Proving with ACL2 the correctness of simplicial
sets in the Kenzo system.”

Jénathan Heras, Vico Pascual, and Julio Rubio

Departamento de Matematicas y Computacién, Universidad de La Rioja,
Edificio Vives, Luis de Ulloa s/n, E-26004 Logrono (La Rioja, Spain).
{jonathan.heras, vico.pascual, julio.rubio}@unirioja.es

Abstract. Kenzo is a Common Lisp system devoted to Algebraic Topol-
ogy. Although Kenzo uses higher-order functional programming inten-
sively, we show in this paper how the theorem prover ACL2 can be used
to prove the correctness of first order fragments of Kenzo. More con-
cretely, we report on the verification in ACL2 of the implementation
of simplicial sets. By means of a generic instantiation mechanism, we
achieve the reduction of the proving effort for each family of simplicial
sets, letting ACL2 automate the routine parts of the proofs.

1 Introduction

Kenzo [4] is a computer algebra system devoted to Algebraic Topology and
Homological Algebra calculations. It was created by Sergeraert following his
ideas about effective homology [13], and has been successful in the sense that
Kenzo has been capable of computing previously unknown homology groups.
This implies that increasing user’s trust in the system is relevant. To this aim,
a wide project to apply formal methods in the study of Kenzo was launched
several years ago.

One feature of Kenzo is it uses higher order functional programming to handle
spaces of infinite dimension. Thus, the first attempts to apply theorem proving
assistants in the analysis of Kenzo were oriented towards higher order logic tools.
Concretely, the Isabelle/HOL proof assistant was used to verify a very important
algorithm in Homological Algebra: the Basic Perturbation Lemma (see [2]). Let
us note, however, that this formalization was related to algorithms and not to
the real programs implemented in Kenzo. The problem of extracting programs
from the Isabelle/HOL proofs has been dealt with in [3], but even there the
programs are generated in ML, far from Kenzo. Because Kenzo is programmed
in Common Lisp.

In this paper, we report on a verification on some fragments of the real
Kenzo code, by means of the ACL2 theorem prover [7]. ACL2 works with first
order logic. Hence, in a first step, Kenzo first order fragment are dealt with. A

* Partially supported by Ministerio de Educacién y Ciencia, project MTM2009-13842-
C02-01, and by European Community FP7, STREP project ForMath.

previous work on this area was published in [10], where the programs to deal
with degeneracies in Kenzo were proven correct by means of ACL2.

To understand another source of first order fragments of Kenzo, let us explain
the way of working with the system. As a first step, the user constructs some
initial spaces (under the form of simplicial sets [11]) by means of some built-in
Kenzo functions; then, in a second step, he constructs new spaces by applying
topological constructions (as Cartesian products, loop spaces, and so on); as a
third, and final, step, the user asks Kenzo for computing the homology groups of
the spaces. The important point for our discussion is that only steps 2 and 3 need
higher-order functional programming. The first step, the construction of constant
spaces, can be modeled in a first order logic. Thus, this paper is devoted to an
ACL2 infrastructure allowing us to prove the correctness of Kenzo programs for
constructing these constant simplicial sets.

We started that work by examining each family of constant simplicial sets in
Kenzo (spheres, Moore spaces, Eilenberg-MacLane spaces, and so on). By doing
the first ACL2 proofs, it became quickly clear that all the proofs match a common
pattern. So, we carefully analyzed which is the common part for all the constant
spaces, and which is particular for each family of simplicial sets. This led us to
Theorem 3 in Subsection 3.2. The proof of this theorem in ACL2 allows us to
use the generic instantiation tool by Martin-Mateos et al. [9], to produce ACL2
proofs for concrete families of constant simplicial sets. This has been done, up to
now, for the spheres and for the simplicial sets coming from simplicial complexes.
It is worth noting that from 4 definitions and 4 theorems the instantiation tool
generates (and instantiates) 15 definitions and 375 theorems. The benefits in
terms of proof effort are considerable. These two issues are the main contributions
of this paper.

The unique difference between actual code and ACL2 verified code is the
transformation of loops into ACL2 recursive functions. Since this transformation
is very well-known and quite safe, we consider that the verified code is as close
as possible to the real Kenzo programs.

The methodological approach has been imported from [10]. EAT [12] was
the predecessor of Kenzo. The EAT system is also based on Sergeraert’s ideas,
but its Common Lisp implementation was closer to the mathematical theory.
This means a poorer performance (since in Kenzo the algorithms have been
optimized), but also that the ACL2 verification of EAT programs is easier. Thus,
the main idea is to prove first in ACL2 the correctness of EAT programs, and
then, by a domain transformation, to translate the proofs to Kenzo programs.
To this aim, an intermediary model, based on binary numbers, is employed (this
was introduced in [10], too).

