Applying ACL2 to the Formalization of Algebraic Topology: Simplicial Polynomials¹

L. Lambán*, F.J. Martín-Mateos**, J. Rubio* and J.-L. Ruiz-Reina**

* Dpto. de Matemáticas y Computación (Universidad de La Rioja, Spain)
** Dpto. de Ciencias de la Comp. e Inteligencia Artificial (Universidad de Sevilla, Spain)

¹ Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7. STREP project ForMath. n. 243847

Introduction

- Kenzo symbolic computation system: a Common Lisp program devoted to Algebraic (Simplicial) Topology.
 - A research tool: used to obtain relevant results in the field, neither confirmed nor refuted by any other means.
- The following question makes sense: Is it Kenzo correct?
- Our goal: we want to formally prove correcteness properties of the algorithms implemented in Kenzo
- Since Kenzo is coded in Common Lisp, ACL2 seems a natural candidate for this task
 - Is it first-order enough to reason about algebraic topology?

Introduction

- Formal proofs of Kenzo properties imply the following:
 - 1. Formal correctness proofs of the implemented algorithms
 - 2. Formalizing the underlying theory: algebraic and simplicial topology
- Regarding the first issue, some formal verification of functions implemented in Kenzo has already been carried out (*Calculemus* 2009)
- This talk is about the second issue: formalization in ACL2 of some aspects of the theory of Simplicial Topology
 - Our first step: formal proof of the Normalization Theorem of Simplicial Topology

Simplicial sets

- Simplicial Topology is a subarea of Topology studying topological properties of spaces by means of combinatorial models.
- A simplicial set is a graded set $\{K_n\}_{n\in\mathbb{N}}$ (n-simplexes) together with operators $\partial_i^{(n)}: K_n \to K_{n-1}$ and $\eta_i^{(n)}: K_n \to K_{n+1}$ (faces and degeneracies, resp.), satisfying the following simplicial identities:

Simplicial sets: some intuition

- Simplicial sets are an abstraction, but we can give some geometrical and combinatorial intuition.
- Geometrical: spaces resulting from triangulation of topological spaces:
 - ▶ n-simplexes in K_n can be seen as n dimensional "triangles"
 - ▶ The operators $\partial_i^{(n)}$ gives us the "sides" of the triangle (or "faces" of a tetrahedron).
- A particular simplicial set can also give us some combinatorial intuition:
 - n-simplexes: non-decreasing integer lists [a₀, a₁,..., a_n] (vertices of the "triangle")
 - $\triangleright \partial_i^{(n)}$: delete the *i*-th element
 - $> \eta_i^{(n)}$: duplicate the *i*-th element
 - This gives some intuition about the meaning of the simplicial identities

Simplicial sets: some intuition

- Simplicial sets are an abstraction, but we can give some geometrical and combinatorial intuition.
- Geometrical: spaces resulting from triangulation of topological spaces:
 - ▶ n-simplexes in K_n can be seen as n dimensional "triangles"
 - ▶ The operators $\partial_i^{(n)}$ gives us the "sides" of the triangle (or "faces" of a tetrahedron).
- A particular simplicial set can also give us some combinatorial intuition:
 - ▶ *n*-simplexes: non-decreasing integer lists $[a_0, a_1, ..., a_n]$ (vertices of the "triangle")
 - $\triangleright \partial_i^{(n)}$: delete the *i*-th element
 - $> \eta_i^{(n)}$: duplicate the *i*-th element
 - This gives some intuition about the meaning of the simplicial identities

Simplicial sets: some intuition

- Simplicial sets are an abstraction, but we can give some geometrical and combinatorial intuition.
- Geometrical: spaces resulting from triangulation of topological spaces:
 - ▶ n-simplexes in K_n can be seen as n dimensional "triangles"
 - ▶ The operators $\partial_i^{(n)}$ gives us the "sides" of the triangle (or "faces" of a tetrahedron).
- A particular simplicial set can also give us some combinatorial intuition:
 - n-simplexes: non-decreasing integer lists [a₀, a₁,..., a_n] (vertices of the "triangle")
 - $\rightarrow \partial_i^{(n)}$: delete the *i*-th element
 - $\rightarrow \eta_i^{(n)}$: duplicate the *i*-th element
 - This gives some intuition about the meaning of the simplicial identities

Simplicial sets

• A simplicial set is a graded set $\{K_n\}_{n\in\mathbb{N}}$ (n-simplices) together with operators $\partial_i^{(n)}: K_n \to K_{n-1}$ and $\eta_i^{(n)}: K_n \to K_{n+1}$ (faces and degeneracies, resp.), satisfying the following simplicial identities:

Defining simplicial sets in ACL2

A generic simplicial set using encapsulate

```
(encapsulate
 (((K * *) => *)
  ((d * * *) => *)
  ((n * * *) => *))
 (defthm simplicial-id1
   (implies (and (K m x)
                 (natp m) (natp i) (natp j)
                 (<= i i) (< i m) (< 1 m))
            (equal (d (+ -1 m) i (d m j x))
                    (d (+ -1 m) j (d m (+ 1 i) x))))
 ;;; Inside this encapsulate, we assume analogously
 ;;; all the simplicial identities.
  . . . . . )
```

- (K n x) represents $x \in K_n$,
- (d m i x) and (n m i x) represent $\eta_i^{(m)}(x)$ and $\partial_i^{(m)}(x)$, resp.

