Applying ACL2 to the Formalization of Algebraic Topology: Simplicial Polynomials ${ }^{1}$

L. Lambán*, F.J. Martín-Mateos**, J. Rubio* and J.-L. Ruiz-Reina**

* Dpto. de Matemáticas y Computación (Universidad de La Rioja, Spain)
** Dpto. de Ciencias de la Comp. e Inteligencia Artificial (Universidad de Sevilla, Spain)

[^0]
Introduction

- Kenzo symbolic computation system: a Common Lisp program devoted to Algebraic (Simplicial) Topology.
- A research tool: used to obtain relevant results in the field, neither confirmed nor refuted by any other means.
- The following question makes sense: Is it Kenzo correct?
- Our goal: we want to formally prove correcteness properties of the algorithms implemented in Kenzo
- Since Kenzo is coded in Common Lisp, ACL2 seems a natural candidate for this task
- Is it first-order enough to reason about algebraic topology?

Introduction

- Formal proofs of Kenzo properties imply the following:

1. Formal correctness proofs of the implemented algorithms
2. Formalizing the underlying theory: algebraic and simplicial topology

- Regarding the first issue, some formal verification of functions implemented in Kenzo has already been carried out (Calculemus 2009)
- This talk is about the second issue: formalization in ACL2 of some aspects of the theory of Simplicial Topology
- Our first step: formal proof of the Normalization Theorem of Simplicial Topology

Simplicial sets

- Simplicial Topology is a subarea of Topology studying topological properties of spaces by means of combinatorial models.
- A simplicial set is a graded set $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ (n-simplexes) together with operators $\partial_{i}^{(n)}: K_{n} \rightarrow K_{n-1}$ and $\eta_{i}^{(n)}: K_{n} \rightarrow K_{n+1}$ (faces and degeneracies, resp.), satisfying the following simplicial identities:
(1) $\partial_{i}^{n-1} \partial_{j}^{n}$
$=$
$\partial_{j}^{n-1} \partial_{i+1}^{n}$
if
$i \geq j$,
(2) $\eta_{i}^{n+1} \eta_{j}^{n}=\eta_{j+1}^{n+1} \eta_{i}^{n}$
if
$i \leq j$,
(3) $\partial_{i}^{n+1} \eta_{j}^{n}=\eta_{j-1}^{n-1} \partial_{i}^{n}$
if
$i<j$,
(4) $\partial_{i}^{n+1} \eta_{j}^{n}=$
$\eta_{j}^{n-1} \partial_{i-1}^{n}$
if $\quad i>j+1$,
(5) $\partial_{i}^{n+1} \eta_{i}^{n}=\partial_{i+1}^{n+1} \eta_{i}^{n}$

Simplicial sets: some intuition

- Simplicial sets are an abstraction, but we can give some geometrical and combinatorial intuition.

Simplicial sets: some intuition

- Simplicial sets are an abstraction, but we can give some geometrical and combinatorial intuition.
- Geometrical: spaces resulting from triangulation of topological spaces:
- n-simplexes in K_{n} can be seen as n dimensional "triangles"
- The operators $\partial_{i}^{(n)}$ gives us the "sides" of the triangle (or "faces" of a tetrahedron).

Simplicial sets: some intuition

- Simplicial sets are an abstraction, but we can give some geometrical and combinatorial intuition.
- Geometrical: spaces resulting from triangulation of topological spaces:
- n-simplexes in K_{n} can be seen as n dimensional "triangles"
- The operators $\partial_{i}^{(n)}$ gives us the "sides" of the triangle (or "faces" of a tetrahedron).
- A particular simplicial set can also give us some combinatorial intuition:
- n-simplexes: non-decreasing integer lists $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ (vertices of the "triangle")
- $\partial_{i}^{(n)}$: delete the i-th element
- $\eta_{i}^{(n)}$: duplicate the i-th element
- This gives some intuition about the meaning of the simplicial identities

