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Abstract. In this report we present a tool that enables to automat-
ically transport specifications in the Isabelle/HOL theorem prover to
some other systems. In particular, for a given theory, including type
definitions, definitions and theorems, an ACL2 theory with similar con-
structs will be generated. Additionally, from the Isabelle/HOL theory
an specification in the Ecore language will be generated, by means of a
UML class diagram and OCL restrictions. The transformations are done
by means of XSLT, taking advantage of the fact that some of the inter-
mediary languages are based on XML schemas, and some Java programs
for additional transformations.

1 Introduction

A meaningful and aspiring goal in the field of formalization of Mathematics with
theorem provers is the capacity to transfer results proven with one concrete tool
to different tools. The idea is natural, since from a naive point of view one would
expect that once a proving effort has been carried out to formalize a result in a
given system, the result should be available (and trusted) in any other system.

Unfortunately, this possibility is not supported by the current technology
because of various reasons. First, every system implements its own logic and
even has a particular “proving style”; thus, expressivity among logics is differ-
ent. For instance, ACL2 (which we will describe in detail later) is a subset of
first-order logic, whereas Isabelle/HOL is an implementation of a higher-order
logic (with type classes and polymorphism), or Coq is based on a (higher-order)
dependent type theory. Even worse, proofs are not carried out in a similar way;
ACL2 has a great degree of automation, based on inductive tactics provided
by the user, whereas Isabelle/HOL encourages the use of the Isar (intelligible
semi-automated reasoning) language in proofs, a human readable format, where
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proofs can be carried out in a backward or forward manner and with differ-
ent degrees of automation and detail. Then, Coq proofs are also carried out by
means of tactics or tacticals in the Gallina language, but the range of tactics
and automation is different from the one in Isabelle/HOL. Every single system
has its particularities derived from its implementation, logical foundations, goals
or purposes, as programming languages do (or even more, since theorem provers
perform more complex tasks).

Despite of this, one could think of sharing between different systems at least
specifications, definitions, statements or proofs that rely on the common places
of each system’ logic. Unfortunately, after decades of tools’ development, every
system has its own syntax and libraries (which are worth to be used in new
developments), which makes complicated to directly move proofs from one sys-
tem to the other. Even if we are dealing with systems based on the same logical
foundation, such as HOL4 and Isabelle/HOL, each one of them includes its own
definitional extensions (as for instance type classes and ad-hoc polymorphism,
packages for recursive functions’ definition and so on) that cannot be directly
transferred from one system to the other, but somehow emulated.

Nevertheless, relevant efforts have been carried out to fill the gaps that we
have enumerated, even getting the direct translation of specifications and proofs
among systems. Usually they are based on the idea of considering one system
as a subset of another, and then mapping elements of that system to this one.
A different approach consists of defining a “meta-language” in which various
systems can be translated (ideally in both directions, to the “meta-language”
and from the “meta-language”). We will present some of these tools in detail in
Section 5.1.

In this work, we propose a different approach. From a given development in
Isabelle/HOL [5] (where a formalization of an algorithm computing a particular
form of matrices is presented), we define a set of transformations that enable us
to transfer the datatypes, specification of definitions and theorems’ statements
to both ACL2 and to an Ecore model (given by UML class definitions and
OCL restrictions). The translations to Ecore and ACL2 are both based on an
intermediary XML document, automatically generated from the Isabelle sources,
and compliant with an schema that we have also developed, XLL (standing
for Xmall Logical Language). XLL includes elements for specifying datatypes,
operations and logical statements relating them; its syntax can be divided into
two substantial parts; one of them is used to state the definitions of data types
and its operations appearing in the input Isabelle theory, whereas the second
part contains the statements of the properties included in the same theory; we
postpone the XLL syntax details to its description in Section 3. The XML schema
of XLL performs additional operations to ensure that the statements are related
to datatypes and operations that have been previously introduced (i.e., that the
specification of properties corresponds with the elements already introduced in
a theory).
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The XLL language is used as a common basis to perform translations to
both Ecore and ACL2 of the original Isabelle developments (or theories, in the
Isabelle jargon, even when an Isabelle theory can include additional constructs).

The translation to Ecore, where OCL is also a first order language, serves
as a general purpose formal specification of the theory we are carrying out. The
translation includes the definition of data types and the specification of proper-
ties; both are made starting from the XLL file of each theory; the translation of
the data types in XLL gives place to the Ecore classes (or the “context”) over
which the OCL properties have to be stated; the translation of the statements
in XLL produces OCL properties, which make reference to the generated Ecore
classes and its operations. Additionally, this specification of properties and data
types could be used to build (automatically or provided by the user, depending
on the underlying technologies) instances of the Isabelle specifications, where
the properties (the theorems’ statements) can be thoroughly checked or refuted,
(once the Isabelle specifications have been proved, and considering the transla-
tion as correct, faults could be only originated in the representation chosen for
the instances; if the Isabelle properties have not been proved, the Ecore models
could be considered as a testing tool for the properties).

Then, the translation from XLL to ACL2 shows that the formal specification
of the theory can be ported to some other theorem proving tools. The reason why
we have chosen ACL2 is that we are familiar with its syntax, its simplicity (apart
of the particular treatment applied to existential and universal quantifiers, that
we introduce later) and also our personal interest in transporting the theory
about matrices that we have completed in Isabelle to it. Nevertheless, there
is nothing inherent to ACL2 that is needed to carry out the translation, so
probably a similar transformation could be carried out to some other theorem
provers without a substantial effort. As we have said before, the expressivity
of HOL is larger than the one of ACL2, which means that our use cases will
restrict to their common subset. These tools (ACL2, in our case) now could use
the statements transferred from the Isabelle formal development as a guideline
to achieve a similar formalization to the original one.

In this report, we will present and translate two different case uses; a first one
based on lists, which we will use to introduce the architecture and its different
languages and formalisms, and then a complex development (with more than
6.000 lines of Isabelle code), the Isabelle/HOL formalization of an algorithm
computing the diagonal form a matrix by only performing elementary operations,
a previous step to the computation of its Smith normal form.

It is worth noting that the concrete representation of data types (in our case,
lists, represented in our Isabelle sources by an inductive datatype, or matrices,
represented in our Isabelle sources by finite functions over pairs of naturals) is
not transferred from one setting (Isabelle/HOL) into the others (XLL, ACL2
or Ecore), since we prefer to leave to the user the task of choosing a suitable
representation of the data types in each setting or language; the object oriented
setting in Ecore probably demands a different definition of the matrix data type
than Isabelle or ACL2.
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In order to build the different translations, one could think of using ad-hoc
programs, in the form of code snippets in different programming languages, such
as ML (the underlying language in which Isabelle is implemented) or Common
Lisp (the language in which ACL2 is developed, and from which is a subset).
At this point, we decided to make use primarily of XML technology to produce
the different translations involved. Isabelle already offers support for generating
and reading XML files wrt an schema. Ecore also has its own schema and good
support for XML, even if we did not find an approved schema for OCL, the
restriction language. The generic XLL schema served us as a source for both
generating ACL2 and Ecore + OCL. We created these schemas and translations
for our main use case, the formalization of a diagonal form of matrices, but they
can be applied to a broader range of use cases (for instance, our introductory
example based on lists); even more, we claim that the XLL schema used for the
generation of Ecore, OCL and ACL2 could be also used to generate specifications
in other theorem provers (as, for instance, Coq).

This report is divided in five sections. In Section 2 we introduce the tools
we are using in our later development (i.e., Isabelle/HOL, Ecore and ACL2).
Then, in Section 3 we describe the different transformations and intermediary
languages that we have introduced to port theories among the different proving
and specification tools. An introductory use case based on lists will be presented.
Then, in Section 4 we present the Isabelle/HOL formalization of the diagonal
form of matrices, and how it is transferred to both Ecore and ACL2. We pay spe-
cial attention to the intermediary steps in the setting since they should provide
useful information on the applicability of the tool.We also present the resulting
specification in Ecore, as well as the ACL2 theory obtained. Finally, in Section 5
we present some works in the field and some proposed enhancements of the
technology presented in the paper.

2 Tools description

2.1 Isabelle/HOL

Isabelle [5] is a generic theorem prover (in the sense that different logics can
be implemented on top of it). It is programmed in ML, a well-known funcional
programming language. The Isabelle core (known as Isabelle/Pure, o metalogic)
is composed by basic inference rules that represent a fragment of higher-order
logic, in the spirit developed by Alonzo Church [2], also known as simple type
theory.

A detailed description of the metalogic can be found in [7]. We will not get
here into the details, but point out that it is based in two main components:

– A type system, based on non-empty types, and function types. One of these
types is a type called prop, which contains the propositions that can be
expressed in the system. In particular, it contains two constants, true (>)
and false (⊥).



5

– A set of inference rules which act over terms of type prop, and that express
the properties of the connectors of the metalogic. These are φ =⇒ ψ (which
is the equivalent to ‘φ implies ψ’), the universal quantifier

∧
, such that

∧
x.φ

is the equivalent to ‘for all x, φ is true’ and the equality a ≡ b.1

The way to define functions in the system is as follows. If for every constant x
of a given type σ we assign a value b(x) of a type τ , the λ-abstraction λx:σ.b(x)
denotes the function of type σ → τ , which maps each given x to b(x).

On top of this metalogic different logics can be implemented. For instance,
the Isabelle standard distribution contains implementations of first-order logic,
Zermelo-Fraenkel set theory or logic of computable functions. It also contains an
implementation of higher-order logic, in which we will focus, since our posterior
developments will be mainly carried out on top of it (at some point we will also
revisit the metalogic). HOL is the most widely used logical setting by the Isabelle
community, so that usually Isabelle/HOL is commonly referred as Isabelle. Its
expressiveness has been helpful to formalize relevant results in diverse fields, from
software and hardware verification (for instance, the seL4 project on the formal
verification of an operating system kernel [4]) to mathematical foundations (as,
for instance, the Basic Perturbation Lemma, an intricate result in Homological
Algebra [1]).

In order to define HOL over the metalogic, a type system, capturing the
properties of the HOL (also known as simple type theory) type system, and a
set of axioms (or rules) which define our logical system, are defined.2

With respect to the type system, and following the notion of types in the
metalogic, new types can be defined as long as they are not empty (the user
has to prove that new defined types are inhabited). New types can be also
defined as subsets of existing types. In this way, the product of two given types
(allowing thus to work with tuples), the addition of two defined types (giving
place to the set of direct sums of elements of both types) or types defined by
induction can be defined. The system itself includes facilities which ease the
definition of new types. In the Isabelle distribution library types representing
the natural numbers, integers, reals, complex numbers, polynomials, matrices,
rings, vector spaces and almost every mathematical structure in a standard text
book of the field are available. One relevant fact for our further development is
that these representations are not unique; despite the rudimentary type system
behind HOL, different representations (type definitions) can be proposed, for
instance, for matrices; a matrix can be considered as a finite function from its
coordinates (pairs of naturals) to the matrix underlying type (integers, reals,
complex numbers) or as a list of lists of elements of the underlying type. These
design choices have a deep influence in the proofs of the results that have to be
carried out over the type.

1 The symbols =⇒,
∧

and ≡ are chosen for the metalogic, thus leaving available for
the logics implemented on top of the metalogic the most common ones −→, ∀, =.

2 In general, when dealing with theorem provers, the inclusion of axioms in the sys-
tem demands extreme attention, since wrong axioms could lead the system to an
inconsistent state where everything could be provable.
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The set of rules which HOL incorporates is rather sort; take into account
that some of them simply state equivalences between operators in HOL and the
corresponding operators in the metalogic:

refl: t = t

subst: [ s = t ; P s ] =⇒ P t

ext: (
∧
x. f x = g x) =⇒ (λx. f x) = (λx. g x)

impI:(P =⇒ Q) =⇒ P−→ Q

mp: [ P −→ Q ; P ] =⇒ Q

iff: ( P −→ Q ) −→ ( Q −→ P ) −→ ( Q = P )

someI: P x =⇒ P (εx. P x)

True or False: (P = True) ∨ (P = False)

From the previous axioms, ext expresses extensionality of functions (wrt the
universal quantifier

∧
of the metalogic). The rule iff expresses that formulae

logically equivalent are equal. The rule True or False (also known as law of
excluded middle) makes the implemented logic classic. The rule impI relates the
element of the logic −→ with the element of the metalogic =⇒. The remaining
elements in the logic (the constants True and False, the connectors ¬, ∀, ∧, ∨,
the unique existential ∃1, . . . ) can be defined (without the need of axiomatically
including them) from the introduced connectives. For instance, True is equal to
(λx.x = x) = (λx.x = x) and ¬ is defined as ¬P = (P −→ False).

New statements can be introduced in the system by means of idioms such as
lemma or theorem, which admit premises and hypothesis in the form of boolean
expressions; their proofs can be carried out in different ways; the traditional
style consisted in the successive application of tactics or tacticals (functions
mapping the statement to one or various easier statements) that must led to the
original premises or to a trivial statement (True); thus, proofs were developed
in a backward style. Then, the Isar language allows the construction of proofs in
a backward or forward style, endorsing the use of an almost natural language,
where proofs should remain human-readable. Nevertheless, in the rest of the
paper we will focus on statements and specifications more than in proofs.

Another tool of the system that will be used in our experiment is the fa-
cility to export Isabelle files (usually called theories) to XML. Along the years,
the theorem proving community has become more sensible to the necessity of
interaction among theorem proving tools, as we have already highlighted in the
introduction, but also among different external tools such as PIDE (Isabelle com-
municates with JEdit as external editor) or tools for generating documentation
(such as facilities to generate Latex and html sources from Isabelle theories). In-
teroperability requires widely used standards, apart of the traditional functional
programming languages and dialects used internally in the theorem provers. To
fill this gap, Wenzel developed a tool integrated in Isabelle allowing to generate
the XML code of any language primitives (such as definitions, type definitions,
types, theorems, lemmas, syntax annotations and so on). This XML is compli-
ant to a certain schema (distributed with Isabelle in a file“isabelle.xsd”). This
XML code can be used (and will be used in our experiments) as starting point
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for further translations. There is another ongoing project to enhance this tool
by means of YXML syntax, where XML trees are untyped (without a compliant
DTD) and the user must decide the structure in which they are encoded, but our
application did not require that much adaptability. Additional information on
these tools, already existing applications and experiments can be found in [31].
The paper itself serves also as a useful introduction to our problem on knowledge
transference among different tools, by means of an XML infrastructure.