Chain complexes

- The set of *n*-chains (denoted as $C_n(K)$) is the abelian group freely generated by K_n .
 - That is, linear combinations of elements of K_n with integer coefficients
 - In ACL2, ordered lists of pairs of the form (i . x), where i is a non-null integer and x is a n-simplex
- The differential is defined on $x \in K_n$ as $d_n(x) = \sum_{i=0}^n (-1)^i \partial_i^{(n)}(x)$
 - ▶ Extended by linearity to chains, defining $d_n : C_n(K) \to C_{n-1}(K)$
- It can be proved that $d_n \circ d_{n+1} = 0$ (differential property)
- In Algebra, we say that $\{(C_n(K), d_n)\}_{n \in \mathbb{N}}$ is a *chain complex*
- Algebraic properties of the chain complex associated to a simplicial set give us topological information

- An example: an (informal) proof of $d_n \circ d_{n+1} = 0$.
 - $d_n = \sum_{i=0}^n (-1)^i \partial_i^{(n)}$ and $d_{n+1} = \sum_{i=0}^{n+1} (-1)^i \partial_i^{n+1}$
 - If we omit the superindexes, we can recursively define: $d_{n+1} = (-1)^{n+1} \partial_{n+1} + d_n.$
 - ► Therefore, $d_n \circ d_{n+1} = [(-1)^n \partial_n + d_{n-1}][(-1)^{n+1} \partial_{n+1} + d_n] =$ = $-\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1} + d_{n-1} d_n$.
 - ▶ By induction, $d_{n-1}d_n = 0$, so: $d_n \circ d_{n+1} = -\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1}$
 - ► Lemma: $\partial_n d_n = (-1)^n \partial_n \partial_{n+1} + d_{n-1} \partial_{n+1}$.
 - ▶ Applying the lemma, $d_n \circ d_{n+1} = 0$. QED.

- An example: an (informal) proof of $d_n \circ d_{n+1} = 0$.
 - $d_n = \sum_{i=0}^n (-1)^i \partial_i^{(n)}$ and $d_{n+1} = \sum_{i=0}^{n+1} (-1)^i \partial_i^{n+1}$
 - If we omit the superindexes, we can recursively define:

$$d_{n+1} = (-1)^{n+1} \partial_{n+1} + d_n.$$

- ► Therefore, $d_n \circ d_{n+1} = [(-1)^n \partial_n + d_{n-1}][(-1)^{n+1} \partial_{n+1} + d_n] =$ = $-\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1} + d_{n-1} d_n.$
- By induction, $d_{n-1}d_n = 0$, so:

$$d_n \circ d_{n+1} = -\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1}$$

- ► Lemma: $\partial_n d_n = (-1)^n \partial_n \partial_{n+1} + d_{n-1} \partial_{n+1}$.
- ▶ Applying the lemma, $d_n \circ d_{n+1} = 0$. QED.

- An example: an (informal) proof of $d_n \circ d_{n+1} = 0$.
 - $d_n = \sum_{i=0}^n (-1)^i \partial_i^{(n)}$ and $d_{n+1} = \sum_{i=0}^{n+1} (-1)^i \partial_i^{n+1}$
 - If we omit the superindexes, we can recursively define: $\frac{d_{n+1} = (-1)^{n+1} \partial_{n+1} + d_n}{d_n}$
 - ► Therefore, $d_n \circ d_{n+1} = [(-1)^n \partial_n + d_{n-1}][(-1)^{n+1} \partial_{n+1} + d_n] =$ = $-\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1} + d_{n-1} d_n.$
 - ▶ By induction, $d_{n-1}d_n = 0$, so: $d_n \circ d_{n+1} = -\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1}$
 - ▶ Lemma: $\partial_n d_n = (-1)^n \partial_n \partial_{n+1} + d_{n-1} \partial_{n+1}$.
 - ▶ Applying the lemma, $d_n \circ d_{n+1} = 0$. QED.

