expected result. The formalisation of our programs
is an ongoing work; so, here we are only introducing some remarks.

The first step in our formalisation consists in translating our Haskell pro-
grams into the Coq language. In spite of the fact that both languages are close,
some changes are necessary in some functions, for instance, adding termination
conditions. In addition, it is also necessary to define the test functions which al-
low us to specify the properties that our programs must satisfy (the admissible

function is an example of this kind of functions). Eventually, we state the lemmas
that ensure the correctness of our programs. For instance, we are interesting in
proving properties like the following one.

SSReflect Lemma 1 Let M be an integer matrix, then (vectorCvd M) builds
and admissible vector field.
. .

Lemma admissible-vf:
forall M, (int-matrix M) -> (admissible (vectorCvd M))

. .

It is worth noting that the above lemma is very similar to the QuickCheck prop-
erty that we have tested. As we have said previously, this formalisation process
is work in progress and just some parts of the programs have been verified up
to now.

5 Automating and Certifying the Workflow

Let us summarize our workflow, depicted in Figure 5 to study biomedical images
related to synaptical structures. We must remark two things in this process: on
the one hand, a wide variety of programs and programming languages are used
in this process; on the other hand, several steps have been formalized using
theorem proving tools improving in this way the reliability of our approach.

Biomedical
image

SynapsesCountJ Processed
image

fKenzo Chain
complex

fKenzo

fKenzo
Matrix

Haskell

Reduced

matrix

fKenzo
Homology

interpretation

properties

Fig. 8. Workflow of biomedical images study

First of all, the biomedical images related to synaptical structures are pro-
cessed using the SynapsesCountJ plug-in. Namely, from three images of the same
neuron (representing the neuron with two different antibody markers and the
structure of the neuron), a monochromatic image representing the synapses of
the neuron is returned.

The construction of the chain complex associated with the processed image is
performed by fKenzo in three steps: (1) build the simplicial complex associated
with the digital image; (2) construct the simplicial set canonically related to the
simplicial complex; and, (3) build the chain complex associated with the simpli-
cial set. All these steps have been formalized in the ACL2 theorem prover [18];
namely, the certification of both first and second steps is given in [13]; and the
verification of the third step was presented in [19].

At this point we could compute the homology groups of the image using
the fKenzo system; however, as this option can take a lot of time, we use the
alternative route. Namely, an integer matrix is obtained from the chain complex.
In particular, as we are interested in computing the 0-homology group of the
image in order to measure the number of its connected components, we only
need the matrix M1 which represents the differential map d1 of the chain complex
associated with the digital image. This step is performed thanks to fKenzo and
is formalized in the Coq proof system, see [15].

The matrix associated with the chain complex is reduced thanks to the
Haskell programs presented in Section 4. As we have said previously the for-
malization of this step is work in progress and is undertaken with the Coq proof
system.

Once that we have obtained the reduced matrix, we can compute the homol-
ogy groups thanks to fKenzo. The formalization of this step remains as further
work. In particular, we obtain the 0-homology group which is interpreted as the

number of connected components of the processed image. Finally, from the num-
ber of connected components, we obtain the number of synapses of the original
biomedical image.

6 Conclusions and Further work

The main contribution of this paper is the presentation of a methodology to study
digital images from a topological point of view. Our aim was to automate the
processes carried out previously by a team of biologists when studying structural
synaptical properties (see [6]). In addition to this computational aspect, we have
also proposed a way of certifying the correctness of (some of) the automated
steps, by using theorem provers as Coq or ACL2.

As already explained previously, the verification of our Haskell programs by
means of Coq/SSReflect is still an ongoing work (it is a difficult and time con-
suming task). A second line of further research consists in finding more advanced
applications of our homological tools in the biomedical imaging context, since
up to now, only the counting of connected components (in other words, the
computation of the 0-th homology group) has been used.

References

1. R. Ayala, E. Domı́nguez, A. Francés, and A. Quintero. Homotopy in digital spaces.
Discrete Applied Mathematics, 125:3–24, 2003.

2. M. Bear, B. Connors, and M. Paradiso. Neuroscience: Exploring the Brain. Lip-
pincott Williams & Wilkins, 2006.

3. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment, Coq’Art: the Calculus of Inductive Constructions. Springer-Verlag, 2004.

4. K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. In ACM SIGPLAN Notices, pages 268–279. ACM Press,
2000.

5. Coq development team. The Coq Proof Assistant Reference Manual, version 8.3.
Technical report, 2010.

6. G. Cuesto et al. Phosphoinositide-3-Kinase Activation Controls Synaptogene-
sis and Spinogenesis in Hippocampal Neurons. The Journal of Neuroscience,
31(8):2721–2733, 2011.