Simplicial sets

- A simplicial set is a graded set $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ (n-simplices) together with operators $\partial_{i}^{(n)}: K_{n} \rightarrow K_{n-1}$ and $\eta_{i}^{(n)}: K_{n} \rightarrow K_{n+1}$ (faces and degeneracies, resp.), satisfying the following simplicial identities:
(1) $\partial_{i}^{n-1} \partial_{j}^{n}$
$=$
$\partial_{j}^{n-1} \partial_{i+1}^{n}$
if
$i \geq j$,
(2) $\eta_{i}^{n+1} \eta_{j}^{n}=\eta_{j+1}^{n+1} \eta_{i}^{n}$
if
$i \leq j$,
(3) $\partial_{i}^{n+1} \eta_{j}^{n}=$
if
$i<j$,
(4) $\partial_{i}^{n+1} \eta_{j}^{n}=\eta_{j}^{n-1} \partial_{i-1}^{n} \quad$ if $\quad i>j+1$,
(5) $\partial_{i}^{n+1} \eta_{i}^{n}=\partial_{i+1}^{n+1} \eta_{i}^{n}=\quad i d^{n}$,

Defining simplicial sets in ACL2

```
A generic simplicial set using encapsulate
(encapsulate
    (((K * *) => *)
        ((d * * *) => *)
        ((n * * *) => *))
    (defthm simplicial-id1
        (implies (and (K m x)
                        (natp m) (natp i) (natp j)
                            (<= j i) (< i m) (< 1 m))
        (equal (d (+ -1 m) i (d m j x))
        (d (+ -1 m) j (d m (+ 1 i) x)))))
```

 ;;; Inside this encapsulate, we assume analogously
 ;; all the simplicial identities.
 )
 - (K n x) represents $x \in K_{n}$,
- (d m i x) and (n m i x) represent $\eta_{i}^{(m)}(x)$ and $\partial_{i}^{(m)}(x)$, resp.

Chain complexes

- The set of n-chains (denoted as $C_{n}(K)$) is the abelian group freely generated by K_{n}.
- That is, linear combinations of elements of K_{n} with integer coefficients
- In ACL2, ordered lists of pairs of the form (i . x), where i is a non-null integer and x is a n-simplex
- The differential is defined on $x \in K_{n}$ as $d_{n}(x)=\sum_{i=0}^{n}(-1)^{i} \partial_{i}^{(n)}(x)$
- Extended by linearity to chains, defining $d_{n}: C_{n}(K) \rightarrow C_{n-1}(K)$
- It can be proved that $d_{n} \circ d_{n+1}=0$ (differential property)
- In Algebra, we say that $\left\{\left(C_{n}(K), d_{n}\right)\right\}_{n \in \mathbb{N}}$ is a chain complex
- Algebraic properties of the chain complex associated to a simplicial set give us topological information

Proving simplicial topology theorems in ACL2

- An example: an (informal) proof of $d_{n} \circ d_{n+1}=0$.
- $d_{n}=\sum_{i=0}^{n}(-1)^{i} \partial_{i}^{(n)}$ and $d_{n+1}=\sum_{i=0}^{n+1}(-1)^{i} \partial_{i}^{n+1}$

Proving simplicial topology theorems in ACL2

- An example: an (informal) proof of $d_{n} \circ d_{n+1}=0$.
- $d_{n}=\sum_{i=0}^{n}(-1)^{i} \partial_{i}^{(n)}$ and $d_{n+1}=\sum_{i=0}^{n+1}(-1)^{i} \partial_{i}^{n+1}$
- If we omit the superindexes, we can recursively define:

$$
\overline{d_{n+1}}=(-1)^{n+1} \partial_{n+1}+d_{n} .
$$

Proving simplicial topology theorems in ACL2

- An example: an (informal) proof of $d_{n} \circ d_{n+1}=0$.
- $d_{n}=\sum_{i=0}^{n}(-1)^{i} \partial_{i}^{(n)}$ and $d_{n+1}=\sum_{i=0}^{n+1}(-1)^{i} \partial_{i}^{n+1}$
- If we omit the superindexes, we can recursively define:

$$
d_{n+1}=(-1)^{n+1} \partial_{n+1}+d_{n}
$$

- Therefore, $d_{n} \circ d_{n+1}=\left[(-1)^{n} \partial_{n}+d_{n-1}\right]\left[(-1)^{n+1} \partial_{n+1}+d_{n}\right]=$ $=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}+d_{n-1} d_{n}$.