- An example: an (informal) proof of $d_n \circ d_{n+1} = 0$.
 - $d_n = \sum_{i=0}^n (-1)^i \partial_i^{(n)}$ and $d_{n+1} = \sum_{i=0}^{n+1} (-1)^i \partial_i^{n+1}$
 - If we omit the superindexes, we can recursively define: $\frac{1}{d_{n+1}} = (-1)^{n+1} \partial_{n+1} + d_n.$
 - ► Therefore, $d_n \circ d_{n+1} = [(-1)^n \partial_n + d_{n-1}][(-1)^{n+1} \partial_{n+1} + d_n] =$ = $-\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1} + d_{n-1} d_n$.
 - ▶ By induction, $d_{n-1}d_n = 0$, so:

$$d_n \circ d_{n+1} = -\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1}$$

- ▶ Lemma: $\partial_n d_n = (-1)^n \partial_n \partial_{n+1} + d_{n-1} \partial_{n+1}$.
- ▶ Applying the lemma, $d_n \circ d_{n+1} = 0$. QED.

- An example: an (informal) proof of $d_n \circ d_{n+1} = 0$.
 - $d_n = \sum_{i=0}^n (-1)^i \partial_i^{(n)}$ and $d_{n+1} = \sum_{i=0}^{n+1} (-1)^i \partial_i^{n+1}$
 - If we omit the superindexes, we can recursively define: $\frac{d_{n+1} = (-1)^{n+1} \partial_{n+1} + d_n}{d_n}$
 - ► Therefore, $d_n \circ d_{n+1} = [(-1)^n \partial_n + d_{n-1}][(-1)^{n+1} \partial_{n+1} + d_n] =$ = $-\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1} + d_{n-1} d_n$.
 - ▶ By induction, $d_{n-1}d_n = 0$, so:
 - $d_n \circ d_{n+1} = -\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1}$
 - ▶ Lemma: $\partial_n d_n = (-1)^n \partial_n \partial_{n+1} + d_{n-1} \partial_{n+1}$.
 - ▶ Applying the lemma, $d_n \circ d_{n+1} = 0$. QED

- An example: an (informal) proof of $d_n \circ d_{n+1} = 0$.
 - $d_n = \sum_{i=0}^n (-1)^i \partial_i^{(n)}$ and $d_{n+1} = \sum_{i=0}^{n+1} (-1)^i \partial_i^{n+1}$
 - If we omit the superindexes, we can recursively define: $\frac{d_{n+1} = (-1)^{n+1} \partial_{n+1} + d_n}{d_n}$
 - ► Therefore, $d_n \circ d_{n+1} = [(-1)^n \partial_n + d_{n-1}][(-1)^{n+1} \partial_{n+1} + d_n] =$ = $-\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1} + d_{n-1} d_n$.
 - ▶ By induction, $d_{n-1}d_n = 0$, so: $d_n \circ d_{n+1} = -\partial_n \partial_{n+1} + (-1)^n \partial_n d_n + (-1)^{n+1} d_{n-1} \partial_{n+1}$
 - ▶ Lemma: $\partial_n d_n = (-1)^n \partial_n \partial_{n+1} + d_{n-1} \partial_{n+1}$.
 - ▶ Applying the lemma, $d_n \circ d_{n+1} = 0$. QED.

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
 - ► The superindexes can be omited (later safely recovered)
 - We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps
 - Definitions by recursion, proofs by induction
 - We apply equational properties about linearity, compositions of functions and the simplicial indentities.
 - The simplexes (and chains) on which the expressions are applied play no role in the proof
- To reflect this in our formal proofs, we introduce the framework of simplicial polynomials:
 - First-order ACL2 objects representing linear combinations of compositions of simplicial operators

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
 - ► The superindexes can be omited (later safely recovered)
 - We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps
 - Definitions by recursion, proofs by induction
 - We apply equational properties about linearity, compositions of functions and the simplicial indentities.
 - The simplexes (and chains) on which the expressions are applied play no role in the proof
- To reflect this in our formal proofs, we introduce the framework of simplicial polynomials:
 - First-order ACL2 objects representing linear combinations of compositions of simplicial operators

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
 - ► The superindexes can be omited (later safely recovered)
 - We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
 - Definitions by recursion, proofs by induction
 - We apply equational properties about linearity, compositions of functions and the simplicial indentities.
 - The simplexes (and chains) on which the expressions are applied play no role in the proof
- To reflect this in our formal proofs, we introduce the framework of simplicial polynomials:
 - First-order ACL2 objects representing linear combinations of compositions of simplicial operators

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
 - ► The superindexes can be omited (later safely recovered)
 - We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
 - Definitions by recursion, proofs by induction
 - We apply equational properties about linearity, compositions of functions and the simplicial indentities.
 - The simplexes (and chains) on which the expressions are applied play no role in the proof
- To reflect this in our formal proofs, we introduce the framework of simplicial polynomials:
 - First-order ACL2 objects representing linear combinations of compositions of simplicial operators

