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Digital Image
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triangulation

graded structure

computing

properties

Implemented in the Kenzo system

General Goal

Formalizing the computation of homology groups of digital images
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Mathematical concepts Digital Images

Digital Images

Digital Image Simplicial Complex Chain Complex Homology

2D digital images:

elements are pixels

3D digital images:

elements are voxels
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Mathematical concepts Simplicial Complexes

Simplicial Complexes

Digital Image Simplicial Complex Chain Complex Homology

Definition

Let V be an ordered set, called the vertex set.
A simplex over V is any finite subset of V

Definition

Let α and β be simplices over V , we say α is a face of β if α is a subset of β

Definition

An ordered (abstract) simplicial complex over V is a set of simplices K over V
satisfying the property:

∀α ∈ K, if β ⊆ α⇒ β ∈ K

Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made
of the simplices of cardinality n + 1
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Mathematical concepts Simplicial Complexes

Simplicial Complexes

Digital Image Simplicial Complex Chain Complex Homology

0
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V = (0, 1, 2, 3, 4, 5, 6)
K = {∅, (0), (1), (2), (3), (4), (5), (6),
(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6),
(0, 1, 2), (4, 5, 6)}
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Mathematical concepts Simplicial Complexes

Simplicial Complexes

Digital Image Simplicial Complex Chain Complex Homology

Definition

The facets of a simplicial complex K are the maximal simplices of the simplicial
complex

0

1

2

3 4

5

6

The facets are: {(0, 3), (1, 3), (2, 3), (3, 4), (0, 1, 2), (4, 5, 6)}
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Mathematical concepts Chain Complexes

Chain Complexes

Digital Image Simplicial Complex Chain Complex Homology

Definition

A chain complex C∗ is a pair of sequences C∗ = (Cq , dq)q∈Z where:

For every q ∈ Z, the component Cq is an R-module, the chain group of degree q

For every q ∈ Z, the component dq is a module morphism dq : Cq → Cq−1, the
differential map

For every q ∈ Z, the composition dqdq+1 is null: dqdq+1 = 0
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Mathematical concepts Homology

Homology

Digital Image Simplicial Complex Chain Complex Homology

Definition

If C∗ = (Cq , dq)q∈Z is a chain complex:

The image Bq = im dq+1 ⊆ Cq is the (sub)module of q-boundaries

The kernel Zq = ker dq ⊆ Cq is the (sub)module of q-cycles

Given a chain complex C∗ = (Cq , dq)q∈Z:

dq−1 ◦ dq = 0⇒ Bq ⊆ Zq

Every boundary is a cycle

The converse is not generally true

Definition

Let C∗ = (Cq , dq)q∈Z be a chain complex. For each degree n ∈ Z, the n-homology
module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn
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Mathematical concepts Digital Image→ Simplicial Complex

From a digital image to a simplicial complex

Digital Image Simplicial Complex Chain Complex Homology
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Mathematical concepts Simplicial Complex→ Chain Complex

From Simplicial Complexes to Chain Complexes

Digital Image Simplicial Complex Chain Complex Homology

Definition

Let K be an (ordered abstract) simplicial complex. Let n ≥ 1 and 0 ≤ i ≤ n be two
integers n and i. Then the face operator ∂n

i is the linear map ∂n
i : Sn(K)→ Sn−1(K)

defined by:
∂n

i ((v0, . . . , vn)) = (v0, . . . , vi−1, vi+1, . . . , vn).