Proving simplicial topology theorems in ACL2

- An example: an (informal) proof of $d_{n} \circ d_{n+1}=0$.
- $d_{n}=\sum_{i=0}^{n}(-1)^{i} \partial_{i}^{(n)}$ and $d_{n+1}=\sum_{i=0}^{n+1}(-1)^{i} \partial_{i}^{n+1}$
- If we omit the superindexes, we can recursively define:

$$
d_{n+1}=(-1)^{n+1} \partial_{n+1}+d_{n} .
$$

- Therefore, $d_{n} \circ d_{n+1}=\left[(-1)^{n} \partial_{n}+d_{n-1}\right]\left[(-1)^{n+1} \partial_{n+1}+d_{n}\right]=$ $=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}+d_{n-1} d_{n}$.
- By induction, $d_{n-1} d_{n}=0$, so:
$d_{n} \circ d_{n+1}=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}$

Proving simplicial topology theorems in ACL2

- An example: an (informal) proof of $d_{n} \circ d_{n+1}=0$.
- $d_{n}=\sum_{i=0}^{n}(-1)^{i} \partial_{i}^{(n)}$ and $d_{n+1}=\sum_{i=0}^{n+1}(-1)^{i} \partial_{i}^{n+1}$
- If we omit the superindexes, we can recursively define:

$$
\overline{d_{n+1}}=(-1)^{n+1} \partial_{n+1}+d_{n} .
$$

- Therefore, $d_{n} \circ d_{n+1}=\left[(-1)^{n} \partial_{n}+d_{n-1}\right]\left[(-1)^{n+1} \partial_{n+1}+d_{n}\right]=$ $=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}+d_{n-1} d_{n}$.
- By induction, $d_{n-1} d_{n}=0$, so:
$d_{n} \circ d_{n+1}=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}$
- Lemma: $\partial_{n} d_{n}=(-1)^{n} \partial_{n} \partial_{n+1}+d_{n-1} \partial_{n+1}$.

Proving simplicial topology theorems in ACL2

- An example: an (informal) proof of $d_{n} \circ d_{n+1}=0$.
- $d_{n}=\sum_{i=0}^{n}(-1)^{i} \partial_{i}^{(n)}$ and $d_{n+1}=\sum_{i=0}^{n+1}(-1)^{i} \partial_{i}^{n+1}$
- If we omit the superindexes, we can recursively define:

$$
\overline{d_{n+1}}=(-1)^{n+1} \partial_{n+1}+d_{n} .
$$

- Therefore, $d_{n} \circ d_{n+1}=\left[(-1)^{n} \partial_{n}+d_{n-1}\right]\left[(-1)^{n+1} \partial_{n+1}+d_{n}\right]=$ $=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}+d_{n-1} d_{n}$.
- By induction, $d_{n-1} d_{n}=0$, so:
$d_{n} \circ d_{n+1}=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}$
- Lemma: $\partial_{n} d_{n}=(-1)^{n} \partial_{n} \partial_{n+1}+d_{n-1} \partial_{n+1}$.
- Applying the lemma, $d_{n} \circ d_{n+1}=0$. QED.

Proving simplicial topology theorems in ACL2

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:

Proving simplicial topology theorems in ACL2

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
- The superindexes can be omited (later safely recovered)
combinations of composition of face and degeneracy maps. Definitions by recursion, proofs by induction

Proving simplicial topology theorems in ACL2

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
- The superindexes can be omited (later safely recovered)
- We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.

Proving simplicial topology theorems in ACL2

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
- The superindexes can be omited (later safely recovered)
- We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
- Definitions by recursion, proofs by induction

Proving simplicial topology theorems in ACL2

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
- The superindexes can be omited (later safely recovered)
- We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
- Definitions by recursion, proofs by induction
- We apply equational properties about linearity, compositions of functions and the simplicial indentities.
simplicial polynomials.

Proving simplicial topology theorems in ACL2

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
- The superindexes can be omited (later safely recovered)
- We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
- Definitions by recursion, proofs by induction
- We apply equational properties about linearity, compositions of functions and the simplicial indentities.
- The simplexes (and chains) on which the expressions are applied play no role in the proof
simplicial polynomials.