The complete ACL2 code of our formalization can be found at [5].

The organization of the paper is as follows. Section 2 is devoted to mathemat-
ical preliminaries and to their concrete materialization in the EAT and Kenzo
systems. The main theorems to factorize the proofs which are common to all the
spaces are presented in Section 3 (both in the EAT and in the Kenzo models).

Technical issues about the ACL2 proofs are dealt with in Section 4. The paper
ends with conclusions, future work and the bibliography.

2 Simplicial models

In this section, we present the minimal mathematical preliminaries to understand
the rest of the paper, and we explain how the elementary data structures are
encoded in both systems EAT and Kenzo.

2.1 A mathematical model
The following definition is the most important one in this work (see [11] for the

context and further details).

Definition 1 A simplicial set K, is a union K = |J K9, where the K? are
q=0

disjoints sets, together with functions:

9l K1 — K1Y ¢>0, i=0,...,q,
nl i K7— KT, ¢>0, i=0,...,q,

subject to the relations:

Il it i<y,

—
—_
~—
=
L
R
I

(2) n; no= N; M1 1> 7,
(3)0fn? = piTjof if i<,
(4) 5‘;1“773 = identity = 83:11773 ,
(5)ortn? = it if P>+,

The functions 9] and 7} are called face and degeneracy maps, respectively.

The elements of K9 are called g-simplezes. A g-simplex x is degenerate if
z=n! _1y for some simplex y, and for some degeneracy map n ~1 otherwise
is non degenerate.

In the rest of the paper a non degenerate simplex will be called geometric
simplex, to stress that only these simplexes really have a geometric meaning;
the degenerate simplexes can be understood as formal artifacts introduced for
technical (combinatorial) reasons. This becomes clear in the following discussion.

The next essential result, which follows from the commuting properties of
degeneracy maps in Definition 1, was modeled and proved by means of the
ACL2 theorem prover in [1].

Proposition 1 Let K be a simplicial set. Any n-simplex x € K™ can be ex-
pressed in a unique way as a (possibly) iterated degeneracy of a non-degenerate
simplex y in the following way:

X :Ujk ...njly
withye K" k=n—r>0,and 0 < j; < - < jp <n.

In the previous statement the super-indexes in the degeneracy maps have
been skipped, since they can be inferred from the context. It is a usual practice
and will be freely used in the sequel, both for degeneracy and for face maps.

This proposition allows us to encode all the elements (simplexes) of any sim-
plicial set in a generic way, by means of a structure called abstract simplex. More
concretely, an abstract simplex is a pair (dgop gmsm) consisting of a sequence
of degeneracy maps dgop (which will be called a degeneracy operator) and a
geometric simplex gmsm. The indexes in a degeneracy operator dgop must be in
strictly decreasing order. For instance, if o is a non-degenerate simplex, and ¢’ is
the degenerate simplex 71720, the corresponding abstract simplexes are respec-
tively (0 o) and (n3m o), as min2 = n3n1, due to equality (2) in Definition 1.
Of course, the nature of geometric simplexes depends on the concrete simplicial
set we are dealing with, but the notion of abstract simplex allows us a generic
handling of all the elements in our proofs.

Equation (2) in Definition 1 allows one to apply a degeneracy map 7; over a
degeneracy operator dgop to obtain a new degeneracy operator. Let us consider,
for example, 14 and the degeneracy operator 151471 ; then nansnan = NeManan =
NeN5M4m1- We will use the notation n; odgop for the resulting degeneracy operator;
in our example: 74 © (1574m1) = N6N5N4M .-

We can also try to apply a face map 0; over a degeneracy operator dgop. But
now, there are two cases, according to whether the indexes ¢ or ¢« — 1 appear in
dgop. If they do not appear, then there is a face that survives in the process
(for instance: O4msnene = NaOanano = Man203ne = Mananode). Otherwise, the
cancellation equation (4) from Definition 1 applies and the result of the process
is simply another degeneracy operator (example: 04751310 = 1404M3M0 = Ma0)-
We will denote by 9; o dgop the output degeneracy operator, in both cases (in
our examples: dy o (157270) = Nan2m0 and 04 o (N51370) = Nano)-

With these notational conventions, the behaviour of face and degeneracy
maps over abstract simplexes is characterized as follows:

n?(dgop gmsm) 1= ("73 ° f]lgop gmsm)
q | (0fodgop gmsm) if n; € dgopV n;_1 € dgop
0 (dgop gmsm) := { (0% odgop O gmsm) otherwise;

where

— r = g — {number of degeneracies in dgop} and
— k =i — {number of degeneracies in dgop with index lower than i}!.