2.2 Ecore and OCL

Eclipse is an open source software project, for the purpose of providing a highly
integrated tool platform. This project supports the development of a platform,
or framework, for the implementation of integrated development environments
(IDEs) and other applications. The Eclipse framework itself is implemented using
Java, but is used also to implement development tools for other languages as well
(e.g.,C++, XML. . . ).

The Eclipse Modeling Framework (EMF) is a framework for describing a
model and then generating other models or code from it. In fact, with EMF
modeling and programming can be considered the same thing. It brings them
together as two well-integrated parts of the same job, because EMF unifies three
important technologies: Java, XML and UML. Using EMF, one can model an
application in a UML class diagram, press a button to obtain an XML Schema
with that representation or press another button to generate the Java implemen-
tation of the interfaces. An EMF model integrates the three technologies and
can be defined using either of them.

The model used to represent models in EMF is called Ecore. Ecore is itself an
EMF model, and thus is its own metamodel. It is the center of the EMF world and
an Ecore model can be created from any of the three technologies: a UML model,
an XML Schema, or Java interfaces. In addition, the reverse transformation is
possible: from an Ecore model one can generate a UML model, an XML Schema,
Java implementation code and, optionally, other forms of the model.

As we have said before, the “conceptual” model of an application could be
represented using Java code, XML Schema or a UML diagram. EMF unifies
them using a canonical representation: XMI (XML Metadata Interchange). We
have to remark that Java code, XML Schema and UML all carry additional
information beyond what is captured in an Ecore model; in fact, Ecore is a
small and simplified subset of full UML (full UML supports much more ambitious
modeling than the core support in EMF; some of these limitations, as the lack
of static methods in Ecore, will be noticed later in our technology).

Thus EMF allows us to have interoperability among those three technologies
in an XMI file:
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Fig. 1. EMF unifies Java, XML and UML in Ecore (XMI file)

More information about Eclipse project, EMF and Ecore can be found in [6].

We illustrate how Ecore works with an example: given a simple UML class
diagram (see figure 2) with two classes, we can obtain the corresponding Ecore
model, see its diagram (figure 3) and export it as an Ecore/XMI representation
(an XML file, see figure 4).

Fig. 2. UML Class Diagram

Fig. 3. Ecore Diagram
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<?xml version="1.0" encoding="UTF-8"?>
<Ecore:EPackage xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:Ecore="http://www.eclipse.org/emf/2002/Ecore" name="example"
nsURI="http://example/1.0" nsPrefix="example">

<eClassifiers xsi:type="Ecore:EClass" name="Person">
<eOperations name="getName"

eType="Ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eOperations name="getAge"

eType="Ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
<eStructuralFeatures xsi:type="Ecore:EAttribute" name="name"

eType="Ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="Ecore:EAttribute" name="age"

eType="Ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
<eStructuralFeatures xsi:type="Ecore:EReference" name="fleet" upperBound="-1"

eType="#//Car" eOpposite="#//Car/owner"/>
</eClassifiers>
<eClassifiers xsi:type="Ecore:EClass" name="Car">

<eOperations name="getModel"
eType="Ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="Ecore:EAttribute" name="Model"
eType="Ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="Ecore:EReference" name="owner" lowerBound="1"
eType="#//Person" eOpposite="#//Person/fleet"/>

</eClassifiers>
</Ecore:EPackage>

Fig. 4. Ecore XMI

The Object Constraint Language (OCL) is a declarative language for de-
scribing rules that apply to a UML model. OCL supplements UML by providing
expressions that have neither the ambiguities of natural language nor the inher-
ent difficulty of using complex mathematics, thus OCL is a formal specification
language with precise semantics. More information about this technology can be
found in [24].

In some situations, UML is not expressive enough, and OCL can be used to
state additional properties of UML diagrams. For example, in the figure 2, how
can we specify that “a car owner must be at least 18 years old”? The answer is
using an OCL invariant:

context Car

inv: self.owner.age >= 18

Fortunately, an Ecore model can be enriched with OCL restrictions. Even,
one can create a dynamic instance of that Ecore model and validate this in-
stance with respect to the model and the OCL restrictions. A tutorial about
this possibility (and in general, on working with OCL in Ecore) is found in [8].

2.3 An ACL2 Overview

In this section we present a brief introduction to the ACL2 system. ACL2 stands
for “A Computational Logic for an Applicative Common Lisp.” Roughly speak-
ing, ACL2 is a programming language, a logic and a theorem prover. Its pro-
gramming language is an extension of an applicative subset of Common Lisp [32].
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The ACL2 logic describes the programming language, with a formal syntax, ax-
ioms and rules of inference: the applicative subset of Common Lisp is a model
of the ACL2 logic. Finally, the theorem prover provides support for mechanized
reasoning in the logic. Thus, the system constitutes an environment in which
programs can be defined and executed, and their properties can be formally
specified and proved with the assistance of a theorem prover.

The logic is a first-order logic with equality. The syntax of its terms is that
of Common Lisp and therefore uses prefix notation. Formulas are quantifier-free
and their variables are considered to be universally quantified. For example, the
following formula may be read as “for all natural numbers n and x, with x even
and n > 0, xn is even”:

(defthm evenp-expt

(implies (and (natp n) (> n 0) (natp x) (evenp x))

(evenp (expt x n)))

The logic includes axioms for propositional logic and for a number of prim-
itive Common Lisp functions and data types. Rules of inference include those
for propositional calculus, equality, instantiation and a principle of proof by
induction.

By the principle of definition, new function definitions (using defun) are ad-
mitted as axioms only if there exists an ordinal measure in which the arguments
of each recursive call (if any) decrease, thus proving its termination. This ensures
that no inconsistencies are introduced by new definitions.

The ACL2 theorem prover is an integrated system of ad hoc proof techniques,
including simplification and induction among them. Simplification is a process
combining term rewriting with some decision procedures (linear arithmetic, type
set reasoner, etc.) Sophisticated heuristics for discovering an (often suitable)
induction scheme is one of the key features in ACL2. The command defthm

starts a proof attempt, and, if it succeeds, the theorem is stored as a rule (in most
cases, a conditional rewriting rule). For example the above theorem evenp-expt,
once proved, would allow the prover to rewrite an instance of the term (evenp

(expt x n)) to the boolean constant t (true), provided that the corresponding
instantiated conditions of the rule can be established.

The theorem prover is automatic in the sense that, once defthm is submitted,
the user can no longer interact with the system. However, in some sense, it is
interactive. Often, non-trivial results cannot be proved on a first attempt, and
then the role of the user is important: she has to guide the prover by a suitable
collection of definitions and lemmas, used in subsequent proofs as rewriting rules.
These lemmas are suggested by a preconceived hand proof (at a higher level) or
by inspection of failed proofs (at a lower level). This kind of interaction is called
“The Method” by the authors of the system [33].

A relevant feature of ACL2 is executability: since its axioms and rules of
inference describe a subset of Common Lisp, most ground expressions in the
logic are directly executable in the host Lisp (as opposed to deducing their values
via the axioms). Nevertheless, this simple relationship is complicated by the fact
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that not all Common Lisp functions are defined on all inputs: the Common Lisp
standard introduces the notion of “intended domain” of a primitive function.
Outside this intended domain the behavior of a function is not specified. In
contrast, in the ACL2 logic functions are total: that is, every application of a
function defined has a completely specified result.

For more information on ACL2, the best reference is [33]. For a detailed and
updated description of all the system details, we also recommend visiting the
ACL2 home page [34] and the user’s manual in it.

3 Translating formal specifications

First of all, we are going to introduce a diagram showing the different ingredients
in the development.

Fig. 5. Architecture of our development

There exist several intermediary steps in the process of translating the theo-
rems’ statements from Isabelle to ACL2 and Ecore with OCL restrictions. These
steps are exclusively developed using three technologies: Java, XSLT and XProc.

XSLT (Extensible Stylesheet Language Transformations) is a declarative lan-
guage for transforming XML documents into other XML documents, or other
objects such as HTML for web pages, plain text. . . To introduce it briefly: a
XSLT processor takes one or more XML sources, plus one XSLT stylesheet, and
processes them with the XSLT template-processing engine (the processor) to



12

produce an output document. More information on XSLT can be found in [9].
Due to topics as reusability and maintenance, it is a “good practice” to have var-
ious small XSLT files instead of one big transformation. For this reason, another
technology is used in our development: XProc, which is designed to address the
common problem of how to compose XML processes. Many document process-
ing scenarios involve some combination of XML technologies; canonical examples
include XInclude, schema validation or transformations. XProc has been specif-
ically designed to allow authors to compose XML processes and share these
compositions in a standard way. In our case, we use XProc to make consecutive
XSLT transformations3. A very nice tutorial of the use of this tool can be found
in [11]. Most XProc processors can be downloaded from [23].

Figure 5 shows the necessary steps to transform a suitable Isabelle input to
an XLL file (through the steps 1 to 4); in these steps, an intermediary XML
language called Pre OCL is created to express the statements of properties; in
order to formally prove that this transformation can be reversed, step 5 proves
that the statements presented in the XLL document generated through the steps
1 to 4 are equivalent to the original Isabelle statements (inside of Isabelle). Step
6 translates the theorems’ statements presented in the XLL to ACL2, obtaining
a guideline to formalize the original Isabelle theory in ACL2. Steps 7, 8 (which
could be understood as a single step) and 9 translate the XLL specification of
types and properties to the Ecore + OCL environment.

3.1 Architecture overview

As we have said in the introduction, the main objective of this work is to port
the theorems’ statements from a given Isabelle theory to ACL2 and Ecore +
OCL restrictions. Our main case study proves that an integer matrix can be
diagonalized by elemental operations, as a previous step to obtain its Smith
Normal Form.

Nevertheless, our translation process works reasonably well for other theories
which do not make use of higher-order statements. For instance, we will present
an additional example of theorems about lists. It seems rather possible that,
for a given Isabelle theory (restricted to first-order constructions), our XSLT
transformations could be minimally adapted in order to properly translate that
theory to ACL2 and Ecore with OCL restrictions through an XLL document.
In any case, since our starting point are Isabelle theories, whose type system
is rather simple (functions and product types, as we presented in Section 2.1)
and the output of our technology is Ecore, which is a modeling language with a
richer type system, delicate design decisions should be made. Contrarily, ACL2
and OCL are based on first-order predicate logic, whereas Isabelle is based on
HOL (Higher-Order Logic). Thus, ACL2 and OCL are less expressive and the
translation of statements could give place to some ill-formed statements in the
target languages.

3 A pipeline of transformations, where the output of the k-th transformation is input
of the (k+1)-th one.
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In order to get the ACL2 output, we will be mainly interested in the theo-
rems’ statements appearing in the XLL file. ACL2 is untyped, thus to introduce
operations in ACL2 we only need to know its arity, which can be directly in-
ferred from the statements. Nevertheless, ACL2 usually introduces predicates
to state that free variables or constants appearing in operations and formulas
belong to the appropriate sets (for instance, that an index for a list or a matrix
position is a natural number); these premises and belonging predicates will be
also generated by our automatic translation.

We insist on the idea that data types representation is not translated from
Isabelle to ACL2 since we prefer to preserve the internal design decisions of
ACL2 to this language (for instance, our matrix representation in this Isabelle
development, by means of finite functions over pairs of naturals would not be
natural in ACL2, where a representation by lists, or lists of lists seems much
more appropriate).

On the other hand, modeling in Ecore requires information about data types
(in order to convert each type to a class) and about the types and arity of
functions/definitions used in Isabelle (in order to convert them to class meth-
ods). Let us remark that we obtain an Ecore model, so the information about
implementation or representation from Isabelle is neither required for this trans-
formation (nor for ACL2). To complete the Ecore model, we also need theorems’
statements, since they will be translated as OCL restrictions in that model.

To sum up:

ACL2

Theorems’ statements

44

**
OCL restrictions

Type definitions, functions, definitions. . . // Ecore MODEL

Starting from an Isabelle theory we will translate it to ACL2 and Ecore +
OCL by means of a common XML language (XLL), trying to minimize the “ad-
hoc” translations (step 6 or steps 7 to 9). Firstly, some XML files are generated
with the necessary information, that is, information about types (necessary for
modeling in Ecore) and information about theorems’ statements (necessary for
translating them to ACL2 and OCL). Once all this information is translated into
XML files, the Isabelle theory is no longer necessary; we just keep it to com-
plete some further tests about the relationship between the generted statements
in some of the intermediary languages developed (Pre OCL and XLL) and the
original theorems. One of the key products in the development process is the
Pre OCL file (step 3). It contains an XML dialect with the theorems’ state-
ments from the input Isabelle theory, but now written in a “raw” Isabelle style,
where operations appear in prefix notation, most of the abundant Isabelle syntax
translations are avoided (for instance, Isabelle pretty syntax for lists [x, y] would
appear in terms of the primitive Isabelle list constructors), and additionally fol-
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lowing the XML structure presented in Appendix 6.2. This Pre OCL XML file
is completed with the specification of the datatypes used in the Isabelle theory
(typedefs, definitions, functions. . . ) to obtain the XLL document, which is the
keystone of our development.

We will explain the previous steps with the help of a simple example on lists.

3.2 Step 1: From Isabelle Theory to Isabelle XML

The first step that we apply consists in generating XML files containing all
the information that we need in order to be exported to the other systems in
later stages. These XML files are generated from Isabelle standard elements
(statements of lemmas, definitions of types, functions, operations. . . ) and follow
the XSD Schema presented in Appendix 6.1. From here on, we will refer to them
as Isabelle XML files. The fact of having the information in XML trees provides
great advantages, for example:

– Two theorems which are equal (except for Isabelle syntactic translations
or pretty syntax artifacts), give place to the same XML file. For example,
“∀n.n > 1 −→ n > 0” and “∀n > 1. n > 0”.