Proving simplicial topology theorems in ACL2

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
- The superindexes can be omited (later safely recovered)
- We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
- Definitions by recursion, proofs by induction
- We apply equational properties about linearity, compositions of functions and the simplicial indentities.
- The simplexes (and chains) on which the expressions are applied play no role in the proof
- To reflect this in our formal proofs, we introduce the framework of simplicial polynomials:
- First-order ACL2 objects representing linear combinations of compositions of simplicial operators

Simplicial terms in ACL2

- Simplical terms represent composition of simplicial operators
- Note: the simplicial identities define a canonical form
- Any composition of simplicial operators is equal to a unique composition of simplicial operators of the form

$$
\eta_{i_{k}} \cdots \eta_{i_{1}} \partial_{j_{1}} \cdots \partial_{j_{1}}
$$

with $i_{k}>\cdots>i_{1}$ and $j_{1}<\cdots<j_{1}$

- Example:
- The composition $\partial_{5}^{5} \eta_{3}^{4} \partial_{1}^{5} \partial_{2}^{6} \eta_{4}^{5}$ can be put as $\eta_{3} \eta_{2} \partial_{1} \partial_{2} \partial_{5}$ and this can be represented by the two-element list (($\left.\begin{array}{ll}3 & 2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 5\end{array}\right)$).
- A simplicial term is a pair of lists of natural numbers in such a canonical form, representing a composition of simplicial operators

Simplicial polynomials

- A simplicial polynomial is a symbolic expression representing linear combinations of simplicial terms
- Example: $3 \cdot \eta_{5} \eta_{4} \eta_{2} \partial_{1} \partial_{3}-2 \cdot \eta_{3} \eta_{2} \partial_{1}$
- In ACL2, simplicial polynomials are represented as lists of pairs of integers and simplicial terms.
- Only in normal form: the list is ordered w.r.t. a total order on terms and we only allow non-null coefficients

- That is, simplicial polynomials are first-order canonical representations of functions from $C_{n}(K)$ to $C_{m}(K)$

The ring of simplicial polynomials

- Sum and product of simplicial polynomials can also be defined, reflecting addition and composition of the functions represented (and returning its results also in normal form).
- For example:
- $\boldsymbol{p}_{1}=3 \cdot \eta_{4} \eta_{1} \partial_{3} \partial_{6} \partial_{7}-2 \cdot \eta_{1} \partial_{3} \partial_{4}$
- $\boldsymbol{p}_{2}=\eta_{3} \partial_{4} \partial_{6}+2 \cdot \eta_{1} \partial_{3} \partial_{4}$
- $\boldsymbol{p}_{1}+\boldsymbol{p}_{2}=\eta_{3} \partial_{4} \partial_{6}+3 \cdot \eta_{4} \eta_{1} \partial_{3} \partial_{6} \partial_{7}$
- $\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{2}=$
$-2 \cdot \eta_{1} \partial_{3} \partial_{4} \partial_{6}-4 \cdot \eta_{2} \eta_{1} \partial_{2} \partial_{3} \partial_{4} \partial_{5}+3 \cdot \eta_{4} \eta_{1} \partial_{4} \partial_{6} \partial_{7} \partial_{8}+6 \cdot \eta_{4} \eta_{2} \eta_{1} \partial_{2} \partial_{3} \partial_{4} \partial_{7} \partial_{8}$
- We proved in ACL2 that the set of simplicial polynomials together with the addition and composition operations form a ring with identity
- The ring of simplicial polynomials was obtained as an (automatic) instantiation of a generic ring of linear combinations of elements of a monoid
- We extensively apply ring properties in our proofs

Simplicial polynomials: a tool

- Note: our final goal is to do formalizations based on the functions (K ...) , (d ...) and (n . . .) introduced by the previous encapsulate
- Since that is a faithful and precise formalization of the notion of simplical set (what we call the standard framework)
- Simplicial polynomials are only a tool for doing that, trying to reflect our informal calculations by hand
- Once a property is proved in the polynomial framework, we must "lift" the property to the standard framework.

