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Abstract. Simplicial complexes are at the heart of Computational Algebraic
Topology, since they give an elementary description of finite objects. The
whole theory is used in different contexts such as coding theory, robotics or
digital image analysis. In this paper we present a formalization in the COQ

theorem prover of simplicial complexes and their incidence matrices as well
as the main theorem that gives meaning to the definition of homology groups
and is a first step towards their computation.

1 Introduction

Algebraic Topology is a vast and complex subject, in particular mixing Algebra and
(combinatorial) Topology. Algebraic Topology consists of trying to use as much as
possible “algebraic” methods to attack topological problems. For instance, one can
define some special groups associated with a topological space, in a way that re-
spects the relation of homeomorphism of spaces. This allows to study properties
about topological spaces by means of statements about groups, which are often
easier to prove.

However, in spite of being an abstract mathematical subject, Algebraic Topology
methods can be implemented in software systems and then applied to different
contexts such as coding theory [23], robotics [17] or digital image analysis [13,14]
(in this last case, in particular in the study of medical images [21]). Nevertheless,
if we want to use these systems in real life problems, we have to be completely sure
that the systems are safe. Therefore, to increase the reliability of these methods
and the systems that implement them, we can use Theorem Proving tools. In this
paper we are going to focus on the verification of some results about a mathematical
structure which can be useful, among others things, to study properties of digital
images.

Simplicial complexes are topological abstract structures which provide a good
framework to apply topological methods to analyse digital images. Intuitively, a
simplicial complex is a generalization of the notion of graph to higher dimensions.
Indeed, all the simplicial complexes of dimension less than two are graphs.
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A central problem in this context consists of computing homology groups of
simplicial complexes. Homology groups characterize both the number and the type
of holes and the number of connected components of a simplicial complex. This
type of information is used, for instance, to determine similarities between proteins
in molecular biology [7].

In the context of the computation of homology groups, we can highlight the
Kenzo program [9], a successful Computer Algebra system, implemented in Com-
mon Lisp, which has obtained some homology groups not confirmed nor refuted by
any other means.

There are two different ways of computing homology groups in Kenzo depend-
ing on the type of the object. On the one hand, the task of calculating homology
groups of a finite object is translated to a problem of diagonalizing certain matri-
ces called incidence matrices, see [22]. On the other hand, in the case of non-finite
type objects, Sergeraert’s effective homology [20] theory, implemented in Kenzo,
provides a framework where this question can be handled. Roughly speaking, the
effective homology method links a non-finite type object, X , with a finite type object,
Y , with the same homology groups; then the problem of computing the homology
groups of X is reduced to the task of diagonalizing the incidence matrices of Y .

Sergeraert’s ideas have been translated to theorem provers with the aim of not
only formalizing the effective homology theory, but also applying formal methods
to the study of Kenzo. Thus far, the main formalization efforts have been focused
on theorems which provide the connection between non-finite type objects with
finite type ones; here, we can distinguish the verification of the Basic Perturbation
Lemma in the Isabelle/HOL proof assistant, see [2], or the formalization in COQ of
the Effective Homology of Bicomplexes, see [8].

However, up to now, the question of formalizing the computation of homology
groups of finite objects has not been undertaken. In this paper we discuss the for-
malization of simplicial complexes and their incidence matrices as well as the main
theorem that gives meaning to the definition of homology groups. To this aim, we
have used the proof assistant COQ [6,4] as well as the SSREFLECT extension [11]
and the libraries it provides.

The rest of the paper is organized as follows. Section 2 contains some prelimi-
naries on Algebraic Topology. A sketch of the proof of the main theorem is presented
in Section 3. A brief introduction to SSREFLECT is provided in Section 4. The main
steps of the formalization are given in Section 5. The paper ends with a section of
Conclusions and Further Work, and the bibliography.

2 Mathematical preliminaries

In this section, we briefly provide the minimal standard background needed in the
rest of the paper. We mainly focus on definitions. Many good textbooks are available
for these definitions and results about them, the main one being maybe [18].

The notion of simplicial complex is the most elementary method to settle a
connection between common Topology and Algebraic Topology. The notion of topo-
logical space is too abstract to perform computations. Simplicial complexes provide



a purely combinatorial description of topological spaces which admit a triangula-
tion. The computability of properties, such as homology groups, from a simplicial
complex associated with a topological space is well-known and the algorithm uses
simple linear algebra [22]. Then, an algebraic topologist can decide every sensible
space (that is to say, a topological space which admit a triangulation) is a simplicial
complex, making computations easier.