– The XML files generated can be processed using XLST.
– With the tree structure of an XML file, it is easier to see the dependencies

that there exist among, for example, a function and its input arguments.
The ideal would be to have an XML tree in which functions have as children
their input parameters. Unfortunately, the XML files generated from Isabelle
using ML functions don’t keep this property, although it will be achieved in
following steps. The reason why the XML files don’t preserve this property
is that, internally, Isabelle transforms multi-argumental functions to a com-
position of several single-argumental functions. For instance, the XML file
generated from Isabelle user input a+ b = (c :: int) is as follows:

<App>

<App>

<Const name="HOL.eq">

<Type name="fun">

<Type name="Int.int"/>

<Type name="fun">

<Type name="Int.int"/>

<Type name="HOL.bool"/>

</Type>

</Type>

</Const>

<App>

<App>

<Const name="Groups.plus_class.plus">

<Type name="fun"/>

</Const>

<Var name="a"/>

</App>
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<Var name="b"/>

</App>

</App>

<Var name="c"/>

</App>

The previous tree is obtained using ML functions already available in the
Isabelle distribution (we need to write three ML lines for each statement that
we want to convert to one XML file). Every single theorem, datatype definition,
or operation in Isabelle gives place to a different XML file. In general, it will be
necessary to convert a multitude of theorems’ statements, data type information,
definitions. . . to XML, so we automated this process making a Java program to
perform this task. This program gets as input a text file which contains the path
of the Isabelle theory that has to be processed and the list with the names of
the Isabelle elements that have to be translated to XML.

The program works as follows:

1. First, it reads from the text file the path of the Isabelle theory and a list
of names of Isabelle locales, classes, typedefs, datatypes, partial functions,
functions, definitions and theorems to process.

2. A backup of the Isabelle theory file is made in a temp folder.
3. The program inserts at the end of the theory file the necessary ML code to

generate the XML files.
4. It makes a new directory called XML in the theory path. Moreover, this

directory contains two folders: the first one is named CLASS and the second
one THEOREMS. In the folder CLASS the algorithm generates the XML
files obtained from locales, classes, typedefs, datatypes, partial functions,
functions and definitions; i.e., the information about the data types and
their operations. As its own name shows, in the folder THEOREMS the
XML files containing theorems’ statements will be placed.

5. Once we have the theory file with the ML code inserted, we need to process
it in Isabelle to generate the XML files. The program invokes to the Isabelle
process over the file with the ML commands, by means of the following
expect script [12].

6. Finally, the input theory file is kept in its initial state, i.e., without the ML
code added at the end of it. This is possible thanks to the temporary copy
created before.

The input text file, where the path of the Isabelle theory and the list of
elements to be processed can be found, has the following structure:

/directory/theory_name.thy

use_locale:

use_class:

use_typedef:

use_datatype:

use_partial_function:
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use_fun:

use_definition:

use_thm:

We also have to remark a detail about Isabelle’s syntax. In Isabelle, theorems’
statements can include both free variables and quantified variables. For example:

lemma free_variables: "(x::int)+y=y+x"

In this theorem, the variables x and y are free, i.e., they can be later instantiated
with any value of the appropriate type (provided that there are no local variables
created previously in our theory with that names). Therefore, the theorem is
equivalent to:

lemma free_variables2: "(z::int)+t=t+z"

A “similar” theorem can be stated quantifying variables x and y:

lemma quantified_variables: "∀x::int.∀y.x+y=y+x"

In addition, the equivalence between both theorems can be proved:

lemma eq_free_quantified:

"((z::int)+t = t+z) ←→ (∀x y::int. x+y=y+x)"

by auto

It is important to stress that a free variable is not a quantified variable. This
is a sensitive topic; for further discussion on it you can visit the following thread
in the Isabelle mailing list [14] and [15].

OCL does not allow the use of free variables. Therefore, we will (universally)
quantify free variables appearing in the Isabelle theorems’ statements that are
to process. In order to do that, we make use of a ML function of the Isabelle
library: forall intr vars. This function quantifies free variables with the Universal
Quantifier of the Isabelle metalogic (

∧
). As we are working in HOL, we define

an additional function which translates theorems from the metalogic (or Pure)
to HOL. This function will be in charge of replacing

∧
by the HOL equivalent

∀ (among other changes). The previous changes will turn an Isbelle statement
like “x+ y = y+ x” into its equivalent “∀x.∀y.x+ y = y+ x”. The ML function
performing such conversion is the following:

ML{*fun atomize_thm thm =

Thm.equal_elim (Object_Logic.atomize (cprop_of thm)) thm*}

We present an example of the ML code which is inserted into the original Is-
abelle file in orer to generate the XML file corresponding to a theorem (datatype
definitions or operations are generated with a similar code script):

ML{*val xml_tree = XML_Syntax.xml_of_term

(prop_of (atomize_thm (forall_intr_vars @{thm "theorem_name"})))*}

ML{*val output_path = Path.explode "directory/XML/Theorems/theorem.xml"*}

ML{*XML_Syntax.write_to_file output_path "term" xml_tree*}
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The folder CLASS with the previously generated XML files will be used to
generate the part of the XLL file including the information about data types and
their operations. The folder THEOREMS will be used to generate the Pre OCL
XML file, which is later processed to produce the part of the XLL file includ-
ing the properties of data types and their operations. Every Isabelle element
(theorems, data types, operations) is generated to a different XML file, so we
are losing relevant information about the possible dependencies among them. In
order to store the order in which theorems have been proved in the original Is-
abelle theory (which will be later useful for translating them to XLL in the very
same order) a file “index theorems.txt” that contains the theorems’ names (sep-
arated by blank spaces) in a similar order as they were introduced and proved
in the Isabelle input theory is automatically generated. In addition, an XML
file “index class.xml” is also created with the names of the XML files placed in
the folder CLASS (i.e., a list of the data types and operations that have been
generated). This file is later processed by an XSLT transformation to produce
the XLL part corresponding to data types’ and operation’s declarations in the
very same order as they were introduced in the Isabelle theory (respecting the
possible dependencies among them).

Example on lists We start from a very simple Isabelle theory file about lists.
The results have been directly obtained from the List theory in the Isabelle
library and the code of this simple theory is the following:

theory List2

imports Presburger

begin

datatype ’a list =

Nil ("[]")

| Cons ’a "’a list" (infixr "#" 65)

primrec

hd :: "’a list ⇒ ’a" where

"hd (x # xs) = x"

primrec

tl :: "’a list ⇒ ’a list" where

"tl [] = []"

| "tl (x # xs) = xs"

primrec

append :: "’a list ⇒ ’a list ⇒’a list" (infixr "@" 65) where

append_Nil:"[] @ ys = ys"

| append_Cons: "(x#xs) @ ys = x # xs @ ys"

primrec

nth :: "’a list => nat => ’a" (infixl "!" 100) where

nth_Cons: "(x # xs) ! n = (case n of 0 ⇒ x | Suc k ⇒ xs ! k)"
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lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"

by (induct xs) auto

lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] ∧ ys = [])"

by (induct xs) auto

lemma hd_Cons_tl [simp,no_atp]: "xs 6= [] ==> hd xs # tl xs = xs"

by (induct xs) auto

end

We create a text file with the structure presented previously selecting what
information we want to process, that is, the data types, statements, functions or
definitions from which we will generate XML files.

In our example we make use of the type definition ’a list, of functions (or
constants, which are treated as functions with 0 arguments) Cons, Nil, hd, tl,
append and nth, and of three theorems named append assoc, append is Nil conv
and hd Cons tl. The input text file created to process them is shown in Figure 6.

Fig. 6. Example of text file used to generate XML files from Isabelle

The first line of the file contains the Isabelle path of the theory file. Once this
file has been created, by executing the Java program the following process starts:
First, the program demands from the user the text file with the enumeration of
Isabelle elements that are to be generated (see Figure 7).

Then, the program automatically creates two folders (Class and Theorems)
where the XML files are saved (see Figure 8).
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Fig. 7. We have to select the text file

Fig. 8. Example of folder Class obtained with generated XML files

In these folders there can be found, respectively, the files index class.xml
and index theorems.txt explained before. An example of the contents of these
files (concretely, about the XML generated from theorem named hd Cons tl), is
given in appendix 6.5.
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3.3 Step 2: From Isabelle XML to Pre OCL text file

The collection of Isabelle XML files generated from the statements of properties
(data types and definitions are treated in a different way) in the previous step
(one file for each statement), is processed in order to obtain a version which is
easier to translate to ACL2 and OCL (that will be previously fitted in the XLL
file).

In this step a text file is generated: the Pre OCL text file. In this file, the
Isabelle theorems’ statements, written in prefix notation, are stored (in the Is-
abelle input files, operations with their prefix and infix notations can be found
simultaneously). This conversion is facilitated thanks to the XML files gener-
ated in the previous step, in which operations already appear in prefix notation.
Nevertheless, we have to pay attention to some additional details, for example,
the presence of λ-abstractions and bound variables in universal and existential
quantifiers (see [16] for a detailed explanation of bound variables).

In the XML files obtained in step 1 each (universally or existentially) quan-
tified variables are abstracted using a λ-abstraction and from then on, these
variables are referred to with a De Bruijn index. Each De Bruijn index is a natu-
ral number that represents an occurrence of a variable in a λ-term, and denotes
the number of binders that are in scope between that occurrence and its cor-
responding binder (see [25] for more details). In Isabelle, the notation “Bound
n” is used to refer to the De Bruijn index “n”. For instance, given the following
Isabelle user input:

∀x. x>0 −→ (∃y. y<0 ∧ x+y=0)

Internally, Isabelle transforms the user input into an expression which is
similar (except for some details which have been omitted to clarify the example)
to the following one:

HOL.All (λx. (Bound 0)>0 −→ (HOL.Ex (λy. (Bound 0)<0
∧ (Bound 1)+(Bound 0)=0)))

The use and detection of these bound variables in the XML files generated
from Isabelle is the main reason to make this step using Java instead of XSLT
(the translation that retrieves the variable names from the bounded ones is easier
using Java).

This Pre OCL text file is an intermediary step to obtain the Pre OCL XML
file which will be part of the XLL document.

Example on lists From the XML files generated in step 1 by using a Java
program, the text file Pre OCL about lists is obtained.
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When the program is executed, it will demand from the user the location of
the Isabelle theory file4 (see Figure 9).

Fig. 9. We select the theory file to obtain the prefix notation of theorems in a text file

Internally, the program will open the file “index theorems.txt” to know the
correct order in which statements have to be processed.

The result will be stored in a text file named “List2.txt”, created in the same
path of the original theory. It can be found in Appendix 6.9. Tt contains the
statements of the three theorems selected in the previous step, but now written
in prefix notation. For example, the theorem append assoc in the original input
Isabelle file had the following statement (and proof):

lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"

by (induct xs) auto

Its statement, in prefix version, generated after step 2 in file List2.txt looks
as follows:

append_assoc (HOL.All (\<lambda>xs::’a List2.list. (HOL.All

(\<lambda>ys::’a List2.list. (HOL.All (\<lambda>zs::’a List2.list.

(HOL.eq (List2.append (List2.append xs ys) zs) (List2.append xs

(List2.append ys zs)))))))))

In the next step, this prefix version will be stored in a XML file.

4 The transformations are made from the XML files generated in step 1. For that, the
program achieves the path of the XML files easily: they will be placed in a subfolder
“THEOREMS” in the path of the original theory.
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3.4 Step 3: From Pre OCL text file to Pre OCL XML

Once we have the theorems’ statements of the Isabelle theory in a prefix no-
tation, we translate them to a rather simple XML file. The XSD Schema of
this XML is found in Appendix 6.2. The original XML files generated in step
1 have several redundant information for our purposes (for example, the type
of every operation, function, constant or parameter appears explicitly for each
of their occurrences, even in the same statement, even though they can be in-
ferred or stored in their first occurrence in a statement) and they are difficult
to be processed (for example, functions, in the XML trees do not have their
parameters as branches, because of the definition of the Schema used in step 1).
With the XML Schema introduced in this step, we, among other things, simplify
these XML files, keeping the indispensable data for the translation to XLL (as
a previous step to the transformation to OCL and ACL2). In general terms,
each theorem is presented in this XML following a tree structure, separating
the quantifiers (universal and existential) from its statement, operations (whose
children are their parameters, which can be variables, other quantifiers or other
operations) and variables.

The process is done with a Java program which takes the Pre OCL text file
generated in step 2 as input. The output will be an XML file (from here on, we
will refer to it as Pre OCL XML file) compliant with the schema presented in
Appendix 6.2. This Pre OCL XML file has the same theorems that the original
Isabelle input file (and that the Pre OCL text file) but following the prefix no-
tation presented in the Pre OCL text file and with a tree structure, as presented
in the Schema in Appendix 6.2. It is worth noting that there are no syntactic
differences between the statements in the Pre OCL text file and the ones in the
Pre OCL XML file, but just an arrangement of the statements with respect to
the Schema in Appendix 6.2.

The XML file generated in this step is a key element of the architecture,
since we will use it (almost without changes) to obtain the part of the XLL
file presenting theorems’ statements, and then the OCL restrictions and ACL2
statements.

Example on lists Following with the example about lists, we use a Java pro-
gram to generate the XML file that follows our schema. When we execute it, we
have to select the List2.txt file created before. After that, we select the location
where the Pre OCL XML file will be saved (see Figure 10).

Then, a Pre OCL XML file is obtained where the statements of append assoc
append is Nil conv and hd Cons tl are presented in an XML structure following
our XSD Schema. This file is shown in Appendix 6.6.

3.5 Step 4: From Isabelle XML and Pre OCL XML to XLL

This step is labeled as step 4 in Figure 5. In this step we introduce a new XML
Schema, named XLL. This XML file can be understood as the keystone for
the rest of the translation process; from here we will be able to define direct
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Fig. 10. We have to select the text file created in step 2

translations, by means of exclusively XSLT technology, to ACL2, Ecore plus
OCL, and Isabelle.

This schema (and the XML files complaint to it) is also the most complex
piece of our work; it contains information referred to the data types involved in
the use cases, the operations and definitions associated to them (these two pieces
of information are obtained from the Isabelle XML files) and the statements of
the properties (or theorems), as processed in the Pre OCL XML file. The XLL
schema is shown in Appendix 6.7.