Lifting properties

- To "lift" properties we define an evaluation function:
- eval-sp(p,n,c) evaluates a polynomial \boldsymbol{p} on a chain $\boldsymbol{c} \in C_{n}(K)$
- Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
- Note: eval-sp reintroduces the dimension (and this only makes sense when \boldsymbol{p} is valid for dimension n)

Lifting properties

- To "lift" properties we define an evaluation function:
- eval-sp(p,n,c) evaluates a polynomial \boldsymbol{p} on a chain $\boldsymbol{c} \in C_{n}(K)$
- Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
- Note: eval-sp reintroduces the dimension (and this only makes sense when \boldsymbol{p} is valid for dimension n)
- Example: proof of $d_{n} \circ d_{n+1}(c)=0$, for all $c \in C_{n+1}(K)$

Lifting properties

- To "lift" properties we define an evaluation function:
- eval-sp(p,n,c) evaluates a polynomial \boldsymbol{p} on a chain $\boldsymbol{c} \in C_{n}(K)$
- Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
- Note: eval-sp reintroduces the dimension (and this only makes sense when \boldsymbol{p} is valid for dimension n)
- Example: proof of $d_{n} \circ d_{n+1}(c)=0$, for all $c \in C_{n+1}(K)$
- We define the function d_{n} (in the standard framework)

Lifting properties

- To "lift" properties we define an evaluation function:
- eval-sp(p,n,c) evaluates a polynomial \boldsymbol{p} on a chain $\boldsymbol{c} \in C_{n}(K)$
- Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
- Note: eval-sp reintroduces the dimension (and this only makes sense when \boldsymbol{p} is valid for dimension n)
- Example: proof of $d_{n} \circ d_{n+1}(c)=0$, for all $c \in C_{n+1}(K)$
- We define the function d_{n} (in the standard framework)
- We also define the polynomial \boldsymbol{d}_{n}, representing d_{n}

Lifting properties

- To "lift" properties we define an evaluation function:
- eval-sp(p,n,c) evaluates a polynomial \boldsymbol{p} on a chain $\boldsymbol{c} \in C_{n}(K)$
- Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
- Note: eval-sp reintroduces the dimension (and this only makes sense when \boldsymbol{p} is valid for dimension n)
- Example: proof of $d_{n} \circ d_{n+1}(c)=0$, for all $c \in C_{n+1}(K)$
- We define the function d_{n} (in the standard framework)
- We also define the polynomial \boldsymbol{d}_{n}, representing d_{n}
- We prove in the simplicial polynomial ring the formula $\boldsymbol{d}_{n} \cdot \boldsymbol{d}_{n+1}=\mathbf{0}$ (as sketched by the previous hand proof)

Lifting properties

- To "lift" properties we define an evaluation function:
- eval-sp(p,n,c) evaluates a polynomial \boldsymbol{p} on a chain $\boldsymbol{c} \in C_{n}(K)$
- Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
- Note: eval-sp reintroduces the dimension (and this only makes sense when \boldsymbol{p} is valid for dimension n)
- Example: proof of $d_{n} \circ d_{n+1}(c)=0$, for all $c \in C_{n+1}(K)$
- We define the function d_{n} (in the standard framework)
- We also define the polynomial \boldsymbol{d}_{n}, representing d_{n}
- We prove in the simplicial polynomial ring the formula $\boldsymbol{d}_{n} \cdot \boldsymbol{d}_{n+1}=\mathbf{0}$ (as sketched by the previous hand proof)
- We prove that \boldsymbol{d}_{n} is valid for dimension n

Lifting properties

- To "lift" properties we define an evaluation function:
- eval-sp(p,n,c) evaluates a polynomial \boldsymbol{p} on a chain $\boldsymbol{c} \in C_{n}(K)$
- Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
- Note: eval-sp reintroduces the dimension (and this only makes sense when \boldsymbol{p} is valid for dimension n)
- Example: proof of $d_{n} \circ d_{n+1}(c)=0$, for all $c \in C_{n+1}(K)$
- We define the function d_{n} (in the standard framework)
- We also define the polynomial \boldsymbol{d}_{n}, representing d_{n}
- We prove in the simplicial polynomial ring the formula $\boldsymbol{d}_{n} \cdot \boldsymbol{d}_{n+1}=\mathbf{0}$ (as sketched by the previous hand proof)
- We prove that \boldsymbol{d}_{n} is valid for dimension n
- We prove that eval-sp $\left(\boldsymbol{d}_{n}, n, c\right)=d_{n}(c)$