Let us start with some basic terminology. Let V be an ordered set, called the
vertex set. An (abstract) simplex over V is any finite subset of V . An (abstract) n-
simplex over V is a simplex over V which cardinality is equal to n + 1. Given a
simplex α over V , we call faces of α all the subsets of α.

Definition 1 An (ordered abstract) simplicial complex over V is a set of simplicesK
over V such that it is closed by taking faces (subsets); that is to say, if α ∈K all the
faces of α are in K , too.

Let K be a simplicial complex. Then the set Sn(K ) of n-simplices of K is the
set made of the simplices of cardinality n+ 1.

Example 1 Let us consider V = (0, 1,2, 3,4, 5,6).
The small simplicial complex drawn in Figure 1 is mathematically defined as the

object:

K =
�

;, (0), (1), (2), (3), (4), (5), (6), (0, 1), (0,2), (0, 3), (1,2),
(1, 3), (2,3), (3, 4), (4,5), (4, 6), (5,6), (0, 1,2), (4, 5,6)
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Fig. 1. Butterfly Simplicial Complex

It is worth noting that simplicial complexes can be infinite. For instance if V = N
and the simplicial complex K is {(n)}n∈N ∪ {(0, n)}n≥1 , the simplicial complex
obtained can be seen as an infinite bunch of segments.

Definition 2 A facet of a simplicial complex K over V is a maximal simplex with
respect to the subset order ⊆ among the simplexes of K .

Example 2 The facets of the simplicial complex depicted in Figure 1 are:

{(0,3), (1, 3), (2,3), (3, 4), (0,1, 2), (4,5, 6)}



To construct the simplicial complex associated with a sequence of facets, F , we
generate all the faces of the simplexes of F . Subsequently, if we perform the set
union of all the faces we obtain the simplicial complex associated with F .

Definition 3 Let K be a simplicial complex over V . Let n and i be two integers
such that n ≥ 1 and 0 ≤ i ≤ n. Then the face operator ∂ n

i is the linear map ∂ n
i :

Sn(K )→ Sn−1(K ) defined by:

∂ n
i ((v0, . . . , vn)) = (v0, . . . , vi−1, vi+1, . . . , vn)

the i-th vertex of the simplex is removed, so that an (n− 1)-simplex is obtained.

Now, we are going to introduce a central notion in Algebraic Topology. We as-
sume as known the notions of ring, module over a ring and module morphism
(see [16] for details).

Definition 4 Given a ring R, a graded module M is a family of left R-modules
(Mn)n∈Z.

Definition 5 Given a pair of graded modules M and M ′, a graded module morphism
f of degree k between them is a family of module morphisms ( fn)n∈Z such that
fn : Mn→ M ′n+k for all n ∈ Z.

Definition 6 Given a graded module M , a differential (dn)n∈Z is a family of module
endomorphisms of M of degree −1 such that dn−1 ◦ dn = 0 for all n ∈ Z.

The previous definitions define a graded structure and a way of going from a
level of the structure to the inferior one. From the previous definitions, the notion
of chain complex is defined as follows.

Definition 7 A chain complex C∗ is a family of pairs (Cn, dn)n∈Z where (Cn)n∈Z is a
graded module and (dn)n∈Z is a differential on (Cn)n∈Z.

The module Cn is called the module of n-chains. The image Bn = im dn+1 ⊆ Cn is
the (sub)module of n-boundaries. The kernel Zn = ker dn ⊆ Cn is the (sub)module
of n-cycles.

Given a chain complex C∗ = (Cn, dn)n∈Z, the identities dn−1 ◦ dn = 0 are equiv-
alent to the inclusion relations Bn ⊆ Zn: every boundary is a cycle but the converse
is not generally true. Thus, the next definition makes sense.

Definition 8 Let C∗ = (Cn, dn)n∈Z be a chain complex of R-modules. For each degree
n ∈ Z, the n-homology module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn

Once we have defined the notions of simplicial complexes and chain complexes,
we can define the link between them considering Z as the ring R; the most common
case in Algebraic Topology.



