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Introduction

@ Kenzo symbolic computation system: a Common Lisp program
devoted to Algebraic (Simplicial) Topology.

» A research tool: used to obtain relevant results in the field, neither
confirmed nor refuted by any other means.

@ The following question makes sense: Is it Kenzo correct?

@ Our goal: we want to formally prove correcteness properties of
the algorithms implemented in Kenzo

@ Since Kenzo is coded in Common Lisp, ACL2 seems a natural
candidate for this task

» Is it first-order enough to reason about algebraic topology?
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Introduction

@ Formal proofs of Kenzo properties imply the following:
1. Formal correctness proofs of the implemented algorithms
2. Formalizing the underlying theory: algebraic and simplicial topology
@ Regarding the first issue, some formal verification of functions
implemented in Kenzo has already been carried out (Calculemus
2009)
@ This talk is about the second issue: formalization in ACL2 of some
aspects of the theory of Simplicial Topology
» Our first step: formal proof of the Normalization Theorem of
Simplicial Topology
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Simplicial sets

@ Simplicial Topology is a subarea of Topology studying topological
properties of spaces by means of combinatorial models.

@ A simplicial setis a graded set {Kn}nen (n-simplexes) together
with operators 8,.(”) : K, — K,_1 and nf”) . K — Kp.1 (faces and
degeneracies, resp.), satisfying the following simplicial identities:

(1) ooy = o lop, if i>]
@) oy = afier it i<,
3) oty = glopif i<j,
@) o'yt = pflop, it i>j+1,
&) oty = offap = id,
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Simplicial sets: some intuition

@ Simplicial sets are an abstraction, but we can give some
geometrical and combinatorial intuition.
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geometrical and combinatorial intuition.
@ Geometrical: spaces resulting from triangulation of topological
spaces:
» n-simplexes in K, can be seen as n dimensional “triangles”

» The operators 6}”) gives us the “sides” of the triangle (or “faces” of

a tetrahedron).
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Simplicial sets: some intuition

@ Simplicial sets are an abstraction, but we can give some
geometrical and combinatorial intuition.
@ Geometrical: spaces resulting from triangulation of topological
spaces:
» n-simplexes in K, can be seen as n dimensional “triangles”
» The operators 6,(”) gives us the “sides” of the triangle (or “faces” of
a tetrahedron).
@ A particular simplicial set can also give us some combinatorial
intuition:
» n-simplexes: non-decreasing integer lists [ap, a1, . . ., an] (vertices of
the “triangle”)
> 8"): delete the i-th element
> 1\": duplicate the i-th element
» This gives some intuition about the meaning of the simplicial
identities
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Simplicial sets

@ A simplicial setis a graded set {K,}nen (n-simplices) together with
operators 8,(”) - K, — K,_1 and n,(”) : Ky — K11 (faces and
degeneracies, resp.), satisfying the following simplicial identities:

(1) ooy = o lop, if i>j
@) oy = offiar it i<j,
(3) 3,-”+:77," = 77}’:1113{’ it i<,
(4) o n = 77/'-7_ or, if  i>j+A1,
(5) oty = oy = id",
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Defining simplicial sets in ACL2

A generic simplicial set using encapsulate

(encapsulate

(((K % %) => *)
((d * * %) => x)
((n * * %) => %))

(defthm simplicial-idl
(implies (and (K m x)
(natp m) (natp i) (natp j)
(<= 3J i) (<im) (<1m)
(equal (d (+ -1 m) i (dm j x))
(d (+ -1m) j (dm (+ 1 1) x)))))

;77 Inside this encapsulate, we assume analogously
;75 all the simplicial identities.

@ (K n x) represents x € K,

@ (dmi x)and (n m i x) representn, (x) and 8( )( X), resp.

L. Lamban et al. () ACL2 and Algebraic Topology

7/23



Chain complexes

@ The set of n-chains (denoted as Cp(K)) is the abelian group freely
generated by K.