To sum up, this XLL schema consists of two different but associated parts.

1. A specification of datatypes (or classes), including for each datatype a name
plus a family of operators (or methods) in an object oriented style; this part
is essentially imported from the Isabelle XML files obtainend in step 1.

2. A set of logical statements, expressing properties of the datatypes involved.
This part is directly obtained importing the file Pre OCL generated in step
3.

In fact, the XLL schema is a combination of the Pre OCL schema completed
with information about data types (Pre OCL is only obtained as a previous step
to generate this XLL file). Additionally, the schema performs operations checking
that the statements of the properties contain operations that exclusively appear
on the XLL file itself (in the part about specification); our intention is to ensure
that the properties stated in the file are referred to a certain context (a set of data
types and operations). This idea has been obtained from the notion of “context”
in OCL, where properties must be always stated with respect to some set of
classes (and their operations), which provides a necessary context in which the
statement holds (or not, depending on the underlying model). Actually, a similar
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behavior is obtained in Isabelle, where it is always checked that the statements of
lemmas or theorems are always performed over types and operations previously
introduced, and respect the arities and types of their parameters.

These additional cross-checks, which are natural for compilers and syntax
checkers, introduce additional complexities in the XLL schema, since the schema
itself needs to know the name of the operations that it contains in the specifica-
tion of datatypes, and then must be capable of verifying that the only operations
that appear in the statements are these ones. This way, the two parts of the XLL
are connected.

From a strict point of view, a XLL file is built exclusively from Isabelle XML
files (the part about types and operations’ specifications is obtained directly
from the input XML files, and the set of logical statements is the Pre OCL file
which has been generated from Isabelle XML files too). Nevertheless, the link
between the methods’ names in the datatypes part and operations’ names in
the logical expressions can’t be checked using the Isabelle XML files due to two
reasons:

1. For each Isabelle element (theorem, class, datatype, definition. . . ) a differ-
ent Isabelle XML file has been created in step 1, so we have to unify all
information in a single file (the XLL file) to check the coherence of methods’
names.

2. From a technical point of view, recovering methods’ names from the Isabelle
XML files requires complex XPath commands; standard XSD schemas only
allow a simple subset of XPath commands to be used in [35]. Therefore, the
restriction about the coherence of methods’ names couldn’t be checked using
the original Isabelle XML files. However, our XLL schema is simpler than
the Isabelle one (used in step 1) and obtaining methods’ names requires
only basic Xpath expressions which are allowed in the standard XSD (in
other words, restrictions about the correctness of operations’ names can be
checked).

XLL does no aim at creating a new description of a logical language, but at
being a simple language in which types, operations and logical statements over
them (in a typed first-order logical language) can be expressed. We have been
capable of translating its information to ACL2, Ecore plus OCL, and also to
Isabelle. Probably, other language targets (supporting at least this logic) could
be also reached without an extraordinary effort.

The four XSLT templates which transform the Isabelle XML files to an XLL
document are the following. The first three ones construct the part about spec-
ification and the last one joins the generated specification with the Pre OCL
XML file (which contains the statements).

1. Concatenate.xsl: We start from the file index class.xml generated in the
step 1. This file is placed in the folder Class created in that step and it
contains the list with all necessary elements to generate the specification
(datatype information, functions, definitions. . . ). It is, an XML file in order
to be processed with XSLT. This file has the following simple structure:
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<?xml version="1.0" encoding="UTF-8"?>

<files>

<file name="datatype_name.xml"/>

<file name="function_name.xml"/>

<file name="definition_name.xml"/>

...

</files>

What this template do, is to concatenate the files pointed in index class.xml,
creating a single XML file with all information.

2. Create xll.xsl: From the XML file with all information this transformation
generates the specification part of the XLL (a model with the classes and
the methods with their input and output parameters). As we have explained
before, the specification part of XLL allows us to create an object oriented
model which will be later converted to an Ecore model, which is also an ob-
ject oriented model. For that reason, for each function or definition that we
have to process, we have to choose what class must belong to. The universal
decision that we have made is that each method belongs to the class that rep-
resents the datatype of its first parameter. By this way, an operation of type
int matrix ⇒ nat ⇒ nat ⇒ int matrix in Isabelle, e.g., interchange columns
A m n will be converted in our XLL (and then, in the Ecore model too) to
a method belonging to the class “matrix” named interchange columns with
two input parameters of type nat which return will be a matrix. That is, the
method will be (in UML notation) interchange columns(nat,nat):matrix.
We also have to remark the importance of keeping the return type.
In a pure object oriented modeling, it looks natural to choose the re-
turn type of the function interchange columns as void. By this way,
A.interchange columns(1,2) would interchange the columns 1 and 2 of matrix
A. However, in order to keep the coherence with the Isabelle functions and,
above all, by simplicity when we translate the theorems to OCL, we keep
the same return type in Isabelle and in XLL (and then, in Ecore too). So,
the expected behaviour of A.interchange columns(1,2) would be to return a
new matrix equal to the A matrix but with columns 1 and 2 interchanged.
It can be noted that A matrix would not be modified. Behavior is similar,
for example, to the substring method of the Java class String (it is not static
but it doesn’t modify the object).
Furthermore, if this transformation finds an Isabelle function whose first
parameter belongs to a type that doesn’t match with a class in the XLL
specification, then the corresponding class will be created and the function
would be added to it.
This XSLT transformation also introduces two classes into the specification:
– Program Logic: This class contains the basic logical operations of our

setting (HOL), such as conjunction, disjunction, implication and so on.
– Arith: This class contains the basic arithmetic operations, such as mul-

tiplication, plus, less or equal. . .
These two classes are created to guarantee the required coherence between
functions that appears in the theorems and methods’ names in the part
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about specification. Nevertheless, these classes won’t be translated to Ecore,
because their methods will correspond to OCL constants (for example, the
conjunction will be converted in OCL syntax to “and”. . . ).

3. Grouping.xsl: This is a technical transformation. After applying the pre-
vious XSLT transformation, it is possible that there exist several class with
the same name. This transformation groups them into a unique class, and
then the part of specification of XLL will be completed.

4. Join.xsl: This transformacion is in charge of generating the final XLL file
which will contain the specification and the theorems. For that, the output
of the previous transformation (the specification) is joined to the Pre OCL
XML file obtained in step 4 (which contains the theorems), giving rise to the
XLL document.

Example on lists Applying the XSLT transformations over the index class.xml
file generated in step 1, the XLL document of our example on lists is obtained.
This document takes up about 350 code lines and it is shown in Appendix 6.8.

3.6 Step 5: From XLL to the original Isabelle theory

This step is labeled as step 5 in Figure 5. The intention is to show that the state-
ments of the theorems presented in the XLL document generated in previous step
can be moved backwards to statements in Isabelle that are (automatically) prov-
able equal to the original ones (to the statements of the original Isabelle theory
file). Basically, this step serves for the purpose of proving that the statements
that we have processed in steps 1 through 4 are only syntactic translations of
the Isabelle original ones (these translations will be shown useful to ease further
translations to ACL2 and OCL, since they are closer to the syntax of these target
languages).

This step also shows that the possibility of translating the XLL language to
different target languages (in this case, Isabelle), as we had already announced
before. The result of this step is an Isabelle theory, named Certified Theory.

As we have already said, this file is an Isabelle theory itself, automatically
generated from the XLL document, which checks that the translation from each
Isabelle statement to prefix notation has been done properly (i.e., the obtained
statement is provable equal, by Isabelle, to the original one in the input file). This
theory imports the original theory and proves that theorems (the original theo-
rems and their transformations in prefix notation stored in the XLL document)
are equivalent. Because of the introduction of universally quantified variables in
statements in step 1, we translate the original statements (which usually are ex-
pressed within HOL syntax) and the ones obtained in this step (where metalogic
connectives have been used) to the same logical setting (HOL or Isabelle/Pure)
before comparing them, to ease the proofs of their equivalence. To carry out the
translation of theorems from HOL to the metalogic, we make use of some ML
functions of the Isabelle ML layer: Thm.eq thm prop (to compare if two theo-
rems are equivalent), Object Logic.rulify (to translate the theorem connectives
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to the ones of the metalogic) and atomize thm (to translate the theorem connec-
tives to the ones of HOL). Last two functions are necessary because the function
Thm.eq thm prop compares theorems in the same logic (metalogic or HOL)5.

Therefore, for each theorem statement two ML sentences will be generated
(actually, both of them perform the same comparison, one in the metalogic, the
other one in HOL, so one of them would be enough to prove that the results are
equivalent):

ML{*Thm.eq_thm_prop (Object_Logic.rulify @{thm length_append_prefix},

Object_Logic.rulify @{thm length_append})*}

ML{*Thm.eq_thm_prop (@{thm length_append_prefix},

atomize_thm (forall_intr_vars @{thm length_append}))*}

When the Isabelle file automatically generated (that we have named Certified
Theory) is processed, those ML sentences return the value True. An additional
validation is performed in the file Certified Theory, checking that every theorem
obtained in prefix notation can be trivially proved using the input theorem6.
For example, the following Isabelle statement, automatically generated in the
file Certified Theory, proves that the prefix notation of lemma length rev prefix
is provable from the input result (length rev prefix):

lemma length_rev_prefix:

shows "(HOL.All (\<lambda>xs::’a List2.list. (HOL.eq

(Nat.size_class.size (List2.rev xs)) (Nat.size_class.size xs))))"

using length_rev by fast

To sum up, this step ensures the correctness of the transformations made to
obtain the XLL document (steps 1 through 4), in the sense of that we are able to
demonstrate (using Isabelle) the equivalence between the statements presented
in the XLL document and the original ones presented in the Isabelle theory.

Example on lists Following our example about lists, we show the result that
has been produced by the XSLT transformations labeled as step 5 in Figure 5.

We obtain a new Isabelle theory file (the Certified Theory), named in this case
as “List2 certified.thy‘” and it can be seen in Appendix 6.10. If it is processed
with Isabelle one could check that theorems append assoc append is Nil conv and
hd Cons tl of the original theory are proved to be equivalent to the new ones
generated in prefix notation (see Figure 11); we consider this as a certificate of the
preservation of the original statements by our Java and XSLT transformations
so far.

5
METALOGIC

atomize thm

""
HOL

rulify

bb

6 This is not necessary because the equivalence between both theorems has been al-
ready proved
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Fig. 11. Certified Theory List processed

3.7 Step 6: From XLL to ACL2

This step is labeled as step 6 in Figure 5. In this step we already reach one of the
target languages of our architecture, ACL2. By means of a XSLT translation,
we obtain a list of ACL2 elements (including terms and theorems’ statements);
this collection of statements should serve as a guideline to achieve a similar
formalization to the original Isabelle theory in ACL2. The starting point is our
language XLL, and by means of a XSLT transformation, ACL2 code is obtained.

ACL2 syntax uses prefix notation for operations, constants or functions. For
this reason, we have converted (in steps 1 to 3) the Isabelle notation to prefix
one; additionally, we have organized the statements in an XML tree (already
introduce in Pre OCL XML, also used in a very similar way in XLL) in order
ease its processing using XSLT templates. In our files Pre OCL XML and XLL,
each function has as children its own arguments (this fact doesn’t occur in the
XML files following the schema “Isabelle.xsd”), and thus information is orga-
nized following a prefix pattern. From it, we can achieve prefix notation in ACL2
(or also in OCL) almost directly.

A pair of syntactic details are relevant for our transformations:

1. ACL2 gives a special meaning to the apostrophe (’) character, and therefore
it cannot be included in theorems’ names. In order to remove it, we rename
each appearance of the apostrophe to bis.
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2. In ACL2, the identifier t stands for the constant true. On the contrary, in
Isabelle, t does not stand for any particular constant. Thus, we had to rename
appearance of variables labeled as t in the XLL language to a fresh variable
name, as t1.

For each function that appears in any theorems statement, the XSLT trans-
formation automatically generates an (empty) definition of function in ACL2,
with similar name (except for the previous syntactic preventions) and arity to
the one appearing in XLL, following the next structure:

(defun function_name (x1 x2 x3 )

(declare (ignore x1 x2 x3 ))

nil)

Our intention is that the ACL2 code automatically generated by the XSLT
transformation, can be syntactically checked by ACL2. As far as we do not
pretend to translate the specification of the behavior of operators from Isabelle
to the target languages (ACL2 in this case), we simply assign to the function a nil
definition, ignoring its parameters. When the ACL2 obtained code be used as a
guideline for a formalization, each function will have to be suitably implemented.

In the ACL2 code generated in this step, an example of which we will show
later, definitions appear first, and then theorems are introduced. The order of
theorems is obtained from the XLL file, and thus possible dependencies among
them is preserved.

The ACL2 theorems obtained follow a full prefix notation, that is, for example
a + b is written in ACL2 as + a b. In order to introduce new statements of
properties in ACL2, the command def-thm has to be used. For example:

(defthm assoc-of-app

(equal (app (app a b) c)

(app a (app b c))))

There is one special case that has to be treated separately: the case where
quantified variables appear in statements. In order to define a function whose
body has an outermost quantifier, we have to make use of the command defun-sk
(see [26] for a detailed explanation). For example:

(defun-sk exists-x-p0-and-q0 (y z)

(exists x

(and (p0 x y z)

(q0 x y z))))

We also have to remark that, in Isabelle notation, quantifiers can bind various
variables7, for instance:

7 Really, this is only syntactic sugar that the system offers to bind more than one
variable with a single quantifier; internally, each existencial quantifier binds a single
variable. Nevertheless, this syntactic artifact needs to be taken into account when
we parse the Isabelle input.
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∃ a b. a + b = 2

Nevertheless, when the Pre OCL XML tree of this theorem is generated
following steps 1, 2 and 3, the single quantifier is converted to two different
ones, each of them binding a single variable (and since XLL is constructed from
the Pre OCL XML file, the same will occur in it). That is, the statement of the
theorem that we already obtain in step 2 is:

∃ a. ∃ b. a + b = 2

Of course, this theorem can be proved equivalent to the original one. In
ACL2, several quantifiers can appear in a single defun-sk (otherwise, we would
obtain several nested defun-sk, which would make the code harder to read).
The next example shows a universal quantifier in which two variables are bound
simultaneously:

(defun-sk forall-x-y-p0-and-q0 (z)

(forall (x y)

(and (p0 x y z)

(q0 x y z))))

Example on lists Applying the XSLT transformation over the XLL file, ACL2
code of our example on lists is obtained. The result is a single ACL2 file in
which the theorems’ statements selected in step 1 and the definitions of functions
appear.