Lifting properties

- To "lift" properties we define an evaluation function:
- eval-sp(p,n,c) evaluates a polynomial \boldsymbol{p} on a chain $\boldsymbol{c} \in C_{n}(K)$
- Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
- Note: eval-sp reintroduces the dimension (and this only makes sense when \boldsymbol{p} is valid for dimension n)
- Example: proof of $d_{n} \circ d_{n+1}(c)=0$, for all $c \in C_{n+1}(K)$
- We define the function d_{n} (in the standard framework)
- We also define the polynomial \boldsymbol{d}_{n}, representing d_{n}
- We prove in the simplicial polynomial ring the formula $\boldsymbol{d}_{n} \cdot \boldsymbol{d}_{n+1}=\mathbf{0}$ (as sketched by the previous hand proof)
- We prove that \boldsymbol{d}_{n} is valid for dimension n
- We prove that eval-sp $\left(\boldsymbol{d}_{n}, n, c\right)=d_{n}(c)$
- Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

A non-trivial example: the Normalization Theorem

- The homology groups of a simplical set K are the quotient groups $H_{n}(C(K))=\operatorname{Ker}\left(d_{n}\right) / \operatorname{Im}\left(d_{n+1}\right)$
- Homology groups provide topological information and are the main objects to be computed by Kenzo

A non-trivial example: the Normalization Theorem

- The homology groups of a simplical set K are the quotient groups $H_{n}(C(K))=\operatorname{Ker}\left(d_{n}\right) / \operatorname{Im}\left(d_{n+1}\right)$
- Homology groups provide topological information and are the main objects to be computed by Kenzo
- In fact, Kenzo builds a simpler chain complex with the same homology groups:
- We say that a n-simplex x is degenerate if exists $y \in K_{n-1}$ such that $x=\eta_{i}^{(n)}(y)$ for some $0 \leq i \leq n$. Otherwise, it is non-degenerate
- Let $C_{n}^{N}(K)$ denote the free abelian group generated by non-degenerate simplexes
- Let $f_{n}: C_{n}(K) \rightarrow C_{n}^{N}(K)$ be the function that eliminates the degenerate addends of a chain (normalization function)
- Let $d_{n}^{N}=f_{n} \circ d_{n}$
- Then $\left\{\left(C_{n}^{N}(K), d_{n}^{N}\right)\right\}_{n \in \mathbb{N}}$ is a chain complex

A non-trivial example: the Normalization Theorem

- The homology groups of a simplical set K are the quotient groups $H_{n}(C(K))=\operatorname{Ker}\left(d_{n}\right) / \operatorname{Im}\left(d_{n+1}\right)$
- Homology groups provide topological information and are the main objects to be computed by Kenzo
- In fact, Kenzo builds a simpler chain complex with the same homology groups:
- We say that a n-simplex x is degenerate if exists $\mathrm{y} \in K_{n-1}$ such that $x=\eta_{i}^{(n)}(y)$ for some $0 \leq i \leq n$. Otherwise, it is non-degenerate
- Let $C_{n}^{N}(K)$ denote the free abelian group generated by non-degenerate simplexes
- Let $f_{n}: C_{n}(K) \rightarrow C_{n}^{N}(K)$ be the function that eliminates the degenerate addends of a chain (normalization function)
- Let $d_{n}^{N}=f_{n} \circ d_{n}$
- Then $\left\{\left(C_{n}^{N}(K), d_{n}^{N}\right)\right\}_{n \in \mathbb{N}}$ is a chain complex
- Normalization Theorem: $H_{n}(C(K)) \cong H_{n}\left(C^{N}(K)\right), \forall n \in \mathbb{N}$

The Normalization Theorem: a stronger version

- A strong homotopy equivalence is a 5-tuple (C, C^{\prime}, f, g, h)

where $C=(M, d)$ and $C^{\prime}=\left(M^{\prime}, d^{\prime}\right)$ are chain complexes, $f: C \rightarrow C^{\prime}$ and $g: C^{\prime} \rightarrow C$ are chain morphisms, $h=\left(h_{i}: M_{i} \rightarrow M_{i+1}\right)_{i \in \mathbb{N}}$ is a family of homomorphisms (called homotopy operator), which satisfy the following three properties for all $i \in \mathbb{N}$:
(1) $f_{i} \circ g_{i}=i d_{M_{i}^{\prime}}$
(2) $d_{i+2} \circ h_{i+1}+h_{i} \circ d_{i+1}+g_{i+1} \circ f_{i+1}=i d_{M_{i+1}}$
(3) $f_{i+1} \circ h_{i}=0$

If, in addition the 5 -tuple satisfies the following two properties:
(4) $h_{i} \circ g_{i}=0$
(5) $h_{i+1} \circ h_{i}=0$
then we say that it is a reduction.