The i-th vertex of the simplex is removed, so that an (n − 1)-simplex is obtained

Definition

Let K be a simplicial complex. Then the chain complex C∗(K) canonically associated
with K is defined as follows. The chain group Cn(K) is the free Z module generated
by the n-simplices of K. In addition, let (v0, . . . , vn−1) be a n-simplex of K, the
differential of this simplex is defined as:

dn :=
n∑

i=0

(−1)i∂n
i
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Mathematical concepts Computing Homology groups

Computing

Digital Image Simplicial Complex Chain Complex Homology

Computing Homology groups:
From a Chain Complex (Cn, dn)n∈Z:

dn can be expressed as matrices
Homology groups are obtained from a diagonalization process

Directly from the Simplicial Complex:

Incidence simplicial matrices
Homology groups are obtained from a diagonalization process
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The Theorem Formalized and its Context

From Simplicial Complexes to Homology

Simplicial Complex

Chain Complex

Homology

Incidence Matrices

graded structure

computing

differential
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The Theorem Formalized and its Context Incidence simplicial matrices

Incidence Matrices

Definition

Let X and Y be two ordered finite sets of simplices, we call incidence matrix to a
matrix m × n where

m = ]|X | ∧ n = ]|Y |

M =


Y [1] · · · Y [n]

X [1] a1,1 · · · a1,n

.

.

.

.

.

.
. . .

.

.

.
X [m] am,1 · · · am,n



ai,j =

{
1 if X [i ] is a face of Y [j]
0 if X [i ] is not a face of Y [j]
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The Theorem Formalized and its Context Incidence simplicial matrices

Incidence Matrices

Definition

Let C be a finite set of simplices, A be the set of n-simplices of C with an order
between its elements and B the set of (n− 1)-simplices of C with an order between its
elements.
We call incidence matrix of dimension n (n ≥ 1), to a matrix p × q where

p = ]|B| ∧ q = ]|A|

Mi,j =

{
1 if B[i ] is a face of A[j]
0 if B[i ] is not a face of A[j]
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The Theorem Formalized and its Context Incidence simplicial matrices

Incidence Matrices of Simplicial Complexes

0

1

2

3 4

5

6



(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3) (3, 4) (4, 5) (4, 6) (5, 6)

(0) 1 1 1 0 0 0 0 0 0 0
(1) 1 0 0 1 1 0 0 0 0 0
(2) 0 1 0 1 0 1 0 0 0 0
(3) 0 0 1 0 1 1 1 0 0 0
(4) 0 0 0 0 0 0 1 1 1 0
(5) 0 0 0 0 0 0 0 1 0 1
(6) 0 0 0 0 0 0 0 0 1 1


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The Theorem Formalized and its Context Incidence simplicial matrices

Incidence Matrices of Simplicial Complexes

0

1

2

3 4

5

6



(0, 1, 2) (4, 5, 6)

(0, 1) 1 0
(0, 2) 1 0
(0, 3) 0 0
(1, 2) 1 0
(1, 3) 0 0
(2, 3) 0 0
(3, 4) 0 0
(4, 5) 0 1
(4, 6) 0 1
(5, 6) 0 1


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The Theorem Formalized and its Context The formalized theorem

Product of two consecutive incidence matrices

Theorem (Product of two consecutive incidence matrices)

Let K be a finite simplicial complex over V with an order between the simplices of the
same dimension and let n ≥ 1 be a natural number n, then the product of the n-th
incidence matrix of K and the (n + 1)-incidence matrix of K over the ring Z/2Z is
equal to the null matrix
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The Theorem Formalized and its Context Sketch of the proof

Sketch of the proof

Let Sn+1 be the set of (n + 1)-simplices of K with an order
between its elements

Let Sn be the set of n-simplices of K with an order between
its elements

Let Sn−1 be the set of (n − 1)-simplices of K with an order
between its elements

Mn(K) =


Sn [1] · · · Sn [r1]

Sn−1[1] a1,1 · · · a1,r1

.

.

.

.

.

.
. . .

.

.

.
Sn−1[r2] ar2,1 · · · ar2,r1

, Mn+1(K) =


Sn+1[1] · · · Sn+1[r3]

Sn [1] b1,1 · · · b1,r1

.

.

.

.

.

.
. . .

.

.

.
Sn [r1] br1,1 · · · br1,r3



where r1 = ]|Sn|, r2 = ]|Sn−1| and r3 = ]|Sn+1|
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The Theorem Formalized and its Context Sketch of the proof

Sketch of the proof

Mn(K)×Mn+1(K) =

 c1,1 · · · c1,r3

...
. . .