Definition 9 LetK be a simplicial complex over V . Then the chain complex C∗(K )
canonically associated with K is defined as follows. The chain group Cn(K ) is the
free Z module generated by the n-simplices of K . In addition, let (v0, . . . , vn) be an
n-simplex of K , the differential of this simplex is defined as:

dn :=
n
∑

i=0

(−1)i∂ n
i

In order to clarify the notion of chain complex canonically associated with a
simplicial complex, let us present an example. The chain complexes associated with
simplicial complexes are good candidates for this purpose.

Example 3 LetK be the simplicial complex defined in Figure 1. The chain complex
C∗(K ) canonically associated with K is:

· · · → 0→ C2(K )
d2−→ C1(K )

d1−→ C0(K )→ 0→ ·· ·

where there are 3 associated chain groups:

– C0(K ), the free Z-module on the set of 0-simplexes (vertices)
{(0), (1), (2), (3), (4), (5), (6)}.

– C1(K ), the free Z-module on the set of 1-simplexes (edges)
{(0,1), (0, 2), (0,3), (1, 2), (1,3), (2, 3), (3,4), (4, 5), (4,6), (5, 6)}.

– C2(K ), the free Z-module on the set of 2-simplexes (triangles)
{(0, 1,2), (4,5, 6)}.

The elements of either of those groups Cp are linear integer combinations of the
corresponding basis (set of σi ’s), i.e. elements of the form

∑

λiσi , λi ∈ Z.
The differential homomorphism is in this case:

dn((v0, . . . , vn)) :=
n
∑

i=0

(−1)i(v0, . . . , vi−1, vi+1, . . . , vn) (1)

For instance, d2((0,1, 2)) = (1,2)− (0,2) + (0, 1).

From the previous definition, we can introduce a very useful concept for the
computation of homology groups of simplicial complexes.

Definition 10 Let K be a simplicial complex over V and let n be an integer such
that n ≥ 1. The n-th incidence matrix of K over the ring Z, denoted by Mn(K ,Z),
represents the (n−1)-simplices ofK as rows and the n-simplices ofK as columns.
Assuming an ordering on the simplices of the same dimension (in the rest of the pa-
per we assume that the simplices of the same dimension will be ordered), Mn(K ,Z)
is [a j

i ] where i ranges from 1 to the cardinality of Sn−1(K ), j ranges from 1 to the
cardinality of Sn(K ) and the value of a j

i is the coefficient of the i-th (n−1)-simplex
in the differential of the j-th n-simplex; then a j

i is a value in {0,±1}.



Example 4 If we impose a lexicographical order on the simplices of the same di-
mension of the simplicial complex depicted in Figure 1 (if v = (a0, . . . , an) and
w = (b0, . . . , bn) are n-simplices of the simplicial complex, then v < w if a0 < b0, or
a0 = b0 and a1 < b1, or a0 = b0 and a1 = b1 and a2 < b2,. . . , or a0 = b0, . . . an−1 =
bn−1 and an < bn), then its first incidence matrix is:





















(0, 1) (0, 2) (0, 3) (1, 2) (1,3) (2,3) (3,4) (4,5) (4,6) (5,6)
(0) −1 −1 −1 0 0 0 0 0 0 0
(1) 1 0 0 −1 −1 0 0 0 0 0
(2) 0 1 0 1 0 −1 0 0 0 0
(3) 0 0 1 0 1 1 −1 0 0 0
(4) 0 0 0 0 0 0 1 −1 −1 0
(5) 0 0 0 0 0 0 0 1 0 −1
(6) 0 0 0 0 0 0 0 0 1 1





















The relevance of the incidence matrices of simplicial complexes lies in the fact
that they can be used to compute the homology groups of the simplicial complex by
means of a diagonalization process, as explained for instance in [22].

3 The theorem formalized and its context

The definitions presented in the previous section are classical definitions from Alge-
braic Topology. However, since our final goal consists of working with mathematical
objects coming from digital images, we can fit the context to our particular problem.

It is worth noting that there are several methods to construct a simplicial com-
plex from a digital image [3]. Then, we are going to explain one of these methods.
Roughly speaking, the chosen method consists of obtaining a sequence of facets
from a digital image. Then, as we have explained in the previous section, we can
obtain the simplicial complex associated with the facets. So, we only need to explain
how to get the facets from a digital image.

We are going to work with monochromatic two dimensional images. An image
can be represented by a finite 2-dimensional array of 1’s and 0’s in which the black
pixels are represented by 1’s and, on the contrary, white pixels are represented by
0’s.