» That is, linear combinations of elements of K, with integer
coefficients

» In ACL2, ordered lists of pairs of the form (i . x),where iisa
non-null integer and x is a n-simplex

o The differential is defined on x € K, as dn(x) = X7 o(—1)'8{(x)
» Extended by linearity to chains, defining d, : C;(K) — Ch_1(K)

@ |t can be proved that d, o d, 1 = O (differential property)

@ In Algebra, we say that {(Cn(K), dn) } nen is @ chain complex

@ Algebraic properties of the chain complex associated to a
simplicial set give us topological information
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of dj o dp 1 = 0.
> 0= S o(—1)0" and dnyy = 75 (—1) 0]
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of dj o dp 1 = 0.

> b= 27o(—1)0" and dnys = 3757 (<1) 07
» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+1an+1 + dn.
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of dj o dp 1 = 0.

> dy =327 o(—1)'0]" and dnyy = S (1) 07"

» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+1an+1 + dn.

> Therefore, dn o dn+1 = [(_1 )nan + dn_1][(—1 )n+1 an+1 + dn] -
- _an8n+1 + (_1 )nandn + (_1 )n+1 dn_1an+1 + dn_‘] dn.
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of dj o dp 1 = 0.

> b= 327 o(—1)'0" and dnir = Y77 (—1)0]"

» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+1an+1 + dn.

» Therefore, dpo dyi1 = [(—1)"0n + dn1][(=1)" " 01 + dn] =
= —0nOpy1 + (—1 )”8,,d,, + (—1 )n+1 0n_10ps1 + dn_10h.

» By induction, d,_1d, =0, so:
On o dpy1 = —OnOny1 + (_1 )nandn + (_1 )n+1 On—10n+1
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of dj o dp 1 = 0.

> b= 327 o(—1)'0" and dnir = Y77 (—1)0]"

» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+1an+1 + dn.

» Therefore, dpo dyi1 = [(—1)"0n + dn1][(=1)" " 01 + dn] =
= _an8n+1 + (_1 )nandn + (_1 )n+1 dn_1an+1 + dn_‘] dn.

» By induction, d,_1d, = 0, so:
dnodpi1 = —0n0ni1 + (—1)"0ndn + (=) dp_10n41

» Lemma: 0,0, = (—=1)"0n0n+1 + An—10n41.
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Proving simplicial topology theorems in ACL2

@ An example: an (informal) proof of dj o dp 1 = 0.

> dy =7 o (—=1)0" and dyyq = S0 (—1) P

» If we omit the superindexes, we can recursively define:
dn+1 = (_1)n+1an+1 + dh.

» Therefore, dpo dpi1 = [(—1)"0n + An1][(—1)" " 0ny1 + dp] =
= —0nOpy1 + (—1 )”andn + (—1 )n+1 0n_10ps1 + dn_10h.

» By induction, d,_1d, = 0, so:
On o dpy1 = —OnOny1 + (_1 )nandn + (_1 )n+1 On—10n41

» Lemma: 0,0, = (—=1)"0n0n+1 + An—10n41.

» Applying the lemma, d,, o d,+1 = 0. QED.
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Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:
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Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:
» The superindexes can be omited (later safely recovered)
» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.

L. Lamban et al. () ACL2 and Algebraic Topology 10/23



Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:

» The superindexes can be omited (later safely recovered)

» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.

» Definitions by recursion, proofs by induction

L. Lamban et al. () ACL2 and Algebraic Topology 10/23



Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:

» The superindexes can be omited (later safely recovered)

» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.

» Definitions by recursion, proofs by induction

» We apply equational properties about linearity, compositions of
functions and the simplicial indentities.

L. Lamban et al. () ACL2 and Algebraic Topology

10/23



Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
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Proving simplicial topology theorems in ACL2

@ Although more complicated than the previous one, most of the
proofs we have to deal with have the same features:

» The superindexes can be omited (later safely recovered)

» We calculate with symbolic expressions involving linear
combinations of composition of face and degeneracy maps.