For instance, the Isabelle theorem hd Cons tl

lemma hd_Cons_tl [simp,no_atp]: "xs 6= [] ==> hd xs # tl xs = xs"

by (induct xs) auto

has been translated to the following ACL2 statement:

(defthm hd_Cons_tl

(implies (and (List2.listp xs)

(not (equal xs List2.list.Nil)))

(equal (List2.list.Cons (List2.hd xs) (List2.tl xs)) xs)

The Isabelle notion of a variable being of a certain type is translated in ACL2
to an ad-hoc predicate resembling Isabelle types. For example, in the theorem
presented above, the premise List2.listp xs has been introduced to assure
that the variable xs is a list.

If the ACL2 file obtained is processed, it can be seen that it is syntactically
correct (see Figure 12); the “similarity” between Isabelle and ACL2 statements
can be also observed from the previous example, and also in the example on
matrices that we will introduce later.

We have obtained a guideline (with the collection of functions involved in
theorems, as well as the theorems’ statements) to prove the statements of an
Isabelle theory given as input in ACL2. Now definitions must be implemented
in ACL2 to help the system to demonstrate the theorems.
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Fig. 12. ACL2 processing the code

3.8 Step 7: From XLL to Ecore

This step is labeled in Figure 5 as step 7. Now we aim at generating a model
in Ecore of an Isabelle theory. Ecore was conceived to create object oriented
models; indeed, it is close to Java, and a subset of UML. One of the features of
Java and UML that is not included in Ecore is the possibility to define static
methods.

The translation of an XLL file to an Ecore model (an XMI file) consists of
six simple consecutive XSLT transformations:

1. Xll to ecore.xsl: This template takes as input the XLL document obtained
in step 4 and makes the main necessary syntax translations to transform the
part about specification of datatypes of the XLL document to the corre-
sponding Ecore model.

2. Remove dots.xsl: Since operations appear with their long identifiers (for
example “Theory name.operation name”) in Isabelle XML files (and then,
in the XLL document too), the dots and the theory names are removed in
order to obtain exclusively the operations’ identifiers.

3. Translate product type.xsl: We have to translate the data types of the
part about specification in the XLL document (in our case of study, the
datatypes presented in the XLL document are Isabelle datatypes) to Ecore
proper types. A special case is the product type which comes from the Is-
abelle product type (a× b) and it is a parametrized class in XLL. This XLL
class is transformed in an Ecore parameterized class Pair < a, b > using this
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template. We have considered this case separately because is a type which
is parameterized by two different parameters.

4. Translate types.xsl: Using this transformation we process the remain-
ing data types in the XLL file, mapping them to classes that we have
created ad hoc in Ecore, or to Ecore data types. For instance, the
Isabelle type “bool” will be converted to EBoolean in Ecore (inter-
nally, we have to specify its long identifier, which is “ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EBoolean”). The Isabelle type ma-
trix is mapped to the class matrix that we have specifically created (and we
have to refer to it as “#//matrix”).

5. Plus and Times.xsl: Ecore, as Java does, uses infix syntax for some special
operations, as, for instance, arithmetic operators “+” and “∗”. If we want
to make use of them, we need to process the XLL input (now in prefix nota-
tion), detect these special operators and translate them to OCL predefined
operations. That process is made using this XSLT transformation.

6. Remote apos.xsl: The apostrophe (’) is an invalid character in OCL. For
that reason, we must avoid it in our model (in names and methods). Us-
ing this XSLT, we transform all occurrences of ’ to bis (for example, an
operation named append’ will be renamed to append bis).

In order to avoid to make these consecutive transformations one by one,
we use an XProc template which applies then incrementally. The code of this
template is presented in Appendix 6.3.

Example on lists Following the example on lists, we start from the XLL file
obtained in step 4. Now we only have to process the Xproc template to obtain
as a result a “List.Ecore” file. This Ecore model produces the diagram shown in
Figure 13.

Fig. 13. Ecore Diagram obtained from List Theory using XSLT transformations
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As it can be observed, five different classes have been created:

1. Pair: This class models the concept of parameterized “Tuple” and its basic
operations. It will be crucial in our example on matrices, because a pair of
natural numbers will be used to represent the position of each element of a
matrix in Isabelle.

2. Nat: Ecore has the integers (“int”) as one of its basic types, but the natural
numbers (“nat”) are not so. Therefore, this class is created to model the
natural numbers and its operations (we introduce standard methods like
+,−, <,≤, max . . .).

3. Wrapper: This interface is necessary to assign to each positive number its
correct type in each case. OCL interprets any number greater than zero
as an integer (type “Integer”). Nevertheless, sometimes positive numbers
are originated from elements of type “nat” in Isabelle, and therefore must
be typed in OCL as naturals (variables which belong to the class “Nat”
introduced previously). This interface allows the type conversions between
“Int” and “Nat”.

4. List: This is the most important class in this example. As we start from
a typedef ’a list, this class is parameterized by a type parameter “a”. That
is, we obtain an Ecore List < a > class (the class a, since it includes some
particular operations, will be also generated to an Ecore class; we describe
it in the next paragraph). The apostrophe of the type identifier ’a has been
automatically removed since it is an invalid character in OCL. We can see
that almost every function selected in step 1 belongs to this class, now in
the form of a class method.

5. a: This class has been automatically generated to model the Isabelle free
type ’a. This class has been also used to introduce some other additional
methods that could have well also been placed in some other different classes;
for instance, the function Cons(list):list has been added in class “a”, even if it
would also fit (even more properly) in class “List”. The reason for taking this
design decision is to get a more generic processing of operations. In Isabelle,
the function Cons(list):list has the following type (pay special attention to
the type of its first parameter):

"Cons" :: "’a ⇒ ’a list ⇒ ’a list"

As long as we are moving the Isabelle definitions to an object oriented setting,
we must choose in which class we have to introduce each Isabelle function. As
we have already explained, our universal decision is that every method will
belong to the Ecore class that models the datatype of its first parameter. In
the case of function Cons(list):list, its first parameter has type ’a, and thus
a method named “Const” has been generated in the generated Ecore class
“a” automatically. We could have also processed some Isabelle functions in
a differentiated way to introduce them in the Ecore classes of their second or
third parameters, or even leave it to the user’s choice, but this would com-
plicate the processing steps and the technology without improving the final
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product (the user only needs to know where the method is, only conceptually
its placement in one class or another may be of some relevance).

3.9 Step 8: From XLL to OCL

This step is labeled as step 8 in Figure 5. Actually, both steps 7 and 8 could be
thought of together; one of them (step 7) generates the Ecore model, starting
from data types declarations and operations in the XLL file, the other one gives
place to the associated restrictions (in OCL). We just split them into two separate
steps in order to obtain XSLT transformations of a smaller complexity (actually,
step 9 will be in charge of joining the resulting XML files of steps 7 and 8 into
a single XMl file, by almost simply appending the original files).

Once we have the Ecore model with the classes and their methods, we are to
add the theorems’ statements as OCL restrictions. We make use of five XSLT
transformations:

1. Remove apos.xsl: As we already did in the previous step, we have to re-
move the apostrophe character from the theorems, replacing it by bis.

2. Remove dots from names.xsl: Operations in the Pre OCL XML file are
written with long identifiers (including their file name). Using this XLST
template we obtain the short identifiers (removing file names).

3. Remove dots from types.xsl: We have to make a similar process than in
the previous template but with type names.

4. Translate operations.xsl: Using this template we map the operations of
Isabelle that can be mapped to already existing operations in OCL. For
instance, the Isabelle constant “HOL.True” is mapped to the OCL constant
“true”, ‘ ‘HOL.conj” to “and”. . . . In general, we have tried to use the Ecore
and OCL already existing operations as far as possible, adapting us to the
tool constructs, instead of developing an “ad-hoc” translation (for instance,
this ad-hoc translation could be implemented creating an Ecore class named
“HOL” with methods “and”, “True”, “implies”. . . ). Nevertheless, as we have
said before, in the XLL document (but not in the Ecore generated model)
there exists a class named “Program Logic” which contains the main logic
operators (in order to make possible the checking of the coherence between
theorems and methods’ names in XLL).

5. Convert to OCL object oriented version.xsl: Applying this XSLT
template we translate the theorems’ statements which are in tree structure
in the XLL file to strings representing OCL restrictions. For this, we have
to take into account that in the source XML file, theorems appear in prefix
Isabelle notation and we have to translate them to object oriented notation
(usual operations have to be mapped to classes plus methods, there could
appear an active object named “self” in certain restrictions. . . ). Some details
are also considered:
– Not every operation in Ecore (neither in Java) is introduced in the form

of a method; operations over basic types are sometimes introduced in an
infix notation, and without any associated class: +,−,∗,<, ∧, ∨, implies
(implication is denoted as “A implies B” instead of “A.implies(B)”).
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– The minus operation − has at least two different meanings: the binary
subtraction (a− b) or the unary change of sign (−a).

– In order to avoid the definition of sets, we translate the Isabelle interval
set “i ∈ {k.. < n}” to a pair of predicates “(k <= i) and (i < n)”.

– We have introduced a class named Nat which models the natural num-
bers and some additional operations. A problem appears here: Isabelle
allows overloading of constants, and thus the number 0 (and any other
positive integer) belongs as much to naturals as to the integers. By de-
fault, when OCL processes the constant 0, its inferred type is “int”,
instead of “nat” and this may cause type inference problems in the OCL
automatically generated expressions. Therefore, when we find in XLL a
constant 0 with assigned type “nat”, we invoke the class Wrapper adding
at the beginning of the theorem:
Wrapper.allInstances->forAll(zero|zero.to_integer()=0 implies...)

This XSLT transformation looks for the occurrences of the natural num-
ber 0 (taking are of the type it appears with in the context) and trans-
lates them to “zero.to nat()” in the corresponding OCL restrictions
(if we don’t make this conversion, by default, OCL considers 0 as a
“int”), being “zero” an instance of the class Wrapper and such that
“zero.to integer()=0”8. For example, the Isabelle statement in the orig-
inal input file “(0 :: nat) + 0 = 0” would be translated to the OCL
restriction:
Wrapper.allInstances->forAll(zero|zero.to_integer()=0

implies zero.to_nat() + zero.to_nat() = zero.to_nat())

As in previous steps, we make use of an XProc template to apply the enumer-
ated XLST transformations incrementally. This XProc template is presented in
Appendix 6.4. The output is an XML file containing the OCL restrictions gen-
erated from the statements in the XLL file, which will be now finally merged
with the Ecore model generated in step 7.

Example on lists In our example on lists, we generate the OCL restrictions
of the three theorems append assoc, append is Nil conv and hd Cons tl (these
theorems were presented in Isabelle standard notation in Section 3.2). For con-
verting them to OCL restrictions, we apply the XProc template to the file XLL
obtained after step 4. The resulting OCL is shown below:

<eAnnotations source="http://www.xocl.org/NAMED_OCL">

<details key="append_assoc" value="list.allInstances()->

forAll (xs|list.allInstances()->forAll (ys|list.allInstances()->

forAll (zs|(xs.append(ys).append(zs) = xs.append(ys.append(zs))))))"/>

<details key="append_is_Nil_conv" value="list.allInstances()->

forAll (lista |list.allInstances()->forAll (xs|list.allInstances()->

forAll (ys|((xs.append(ys) = lista.Nil()) = ((xs = lista.Nil())

8 In fact, we have to write the implication (“zero.to integer() = 0” implies . . . ) because
zero is simply a name that we have assigned to the variable of type Wrapper.
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and (ys = lista.Nil()))))))"/>

<details key="hd_Cons_tl" value="list.allInstances()->forAll (lista

|list.allInstances()->forAll (xs|(not((xs = lista.Nil())) implies

(xs.hd().Cons(xs.tl()) = xs))))"/>

</eAnnotations>

Note that each tag details corresponds to an OCL restriction. The theorem’s
identifier is stored in the attribute key, and the OCL restriction in the attribute
value.

3.10 Step 9: Joining Ecore and OCL

Finally, we bring together the OCL restrictions (obtained after step 8) and the
Ecore model (obtained after step 7) using another XSLT transformation. Its
template works as follows:

1. The OCL XML file (obtained in step 8) must be stored in a file “OCL.xml”
which has to be placed in the same path as the XSLT template.

2. The XSLT template is first applied to the Ecore model file generated in step
7.

3. Internally, the transformation copies the whole Ecore model to an XML file,
looks for the OCL file in the same folder and copies it in the proper location;
the transformation generates a new XML file from the Ecore model file where
the restrictions in the OCL xml file are properly inserted, giving rise to an
Ecore model that has been enriched with OCL restrictions.

It can be noted that the template is applied to the Ecore model file, but the
content of a second file (the file that contains the OCL restrictions) is also incor-
porated. This can be done by using the XSLT function document(), which needs
to know the complete path of the second file as input. This was our motivation
to fix the name of the OCL restrictions file as “OCL.xml” and place it in the
same path as the template.

The OCL restrictions generated are syntactically correct with respect to the
Ecore model.

Example on lists In our example on lists, once we have applied the XSLT
transformation presented in this step we obtain an Ecore model together with a
set of OCL restrictions generated from the original Isabelle theory like:
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Fig. 14. Ecore model with OCL restrictions.

4 An example on matrices: diagonalizing an integer
matrix

As we said in the introduction of this paper, the previous technology was orig-
inally designed to port an Isabelle/HOL development about matrices to ACL2
and Ecore + OCL, even if we have shown by means of the previous example that
the tool is generic enough to be applied to another Isabelle developments with
minor modifications. The development on matrices that we are using as input
for our technology is available from the following link [22]. In the website can
be also found the XLST transformations and Java programs that we have used
in each step (as well as the intermediary XML and text files obtained after each
step).