Let I be an image codified as a 2-dimensional array of 1’s and 0’s. Let V =
(N,N) be the vertex set, each vertex is a pair of natural numbers. Let p = (a, b) be
the coordinates of a black pixel in I . For each p we can obtain two 2-simplexes
which are two facets of the simplicial complex associated with I . Namely, for each
p = (a, b) we obtain the following facets: ((a, b), (a + 1, b), (a + 1, b + 1)) and
((a, b), (a, b+ 1), (a+ 1, b+ 1)). If we repeat the process for the coordinates of all
the black pixels in I , we obtain the facets of a simplicial complex associated with
I , let us called it KI .

Example 5 Consider the image depicted in Figure 2. This image, I , can be codi-
fied by means of the 2-dimensional array: ((1,0),(0,1)). Then, with the previously
explained process we obtain the facets of KI . The coordinates of the black pixels
are (0, 0) and (1,1), so the facets that we obtain are:

(((0, 0), (1, 0), (1, 1)), ((0,0), (0,1), (1,1)), ((1,1), (2,1), (2,2)), ((1,1), (1,2), (2,2)))
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Fig. 2. A digital image and its simplicial complex representation

We have presented a method to obtain a simplicial complex associated with a
2D-image, but this process can be generalized to higher-dimensional images [19].

It is worth noting that even the bigger digital images have always a finite num-
ber of components, hence a finite number of vertices and then our vertex set V
consists of a finite number of vertices. Therefore, the simplicial complexes coming
from digital images are always of finite type. This point will be important in our
formalization.

Moreover, instead of working with the ring Z, we consider the ring Z/2Z since
the computation of homology groups are easier working with Z/2Z. This approach
is usually followed when algebraic topology methods are applied to the study of
digital images, see [13,14].

Then, we are going to work with a different definition of the face operator and
associated incidence matrices. Indeed, since coefficients (in Z/2Z) of opposite sign
are identified, we do not have to deal with orientations of faces.

Thus, in the following K will denote a simplicial complex over a finite set V
and n an integer such that n≥ 1. The incidence matrix is now defined by:

Definition 11 The n-th incidence matrix of K over the ring Z/2Z, denoted by
Mn(K ), is a matrix of size m × p, where m is the cardinality of Sn−1(K ) and p
is cardinality of Sn(K ). Its coefficients [a j

i ] are 1 if the i-th (n−1)-simplex is a face
of the j-th n-simplex and 0 otherwise.

Note that the n-th incidence matrix ofK over the ring Z/2Z is the absolute value
of the n-th incidence matrix of K over the ring Z.

Using this definition of incidence matrices, it is not necessary to use chain com-
plexes to compute homology groups of simplicial complexes, but just applying a
diagonalization process, as described in [22].

Example 6 If we impose a lexicographical order on the simplices of the same di-
mension of the simplicial complex depicted in Figure 1, then its first incidence ma-



trix over the ring Z/2Z is:





















(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2,3) (3,4) (4,5) (4,6) (5,6)
(0) 1 1 1 0 0 0 0 0 0 0
(1) 1 0 0 1 1 0 0 0 0 0
(2) 0 1 0 1 0 1 0 0 0 0
(3) 0 0 1 0 1 1 1 0 0 0
(4) 0 0 0 0 0 0 1 1 1 0
(5) 0 0 0 0 0 0 0 1 0 1
(6) 0 0 0 0 0 0 0 0 1 1





















As we have said previously, incidence matrices of simplicial complexes come
from the differentials of the chain complexes canonically associated with the sim-
plicial complexes. Theses differentials satisfy a nilpotency condition (dn−1 ◦dn = 0).

Then, we can state and proof the following theorem that is analoguous to this
nilpotency condition on the incidence matrices we have defined above.

Theorem 1 The product of the n-th incidence matrix of K over the ring Z/2Z,
Mn(K ), and the (n + 1)-incidence matrix of K over the ring Z/2Z, Mn+1(K ) is
equal to the null matrix.

Sketch of the proof. Let Sn−1, Sn, Sn+1 be the set of (n−1)-simplices ofK , the set of
n-simplices of K and the set of (n+ 1)-simplices of K respectively. Then,

Mn(K ) =















Sn[1] · · · Sn[r1]

Sn−1[1] a1,1 · · · a1,r1

.

.

.

.

.

.
.
.
.

.

.

.
Sn−1[r2] ar2,1 · · · ar2,r1















, Mn+1(K ) =















Sn+1[1] · · · Sn+1[r3]

Sn[1] b1,1 · · · b1,r1

.

.

.

.

.

.
.
.
.

.

.

.
Sn[r1] br1,1 · · · br1,r3















where r1= ]|Sn|, r2= ]|Sn−1| and r3= ]|Sn+1|. Thus,

Mn(K )×Mn+1(K ) =









c1,1 · · · c1,r3
...

. . .
...

cr2,1 · · · cr2,r3









where ci, j =
∑

1≤k≤r1

ai,k × bk, j

To prove that Mn × Mn+1 is equal to the null matrix, it is enough to prove that
∀i, j such that 1 ≤ i ≤ ]|Sn−1| and 1 ≤ j ≤ ]|Sn+1|, then ci, j = 0. Each of these
coefficients is written:

ci, j =
∑

1≤k≤r1

ai,k × bk, j

Since k enumerates the indices of elements of Sn, we may write:

ci, j =
∑

X∈Sn

F(Sn−1[i], X )× F(X , Sn+1[ j]) with F(Y, Z) =
�

1 if Y ∈ dZ
0 otherwise (2)

dZ is the analoguous in our context of the differential operator defined by (1)
and is equal to:

dZ = {Z \ {x} | x ∈ Z}



This summation can be split depending on whether X ∈ ∂ Sn+1[ j] or X /∈
∂ Sn+1[ j].

ci, j =
∑

X∈Sn|X∈∂ Sn+1[ j]

F(Sn−1[i], X )× 1 (3)

+
∑

X∈Sn|X /∈∂ Sn+1[ j]

F(Sn−1[i], X )× 0

=
∑

X∈Sn|X∈∂ Sn+1[ j]

F(Sn−1[i], X ) (4)

The last summation is expressed over the image of the face operator x 7→
Sn+1[ j] \ {x} which, restricted to Sn+1[ j], is injective. Thus, we can reindex:

ci, j =
∑

x∈Sn+1[ j]

F(Sn−1[i], Sn+1[ j] \ {x}) (5)

Subsequently, this summation can also be split depending on whether x ∈ Sn−1[i]
or x /∈ Sn−1[i].

ci, j =
∑

x∈Sn+1[ j]|x∈Sn−1[i]

F(Sn−1[i], Sn+1[ j] \ {x}) +

∑

x∈Sn+1[ j]|x /∈Sn−1[i]

F(Sn−1[i], Sn+1[ j] \ {x}) (6)

Let us note that if x ∈ Sn−1[i] then Sn−1[i] 6⊂ Sn+1[ j] \ {x}, hence the first sum
above is 0.

ci, j =
∑

x∈Sn+1[ j]|x /∈Sn−1[i]

F(Sn−1[i], Sn+1[ j] \ {x}) (7)

Here, we can split our proof considering two cases: Sn−1[i] 6⊂ Sn+1[ j] and
Sn−1[i]⊂ Sn+1[ j].

In the first case, we have: ∀x ∈ Sn−1[i], F(Sn−1[i], Sn+1[ j]\ {x}) = 0, hence the
result holds.

In the second case, Sn−1[i] ⊂ Sn+1[ j] implies that if x /∈ Sn−1[i] then Sn−1[i] ∈
∂ Sn+1[ j] \ {x}, so the terms are all 1.

ci, j =
∑

x∈Sn+1[ j]|x /∈Sn−1[i]

1 (8)

= ]|Sn+1[ j] \ Sn−1[i]|
= n+ 2− n= 2= 0 mod 2



4 SSReflect basics

To formalize Theorem 1, we have used SSREFLECT [11], an extension for the COQ

proof assistant [4,6]. Its development was started by G. Gonthier during the formal
proof of the Four Color Theorem [10] and is now involved in the formalisation of
the Feit-Thompson theorem [1].

SSREFLECT (for Small Scale Reflection) introduces a new language for tactics
that eases the development of proof scripts. Another main feature is the generic
reflection mechanism. More details on the SSREFLECT tactics language and reflection
techniques are presented in its manual [11].

Moreover, SSREFLECT provides a set of libraries embedding definitions and prop-
erties for a variety of mathematical structures. In our formalization, it is worth men-
tioning the following libraries:

– matrix.v: this library formalizes matrix theory, determinant theory and matrix
decompositions. In our problem, this library is used to define incidence matri-
ces, and to state and prove Theorem 1.