» Definitions by recursion, proofs by induction

» We apply equational properties about linearity, compositions of
functions and the simplicial indentities.

» The simplexes (and chains) on which the expressions are applied
play no role in the proof

@ To reflect this in our formal proofs, we introduce the framework of
simplicial polynomials:

» First-order ACL2 objects representing linear combinations of
compositions of simplicial operators
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Simplicial terms in ACL2

@ Simplical terms represent composition of simplicial operators
@ Note: the simplicial identities define a canonical form

» Any composition of simplicial operators is equal to a unique
composition of simplicial operators of the form

i~ M O -+ 9
withix >--->handj <---<j

@ Example:

» The composition 92130508n3 can be put as 73n2019.0s and this can
be represented by the two-elementlist ((3 2) (1 2 5)).

@ A simplicial term is a pair of lists of natural numbers in such a
canonical form, representing a composition of simplicial operators
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Simplicial polynomials

@ A simplicial polynomial is a symbolic expression representing
linear combinations of simplicial terms

> Example: 3- 7751747]231 O3 —2- 1737]231
@ In ACL2, simplicial polynomials are represented as lists of pairs of
integers and simplicial terms.

» Only in normal form: the list is ordered w.r.t. a total order on terms
and we only allow non-null coefficients
» Example: ((3 . ((5 4 2) (1 3))) (-2 . ((3 2) (1))))

@ That is, simplicial polynomials are first-order canonical
representations of functions from C,(K) to Cn(K)
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The ring of simplicial polynomials

@ Sum and product of simplicial polynomials can also be defined,
reflecting addition and composition of the functions represented
(and returning its results also in normal form).

@ For example:

> Py =3 1411030607 — 2 - 110304

Po = 130406 + 2 - 110304

Py + P2 = 130405 + 3 - 1411930607

Pi-P>=

—2:11 03040 —4 11211 02030405 +3 1471 040607 03 +6 1141211 0203040708

@ We proved in ACL2 that the set of simplicial polynomials together
with the addition and composition operations form a ring with
identity

\4

v

v

» The ring of simplicial polynomials was obtained as an (automatic)
instantiation of a generic ring of linear combinations of elements of
a monoid

@ We extensively apply ring properties in our proofs
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Simplicial polynomials: a tool

@ Note: our final goal is to do formalizations based on the functions
(K ...),(d ...)and (n ...) introduced by the previous
encapsulate

» Since that is a faithful and precise formalization of the notion of
simplical set (what we call the standard framework)

@ Simplicial polynomials are only a tool for doing that, trying to
reflect our informal calculations by hand

@ Once a property is proved in the polynomial framework, we must
“lift” the property to the standard framework.
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Lifting properties

@ To “lift” properties we define an evaluation function:

» eval-sp(p,n,c) evaluates a polynomial p on a chain ¢ € C,(K)

» Key property: eval-sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval-sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)
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» eval-sp(p,n,c) evaluates a polynomial p on a chain ¢ € C,(K)

» Key property: eval-sp is an homomorphism from the ring of
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Lifting properties

@ To “lift” properties we define an evaluation function:

» eval-sp(p,n,c) evaluates a polynomial p on a chain ¢ € C,(K)

» Key property: eval-sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval-sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)

@ Example: proof of d, o d,1(c) =0, forall c € Cn11(K)

» We define the function d, (in the standard framework)

» We also define the polynomial d,, representing dj,

» We prove in the simplicial polynomial ring the formula d, - dp.1 =0
(as sketched by the previous hand proof)

» We prove that d, is valid for dimension n

» We prove that eval-sp(dy,n,c)= dy(c)
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Lifting properties

@ To “lift” properties we define an evaluation function:

» eval-sp(p,n,c) evaluates a polynomial p on a chain ¢ € C,(K)