7. X. Dousson, J. Rubio, F. Sergeraert, and Y. Siret. The Kenzo program. Insti-
tut Fourier, Grenoble, 1998. http://www-fourier.ujf-grenoble.fr/~sergerar/
Kenzo/.

8. R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90–145,
1998.

9. G. Gonthier and A. Mahboubi. A Small Scale Reflection Extension for the Coq
system. Technical report, Microsoft Research INRIA, 2009. http://hal.inria.

fr/inria-00258384.
10. J. Heras. The fKenzo program. University of La Rioja, 2010. http://www.

unirioja.es/cu/joheras/fKenzo/.
11. J. Heras. Mathematical Knowledge Management in Algebraic Topology. PhD thesis,

University of La Rioja, 2011.

http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/
http://hal.inria.fr/inria-00258384
http://hal.inria.fr/inria-00258384
http://www.unirioja.es/cu/joheras/fKenzo/
http://www.unirioja.es/cu/joheras/fKenzo/

12. J. Heras, V. Pascual, A. Romero, and J. Rubio. Integrating multiple sources to
answer questions in Algebraic Topology. In Proceedings of the 9th International
Conference on Mathematical Knowledge Management (MKM’10), volume 6167 of
Lectures Notes in Artificial Intelligence, pages 331–335. Springer-Verlag, 2010.

13. J. Heras, V. Pascual, and J. Rubio. Proving with ACL2 the correctness of simplicial
sets in the Kenzo system. In Proceedings of the 20th International Symposium on
Logic-Based Program Synthesis and Transformation (LOPSTR’2010), volume 6564
of Lectures Notes in Computer Science, pages 37–51. Springer-Verlag, 2011.

14. J. Heras, V. Pascual, J. Rubio, and F. Sergeraert. fKenzo: A user interface for
computations in Algebraic Topology. Journal of Symbolic Computation, 46:685–
698, 2011.

15. J. Heras, M. Poza, M. Dénès, and L. Rideau. Incidence simplicial matrices for-
malized in Coq/SSReflect. In Proceedings 18th Symposium on the Integration
of Symbolic Computation and Mechanised Reasoning (Calculemus’2011), 2011.
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides.

16. N. Jacobson. Basic Algebra II. W. H. Freeman and Company, 2nd edition, 1989.
17. S. P. Jones et al. The Haskell 98 language and libraries: The revised report. Journal

of Functional Programming, 13(1):0–255, 2003. http://www.haskell.org.
18. M. Kaufmann and J. S. Moore. ACL2. http://www.cs.utexas.edu/users/moore/

acl2/.
19. L. Lambán, F. J. Mart́ın-Mateos, J. Rubio, and J. L. Ruiz-Reina. Applying ACL2

to the Formalization of Algebraic Topology: Simplicial Polynomials. In Proceedings
of the Interactive Theorem Proving 2011 (ITP’2011), 2011. http://wiki.portal.
chalmers.se/cse/uploads/ForMath/aafatsp.

20. S. MacLane. Homology. Springer, 1963.
21. G. Mata. SynapsesCountJ. University of La Rioja, 2011. http://imagejdocu.

tudor.lu/doku.php?id=plugin:utilities:synapsescountj:start.
22. E. Meijering et al. Design and Validation of a Tool for Neurite Tracing and Analysis

in Fluorescence Microscopy Images. Cytometry Part A, 58(2):167–176, 2004.
23. D. Orden and F. Santos. Asymptotically efficient triangulations of the d-cube.

Discrete and Computational Geometry, 30(4):509–528, 2003.
24. W. S. Rasband. ImageJ: Image Processing and Analysis in Java, 2003. http:

//rsb.info.nih.gov/ij/.
25. A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic

Topology, 2010. http://arxiv.org/abs/1005.5685v1.
26. J. Rubio and F. Sergeraert. Constructive Homological Algebra and Applica-

tions, Lecture Notes Summer School on Mathematics, Algorithms, and Proofs.
University of Genova, 2006. http://www-fourier.ujf-grenoble.fr/~sergerar/

Papers/Genova-Lecture-Notes.pdf.
27. D. J. Selkoe. Alzheimer’s disease is a synaptic failure. Science, 298(5594):789–791,

2002.
28. O. Veblen. Analysis Situs. AMS Coll. Publ., 1931.

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
http://www.haskell.org
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/
http://wiki.portal.chalmers.se/cse/uploads/ForMath/aafatsp
http://wiki.portal.chalmers.se/cse/uploads/ForMath/aafatsp
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:synapsescountj:start
http://imagejdocu.tudor.lu/doku.php?id=plugin:utilities:synapsescountj:start
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://arxiv.org/abs/1005.5685v1
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf