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
 - ► The superindexes can be omited (later safely recovered)
 - We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
 - Definitions by recursion, proofs by induction
 - We apply equational properties about linearity, compositions of functions and the simplicial indentities.
 - The simplexes (and chains) on which the expressions are applied play no role in the proof
- To reflect this in our formal proofs, we introduce the framework of simplicial polynomials:
 - First-order ACL2 objects representing linear combinations of compositions of simplicial operators

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
 - ► The superindexes can be omited (later safely recovered)
 - We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
 - Definitions by recursion, proofs by induction
 - We apply equational properties about linearity, compositions of functions and the simplicial indentities.
 - ► The simplexes (and chains) on which the expressions are applied play no role in the proof
- To reflect this in our formal proofs, we introduce the framework of simplicial polynomials:
 - First-order ACL2 objects representing linear combinations of compositions of simplicial operators

- Although more complicated than the previous one, most of the proofs we have to deal with have the same features:
 - ► The superindexes can be omited (later safely recovered)
 - We calculate with symbolic expressions involving linear combinations of composition of face and degeneracy maps.
 - Definitions by recursion, proofs by induction
 - We apply equational properties about linearity, compositions of functions and the simplicial indentities.
 - ► The simplexes (and chains) on which the expressions are applied play no role in the proof
- To reflect this in our formal proofs, we introduce the framework of simplicial polynomials:
 - First-order ACL2 objects representing linear combinations of compositions of simplicial operators

Simplicial terms in ACL2

- Simplical terms represent composition of simplicial operators
- Note: the simplicial identities define a canonical form
 - Any composition of simplicial operators is equal to a unique composition of simplicial operators of the form

$$\eta_{i_k}\cdots\eta_{i_1}\partial_{j_1}\cdots\partial_{j_l}$$
 with $i_k>\cdots>i_1$ and $j_1<\cdots< j_l$

- Example:
 - ► The composition $\partial_5^5 \eta_3^4 \partial_1^5 \partial_2^6 \eta_4^5$ can be put as $\eta_3 \eta_2 \partial_1 \partial_2 \partial_5$ and this can be represented by the two-element list ((3 2) (1 2 5)).
- A simplicial term is a pair of lists of natural numbers in such a canonical form, representing a composition of simplicial operators

Simplicial polynomials

- A simplicial polynomial is a symbolic expression representing linear combinations of simplicial terms
 - ► Example: $3 \cdot \eta_5 \eta_4 \eta_2 \partial_1 \partial_3 2 \cdot \eta_3 \eta_2 \partial_1$
- In ACL2, simplicial polynomials are represented as lists of pairs of integers and simplicial terms.
 - Only in normal form: the list is ordered w.r.t. a total order on terms and we only allow non-null coefficients
 - ► Example: ((3 . ((5 4 2) (1 3))) (-2 . ((3 2) (1))))
- That is, simplicial polynomials are first-order canonical representations of functions from $C_n(K)$ to $C_m(K)$

The ring of simplicial polynomials

- Sum and product of simplicial polynomials can also be defined, reflecting addition and composition of the functions represented (and returning its results also in normal form).
- For example:

$$\boldsymbol{p}_1 \cdot \boldsymbol{p}_2 =$$

$$-2\cdot \eta_1\partial_3\partial_4\partial_6-4\cdot \eta_2\eta_1\partial_2\partial_3\partial_4\partial_5+3\cdot \eta_4\eta_1\partial_4\partial_6\partial_7\partial_8+6\cdot \eta_4\eta_2\eta_1\partial_2\partial_3\partial_4\partial_7\partial_8$$

- We proved in ACL2 that the set of simplicial polynomials together with the addition and composition operations form a *ring with* identity
 - The ring of simplicial polynomials was obtained as an (automatic) instantiation of a generic ring of linear combinations of elements of a monoid
- We extensively apply ring properties in our proofs

Simplicial polynomials: a tool

- Note: our final goal is to do formalizations based on the functions
 (K ...), (d ...) and (n ...) introduced by the previous
 encapsulate
 - Since that is a faithful and precise formalization of the notion of simplical set (what we call the standard framework)
- Simplicial polynomials are only a tool for doing that, trying to reflect our informal calculations by hand
- Once a property is proved in the polynomial framework, we must "lift" the property to the standard framework.

- To "lift" properties we define an evaluation function:
 - lacktriangledown eval-sp($m{p},n,c$) evaluates a polynomial $m{p}$ on a chain $c\in C_n(K)$
 - ► Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
 - ► Note: eval-sp reintroduces the dimension (and this only makes sense when **p** is *valid* for dimension *n*)
- Example: proof of $d_n \circ d_{n+1}(c) = 0$, for all $c \in C_{n+1}(K)$
 - We define the function d_n (in the standard framework)
 - ▶ We also define the polynomial d_n , representing d_n
 - We prove in the simplicial polynomial ring the formula $\mathbf{d}_n \cdot \mathbf{d}_{n+1} = \mathbf{0}$ (as sketched by the previous hand proof)
 - \blacktriangleright We prove that d_n is valid for dimension n
 - ▶ We prove that $eval-sp(d_n,n,c)=d_n(c)$
 - Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

- To "lift" properties we define an evaluation function:
 - lacktriangledown eval-sp($m{p},n,c$) evaluates a polynomial $m{p}$ on a chain $c\in C_n(K)$
 - ► Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
 - ► Note: eval-sp reintroduces the dimension (and this only makes sense when **p** is *valid* for dimension *n*)
- Example: proof of $d_n \circ d_{n+1}(c) = 0$, for all $c \in C_{n+1}(K)$
 - We define the function d_n (in the standard framework)
 - ▶ We also define the polynomial d_n , representing d_n
 - We prove in the simplicial polynomial ring the formula $\mathbf{d}_n \cdot \mathbf{d}_{n+1} = \mathbf{0}$ (as sketched by the previous hand proof)
 - \blacktriangleright We prove that d_n is valid for dimension n
 - ▶ We prove that eval-sp(d_n, n, c)= $d_n(c)$
 - ► Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

- To "lift" properties we define an evaluation function:
 - lacktriangledown eval-sp($m{p},n,c$) evaluates a polynomial $m{p}$ on a chain $c\in C_n(K)$
 - ► Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
 - ▶ Note: eval-sp reintroduces the dimension (and this only makes sense when **p** is *valid* for dimension *n*)
- Example: proof of $d_n \circ d_{n+1}(c) = 0$, for all $c \in C_{n+1}(K)$
 - We define the function d_n (in the standard framework)
 - \triangleright We also define the polynomial d_n , representing d_n
 - We prove in the simplicial polynomial ring the formula $\mathbf{d}_n \cdot \mathbf{d}_{n+1} = \mathbf{0}$ (as sketched by the previous hand proof)
 - ightharpoonup We prove that d_n is valid for dimension n
 - ▶ We prove that eval-sp(d_n, n, c)= $d_n(c)$
 - ► Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

- To "lift" properties we define an evaluation function:
 - lacktriangledown eval-sp($m{p},n,c$) evaluates a polynomial $m{p}$ on a chain $c\in C_n(K)$
 - ► Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
 - ▶ Note: eval-sp reintroduces the dimension (and this only makes sense when **p** is *valid* for dimension *n*)
- Example: proof of $d_n \circ d_{n+1}(c) = 0$, for all $c \in C_{n+1}(K)$
 - We define the function d_n (in the standard framework)
 - ▶ We also define the polynomial d_n , representing d_n
 - We prove in the simplicial polynomial ring the formula $\mathbf{d}_n \cdot \mathbf{d}_{n+1} = \mathbf{0}$ (as sketched by the previous hand proof)
 - \triangleright We prove that d_n is valid for dimension n
 - We prove that eval-sp(d_n, n, c) = $d_n(c)$
 - Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

- To "lift" properties we define an evaluation function:
 - ▶ eval-sp(\boldsymbol{p} ,n,c) evaluates a polynomial \boldsymbol{p} on a chain $c \in C_n(K)$
 - ► Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
 - ▶ Note: eval-sp reintroduces the dimension (and this only makes sense when **p** is *valid* for dimension *n*)
- Example: proof of $d_n \circ d_{n+1}(c) = 0$, for all $c \in C_{n+1}(K)$
 - We define the function d_n (in the standard framework)
 - ▶ We also define the polynomial d_n , representing d_n
 - We prove in the simplicial polynomial ring the formula $\mathbf{d}_n \cdot \mathbf{d}_{n+1} = \mathbf{0}$ (as sketched by the previous hand proof)
 - We prove that d_n is valid for dimension n
 - We prove that eval-sp(d_n, n, c) = $d_n(c)$
 - Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

- To "lift" properties we define an evaluation function:
 - ▶ eval-sp(\boldsymbol{p} ,n,c) evaluates a polynomial \boldsymbol{p} on a chain $c \in C_n(K)$
 - Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
 - ▶ Note: eval-sp reintroduces the dimension (and this only makes sense when **p** is *valid* for dimension *n*)
- Example: proof of $d_n \circ d_{n+1}(c) = 0$, for all $c \in C_{n+1}(K)$
 - We define the function d_n (in the standard framework)
 - ▶ We also define the polynomial d_n , representing d_n
 - We prove in the simplicial polynomial ring the formula $\mathbf{d}_n \cdot \mathbf{d}_{n+1} = \mathbf{0}$ (as sketched by the previous hand proof)
 - We prove that d_n is valid for dimension n
 - ▶ We prove that eval-sp(d_n, n, c)= $d_n(c)$
 - ► Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

- To "lift" properties we define an evaluation function:
 - ▶ eval-sp(\boldsymbol{p} ,n,c) evaluates a polynomial \boldsymbol{p} on a chain $c \in C_n(K)$
 - ► Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
 - ▶ Note: eval-sp reintroduces the dimension (and this only makes sense when **p** is *valid* for dimension *n*)
- Example: proof of $d_n \circ d_{n+1}(c) = 0$, for all $c \in C_{n+1}(K)$
 - We define the function d_n (in the standard framework)
 - ▶ We also define the polynomial d_n , representing d_n
 - We prove in the simplicial polynomial ring the formula $\mathbf{d}_n \cdot \mathbf{d}_{n+1} = \mathbf{0}$ (as sketched by the previous hand proof)
 - We prove that d_n is valid for dimension n
 - We prove that $eval-sp(\mathbf{d}_n,n,c)=d_n(c)$
 - ► Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

- To "lift" properties we define an evaluation function:
 - ▶ eval-sp(\boldsymbol{p} ,n,c) evaluates a polynomial \boldsymbol{p} on a chain $c \in C_n(K)$
 - Key property: eval-sp is an homomorphism from the ring of polynomials to the ring of functions on chains
 - ▶ Note: eval-sp reintroduces the dimension (and this only makes sense when **p** is *valid* for dimension *n*)
- Example: proof of $d_n \circ d_{n+1}(c) = 0$, for all $c \in C_{n+1}(K)$
 - We define the function d_n (in the standard framework)
 - ▶ We also define the polynomial d_n , representing d_n
 - We prove in the simplicial polynomial ring the formula $\mathbf{d}_n \cdot \mathbf{d}_{n+1} = \mathbf{0}$ (as sketched by the previous hand proof)
 - We prove that d_n is valid for dimension n
 - We prove that $eval-sp(\mathbf{d}_n,n,c)=d_n(c)$
 - ► Finally, we apply eval-sp to both sides of the polynomial formula and we obtain the desired property in the standard framework

A non-trivial example: the Normalization Theorem

- The homology groups of a simplical set K are the quotient groups $H_n(C(K)) = Ker(d_n)/Im(d_{n+1})$
 - Homology groups provide topological information and are the main objects to be computed by Kenzo
- In fact, Kenzo builds a simpler chain complex with the same homology groups:
 - We say that a *n*-simplex x is *degenerate* if exists $y \in K_{n-1}$ such that $x = \eta_i^{(n)}(y)$ for some $0 \le i \le n$. Otherwise, it is *non-degenerate*
 - Let $C_n^N(K)$ denote the free abelian group generated by non-degenerate simplexes
 - Let $f_n: C_n(K) \to C_n^N(K)$ be the function that eliminates the degenerate addends of a chain (*normalization function*)
 - ▶ Let $d_n^N = f_n \circ d_n$
 - ▶ Then $\{(C_n^N(K), d_n^N)\}_{n \in \mathbb{N}}$ is a chain complex
- Normalization Theorem: $H_n(C(K)) \cong H_n(C^N(K)), \forall n \in \mathbb{N}$

A non-trivial example: the Normalization Theorem

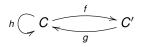
- The homology groups of a simplical set K are the quotient groups $H_n(C(K)) = Ker(d_n)/Im(d_{n+1})$
 - Homology groups provide topological information and are the main objects to be computed by Kenzo
- In fact, Kenzo builds a simpler chain complex with the same homology groups:
 - ▶ We say that a *n*-simplex x is *degenerate* if exists $y \in K_{n-1}$ such that $x = \eta_i^{(n)}(y)$ for some $0 \le i \le n$. Otherwise, it is *non-degenerate*
 - Let $C_n^N(K)$ denote the free abelian group generated by non-degenerate simplexes
 - ▶ Let $f_n : C_n(K) \to C_n^N(K)$ be the function that eliminates the degenerate addends of a chain (*normalization function*)
 - ▶ Let $d_n^N = f_n \circ d_n$
 - ▶ Then $\{(C_n^N(K), d_n^N)\}_{n \in \mathbb{N}}$ is a chain complex
- Normalization Theorem: $H_n(C(K)) \cong H_n(C^N(K)), \forall n \in \mathbb{N}$