The fundamental theorem proved in our theory about matrices, claims that
every integer matrix can be diagonalized using elementary transformations (row
and column operations); the theorem additionally proves that there exist two
invertible matrices P and Q such that the original matrix A and the diagonalized
matrix B satisfy B = PAQ. This result is important to achieve the Smith normal
form of a matrix; most algorithms presented in the literature to obtain the Smith
normal form consists of two differentiated parts (for example [19,20]); in the first
part, the matrix is diagonalized exclusively applying elementary transformations
(i.e., they are equivalent to the algorithm that we present here).

This Isabelle theory is lengthy (ca. 6000 lines, 30 definitions and 220 lemmas).
It relies on a previous development of matrices in the Isabelle library (which
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was successfully applied to prove a relevant part of the Kepler conjeture [28]),
but we had to introduce ourselves the notion of elementary operations and the
formalization of the algorithm, as presented in [27]. In the following sections, we
illustrate the stepwise transformations applied to achieve the ACL2 and Ecore
+ OCL codes.

4.1 Step 1

Firstly, a selection of the important elements of the input theory (definitions,
functions, theorems. . . ) is performed in a text file (as presented in 3.2).

The text file for this theory is also presented in [22]; it contains:

– 2 typedef
– 2 partial functions
– 1 fun
– 29 definitions
– 119 theorems

Once the file is processed with the Java program (presented in Section 3.2),
two folders Class and Theorems are obtained with the information presented in
an XML tree structure following the XSD Schema presented in appendix 6.1.
Concretely, there are 35 XML files in the folder Class (2 created from the typedef,
2 partial functions, 1 fun, 29 definitions, and the index class.xml file) and 120
XML files in the folder Theorems (119 theorems and the index theorems.txt).

4.2 Step 2

From the XML files obtained after step 1, the translation to a prefix notation
in a text file named Diagonal form.txt is carried out. The procedure has been
presented in Section 3.3. It is performed by means of a Java program which
transforms the Isabelle XML files obtained in the step 1 to a text file where the
theorems’ statements are written in a prefix notation (we named this format
Pre OCL text file). As we have said before, this transformation will be an inter-
mediary step to achieve an XML tree where the Isabelle statements are stored
in a prefix notation and de Bruijn indexes are avoided.

The result of this step is a rather large file (about 600 lines) due to the
numerous theorems that have been processed. This file can be found in [22].

4.3 Step 3

This step performs the conversion of the text file obtained after the previous step
to a XML file which follows the simple XSD Schema presented in Appendix 6.2.
In our case, the output is a huge file of 11775 lines, in which the 119 theorems
selected in step 1 appear, structured in XML trees compliant to the Pre OCL
XML xsd; this intermediary dialect is intended to simplify the later translations
to ACL2 and OCL; it corresponds almost literally to the XLL part of our theory
which includes information about the theorem’s statements.
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4.4 Step 4

In this step, the keystone of our development, the XLL document, is generated.
For that, the XLST transformations presented in Section 3.5 are applied to the
file named index class.xml, which is placed in the folder Class created in step 1.
As we explained before, the 34 additional files situated in folder Class will be
appended in a single file, and from them the information to construct the XLL
part corresponding to specification of datatypes (and their operations). This part
about the specification of data types is then joined to the Pre OCL XML file
obtained after step 3, giving rise to the XLL document.

This XML file follows the XLL schema presented in Appendix 6.7; in this
example, it is file which takes up ca. 12200 code lines.

It is worth noting that this schema brings together the information about
data types and their operations, as well as the lemmas in a prefix notation and
with suitable binders, in a form that can be easily mapped to ACL2 and OCL
restrictions (and, in general, to first-order logic settings).

4.5 Step 5

We can translate the statements presented in the XLL document created in
step 4 to Isabelle following the XSLT transformation presented in Section 3.6.
The result is an Isabelle theory (named Certified Theory), which guarantees the
correctness of the statements as introduced in the XLL document.

Applying this XSLT transformation to our XLL file about matrices, the XLL
document obtained in step 1 and the original Isabelle theory are coupled (the
statement of each input theorem is brought together with the statement gener-
ated after steps 1 to 4). Then, each copule of statements are proved equivalent
by Isabelle. The Isabelle “Certified Theory” file obtained in this example takes
up 2350 lines (see Figure 15):

4.6 Step 6

Finally, starting from the XLL file about matrices obtained after step 4, the
ACL2 code can be generated. In this example, the result is a file that takes up
to 1400 lines.

As we already noticed in Section 3.7, Isabelle is a typed language, whereas
ACL2 is untyped. In order to fill this gap between both logical settings, we add
for each ACL2 theorem suitable premises about each variable: the Isabelle notion
of variables being of a certain type is translated in ACL2 to “ad-hoc” predicates
resembling the Isabelle types.

These predicates are standard practice in ACL2, and are called recognizers.
There already exist some recognizers in the ACL2 library, for instance there is
a predicate natp which allows to know if a variable is a natural number (see [21]
for more information). In our case study on matrices, a predicate matrixp is
automatically generated in order to check if a given variable is an integer matrix
(the definition of integer matrices in ACL2 must be incorporated by the user,
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Fig. 15. Certified theory on matrices processed.

following our original idea of letting the representation of data types to the
users choice in each target system, as well as a sound definition for the following
predicate):

(defun matrix_integerp (x) (declare (ignore x)) nil)

For example, in the following Isabelle theorem, variables A,n and m have
types “matrix”, “nat” and “nat” respectively.

lemma interchange_columns_matrix_id:

shows "interchange_columns_matrix (interchange_columns_matrix A n

m) n m = A"

The following ACL2 code is obtained after applying to the previous statement
the steps 1 to 6:

(defthm interchange_columns_matrix_id

(implies (and (matrix_integerp A) (natp n) (natp m))

(equal (interchange_columns_matrix (interchange_columns_matrix

A n m) n m) A)))

As it can be seen, an additional implication is added to the original lemma
in order to check (using the functions matrix integerp and natp) that variables
A, n and m must have the appropriate representation.

In Section 3.7 we already presented the special function defun-sk, which is
used to define a function whose body has an outermost quantifier. Nevertheless,
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it could arise the case of a theorem in which quantifiers appear but not in the
outermost position. For example, in the following Isabelle theorem of our theory
about matrices:

lemma interchange_rows_nrows:

assumes n:"n<nrows A"

and m:"m<nrows A"

and i: "\<exists>i. Rep_matrix A (min n m) i \<noteq> 0"

shows "nrows (interchange_rows_matrix (A::int matrix) n m) = nrows A"

The existencial quantifier appears in one of the premises. In this case, the
theorem is automatically converted to both, a defun-sk which represents the
premise, and also a defthm.

(defun-sk exists_interchange_rows_nrows (A n m)

(exists (i)

(not (equal (Matrix.Rep_matrix A (Orderings.ord_class.min n m) i) 0))))

(defthm interchange_rows_nrows

(implies (and (natp n)

(matrix_integerp A)

(natp m)

(< n (Matrix.nrows A))

(< m (Matrix.nrows A))

(exists_interchange_rows_nrows A n m))

(equal (Matrix.nrows

(Diagonal_form.interchange_rows_matrix A n m))

(Matrix.nrows A))))

If the previous ACL2 code is evaluated, it can be observed that it is syntac-
tically correct (see Figure 16). Now, we have achieved a guideline in ACL2 to
formalize the same theory than we formalized in Isabelle. In this example, the
result is an ACL2 file which takes up 1400 code lines, contains 38 definitions
defun, 19 defun-sk and 119 theorems defthm.

4.7 Step 7

Now we use the tool to generate a model in Ecore. For that, the XLST transfor-
mations presented in Section 3.8 are applied to the XLL document generated in
step 4. The result is an Ecore model which has to be imported in Eclipse, and
then a class diagram with the information that the model contains is shown (we
present it in Figure 17).

In our example, most of the methods obtained from definitions, functions
and partial functions belong to a class named Matrix. We must note that the
parameterized class Pair is very relevant to our example, since we use it to
represent the coordinates or positions of matrices elements (a pair of “nats”);
there also exists a function named minNonzero nc which returns this data type
(concretely, Pair<Boolean, Pair<Nat,Nat>>).
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Fig. 16. ACL2 processing the code

4.8 Step 8

Now the theorems’ statements are converted to OCL restrictions. By following
the transformations explained in Section 3.9, a file named “OCL.xml” is obtained
in which appear the 119 theorems written in OCL, in a single XML file.

For instance, the theorem of the input Isabelle theory about matrices which
claims that:

lemma Diagonalize_theorem:

shows "∃P Q B. is_invertible P ∧ is_invertible Q ∧ B = P*A*Q

∧ is_square P (nrows (A::int matrix)) ∧ is_square Q (ncols A)

∧ Diagonalize_p B (max (nrows A) (ncols A))"

It has been translated to the following OCL restriction, over the model ob-
tained in step 7:

matrix.allInstances()->forAll(A|matrix.allInstances()->exists(P|

matrix.allInstances()->exists(Q|matrix.allInstances()->exists(B|

(P.is_invertible() and (Q.is_invertible() and ((B=((P*A)*Q))

and (P.is_square(A.nrows()) and (Q.is_square(A.ncols())

and B.Diagonalize_p(A.nrows().max(A.ncols())))))))))))

And this restriction is stored in an xml file as follows:

<details key="Diagonalize_theorem" value="matrix.allInstances()->

forAll(A|matrix.allInstances()->exists(P|matrix.allInstances()->

exists(Q|matrix.allInstances()->exists(B|(P.is_invertible()

and (Q.is_invertible() and ((B=((P*A)*Q))

and (P.is_square(A.nrows()) and (Q.is_square(A.ncols())

and B.Diagonalize_p(A.nrows().max(A.ncols())))))))))))"/>
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Fig. 17. Our Isabelle theory about matrices modeled in Ecore

4.9 Step 9

Finally, the OCL restrictions obtained in step 8 (the file “OCL.xml”) are joined
with to the Ecore model obtained in step 7.

Making use of the XLST transformation available in our website, the final file
with the theorems included as OCL annotations in the Ecore model is obtained
(see Figure 18). The result is a lengthy XML file, in which the OCL can be
verified (thanks to appropriate tools and plugins of Eclipse). The generated
OCL is syntactically valid with respect to the Ecore model obtained in step 7.

5 Related work and further work

5.1 Related work

As we have already pointed out in the introduction, different attempts of trans-
ferring formalization efforts from one theorem proving assistant to some others
have been accomplished. We do not pretend to carry out an exhaustive classifica-
tion, but at least two different approaches can be noted. First, translations which
make use of some (ad-hoc or widely used) meta-language; the technology that
we have presented could be included in this category. Second, direct translations
(usually as embedding of one language into another). The technology presented
in this work is closer to the first family; we have been using generic languages
(in the form of XML schemas) as far as it has been possible; moreover, the same
XML schema has been used to produce an Isabelle output, the Ecore + OCL
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Fig. 18. The Isabelle theory about matrices modeled in Ecore with OCL restrictions

information and the ACL2 statements; this “meta-language” could be indeed
origin for further translations to other theorem provers, such as for instance
Coq, or first-order systems.

One of the most popular tools in the first approach presented is the TPTP [29]
(thousands of problems for theorem provers) project. This set of test problems is
thought to challenge and prospect the capacities of automated theorem provers
(ATPs); as a by-product of the library of problems, a set of languages (untyped
clause normal form, or CNF, first-order form, or FOF,. . . ) has been proposed,
which are now used by several reasoning tools. Nevertheless, the provers and
the languages are mainly focused on untyped first-order logics, which makes
them unsuitable for our case of study. There is a facility which communicates
Isabelle/HOL with automated theorem provers (ATPs) by first translating the
HOL problems to first-order logic ones and then transferring the problems to
specialized ATPs [17,18]. The approach has been widely acclaimed, specially by
the users; a sensible idea would be to communicate ACL and Isabelle through
TPTP formalisms, being also possible to take advantage of the other tools avail-
able in this infrastructure, but we would have also lost part of the generality
reached through the XML languages presented, which have been proved useful
to reach also the Ecore + OCL (and eventually more theorem proving languages,
and not only the ones based on first-order logics, with a feasible effort).

Some families of theorem provers share also logical foundations. For instance,
HOL4, HOL-Light, ProofPower/HOL and Isabelle/HOL share a similar logic
(higher-order logic), are mainly interactive (even if nowadays all of them have
powerful automation tools) and follow the LCF approach of defining theorems
as a datatype, with inference rules operating on this data type to reach new
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theorems (thus, theorems will be valid as far as the inference rules are correctly
implemented). The OpenTheory [30] project aims at the definition of a common
language (or format) to describe statements and proofs, in a way that enables
back and forth communication among each one of the HOL theorem provers
and the OpenTheory format. Up to date, HOL-Light and HOL4 can both read
and generate proofs to the OpenTheory format, whereas Isabelle can only read
proofs in the format. It is worth remarking that our approach tries to respect the
conventionalism and particular representation of each particular system (ranging
from object oriented theory, UML + OCL, to typed and untyped logics, as the
ones in ACL2 and HOL), and that we do not pretend to translate proofs among
systems. Thus, the OpenTheory format does not seem a suitable tool for our
development.

Apart from the use of meta-languages or formalisms to communicate different
theorem provers, there have been also several ad-hoc tools to port developments
(or the whole system) from one theorem prover to a different one. Traditionally,
the idea has been always to embed a simpler logical framework into a more
complex one (such as the different attempts of deep and shallow embedding HOL-
Light into Coq), but some attempts to move from a more intricate formalism to
a simpler one have also succeeded (as the ones usually applied to communicate
theorem provers with higher-order logics to first-order logics, to increase the
degree of automation). We do not aim at doing a survey here of the different
attempts, but simply to situate our work in this setting. We have moved from
a more expressive formalism, such as HOL, to less expressive ones (OCL and
ACL2) with two different intentions; first, the Isabelle development should be
useful to create a new ACL2 development in which automation would play a
crucial role. The ALC2 development could also offer feedback for Isabelle in the
form of new induction schemas. Second, the Ecore model generated from Isabelle
will have also different utilities: first, as a communication tool; being UML and
OCL two widely known languages in the field of formal methods, the possibility
to create an Ecore model from an Isabelle development eases its dissemination
through the community. Second, Ecore offers interesting tools for the automatic
creation and testing of instances of a model, that could give valuable information
on the way to define structures from Ecore tested models of information systems.