» Key property: eval-sp is an homomorphism from the ring of
polynomials to the ring of functions on chains

» Note: eval-sp reintroduces the dimension (and this only makes
sense when p is valid for dimension n)

@ Example: proof of d, o d,1(c) =0, forall c € Cn11(K)

» We define the function d, (in the standard framework)

» We also define the polynomial d,, representing dj,

» We prove in the simplicial polynomial ring the formula d, - dp.1 =0
(as sketched by the previous hand proof)

» We prove that d, is valid for dimension n

» We prove that eval-sp(dy,n,c)= dy(c)

» Finally, we apply eval-sp to both sides of the polynomial formula
and we obtain the desired property in the standard framework
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A non-trivial example: the Normalization Theorem

@ The homology groups of a simplical set K are the quotient groups
Hn(C(K)) = Ker(dh)/Im(dh1)
» Homology groups provide topological information and are the main
objects to be computed by Kenzo
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A non-trivial example: the Normalization Theorem

@ The homology groups of a simplical set K are the quotient groups
Hn(C(K)) = Ker(dh)/Im(dhn+)

» Homology groups provide topological information and are the main
objects to be computed by Kenzo

@ In fact, Kenzo builds a simpler chain complex with the same
homology groups:

» We say that a n-simplex x is degenerate if exists y € K,_1 such that

X = nf”)( y) for some 0 < i < n. Otherwise, it is non-degenerate

» Let CN(K) denote the free abelian group generated by
non-degenerate simplexes

» Let f, : Co(K) — CN(K) be the function that eliminates the
degenerate addends of a chain (normalization function)

» Letd)N =f,od,

» Then {(CN(K), dN)}nren is a chain complex

L. Lamban et al. () ACL2 and Algebraic Topology 16/23



A non-trivial example: the Normalization Theorem

@ The homology groups of a simplical set K are the quotient groups
Hn(C(K)) = Ker(dh)/Im(dhn+)

» Homology groups provide topological information and are the main
objects to be computed by Kenzo

@ In fact, Kenzo builds a simpler chain complex with the same
homology groups:

» We say that a n-simplex x is degenerate if exists y € K,_1 such that

X = nf”)( y) for some 0 < i < n. Otherwise, it is non-degenerate

» Let CN(K) denote the free abelian group generated by
non-degenerate simplexes

» Let f, : Co(K) — CN(K) be the function that eliminates the
degenerate addends of a chain (normalization function)

» Letd)N =f,od,

» Then {(CN(K), dN)}nren is a chain complex

@ Normalization Theorem: H,(C(K)) = H,(CN(K)),¥n e N
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The Normalization Theorem: a stronger version

@ A strong homotopy equivalence is a 5-tuple (C, C', f, g, h)

thAC'

~—_
g

where C = (M, d) and C’' = (M’, d’) are chain complexes, f: C — C’
and g: C' — C are chain morphisms, h = (h;: Mi — Mj;1)icn is a family
of homomorphisms (called homotopy operator), which satisfy the
following three properties for all i € N:
(1) fiogi = idw
(2) diy20hit1+ hiodit1+ giv1 o fiyq = idy,,
(3) fiy1o0hi=0
If, in addition the 5-tuple satisfies the following two properties:
(4) hiogi=0
(5) hiz1o0hi =0

then we say that it is a reduction.
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The Normalization Theorem: a stronger version

@ A reduction between chain complexes describes a situation where
homological information is preserved

@ Thatis, if (C, C', f, g, h) is a reduction, then
Hn(C) = Hp(C'),¥n e N

@ We have proved a reduction version of the Normalization Theorem

@ That is, we have defined appropriate f, g and h and proved that
(C(K), CN(K), f, g, h) is a reduction.
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A conjecture

@ In J. Rubio, F. Sergeraert, “Supports Acycliques and
Algorithmique”, Astérisque 192 (1990), it was experimentally
found the following formula for (C(K), CN(K), f, g, h)

» f, is the normalization function.