A non-trivial example: the Normalization Theorem

- The homology groups of a simplical set K are the quotient groups $H_n(C(K)) = Ker(d_n)/Im(d_{n+1})$
 - Homology groups provide topological information and are the main objects to be computed by Kenzo
- In fact, Kenzo builds a simpler chain complex with the same homology groups:
 - ▶ We say that a *n*-simplex x is *degenerate* if exists $y \in K_{n-1}$ such that $x = \eta_{i}^{(n)}(y)$ for some $0 \le i \le n$. Otherwise, it is *non-degenerate*
 - Let $C_n^N(K)$ denote the free abelian group generated by non-degenerate simplexes
 - ▶ Let $f_n : C_n(K) \to C_n^N(K)$ be the function that eliminates the degenerate addends of a chain (*normalization function*)
 - ▶ Let $d_n^N = f_n \circ d_n$
 - ▶ Then $\{(C_n^N(K), d_n^N)\}_{n \in \mathbb{N}}$ is a chain complex
- Normalization Theorem: $H_n(C(K)) \cong H_n(C^N(K)), \forall n \in \mathbb{N}$

The Normalization Theorem: a stronger version

• A strong homotopy equivalence is a 5-tuple (C, C', f, g, h)



where C=(M,d) and C'=(M',d') are chain complexes, $f\colon C\to C'$ and $g\colon C'\to C$ are chain morphisms, $h=(h_i\colon M_i\to M_{i+1})_{i\in\mathbb{N}}$ is a family of homomorphisms (called *homotopy operator*), which satisfy the following three properties for all $i\in\mathbb{N}$:

- $(1) f_i \circ g_i = id_{M'_i}$
- (2) $d_{i+2} \circ h_{i+1} + h_i \circ d_{i+1} + g_{i+1} \circ f_{i+1} = id_{M_{i+1}}$
- (3) $f_{i+1} \circ h_i = 0$

If, in addition the 5-tuple satisfies the following two properties:

- $(4) h_i \circ g_i = 0$
- (5) $h_{i+1} \circ h_i = 0$

then we say that it is a reduction.

The Normalization Theorem: a stronger version

- A reduction between chain complexes describes a situation where homological information is preserved
- That is, if (C, C', f, g, h) is a reduction, then $H_n(C) \cong H_n(C'), \forall n \in \mathbb{N}$
- We have proved a reduction version of the Normalization Theorem
- That is, we have defined appropriate f, g and h and proved that $(C(K), C^N(K), f, g, h)$ is a reduction.

A conjecture

- In J. Rubio, F. Sergeraert, "Supports Acycliques and Algorithmique", Astérisque **192** (1990), it was experimentally found the following formula for $(C(K), C^N(K), f, g, h)$
 - f_n is the normalization function.
 - ▶ $g_n = \sum_{i=1}^{p} (-1)^{\sum_{i=1}^{p} a_i + b_i} \eta_{a_p} \dots \eta_{a_1} \partial_{b_1} \dots \partial_{b_p}$ where the indexes range over $0 \le a_1 < b_1 < \dots < a_p < b_p \le n$, with $0 \le p \le (n+1)/2$.
 - ▶ $h_n = \sum_{i=1}^{n} (-1)^{a_{p+1} + \sum_{i=1}^{p} a_i + b_i} \eta_{a_{p+1}} \eta_{a_p} \dots \eta_{a_1} \partial_{b_1} \dots \partial_{b_p}$ where the indexes range over $0 \le a_1 < b_1 < \dots < a_p < a_{p+1} \le b_p \le n$, with $0 \le p \le (n+1)/2$.

and claimed there, without proof, that they define a strong homotopy equivalence

- Our contribution:
 - We did a hand proof of the conjecture
 - We formalized it in ACL2, thus proving the reduction version of the Normalization Theorem

A conjecture

- In J. Rubio, F. Sergeraert, "Supports Acycliques and Algorithmique", Astérisque **192** (1990), it was experimentally found the following formula for $(C(K), C^N(K), f, g, h)$
 - f_n is the normalization function.
 - ▶ $g_n = \sum_{i=1}^p (-1)^{\sum_{i=1}^p a_i + b_i} \eta_{a_p} \dots \eta_{a_1} \partial_{b_1} \dots \partial_{b_p}$ where the indexes range over $0 \le a_1 < b_1 < \dots < a_p < b_p \le n$, with $0 \le p \le (n+1)/2$.
 - ▶ $h_n = \sum_{i=1}^{n} (-1)^{a_{p+1} + \sum_{i=1}^{p} a_i + b_i} \eta_{a_{p+1}} \eta_{a_p} \dots \eta_{a_1} \partial_{b_1} \dots \partial_{b_p}$ where the indexes range over $0 \le a_1 < b_1 < \dots < a_p < a_{p+1} \le b_p \le n$, with $0 \le p \le (n+1)/2$.