The Normalization Theorem: a stronger version

- A reduction between chain complexes describes a situation where homological information is preserved
- That is, if $\left(C, C^{\prime}, f, g, h\right)$ is a reduction, then $H_{n}(C) \cong H_{n}\left(C^{\prime}\right), \forall n \in \mathbb{N}$
- We have proved a reduction version of the Normalization Theorem
- That is, we have defined appropriate f, g and h and proved that $\left(C(K), C^{N}(K), f, g, h\right)$ is a reduction.

A conjecture

- In J. Rubio, F. Sergeraert, "Supports Acycliques and Algorithmique", Astérisque 192 (1990), it was experimentally found the following formula for $\left(C(K), C^{N}(K), f, g, h\right)$
- f_{n} is the normalization function.
- $g_{n}=\sum(-1)^{\sum_{i=1}^{p} a_{i}+b_{i}} \eta_{a_{p}} \ldots \eta_{a_{1}} \partial_{b_{1}} \ldots \partial_{b_{p}}$ where the indexes range over $0 \leq a_{1}<b_{1}<\ldots<a_{p}<b_{p} \leq n$, with $0 \leq p \leq(n+1) / 2$.
- $h_{n}=\sum(-1)^{a_{p+1}+\sum_{i=1}^{p} a_{i}+b_{i}} \eta_{a_{p+1}} \eta_{a_{p}} \ldots \eta_{a_{1}} \partial_{b_{1}} \ldots \partial_{b_{p}}$ where the indexes range over

$$
0 \leq a_{1}<b_{1}<\ldots<a_{p}<a_{p+1} \leq b_{p} \leq n, \text { with } 0 \leq p \leq(n+1) / 2 .
$$

and claimed there, without proof, that they define a strong homotopy equivalence

A conjecture

- In J. Rubio, F. Sergeraert, "Supports Acycliques and Algorithmique", Astérisque 192 (1990), it was experimentally found the following formula for $\left(C(K), C^{N}(K), f, g, h\right)$
- f_{n} is the normalization function.
- $g_{n}=\sum(-1)^{\sum_{i=1}^{p} a_{i}+b_{i}} \eta_{a_{p}} \ldots \eta_{a_{1}} \partial_{b_{1}} \ldots \partial_{b_{p}}$ where the indexes range over $0 \leq a_{1}<b_{1}<\ldots<a_{p}<b_{p} \leq n$, with $0 \leq p \leq(n+1) / 2$.
- $h_{n}=\sum(-1)^{a_{p+1}+\sum_{i=1}^{p} a_{i}+b_{i}} \eta_{a_{p+1}} \eta_{a_{p}} \ldots \eta_{a_{1}} \partial_{b_{1}} \ldots \partial_{b_{p}}$
where the indexes range over
$0 \leq a_{1}<b_{1}<\ldots<a_{p}<a_{p+1} \leq b_{p} \leq n$, with $0 \leq p \leq(n+1) / 2$.
and claimed there, without proof, that they define a strong homotopy equivalence
- Our contribution:
- We did a hand proof of the conjecture
- We formalized it in ACL2, thus proving the reduction version of the Normalization Theorem

The main theorems proved

- TheORem: F-chain-morphism

$$
\left(m \in \mathbb{N}^{+} \wedge c \in C_{m}(K)\right) \rightarrow d_{m}^{N}\left(f_{m}(c)\right)=f_{m-1}\left(d_{m}(c)\right)
$$