Note that the degeneracy map expressed in terms of abstract simplexes only
affects the degeneracy operator of the abstract simplex; therefore degeneracy
maps can be implemented independently from the simplicial set. On the contrary,

! In fact, we are still abusing the notation here, since the face of a geometric sim-
plex is an abstract simplex and, sometimes, a degenerate one; this implies that
to get a correct representation of (8 o dgop drgmsm) as an abstract simplex
(dgop’ gmsm') we should compose the degeneracy operator 97 o dgop with that
coming from 9y gmsm.

face maps can depend on the simplicial set because, when 7; ¢ dgop and 7,1 ¢
dgop, the application of a face map 0; arrives until the geometric simplex, and,
this, of course, requires some knowledge from the concrete simplicial set where
the computation is carried out.

This observation will be very important in the sequel, since it indicates which
parts of the proofs could be automatized (those independent from the concrete
simplicial sets), and which parts must be explicitly provided by the user.

Furthermore, it is necessary to characterize the pattern of the admissible
abstract simplexes for a given simplicial set, since it will allow us to determine
over which elements the proofs will be carried out. The following property gives
such a characterization.

Proposition 2 Let K be a simplicial set and absm = (dgop gmsm) be a pair
where dgop is a degeneracy operator and gmsm is a geometric simplex of K.
Then, absm is an abstract simplex of K in dimension ¢ if and only if the following
properties are satisfied:

1. gmsm € K", for some natural number r < g;
2. the length of the sequence of degeneracies dgop is q¢ — r;
3. the index of the first degeneracy in dgop is lower than gq.

Each concrete representation for degeneracy operators defines a different
model to encode elements of simplicial sets. In the following two subsections
we will explain the EAT and the Kenzo models, respectively.

2.2 The EAT model

An abstract simplex, absm, is represented internally in the EAT system by a
Lisp object: (dgop gmsm) where dgop is a strictly decreasing integer list (a
degeneracy list) which represents a sequence of degeneracy maps, and gmsm is
a geometric simplex (whose type is left unspecified). For example, if we retake
the examples introduced in the previous subsection (§ o) and (nsn; o), the
corresponding EAT objects are respectively (nil o) and ((3 1) o), where nil
stands for the empty list in Lisp.

Now, we can implement an invariant function in Lisp, which is a predicate in-
dicating when a Lisp pair is an abstract simplex in EAT. The invariant translates
the conditions from Proposition 2:

1. gmsm is an element of K" (this information depends on K and must be
implemented for each simplicial set);

2. the length of the dgop list is equal to g — r;

3. the first element of dgop is lower than q.

With respect to the EAT representation of a simplicial set, it is based on
considering a simplicial set as a tuple of functional objects. Since the degeneracy
maps do not depend on the simplicial set, only two functional slots are needed:
one for recovering faces (on geometric simplexes), and other with information
about the encoding of geometric simplexes.

As mentioned previously, we want to focus on the simplicial sets of the Kenzo
system. The EAT model has been used as a simplified formal model to reduce
the gap between the mathematical structures and their Kenzo representations.

2.3 The Kenzo model

Both EAT and Kenzo systems are based on the same Sergeraert’s ideas, but
the performance of the EAT system is much poorer than that of Kenzo. One
of the reasons why Kenzo performs better than EAT is because of a smart
encoding of degeneracy operators. Since generating and composing degeneracy
lists are operations which appear in an exponential way in most of Kenzo cal-
culations (through the Eilenberg-Zilber theorem [11]), it is clear that having a
better way for storing and processing degeneracy operators is very important.
But, no reward comes without a corresponding price, and the Kenzo algorithms
are somehow obscured, in comparison to the clean and comprehensible EAT
approach.

An abstract simplex, absm, is represented internally in the Kenzo system
by a Lisp object: (dgop gmsm) where dgop is a non-negative integer coding a
strictly decreasing integer list and gmsm is a geometric simplex. The strictly
decreasing integer list represents a sequence of 7 operators and is coded as a
unique integer. Let us explain this with an example: the degeneracy list (3 1)
can equivalently be seen as the binary list (0 1 0 1) in which 1 is in position 7 if
the number ¢ is in the degeneracy list, and 0 otherwise. This list, interpreted as a
binary number in the reverse order, defines the natural number 10. Thus, Kenzo
encodes the degeneracy list (3 1) as the natural number 10. The empty list is
encoded by the number 0. Then, the abstract simplexes (§ o) and (n3m o) are
implemented in the Kenzo system as (0 o) and (10 o), respectively.