and claimed there, without proof, that they define a strong homotopy equivalence

- Our contribution:
 - We did a hand proof of the conjecture
 - We formalized it in ACL2, thus proving the reduction version of the Normalization Theorem

The main theorems proved

- THEOREM: F-chain-morphism $(m \in \mathbb{N}^+ \land c \in C_m(K)) \to d_m^N(f_m(c)) = f_{m-1}(d_m(c))$
- ullet THEOREM: G-chain-morphism $(m\in\mathbb{N}^+\wedge c\in C^N_m(K)) o g_{m-1}(d^N_m(c))=d_m(g_m(c))$
- THEOREM: F-G-H-property-1 $(m \in \mathbb{N} \land c \in C_m^N(K)) \to f_m(g_m(c)) = c$
- THEOREM: F-G-H-property-2 $(m \in \mathbb{N}^+ \land c \in C_m(K)) \rightarrow d_{m+1}(h_m(c)) + h_{m-1}(d_m(c)) = c g_m(f_m(c))$
- THEOREM: F-G-H-property-3 $(m \in \mathbb{N} \land c \in C_m(K)) \rightarrow f_{m+1}(h_m(c)) = 0$
- THEOREM: F-G-H-property-4 $(m \in \mathbb{N} \land c \in C_m^N(K)) \rightarrow h_m(g_m(c)) = 0$
- THEOREM: F-G-H-property-5 $(m \in \mathbb{N} \land c \in C_m(K)) \rightarrow h_{m+1}(h_m(c)) = 0$

Some comments on the proof of the Normalization Theorem

- The core of the proof is carried out in the polynomial framework, guided by our hand proof
- The expressions involved are highly combinatorial. For example, this is the polynomial for h₄:

$$\eta_{0} - \eta_{1} + \eta_{1}\eta_{0}\partial_{1} - \eta_{1}\eta_{0}\partial_{2} + \eta_{1}\eta_{0}\partial_{3} - \eta_{1}\eta_{0}\partial_{4} + \eta_{2} + \eta_{2}\eta_{0}\partial_{2} - \eta_{2}\eta_{0}\partial_{3} + \eta_{2}\eta_{0}\partial_{4} - \eta_{2}\eta_{1}\partial_{2} + \eta_{2}\eta_{1}\partial_{3} - \eta_{2}\eta_{1}\partial_{4} - \eta_{3} + \eta_{3}\eta_{0}\partial_{3} - \eta_{3}\eta_{0}\partial_{4} - \eta_{3}\eta_{1}\partial_{3} + \eta_{3}\eta_{1}\partial_{4} + \eta_{3}\eta_{2}\partial_{3} - \eta_{3}\eta_{2}\partial_{4} - \eta_{3}\eta_{2}\eta_{0}\partial_{1}\partial_{3} + \eta_{3}\eta_{2}\eta_{0}\partial_{1}\partial_{4} + \eta_{4}\eta_{1}\partial_{4} + \eta_{4}\eta_{2}\partial_{4} - \eta_{4}\eta_{2}\eta_{0}\partial_{1}\partial_{4} - \eta_{4}\eta_{3}\eta_{0}\partial_{2}\partial_{4} + \eta_{4}\eta_{3}\eta_{1}\partial_{2}\partial_{4}$$

- But the style of the proofs is similar to the simple example presented previously.
- Properties are lifted from the polynomial framework to the standard framework.

Some comments on the proof of the Normalization Theorem

- Note: the polynomial framework is not expressive enough to state the theorem. For example:
 - The normalization function cannot be expressed as a polynomial
 - Some transformations have to be applied to obtain a reduction from a strong homotopy equivalence, not expressed as polynomials.
- Therefore, some additional proofs in the standard framework are needed.

Conclusions and further work

- We have presented an approach to proving Algebraic Topology theorems in a first-order setting
 - We use the ACL2 theorem prover, because our long term goal is to verify properties of a Common Lisp system
- Proof effort: 99 definitions, 565 lemmas, 158 hints
 - Part of the formalization is automatically generated as instances of other generic theories
- Our next step: Eilenberg-Zilber theorem, an important theorem in algebraic topology, about the homology of product spaces.
- Thank you!

Conclusions and further work

- We have presented an approach to proving Algebraic Topology theorems in a first-order setting
 - We use the ACL2 theorem prover, because our long term goal is to verify properties of a Common Lisp system
- Proof effort: 99 definitions, 565 lemmas, 158 hints
 - Part of the formalization is automatically generated as instances of other generic theories
- Our next step: Eilenberg-Zilber theorem, an important theorem in algebraic topology, about the homology of product spaces.
- Thank you!