> On = >, (—1)27:1 ai+bi Nay - - - Nay Op, - - abp
where the indexes range over 0 < a; < by < ... < a, < bp < n,
with0 < p < (n+1)/2.

> hp = Z (_1 )ap+1+27:1 ath Nap1Map - - - Tay ab1 ce 6bp
where the indexes range over

O<ai<bi<..<@<a1<b<nwthd<p<(n+1)/2.

and claimed there, without proof, that they define a strong
homotopy equivalence
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A conjecture

@ In J. Rubio, F. Sergeraert, “Supports Acycliques and
Algorithmique”, Astérisque 192 (1990), it was experimentally
found the following formula for (C(K), CN(K), f, g, h)

» f, is the normalization function.
> On = >, (—1)27:1 ai+bi Nay - - - Nay Op, - - abp
where the indexes range over 0 < a; < by < ... < a, < bp < n,
with0 < p < (n+1)/2.
> hp = Z (_1 )ap+1+27:1 ath Nap1Map - - - Tay ab1 ce 8bp
where the indexes range over
0<ai<b <..<a@<ap1<b<nwitho<p<(n+1)/2
and claimed there, without proof, that they define a strong
homotopy equivalence
@ Our contribution:
» We did a hand proof of the conjecture
» We formalized it in ACL2, thus proving the reduction version of the
Normalization Theorem
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The main theorems proved

@ THEOREM: F-chain-morphism
(meNT Ace Cn(K)) = di(fn(c)) = fm_1(dm(c))
@ THEOREM: G-chain-morphism
(meN* A ce Ch(K)) = gn-1(dn(c)) = dn(gm(c))
@ THEOREM: F-G-H-property-1
(meNAce CNK)) = fa(gm(c)) = ¢
@ THEOREM: F-G-H-property-2
(meN" A c€ Cn(K)) = dnsi(hm(c)) + hm—1(dm(C)) = ¢ — gm(fm(C))

@ THEOREM: F-G-H-property-3
(meNAce Cn(K)) = fmr1(hm(c)) =0

@ THEOREM: F-G-H-property-4
(meNAce CNK)) = hn(gm(c)) =0

@ THEOREM: F-G-H-property->5
(meNA ¢ € Cn(K)) = hmi1(hm(c)) =0
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Some comments on the proof of the Normalization
Theorem

@ The core of the proof is carried out in the polynomial framework,
guided by our hand proof

@ The expressions involved are highly combinatorial. For example,
this is the polynomial for hy:
no — 171 + mnodt — mnedz + mnods — N1noda + N2 + N2noda —
n21M003 + N2m00s — 121102 + 121103 — N2m104 — N3 + N31M003 —
n31004 — 131103 + 131104 + M3n203 — 13n204 — 131200103 +
13112100104 + 14 + 141004 — 141104 + Nan204 — Nan2no010s —
N41304 + Ma131001 04 — 1413100204 + 1413710204

@ But the style of the proofs is similar to the simple example
presented previously.

@ Properties are lifted from the polynomial framework to the
standard framework.
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Some comments on the proof of the Normalization
Theorem

@ Note: the polynomial framework is not expressive enough to state
the theorem. For example:
» The normalization function cannot be expressed as a polynomial

» Some transformations have to be applied to obtain a reduction from
a strong homotopy equivalence, not expressed as polynomials.

@ Therefore, some additional proofs in the standard framework are
needed.
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Conclusions and further work

@ We have presented an approach to proving Algebraic Topology
theorems in a first-order setting

» We use the ACL2 theorem prover, because our long term goal is to
verify properties of a Common Lisp system

@ Proof effort: 99 definitions, 565 lemmas, 158 hints

» Part of the formalization is automatically generated as instances of
other generic theories

@ Our next step: Eilenberg-Zilber theorem, an important theorem in
algebraic topology, about the homology of product spaces.
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@ Thank you!
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