With this representation, we will say that an index is an active bit in a
natural number representing a degeneracy operator if the index appears in the
degeneracy operator.

With this representation and notation, the invariant function for abstract
simplexes in Kenzo can be defined according to:

1. gmsm is an element of K";
2. the number of active bits in dgop is equal to g — r;
3. dgop < 29.

As Kenzo encodes degeneracy lists as integers, the face and degeneracy maps
can be implemented using very efficient Common Lisp primitives dealing with
binary numbers (such as logzor, ash, logand, logbitp and so on). This is one of
the reasons why Kenzo dramatically improves the performance of its predecessor
EAT. Nevertheless, these efficient operators have a more obscure semantics than
their counterparts in EAT.

The Kenzo representation of a simplicial set follows the same pattern that
the EAT one, that is, a simplicial set is a tuple of functional \-expressions.

In order to establish an infrastructure to prove the objects handled in Kenzo
as simplicial sets are really simplicial sets (in other words, they satisfy the equa-
tions in Definition 1), the following strategy has been followed (inspired from
that of [10]). First, the correctness of the EAT representation will be proven. In
a second step, a proof of the correctness of the domain transformations between
the EAT and Kenzo representations will be built. Then, it will become easy to
prove a property about a Kenzo operator by first proving the property about the
EAT one (which is usually much simpler) and then translating it to Kenzo, by
means of the domain transformations theorems. These tasks have been fulfilled
by means of the ACL2 system, as reported in the next section.

3 Schema of the proof

3.1 Proving that EAT objects are Simplicial Sets

The first task consists in proving that the face and degeneracy operators are well
defined. Let absm be an abstract simplex belonging to K?; then the face and de-
generacy EAT operators must satisfy: (i) nlabsm € K91 (ii) dfabsm € K171,
As the definition of the degeneracy maps over abstract simplexes is independent
from the simplicial set, so is the proof of its correctness. On the contrary, the
face map invariance must be proven for each particular object.

Then, as a second task, the properties stated in Definition 1 must be accom-
plished by the face and degeneracy maps.

As no additional information from the particular object is needed, some im-
portant equalities can be obtained for every simplicial set:

Theorem 1 Let absm be an abstract simplex. Then:

nf“n?absm = n;l“ng_labsm if i> 7,
Gf“n?absm = n;?:%@gabsm if 1< 7,

1 1
of Pmfabsm = absm = 9fnfabsm,
ol n?absm = 17;1_ Ol jabsm if i>7+1,

Then all properties of Definition 1 are proven without using a particular
simplicial set except relation (1). On the contrary, we must require that the par-
ticular simplicial set satisfies some properties in order to obtain the proof of the
first property of Definition 1. These required conditions have been characterized
by means of the following result.

Theorem 2 Let £ be an EAT object implementing a simplicial set. If for every
natural number ¢ > 2 and for every geometric simplex gmsm in dimension ¢ the
following properties hold:

1.Vi,jeN:i<j<qg= 819_1(8?gmsm) = 8?:11(6ggmsm),
2. Vi e N, i < q: 9]gmsm is a simplex of £ in dimension ¢ — 1,

then:
£ is a simplicial set.

This theorem has been proven in ACL2, by using in particular the cmp-d-1s
EAT function. This function takes as arguments a natural number ¢ and a de-
generacy list (that is, a strictly decreasing list of natural numbers); the function
has two outputs (compare with the discussion about the two cases in the for-
mula 2.1):

— a new degeneracy list, obtained by systematically applying equations (3),
(4) and (5) of Definition 1, starting with 9;, and

— an index which survives in the previous process, or the symbol nil in the
case where the equation (4) in Definition 1 is applied and the face map is
cancelled.

For instance, with the inputs 4 and (5 2 0) the results of cmp-d-1s are
(4 2 0) and 2 (recall the process: dynsn2mo = N404M2m0 = NaN203M0 = NaN21o02).
With the inputs 4 and (5 3 0), the outputs are (4 0) and nil (since dgnsnzno =
1404m370 = 1470)-

This function will play an important role when tackling the same problem in
Kenzo. We will say that this function implements a face operator (over degen-
eracy operators).

Thanks to Theorem 2, certifying that an EAT object is a simplicial set can
be reduced to prove some basic properties of the particular object, the rest
of the proof can be generated automatically by ACL2, as will be detailed in
Subsection 4.2. The same schema will be applied to the Kenzo model in the next
subsection.