5.2 Further work

We have already commented on some possible future research lines that originate
from this work. We sum up them here and present additional ideas.

First, the enhancement of our technology for covering some other theorem
provers could be considered. Taking into account that the Pre OCL and XLL
schemas that we have proposed as a source for the generation of Ecore, OCL
restrictions and ACL2 statements are rather simple, containing exclusively data
type definitions, operations and theorem statements (including quantifiers), in-
formation about variables, constants, operations and their arity, it seems feasible
to translate these basic constructs to some other theorem provers, almost inde-
pendently of the formalism in which they are based upon. A different matter
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would be to include more expressive constructions from within the Isabelle envi-
ronment, such as type classes, lambda expressions, or higher-order propositions,
that would demand additional features on our Pre OCL and XLL schemas, and
consequently on the languages targeted. These limitations on our technology
have not proved relevant for our case studies over lists and matrices (which had
a considerable number of results and definitions), and probably a wide range of
results from the library could be covered with the actual technology; a deeper
study of the real limitations that could emerge in the intermediary steps would
be also meaningful.

Second, one of the goals of the work was to provide hints or guidelines based
on a development carried out in Isabelle for a different theorem prover (ACL2,
in our case), but without compromising the representation of data types and
operations in this particular system. We have obtained a collection of ACL2
statements based on the Isabelle/HOL ones, and that are compliant with the
ACL2 syntax (moreover, they were generated from an intermediary language
that we proved that preserved the Isabelle statements), but have not completed
the experiment of writing down the ACL2 proofs of the obtained statements.
This development should be completed in ACL2, and then conclusions drawn
on the utility of the Isabelle statements; one would expect the statements to
be useful, since they usually express properties that are intermediary steps for
the final result (in our case, the correctness of the diagonalization algorithm),
and they will hold accordingly in any other system (for instance, ACL2). The
question remains open if these properties are really useful in the search of an
ACL2 proof.

Third, the possibilities of the Ecore environment should be explored. We
have translated the Isabelle theory (data types, operations and properties or
statements) into the UML and OCL languages; this framework has well-known
capacities for the generation of models of specifications, and the automatic veri-
fication of the OCL restrictions. We trust the translation proposed from Isabelle
to Ecore (it is almost literal, except for the particularities of each language), but
the generation of models in UML could be a useful tool to provide ideas on the
representation of Isabelle data types (if a UML generated model can not satisfy
certain restrictions, the representation should be discarded), or also as an oracle
for Isabelle statements; if a given OCL restriction is not satisfied, its originating
Isabelle property would not hold (at least, under that UML representation).
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6 APPENDIX

6.1 Isabelle XSD Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="class">
<xsd:complexType>

<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

</xsd:element>

<xsd:element name="type">
<xsd:complexType>

<xsd:group ref="typeGroup"/>
</xsd:complexType>

</xsd:element>

<xsd:element name="types">
<xsd:complexType>

<xsd:group ref="typeGroup" minOccurs="0" maxOccurs="unbounded"/>
</xsd:complexType>

</xsd:element>

<xsd:group name="typeGroup">
<xsd:choice>

<xsd:element name="TVar">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="class" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="index" type="xsd:integer"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="TFree">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="class" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Type">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="typeGroup" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:group>

<xsd:element name="term">
<xsd:complexType>

<xsd:group ref="termGroup"/>
</xsd:complexType>

</xsd:element>

<xsd:group name="termGroup">
<xsd:choice>

<xsd:element name="Var">
<xsd:complexType>

<xsd:sequence>
<xsd:group ref="typeGroup"/>

</xsd:sequence>
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<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="index" type="xsd:integer"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Free">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="typeGroup"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Const">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="typeGroup"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Bound">

<xsd:complexType>
<xsd:attribute name="index" type="xsd:integer" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="App">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="termGroup"/>
<xsd:group ref="termGroup"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Abs">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="typeGroup"/>
<xsd:group ref="termGroup"/>

</xsd:sequence>
<xsd:attribute name="vname" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:group>

<xsd:element name="proof">
<xsd:complexType>

<xsd:group ref="proofGroup"/>
</xsd:complexType>

</xsd:element>

<xsd:group name="proofGroup">
<xsd:choice>

<xsd:element name="PThm">
<xsd:complexType>

<xsd:sequence>
<xsd:group ref="termGroup" minOccurs="0"/>
<xsd:element ref="types" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="PAxm">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="termGroup" minOccurs="0"/>
<xsd:element ref="types" minOccurs="0"/>

</xsd:sequence>
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<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

</xsd:element>
<xsd:element name="Oracle">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="termGroup"/>
<xsd:element ref="types" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="PBound">

<xsd:complexType>
<xsd:attribute name="index" type="xsd:integer" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="Appt">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="proofGroup"/>
<xsd:group ref="termGroup" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="AppP">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="proofGroup"/>
<xsd:group ref="proofGroup"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Abst">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="typeGroup" minOccurs="0"/>
<xsd:group ref="proofGroup"/>

</xsd:sequence>
<xsd:attribute name="vname" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>
<xsd:element name="AbsP">

<xsd:complexType>
<xsd:sequence>

<xsd:group ref="termGroup" minOccurs="0"/>
<xsd:group ref="proofGroup"/>

</xsd:sequence>
<xsd:attribute name="vname" type="xsd:string" use="required"/>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:group>

</xsd:schema>

6.2 Pre OCL XSD Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Theorems">
<xs:complexType>

<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:element name="Theorem">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string"/>



52

<xs:choice minOccurs="1" maxOccurs="1">
<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs:element ref="operation"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="theory" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="forall">

<xs:complexType>
<xs:sequence>

<xs:element name="param">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="type" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="body">

<xs:complexType>
<xs:choice minOccurs="1" maxOccurs="1">

<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs:element ref="operation"/>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="exists">

<xs:complexType>
<xs:sequence>

<xs:element name="param">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="type" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="body">

<xs:complexType>
<xs:choice>

<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs:element ref="operation"/>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="constant">

<xs:complexType>
<xs:sequence>

<xs:element name="name"/>
<xs:element name="type" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="operation">

<xs:complexType>
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<xs:sequence>
<xs:element name="name">

</xs:element>
<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="constant"/>
<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs:element ref="operation"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

6.3 Xproc template to generate Ecore model

<?xml version="1.0"?>
<p:pipeline

version="1.0"
xmlns:p="http://www.w3.org/ns/xproc"
xmlns:ex="http://example.com">

<p:declare-step type="ex:xslt" name="xslt">
<p:input port="source" sequence="true" primary="true"/>
<p:input port="parameters" kind="parameter"/>
<p:output port="result" primary="true"/>
<p:option name="stylesheet" required="true"/>

<p:load name="load-stylesheet">
<p:with-option name="href" select="$stylesheet"/>

</p:load>

<p:xslt>
<p:input port="stylesheet">

<p:pipe port="result" step="load-stylesheet"/>
</p:input>
<p:input port="source">

<p:pipe port="source" step="xslt"/>
</p:input>

</p:xslt>
</p:declare-step>

<ex:xslt stylesheet="xll_to_ecore.xsl"/>
<ex:xslt stylesheet="remove_dots.xsl"/>
<ex:xslt stylesheet="remove_dots.xsl"/>
<ex:xslt stylesheet="translate_product_type.xsl"/>
<ex:xslt stylesheet="translate_types.xsl"/>
<ex:xslt stylesheet="Plus_and_Times.xsl"/>
<ex:xslt stylesheet="remote_apos.xsl"/>

</p:pipeline>

6.4 Xproc template to generate OCL

<?xml version="1.0"?>
<p:pipeline

version="1.0"
xmlns:p="http://www.w3.org/ns/xproc"
xmlns:ex="http://example.com">

<p:declare-step type="ex:xslt" name="xslt">
<p:input port="source" sequence="true" primary="true"/>
<p:input port="parameters" kind="parameter"/>
<p:output port="result" primary="true"/>
<p:option name="stylesheet" required="true"/>
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<p:load name="load-stylesheet">
<p:with-option name="href" select="$stylesheet"/>

</p:load>

<p:xslt>
<p:input port="stylesheet">

<p:pipe port="result" step="load-stylesheet"/>
</p:input>
<p:input port="source">

<p:pipe port="source" step="xslt"/>
</p:input>

</p:xslt>
</p:declare-step>

<ex:xslt stylesheet="remove_apos.xsl"/>
<ex:xslt stylesheet="remove_dots_from_names.xsl"/>
<ex:xslt stylesheet="remove_dots_from_names.xsl"/>
<ex:xslt stylesheet="remove_dots_from_types.xsl"/>
<ex:xslt stylesheet="translate_operations.xsl"/>
<ex:xslt stylesheet="Convert_to_OCL_object_oriented_version.xsl"/>

</p:pipeline>

6.5 Example of XML file generated from Isabelle in step 1

From theorem hd Cons tl:

lemma hd_Cons_tl [simp,no_atp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
by (induct xs) auto

We obtain the next XML file:

<?xml version="1.0" encoding="UTF-8"?>
<term xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="isabelle.xsd">

<App>
<Const name="HOL.Trueprop">

<Type name="fun">
<Type name="HOL.bool"/>
<Type name="prop"/>

</Type>
</Const>
<App>

<Const name="HOL.All">
<Type name="fun">

<Type name="fun">
<Type name="List2.list">

<TVar name="’a">
<class name="HOL.type"/>

</TVar>
</Type>
<Type name="HOL.bool"/>

</Type>
<Type name="HOL.bool"/>

</Type>
</Const>
<Abs vname="xs">

<Type name="List2.list">
<TVar name="’a">

<class name="HOL.type"/>
</TVar>

</Type>
<App>

<App>
<Const name="HOL.implies">

<Type name="fun">
<Type name="HOL.bool"/>
<Type name="fun">
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<Type name="HOL.bool"/>
<Type name="HOL.bool"/>

</Type>
</Type>

</Const>
<App>

<Const name="HOL.Not">
<Type name="fun">

<Type name="HOL.bool"/>
<Type name="HOL.bool"/>

</Type>
</Const>
<App>

<App>
<Const name="HOL.eq">

<Type name="fun">
<Type name="List2.list">

<TVar name="’a">
<class name="HOL.type"/>

</TVar>
</Type>
<Type name="fun">

<Type name="List2.list">
<TVar name="’a">

<class name="HOL.type"/>
</TVar>

</Type>
<Type name="HOL.bool"/>

</Type>
</Type>

</Const>
<Bound index="0"/>

</App>
<Const name="List2.list.Nil">

<Type name="List2.list">
<TVar name="’a">

<class name="HOL.type"/>
</TVar>

</Type>
</Const>

</App>
</App>

</App>
<App>

<App>
<Const name="HOL.eq">

<Type name="fun">
<Type name="List2.list">

<TVar name="’a">
<class name="HOL.type"/>

</TVar>
</Type>
<Type name="fun">

<Type name="List2.list">
<TVar name="’a">

<class name="HOL.type"/>
</TVar>

</Type>
<Type name="HOL.bool"/>

</Type>
</Type>

</Const>
<App>

<App>
<Const name="List2.list.Cons">

<Type name="fun">
<TVar name="’a">

<class name="HOL.type"/>
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</TVar>
<Type name="fun">

<Type name="List2.list">
<TVar name="’a">

<class name="HOL.type"/>
</TVar>

</Type>
<Type name="List2.list">

<TVar name="’a">
<class name="HOL.type"/>

</TVar>
</Type>

</Type>
</Type>

</Const>
<App>

<Const name="List2.hd">
<Type name="fun">

<Type name="List2.list">
<TVar name="’a">

<class name="HOL.type"/>
</TVar>

</Type>
<TVar name="’a">

<class name="HOL.type"/>
</TVar>

</Type>
</Const>
<Bound index="0"/>

</App>
</App>
<App>

<Const name="List2.tl">
<Type name="fun">

<Type name="List2.list">
<TVar name="’a">

<class name="HOL.type"/>
</TVar>

</Type>
<Type name="List2.list">

<TVar name="’a">
<class name="HOL.type"/>

</TVar>
</Type>

</Type>
</Const>
<Bound index="0"/>

</App>
</App>

</App>
<Bound index="0"/>

</App>
</App>

</Abs>
</App>

</App>
</term>

6.6 Example of PRE OCL XML file of list generated in step 3

<?xml version="1.0" encoding="UTF-8"?>
<Theorems xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="pre_OCL.xsd">
<Theorem>

<name>append_assoc</name>
<forall>
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<param>
<name>xs</name>
<type>’a List2.list</type>

</param>
<body>

<forall>
<param>

<name>ys</name>
<type>’a List2.list</type>

</param>
<body>

<forall>
<param>

<name>zs</name>
<type>’a List2.list</type>

</param>
<body>

<operation>
<name>HOL.eq</name>
<operation>

<name>List2.append</name>
<operation>

<name>List2.append</name>
<constant>

<name>xs</name>
</constant>
<constant>

<name>ys</name>
</constant>

</operation>
<constant>

<name>zs</name>
</constant>

</operation>
<operation>

<name>List2.append</name>
<constant>

<name>xs</name>
</constant>
<operation>

<name>List2.append</name>
<constant>

<name>ys</name>
</constant>
<constant>

<name>zs</name>
</constant>

</operation>
</operation>

</operation>
</body>

</forall>
</body>

</forall>
</body>

</forall>
</Theorem>
<Theorem>

<name>append_is_Nil_conv</name>
<forall>

<param>
<name>xs</name>
<type>’a List2.list</type>

</param>
<body>

<forall>
<param>

<name>ys</name>
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<type>’a List2.list</type>
</param>
<body>