...
cr2,1 · · · cr2,r3


where

ci,j =
∑

1≤k≤r1

ai,k × bk,j

we need to prove that
∀i , j , ci,j = 0

in order to prove that Mn ×Mn+1 = 0
Since k enumerates the indices of elements of Sn:

ci,j =
∑

X∈Sn

F (Sn−1[i ],X )× F (X , Sn+1[j]) with F (Y ,Z) =

{
1 if Y ∈ dZ
0 otherwise

where
dZ = {Z \ {x} | x ∈ Z}
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Sketch of the proof

ci,j =
∑

X∈Sn

F (Sn−1[i ],X )× F (X ,Sn+1[j ])

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )× 1

+
∑

X∈Sn|X /∈∂Sn+1[j]

F (Sn−1[i ],X )× 0

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )

=
∑

x∈Sn+1[j]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})+∑
x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

J. Heras, M. Poza, M. Dénès, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



The Theorem Formalized and its Context Sketch of the proof

Sketch of the proof

ci,j =
∑

X∈Sn

F (Sn−1[i ],X )× F (X ,Sn+1[j ])

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )× 1

+
∑

X∈Sn|X /∈∂Sn+1[j]

F (Sn−1[i ],X )× 0

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )

=
∑

x∈Sn+1[j]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})+∑
x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

J. Heras, M. Poza, M. Dénès, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



The Theorem Formalized and its Context Sketch of the proof

Sketch of the proof

ci,j =
∑

X∈Sn

F (Sn−1[i ],X )× F (X ,Sn+1[j ])

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )× 1

+
∑

X∈Sn|X /∈∂Sn+1[j]

F (Sn−1[i ],X )× 0

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )

=
∑

x∈Sn+1[j]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})+∑
x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

J. Heras, M. Poza, M. Dénès, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



The Theorem Formalized and its Context Sketch of the proof

Sketch of the proof

ci,j =
∑

X∈Sn

F (Sn−1[i ],X )× F (X ,Sn+1[j ])

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )× 1

+
∑

X∈Sn|X /∈∂Sn+1[j]

F (Sn−1[i ],X )× 0

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )

=
∑

x∈Sn+1[j]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})+∑
x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

J. Heras, M. Poza, M. Dénès, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



The Theorem Formalized and its Context Sketch of the proof

Sketch of the proof

ci,j =
∑

X∈Sn

F (Sn−1[i ],X )× F (X ,Sn+1[j ])

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )× 1

+
∑

X∈Sn|X /∈∂Sn+1[j]

F (Sn−1[i ],X )× 0

=
∑

X∈Sn|X∈∂Sn+1[j]

F (Sn−1[i ],X )

=
∑

x∈Sn+1[j]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})+∑
x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

=
∑

x∈Sn+1[j]|x /∈Sn−1[i ]

F (Sn−1[i ],Sn+1[j ] \ {x})

J. Heras, M. Poza, M. Dénès, and L. Rideau Incidence Simplicial Matrices Formalized in Coq/SSReflect CICM 2011



The Theorem Formalized and its Context Sketch of the proof

Sketch of the proof
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Sketch of the proof

Sn−1[i ] 6⊂ Sn+1[j ]
∀x ∈ Sn−1[i ],F (Sn−1[i ],Sn+1[j ] \ {x}) = 0

Sn−1[i ] ⊂ Sn+1[j ]
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∀x ∈ Sn−1[i ],F (Sn−1[i ],Sn+1[j ] \ {x}) = 0

Sn−1[i ] ⊂ Sn+1[j ]
F (Sn−1[i ], Sn+1[j ] \ {x}) = 1

ci ,j =
∑

x∈Sn+1[j]|x /∈Sn−1[i ]

1

= ]|Sn+1[j ] \ Sn−1[i ]|
= n + 2− n = 2 = 0 mod 2
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Formal development