- Theorem: G-chain-morphism
$\left(m \in \mathbb{N}^{+} \wedge c \in C_{m}^{N}(K)\right) \rightarrow g_{m-1}\left(d_{m}^{N}(c)\right)=d_{m}\left(g_{m}(c)\right)$
- TheOREM: F-G-H-property-1
$\left(m \in \mathbb{N} \wedge c \in C_{m}^{N}(K)\right) \rightarrow f_{m}\left(g_{m}(c)\right)=c$
- Theorem: f-G-H-property-2
$\left(m \in \mathbb{N}^{+} \wedge c \in C_{m}(K)\right) \rightarrow d_{m+1}\left(h_{m}(c)\right)+h_{m-1}\left(d_{m}(c)\right)=c-g_{m}\left(f_{m}(c)\right)$
- Theorem: F-G-H-property-3
$\left(m \in \mathbb{N} \wedge c \in C_{m}(K)\right) \rightarrow f_{m+1}\left(h_{m}(c)\right)=0$
- Theorem: F-G-H-property-4
$\left(m \in \mathbb{N} \wedge c \in C_{m}^{N}(K)\right) \rightarrow h_{m}\left(g_{m}(c)\right)=0$
- Theorem: f-G-H-property-5 $\left(m \in \mathbb{N} \wedge c \in C_{m}(K)\right) \rightarrow h_{m+1}\left(h_{m}(c)\right)=0$

Some comments on the proof of the Normalization Theorem

- The core of the proof is carried out in the polynomial framework, guided by our hand proof
- The expressions involved are highly combinatorial. For example, this is the polynomial for h_{4} :
$\eta_{0}-\eta_{1}+\eta_{1} \eta_{0} \partial_{1}-\eta_{1} \eta_{0} \partial_{2}+\eta_{1} \eta_{0} \partial_{3}-\eta_{1} \eta_{0} \partial_{4}+\eta_{2}+\eta_{2} \eta_{0} \partial_{2}-$ $\eta_{2} \eta_{0} \partial_{3}+\eta_{2} \eta_{0} \partial_{4}-\eta_{2} \eta_{1} \partial_{2}+\eta_{2} \eta_{1} \partial_{3}-\eta_{2} \eta_{1} \partial_{4}-\eta_{3}+\eta_{3} \eta_{0} \partial_{3}-$ $\eta_{3} \eta_{0} \partial_{4}-\eta_{3} \eta_{1} \partial_{3}+\eta_{3} \eta_{1} \partial_{4}+\eta_{3} \eta_{2} \partial_{3}-\eta_{3} \eta_{2} \partial_{4}-\eta_{3} \eta_{2} \eta_{0} \partial_{1} \partial_{3}+$ $\eta_{3} \eta_{2} \eta_{0} \partial_{1} \partial_{4}+\eta_{4}+\eta_{4} \eta_{0} \partial_{4}-\eta_{4} \eta_{1} \partial_{4}+\eta_{4} \eta_{2} \partial_{4}-\eta_{4} \eta_{2} \eta_{0} \partial_{1} \partial_{4}-$ $\eta_{4} \eta_{3} \partial_{4}+\eta_{4} \eta_{3} \eta_{0} \partial_{1} \partial_{4}-\eta_{4} \eta_{3} \eta_{0} \partial_{2} \partial_{4}+\eta_{4} \eta_{3} \eta_{1} \partial_{2} \partial_{4}$
- But the style of the proofs is similar to the simple example presented previously.
- Properties are lifted from the polynomial framework to the standard framework.

Some comments on the proof of the Normalization Theorem

- Note: the polynomial framework is not expressive enough to state the theorem. For example:
- The normalization function cannot be expressed as a polynomial
- Some transformations have to be applied to obtain a reduction from a strong homotopy equivalence, not expressed as polynomials.
- Therefore, some additional proofs in the standard framework are needed.

Conclusions and further work

- We have presented an approach to proving Algebraic Topology theorems in a first-order setting
- We use the ACL2 theorem prover, because our long term goal is to verify properties of a Common Lisp system
- Proof effort: 99 definitions, 565 lemmas, 158 hints
- Part of the formalization is automatically generated as instances of other generic theories
- Our next step: Eilenberg-Zilber theorem, an important theorem in algebraic topology, about the homology of product spaces.

Conclusions and further work

- We have presented an approach to proving Algebraic Topology theorems in a first-order setting
- We use the ACL2 theorem prover, because our long term goal is to verify properties of a Common Lisp system
- Proof effort: 99 definitions, 565 lemmas, 158 hints
- Part of the formalization is automatically generated as instances of other generic theories
- Our next step: Eilenberg-Zilber theorem, an important theorem in algebraic topology, about the homology of product spaces.
- Thank you!

[^0]: ${ }^{1}$ Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847