<operation>
<name>HOL.eq</name>
<operation>

<name>HOL.eq</name>
<operation>

<name>List2.append</name>
<constant>

<name>xs</name>
</constant>
<constant>

<name>ys</name>
</constant>

</operation>
<constant>

<name>List2.list.Nil</name>
</constant>

</operation>
<operation>

<name>HOL.conj</name>
<operation>

<name>HOL.eq</name>
<constant>

<name>xs</name>
</constant>
<constant>

<name>List2.list.Nil</name>
</constant>

</operation>
<operation>

<name>HOL.eq</name>
<constant>

<name>ys</name>
</constant>
<constant>

<name>List2.list.Nil</name>
</constant>

</operation>
</operation>

</operation>
</body>

</forall>
</body>

</forall>
</Theorem>
<Theorem>

<name>hd_Cons_tl</name>
<forall>

<param>
<name>xs</name>
<type>’a List2.list</type>

</param>
<body>

<operation>
<name>HOL.implies</name>
<operation>

<name>HOL.Not</name>
<operation>

<name>HOL.eq</name>
<constant>

<name>xs</name>
</constant>
<constant>

<name>List2.list.Nil</name>
</constant>

</operation>
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</operation>
<operation>

<name>HOL.eq</name>
<operation>

<name>List2.list.Cons</name>
<operation>

<name>List2.hd</name>
<constant>

<name>xs</name>
</constant>

</operation>
<operation>

<name>List2.tl</name>
<constant>

<name>xs</name>
</constant>

</operation>
</operation>
<constant>

<name>xs</name>
</constant>

</operation>
</operation>

</body>
</forall>

</Theorem>
</Theorems>

6.7 XLL Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="xll">
<xs:complexType>

<xs:sequence>
<xs:element ref="Theorems" minOccurs="1" maxOccurs="1"/>
<xs:element ref="Datatypes" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>
<xs:key name="keyList_methods">

<xs:selector xpath=".//method"/>
<xs:field xpath="@name"/>

</xs:key>
<xs:keyref name="referList_methods" refer="keyList_methods">

<xs:selector xpath=".//operation/name"/>
<xs:field xpath="."/>

</xs:keyref>
</xs:element>
<xs:element name="Theorems">

<xs:complexType>
<xs:sequence minOccurs="1" maxOccurs="unbounded">

<xs:element name="Theorem">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:choice minOccurs="1" maxOccurs="1">

<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs:element ref="operation"/>

</xs:choice>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="theory" type="xs:string" use="required"/>
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</xs:complexType>
</xs:element>
<xs:element name="forall">

<xs:complexType>
<xs:sequence>

<xs:element name="param">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="type" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="body">

<xs:complexType>
<xs:choice minOccurs="1" maxOccurs="1">

<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs:element ref="operation"/>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="exists">

<xs:complexType>
<xs:sequence>

<xs:element name="param">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="type" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="body">

<xs:complexType>
<xs:choice>

<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs:element ref="operation"/>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="constant">

<xs:complexType>
<xs:sequence>

<xs:element name="name"/>
<xs:element name="type" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="operation">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string">
</xs:element>

<xs:choice minOccurs="1" maxOccurs="unbounded">
<xs:element ref="constant"/>
<xs:element ref="forall"/>
<xs:element ref="exists"/>
<xs:element ref="operation"/>

</xs:choice>
</xs:sequence>
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</xs:complexType>
</xs:element>

<xs:element name="Type">
<xs:complexType>

<xs:sequence>
<xs:element ref="Type" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="Input">
<xs:complexType>

<xs:sequence>
<xs:element ref="Type" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string"/>

</xs:complexType>
</xs:element>

<xs:element name="Parameter">
<xs:complexType>

<xs:sequence>
<xs:element ref="Type" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="name"/>

</xs:complexType>
</xs:element>

<xs:element name="Datatypes">
<xs:complexType>

<xs:sequence>
<xs:element name="Class" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Class_Parameters" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element ref="Parameter" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="method" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element ref="Type" minOccurs="1" maxOccurs="1"/>
<!--The output (maybe parameterized)-->
<xs:element ref="Input" minOccurs="0" maxOccurs="unbounded"/>
<!--Input parameters-->

</xs:sequence>
<xs:attribute name="name" use="required" type="xs:string"/>
<xs:attribute name="static" type="xs:boolean" default="false"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="name" use="required" type="xs:string"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

6.8 Example on lists: XLL document generated in step 4

<?xml version="1.0" encoding="UTF-8"?>
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<xll xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="xll.xsd">
<Theorems xsi:noNamespaceSchemaLocation="pre_OCL.xsd" theory="List">

<Theorem>
<name>append_assoc</name>
<forall>

<param>
<name>xs</name>
<type>’a List2.list</type>

</param>
<body>

<forall>
<param>

<name>ys</name>
<type>’a List2.list</type>

</param>
<body>

<forall>
<param>

<name>zs</name>
<type>’a List2.list</type>

</param>
<body>

<operation>
<name>HOL.eq</name>
<operation>

<name>List2.append</name>
<operation>

<name>List2.append</name>
<constant>

<name>xs</name>
</constant>
<constant>

<name>ys</name>
</constant>

</operation>
<constant>

<name>zs</name>
</constant>

</operation>
<operation>

<name>List2.append</name>
<constant>

<name>xs</name>
</constant>
<operation>

<name>List2.append</name>
<constant>

<name>ys</name>
</constant>
<constant>

<name>zs</name>
</constant>

</operation>
</operation>

</operation>
</body>

</forall>
</body>

</forall>
</body>

</forall>
</Theorem>
<Theorem>

<name>append_is_Nil_conv</name>
<forall>

<param>
<name>xs</name>
<type>’a List2.list</type>
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</param>
<body>

<forall>
<param>

<name>ys</name>
<type>’a List2.list</type>

</param>
<body>

<operation>
<name>HOL.eq</name>
<operation>

<name>HOL.eq</name>
<operation>

<name>List2.append</name>
<constant>

<name>xs</name>
</constant>
<constant>

<name>ys</name>
</constant>

</operation>
<constant>

<name>List2.list.Nil</name>
</constant>

</operation>
<operation>

<name>HOL.conj</name>
<operation>

<name>HOL.eq</name>
<constant>

<name>xs</name>
</constant>
<constant>

<name>List2.list.Nil</name>
</constant>

</operation>
<operation>

<name>HOL.eq</name>
<constant>

<name>ys</name>
</constant>
<constant>

<name>List2.list.Nil</name>
</constant>

</operation>
</operation>

</operation>
</body>

</forall>
</body>

</forall>
</Theorem>
<Theorem>

<name>hd_Cons_tl</name>
<forall>

<param>
<name>xs</name>
<type>’a List2.list</type>

</param>
<body>

<operation>
<name>HOL.implies</name>
<operation>

<name>HOL.Not</name>
<operation>

<name>HOL.eq</name>
<constant>

<name>xs</name>
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</constant>
<constant>

<name>List2.list.Nil</name>
</constant>

</operation>
</operation>
<operation>

<name>HOL.eq</name>
<operation>

<name>List2.list.Cons</name>
<operation>

<name>List2.hd</name>
<constant>

<name>xs</name>
</constant>

</operation>
<operation>

<name>List2.tl</name>
<constant>

<name>xs</name>
</constant>

</operation>
</operation>
<constant>

<name>xs</name>
</constant>

</operation>
</operation>

</body>
</forall>

</Theorem>
</Theorems>
<Datatypes>

<Class name="a">
<method name="List2.list.Cons">

<Type name="List2.list"/>
<Input>

<Type name="List2.list"/>
</Input>

</method>
</Class>
<Class name="PL">

<method static="true" name="HOL.implies">
<Type name="HOL.bool"/>
<Input>

<Type name="HOL.bool"/>
</Input>
<Input>

<Type name="HOL.bool"/>
</Input>

</method>
<method static="true" name="HOL.conj">

<Type name="HOL.bool"/>
<Input>

<Type name="HOL.bool"/>
</Input>
<Input>

<Type name="HOL.bool"/>
</Input>

</method>
<method static="true" name="HOL.disj">

<Type name="HOL.bool"/>
<Input>

<Type name="HOL.bool"/>
</Input>
<Input>

<Type name="HOL.bool"/>
</Input>
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</method>
<method static="true" name="HOL.eq">

<Type name="HOL.bool"/>
<Input>

<Type name="HOL.bool"/>
</Input>
<Input>

<Type name="HOL.bool"/>
</Input>

</method>
<method static="true" name="HOL.Not">

<Type name="HOL.bool"/>
<Input>

<Type name="HOL.bool"/>
</Input>

</method>
</Class>
<Class name="Arith">

<method static="true" name="Orderings.ord_class.less_eq">
<Type name="HOL.bool"/>
<Input>

<Type name="HOL.type"/>
</Input>
<Input>

<Type name="HOL.type"/>
</Input>

</method>
<method static="true" name="Groups.abs_class.abs">

<Type name="HOL.type"/>
<Input>

<Type name="HOL.type"/>
</Input>

</method>
<method static="true" name="Orderings.ord_class.less">

<Type name="HOL.type"/>
<Input>

<Type name="HOL.bool"/>
</Input>
<Input>

<Type name="HOL.type"/>
</Input>

</method>
<method static="true" name="Orderings.ord_class.max">

<Type name="HOL.type"/>
<Input>

<Type name="HOL.type"/>
</Input>
<Input>

<Type name="HOL.type"/>
</Input>

</method>
<method static="true" name="Orderings.ord_class.min">

<Type name="HOL.type"/>
<Input>

<Type name="HOL.type"/>
</Input>
<Input>

<Type name="HOL.type"/>
</Input>

</method>
<method static="true" name="Divides.div_class.div">

<Type name="HOL.type"/>
<Input>

<Type name="HOL.type"/>
</Input>
<Input>

<Type name="HOL.type"/>
</Input>
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</method>
<method static="true" name="Set.member">

<Type name="HOL.type"/>
<Input>

<Type name="HOL.bool"/>
</Input>

</method>
<method static="true" name="SetInterval.ord_class.atLeastLessThan">

<Type name="HOL.type"/>
<Input>

<Type name="HOL.bool"/>
</Input>

</method>
<method static="true" name="Groups.uminus_class.uminus">

<Type name="HOL.type"/>
<Input>

<Type name="HOL.type"/>
</Input>

</method>
<method static="true" name="Nat.Suc">

<Type name="Nat.nat"/>
<Input>

<Type name="Nat.nat"/>
</Input>

</method>
</Class>
<Class name="List2.list">

<Class_Parameters>
<Parameter name="alpha">

<Type name="’a"/>
</Parameter>

</Class_Parameters>
<method name="List2.Rep_list">

<Type name="HOL.bool"/>
<Input>

<Type name="Datatype.node"/>
</Input>

</method>
<method name="List2.hd">

<Type name="’a"/>
</method>
<method name="List2.tl">

<Type name="List2.list"/>
</method>
<method name="List2.append">

<Type name="List2.list"/>
<Input>

<Type name="List2.list"/>
</Input>

</method>
<method name="List2.nth">

<Type name="’a"/>
<Input>

<Type name="Nat.nat"/>
</Input>

</method>
<method name="List2.list.Nil">

<Type name="List2.list"/>
</method>

</Class>
</Datatypes>

</xll>

6.9 Text file generated in Step 2

append_assoc (HOL.All (\<lambda>xs::’a List2.list. (HOL.All (\<lambda>ys::’a List2.list.
(HOL.All (\<lambda>zs::’a List2.list. (HOL.eq (List2.append (List2.append xs ys) zs)
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(List2.append xs (List2.append ys zs)))))))))

append_is_Nil_conv (HOL.All (\<lambda>xs::’a List2.list. (HOL.All (\<lambda>ys::’a List2.list.
(HOL.eq (HOL.eq (List2.append xs ys) List2.list.Nil) (HOL.conj (HOL.eq xs List2.list.Nil)
(HOL.eq ys List2.list.Nil)))))))

hd_Cons_tl (HOL.All (\<lambda>xs::’a List2.list. (HOL.implies (HOL.Not (HOL.eq xs List2.list.Nil))
(HOL.eq (List2.list.Cons (List2.hd xs) (List2.tl xs)) xs))))

6.10 Certified theory generated in Step 5

theory List2_certified
imports List2
begin

lemma append_assoc_prefix: shows "(HOL.All (\<lambda>xs::’a List2.list.
(HOL.All (\<lambda>ys::’a List2.list. (HOL.All (\<lambda>zs::’a List2.list.
(HOL.eq (List2.append (List2.append xs ys) zs) (List2.append xs (List2.append ys zs)))))))))"
using append_assoc by fast

lemma append_is_Nil_conv_prefix: shows "(HOL.All (\<lambda>xs::’a List2.list.
(HOL.All (\<lambda>ys::’a List2.list. (HOL.eq (HOL.eq (List2.append xs ys) List2.list.Nil)
(HOL.conj (HOL.eq xs List2.list.Nil) (HOL.eq ys List2.list.Nil)))))))"
using append_is_Nil_conv by fast

lemma hd_Cons_tl_prefix: shows "(HOL.All (\<lambda>xs::’a List2.list.
(HOL.implies (HOL.Not (HOL.eq xs List2.list.Nil))
(HOL.eq (List2.list.Cons (List2.hd xs) (List2.tl xs)) xs))))"
using hd_Cons_tl by fast

ML{*fun atomize_thm thm = Thm.equal_elim (Object_Logic.atomize (cprop_of thm)) thm *}
ML{*Thm.eq_thm_prop (Object_Logic.rulify @{thm append_assoc_prefix}

,Object_Logic.rulify @{thm append_assoc})*}
ML{*Thm.eq_thm_prop (@{thm append_assoc_prefix},atomize_thm

(forall_intr_vars @{thm append_assoc}))*}

ML{*Thm.eq_thm_prop (Object_Logic.rulify @{thm append_is_Nil_conv_prefix},
Object_Logic.rulify @{thm append_is_Nil_conv})*}

ML{*Thm.eq_thm_prop (@{thm append_is_Nil_conv_prefix},atomize_thm
(forall_intr_vars @{thm append_is_Nil_conv}))*}

ML{*Thm.eq_thm_prop (Object_Logic.rulify @{thm hd_Cons_tl_prefix},
Object_Logic.rulify @{thm hd_Cons_tl})*}

ML{*Thm.eq_thm_prop (@{thm hd_Cons_tl_prefix},atomize_thm
(forall_intr_vars @{thm hd_Cons_tl}))*}

end
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