SSReflect

SSReflect:

Extension of Coq
Developed while formalizing the Four Color Theorem
Provides new libraries:

matrix.v: matrix theory
finset.v and fintype.v: finite set theory and finite types

bigop.v: indexed “big” operations, like
n∑

i=0

f (i) or
⋃
i∈I

f (i)

zmodp.v: additive group and ring Zp
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Formal development

Representation of Simplicial Complexes in SSReflect

Definition

Let V be a finite ordered set, called the vertex set, a simplex over V is any finite
subset of V

Definition

A finite ordered (abstract) simplicial complex over V is a finite set of simplices K over
V satisfying the property:

∀α ∈ K, if β ⊆ α⇒ β ∈ K

Variable V : finType.
Definition simplex := {set V}.
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Representation of Simplicial Complexes in SSReflect

Definition

Let V be a finite ordered set, called the vertex set, a simplex over V is any finite
subset of V

Definition

A finite ordered (abstract) simplicial complex over V is a finite set of simplices K over
V satisfying the property:

∀α ∈ K, if β ⊆ α⇒ β ∈ K

Variable V : finType.
Definition simplex := {set V}.
Definition simplicial_complex (c : {set simplex}) :=
forall x, x \in c −> forall y : simplex, y \subset x −> y \in c.
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Formal development

Incidence Matrices

Definition

Let X and Y be two ordered finite sets of simplices, we call incidence matrix to a
matrix m × n where

m = ]|X | ∧ n = ]|Y |

M =


Y [1] · · · Y [n]

X [1] a1,1 · · · a1,n

.

.

.

.

.

.
. . .

.

.

.
X [m] am,1 · · · am,n



ai,j =

{
1 if X [i ] is a face of Y [j]
0 if X [i ] is not a face of Y [j]

Definition face_op (S : simplex) (x : V) := S :\ x.
Definition boundary (S : simplex) := (face_op S) @: S.

Variables Left Top : {set simplex}.
Definition incidenceMatrix :=
\matrix_(i < #|Left|, j < #|Top|)

if enum_val i \in boundary (enum_val j) then 1 else 0:’F_2.
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Formal development

Incidence Matrices

Definition

Let C be a finite set of simplices, A be the set of n-simplices of C with an order
between its elements and B the set of (n− 1)-simplices of C with an order between its
elements.
We call incidence matrix of dimension n (n ≥ 1), to a matrix p × q where

p = ]|B| ∧ q = ]|A|

Mi,j =

{
1 if B[i ] is a face of A[j]
0 if B[i ] is not a face of A[j]

Section nth_incidence_matrix.
Variable c: {set simplex}.
Variable n:nat.
Definition n_1_simplices := [set x \in c | #|x| == n].
Definition n_simplices := [set x \in c | #|x| == n+1].
Definition incidence_matrix_n :=
incidenceMatrix n_1_simplices n_simplices.

End nth_incidence_matrix.
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Formal development

Product of two consecutive incidence matrices in Z2

Theorem (Product of two consecutive incidence matrices in Z2)

Let K be a finite simplicial complex over V with an order between the simplices of the
same dimension and let n ≥ 1 be a natural number n, then the product of the n-th
incidence matrix of K and the (n + 1)-incidence matrix of K over the ring Z/2Z is
equal to the null matrix

Theorem incidence_matrices_sc_product:
forall (V:finType) (n:nat) (sc: {set (simplex V)}),
simplicial_complex sc −>

(incidence_mx_n sc n) ∗m (incidence_mx_n sc (n.+1)) = 0.
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Formal development

Formalization in SSReflect of the theorem

Summation part:

Lemmas from “bigop” library
bigID:

∑
i∈r |Pi

Fi =
∑

i∈r |Pi∧ai

Fi +
∑

i∈r |Pi∧∼ai

Fi

big1:
∑

i∈r |Pi

0 = 0

Cardinality part:

Auxiliary lemmas
Lemmas from “finset” and “fintype” libraries
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