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An example

Topological Space

Simplicial Complex:

Homology groups

'

0-śımplices: vertices (4 vertices)

1-śımplices: edges (6 edges)

2-śımplices: triangles (4 triangles)

. . .
H3 = 0
H2 = Z
H1 = 0
H0 = Z
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Simplicial Complexes

Definition:

Let V be a set, called the vertex set, a simplex over V is any finite
subset of V .

Definition:

Let α and β be simplices over V , we say α is a face of β if α is a
subset of β.

Definition:

An (abstract) simplicial complex over V is a set of simplices C
over V satisfying the property:

∀α ∈ C , if β ⊆ α⇒ β ∈ C
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C = {∅, {0}, {1}, {2}, {3}, {4}, {5}, {6},
{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}, {5, 6},
{0, 1, 2}, {4, 5, 6}}
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Simplicial Complexes

Definition:

The facets of a simplicial complex C are the maximal simplices of
the simplicial complex.
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The facets are: {{1, 3}, {3, 4}, {0, 3}, {2, 3}, {0, 1, 2}, {4, 5, 6}}
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Incidence Matrices

Definition

Let X and Y be two enumerated finite sets and r be a relationship
between the elements of X and the elements of Y , we call
incidence matrix

M =


Y [1] · · · Y [n]

X [1] a1,1 · · · a1,n

.

.

.

.

.

.
. . .

.

.

.
X [m] am,1 · · · am,n


where

ai ,j =

{
1 si X [i ] is related to Y [j ]
0 si X [i ] is not related to Y [j ]
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Incidence Matrices of Simplicial Complexes

Definition

Let C be a simplicial complex, A the set of n-simplices of C and B
the set of (n − 1)-simplices of C .
We call incidence matrix of dimension n (n ≥ 1), Mn of the
simplicial complex C , to a matrix p × q where

p = ]|B| ∧ q = ]|A|

Mi ,j =

{
1 si Bi ⊂ Aj

0 si Bi 6⊂ Aj
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Incidence Matrices of Simplicial Complexes
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

{0, 1} {0, 2} {0, 3} {1, 2} {1, 3} {2, 3} {3, 4} {4, 5} {4, 6} {5, 6}
{0} 1 1 1 0 0 0 0 0 0 0
{1} 1 0 0 1 1 0 0 0 0 0
{2} 0 1 0 1 0 1 0 0 0 0
{3} 0 0 1 0 1 1 1 0 0 0
{4} 0 0 0 0 0 0 1 1 1 0
{5} 0 0 0 0 0 0 0 1 0 1
{6} 0 0 0 0 0 0 0 0 1 1


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0

1

2

3 4
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6



{0, 1, 2} {4, 5, 6}
{0, 1} 1 0
{0, 2} 1 0
{0, 3} 0 0
{1, 2} 1 0
{1, 3} 0 0
{2, 3} 0 0
{3, 4} 0 0
{4, 5} 0 1
{4, 6} 0 1
{5, 6} 0 1


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Incidence Matrices of Simplicial Complexes

Importance of the I.M. of a S.C.
The incidence matrices of simplicial complexes are used to
compute the homology of the simplicial complex
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compute the homology of the simplicial complex

Objective
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Problem

Theorem: Product of two consecutive incidence matrices in Z2

Let C be a simplicial complex and n a number natural such that
n ≥ 2, then the product of the incidence matrix of dimension
n − 1, denoted by Mn−1, and the incidence matrix of dimension n,
denoted by Mn, is equal to the null matrix.

Sketch of the proof.

Let Cn be the set of n-simplices of C

Let Cn−1 be the set of (n − 1)-simplices of C

Let Cn−2 be the set of (n − 2)-simplices of C

Mn−1 =


Cn−1[1] · · · Cn−1[r1]

Cn−2[1] a1,1 · · · a1,r1

.

.

.

.

.

.
. . .

.

.

.
Cn−2[r2] ar2,1 · · · ar2,r1

 Mn =


Cn [1] · · · Cn [r3]

Cn−1[1] b1,1 · · · b1,r1

.

.

.

.

.

.
. . .

.

.

.
Cn−1[r1] br1,1 · · · br1,r3


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Mn−1 ×Mn =

 c1,1 · · · c1,r3
...

. . .
...

cr2,1 · · · cr2,r3


where

ci , j =
∑

16j06r1

ai , j0 × bj0, j

we need to prove that
∀i , j , ci , j = 0

in order to prove that Mn−1 ×Mn = 0
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Lemma

Under the previous conditions, ∀i , j , ci , j = 0
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Problem

Lemma

Under the previous conditions, ∀i , j , ci , j = 0

Proof.

∑
16j06r1

ai, j0 × bj0, j =

∑
j0|Mn−2[i ]⊂Mn−1[j0]∧Mn−1[j0]⊂Mn [j]

ai, j0 × bj0, j +∑
j0|Mn−2[i ]6⊂Mn−1[j0]∧Mn−1[j0]⊂Mn [j]

ai, j0 × bj0, j +∑
j0|Mn−2[i ]⊂Mn−1[j0]∧Mn−1[j0]6⊂Mn [j]

ai, j0 × bj0, j +∑
j0|Mn−2[i ]6⊂Mn−1[j0]∧Mn−1[j0]6⊂Mn [j]

ai, j0 × bj0, j
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Problem

Lemma

Under the previous conditions, ∀i , j , ci , j = 0

Proof.∑
16j06r1

ai, j0 × bj0, j = (
∑

j0|Mn−2[i ]⊂Mn−1[j0]∧Mn−1[j0]⊂Mn [j]

1) + 0 + 0 + 0

.
= ]|{j0 | Mn−2[i ] ⊂ Mn−1[j0] ∧Mn−1[j0] ⊂ Mn[j]}|
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Problem

Lemma

Under the previous conditions, let T ∈ Cn and x ∈ Cn−2 if x ⊂ T
then,

]|{y ∈ Cn−1|(x ⊂ y) ∧ (y ⊂ T )}| = 2

Sketch of the proof.

T ∈ Cn ⇒ T = {a0, . . . , an}
x ∈ Cn−2 ∧ x ⊂ T ⇒ x = {a0, . . . , âi , . . . , âj , . . . , an}
y ∈ Cn−1 ∧ y ⊂ T ⇒ y = {a0, . . . , âr , . . . , an}
y ∈ Cn−1 ∧ y ⊂ T ∧ x ⊂ y ⇒ y = {a0, . . . , âr , . . . , an} with
r={i,j}

Then
]|{y ∈ Cn−1|(x ⊂ y) ∧ (y ⊂ T )}| = 2

�
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