– finset.v and fintype.v: theory of finite sets and finite types. We use these libraries
to define the basic concepts about simplicial complexes.

– bigop.v: generic indexed “big” operations, like
n
∑

i=0
f (i) or

⋃

i∈I
f (i) and their prop-

erties, which are useful to deal with the matricial product in Theorem 1.
– zmodp.v: additive group and ring Zp, together with field properties when p is

a prime. As we work with elements of the field F2, we need this library.

For more precise details on these libraries we refer to [5,12]

5 Formal development

The SSREFLECT libraries include all the necessary ingredients to represent the math-
ematical structures of our formalization.

First of all, we define the notions related to simplicial complexes. The vertices
are represented by a finite type V. A simplex is defined as a finite set of vertices.
Then, the definition of a simplicial complex as a set of simplices closed under inclu-
sion is straightforward:

Variable V : finType.
Definition simplex := {set V}.
Definition simplicial_complex (c : {set simplex}) :=
forall x, x \in c -> forall y : simplex, y \subset x -> y \

in c.

Since we do not take into account the signs of the coefficients appearing in
the incidence matrices, we define a face operator as a set difference (we remove
a vertex from a simplex) and the boundary as the image of a simplex by the face
operator.



Definition face_op (S : simplex) (x : V) := S :\ x.
Definition boundary (S : simplex) := (face_op S) @: S.

We prove the correctness of our definition of boundary by showing it is equiva-
lent to a subset relation with constraints on cardinality:

Lemma boundaryP: forall (S : simplex) (B : simplex),
reflect (B \subset S /\ #|S| = #|B|.+1) (B \in boundary S).

A key argument for our proof is the injectivity of the face operator above, which
we establish as a lemma:

Lemma face_op_inj2: forall (S : simplex),
{in S &, injective (face_op S)}.

The notation {in S &, P} means: ∀x ∈ S,∀y ∈ S, P(x , y).
Now, before giving the definition of the n-th incidence matrix of a simplicial

complex, we can define the more generic notion of incidence matrix of two finite
sets of simplices.

Representing a matrix requires an indexing of the simplices in Left (for the
rows) and Top (for the columns). Since Left and Top are finite sets, they are
equipped with a canonical enumeration: (enum_val Left i) returns the i-th
element of the set Left. A coefficient ai j of the incidence matrix will be 1 if the i-th
simplex of Left is a face (subset) of the j-th simplex of Top and 0 otherwise.

Thus we can define the incidence matrix of two finite sets of simplices as follows:

Variables Left Top : {set simplex}.
Definition incidenceMatrix :=
\matrix_(i < #|Left|, j < #|Top|)

if enum_val i \in boundary (enum_val j) then 1 else 0:'
F_2.

In the definition above, it can be noted that the first argument of enum_val is
implicit and determined by the context. Indeed, the notation i < #|Left| means
that the type of i is 'I_(#|Left|), that is i is an ordinal ranging from 0 to
#|Left|−1, where #|X| denotes the cardinal of the set X. With this type informa-
tion, the system expands enum_val i to enum_val Left i, thus resolving the
ambiguity (and similarly for j).

The type annotation 0:'F_2 indicates that the 0 and 1 appearing as coefficients
of the matrix are the two elements of F2, that is Z/2Z as a field.

We now define the n-th incidence matrix of a simplicial complex c, by instanti-
ating Left to the set of n− 1-simplices (of c) and Top to the set of n-simplices. Note
that n should be nonzero.

Section nth_incidence_matrix.
Variable c: {set simplex}.
Variable n:nat.
Definition n_1_simplices := [set x \in c | #|x| == n].
Definition n_simplices := [set x \in c | #|x| == n+1].
Definition incidence_matrix_n :=



incidenceMatrix n_1_simplices n_simplices.
End nth_incidence_matrix.

Then we have all the ingredients to state Theorem 1:

Theorem incidence_matrices_sc_product:
forall (V:finType) (n:nat) (sc: {set (simplex V)}),
simplicial_complex sc ->
(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.

In the statement above, *m denotes the matricial product. The type information
of each matrix includes its size. When the product operator is applied, the type-
checking ensures that the two arguments have compatible sizes. Then the system
knows the expected size of the result matrix and reads 0 as the null matrix of this
size.

The formal proof of Theorem 1 follows the schema presented in Section 3. A
large part of the proof is devoted to the work with summations, for which the
library “bigop” has played a key role.

For instance, the first summation splitting (equation (3)) is realized by:

rewrite (bigID (mem (boundary (enum_val j)))).

where j belongs to Sn+1.
The lemma bigID states that an iterated operation using a commutative monoidal

operator can be split:
∑

i∈r|Pi

Fi =
∑

i∈r|Pi∧ai

Fi +
∑

i∈r|Pi∧∼ai

Fi

It is also possible to split a summation (equation (6)) and at the same time
rewrite the first resulting sum to 0 as in:

rewrite (bigID (mem (enum_val i))) big1.

big1 states that, when a monoidal operator is iterated over elements that are all
equal to the neutral, then the result is also the neutral element:

∑

i∈r|Pi

0= 0

Therefore, after the last tactic, the system will require a proof that all the terms
of the first resulting summation are zero. big1 is applied to obtain equations 4 and 7
of Section 3.

Our proof relies on two main reindexations: from ordinals to n-simplices (2)
and later on from simplices to vertices (5). To perform the first reindexation, the
script has the following shape:

rewrite (reindex_onto (enum_rank_in Hx0) enum_val) ; last
first.

by move=> x _ ; exact:enum_valK_in.

Where:



– Hx0 is a proof that there exists at least one n-simplex
– enum_rank_in enumerates the n-simplices since Hx0 ensures there is at least

one
– enum_val enumerates the ordinals over which the sum is expressed
– reindex_onto reindexes from ordinals to n-simplices, given a bijection be-

tween both sets. Indeed, the second line proves that enum_val ◦ enum_rank_in
= Id

The second reindexation is based on the injectivity of the face operator:

rewrite big_imset ; last exact:face_op_inj2.

Rewriting with the lemma big_imset triggers a check that the summation is ex-
pressed over the image of a set by a function. In our case, the system automatically
infers that this function is the face operator face_op, and will then ask for a proof
of its injectivity.

The lemma eq_big and its variants eq_bigl and eq_bigr allow to rewrite the
predicate or the operand of an iterated operation. It is applied in particular to obtain
equation 8 of Section 3:

rewrite (eq_bigr (fun _ => 1)).

The system will of course require a proof that the operand is equal to 1. Then it
will rewrite the expression to a constant summation, allowing the use of the lemma
big_const to replace it with a product (cardinal of the iterated set by the constant
value).

Simple arithmetic arguments on cardinals will then complete the proof. The
interested reader will find a snapshot of our development online [15].

6 Conclusions and Further Work

In this paper we have presented the formalization of simplicial complexes and their
incidence matrices as well as the main theorem that gives meaning to the definition
of homology groups. The proof assistant used has been COQ as well as the SSRE-
FLECT extension and the libraries it provides. The verified algorithm is related to a
Computer Algebra system for Algebraic Topology called Kenzo [9]. Therefore, our
research is placed between the efforts to formalize mathematics and the application
of formal methods in software systems.

Some parts of the future work are quite natural. The work presented here is solid
enough to undertake the challenge of formalizing the construction of the Smith
Normal Form [22] of incidence matrices, that is the diagonalization process which
obtains homology groups of finite type objects.

Moreover, if we want to apply our Algebraic Topology methods to real life prob-
lems, for instance the study of medical images, we must be completely sure that our
programs are safe. Therefore, the process to construct a simplicial complex from a
digital image, presented in Section 3, should be formalized, too.

In addition, our proof seems generic enough to achieve the case of working with
Z-modules, instead of Z/2Z-modules, quite easily.



Another topic is related to the executability of our proofs, that is the computa-
tional capabilities of the objects we have defined (like the incidence matrices). Two
main approaches are possible: code extraction or internal computations. The first
one delivers a certified program and is available for free in the Coq system. How-
ever, technical limitations have to be dealt with to get an usable program in our
context. The second approach is somewhat more challenging regarding efficiency
but enables the reuse of computational results in further formal developments. For
instance, the computation of the smith normal form of a matrix could be used for
further deductions, in the same system, on the topological object under study. We
are currently studying the use of code extraction and efficient computational tech-
niques in the Coq/SSReflect system, applied to the objects and theories we have
presented above.
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