3.2 Proving that Kenzo objects are Simplicial Sets

In [10] the correctness of Kenzo degeneracy maps was proven. Thus, we must
focus here on the correctness of face maps. The most important function to
this aim is called in Kenzo 1dlop-dgop, equivalent to the previously evoked EAT
function cmp-d-1s. The arguments and outputs are, of course, equivalent in both
functions, but recall that in Kenzo a degeneracy operator is encoded as a natural
number.

The proof that the function 1dlop-dgop is equivalent to cmp-d-1s is not sim-
ple, for two main reasons. On the one hand, the Kenzo function and the EAT
one deal with different representations of degeneracy operators. On the other
hand, the Kenzo function implements an algorithm which is not intuitive and is
quite different from the algorithm of the EAT version, which is closely related to
the mathematical definitions. A suitable strategy, used in [10] for the degeneracy
operator, to attack the proof consists in considering an intermediary represen-
tation of degeneracy operators based on binary lists (that is, lists of bits), as
explained at the second paragraph of Subsection 2.3.

The plan has consisted in defining a function 1dlop-dgop-binary implement-
ing the application of the face operator over a degeneracy list represented as a

binary list, by means of an algorithm directly inspired from that of Kenzo. Thus,
the equivalence between EAT and Kenzo face maps has been proven in two steps.
We have proven the equivalence between the Kenzo function 1dlop-dgop and the
binary function 1dlop-dgop-binary. Subsequently, it has also been proven that
the binary version function and the EAT function are equivalent.

Schematically, let DgL be the set of strictly decreasing lists of natural numbers,
Df be the set of binary lists and N the set of natural numbers. The proof consists
in verifying the commutativity of the following diagram (in which the names of
the transformation functions have been omitted):

NxD: T >NxDP T >NxN

cmp—d—ls ldlop—dgop—binary ldlop—dgop
. N N
DL x (NU{nil}) —_ DB x (NU{nil}) __ Nx (NU {nil})

These functions, that implement the face operators in the different repre-
sentations, receive as input two arguments (a natural number representing the
index of the face map and a degeneracy operator encoded in the respective repre-
sentation) and have as output a pair composed of a degeneracy operator (in the
same representation of the input one) and either a natural number or the value
nil (as explained in detail in the case of cmp-d-1s in the previous subsection).

Thus the commutativity of the diagram ensures the equivalence modulo the
change of representation between the EAT and Kenzo models.

More concretely, both the degeneracy operator correctness and the properties
included in Theorem 2, can be translated to the Kenzo system thanks to the do-
main transformation theorems, producing a similar structural theorem in ACL2
for the Kenzo model, which accurately corresponds with the next statement.

Theorem 3 Let K be a Kenzo object implementing a simplicial set, satisfy-
ing for every natural number ¢ > 2 and for every geometric simplex gmsm in
dimension ¢ the following properties:

1.Vi,jeN:i<j<qg= 83_1(8;-1gm5m) = 8?:11(8fgmsm),

2. Vi e N, i < q: 9]gmsm is a simplex of K in dimension ¢ — 1,

then:
K is a simplicial set.

4 ACL2 technical issues

In this section we deal with three technical issues in ACL2: (1) how to prove
the correctness of face operators implemented in Kenzo, (2) the definition of
a generic simplicial set theory in ACL2 which can be used to certify that the
so-called simplicial sets of the Kenzo system are really. .. simplicial sets, and (3)
the instantiation of this generic tool to concrete examples of families of simplicial
sets actually programmed in Kenzo.

4.1 Correctness of face and degeneracy operators

Since the degeneracy operator was studied in [10], we are going to focus on the
face operator.

The left side in Figure 1 contains the real Common Lisp code of Kenzo for
the application of a face map over a degeneracy operator. That definition re-
ceives as inputs two naturals numbers 1dlop and dgop (the second one to be
interpreted as a degeneracy operator) and returns two values: a natural number
(encoding a degeneracy operator) and an index (observe the occurrence of the
values primitive). The algorithm takes advantage of the encoding of degener-
acy operators as numbers, by using very efficient Common Lisp (and ACL2)
primitives. For example, to know if 1dlop is an active bit of dgop it uses the
function (logbitp 1dlop dgop). Or for computing the zor of two numbers it
uses the logxor operator. Thanks to this way of programming, the function does
not need an iterative processing, but just a conditional distinction of cases. It
is to be compared with the corresponding EAT function cmp-d-1s whose linear
time algorithm closely follows the natural mathematical iteration (recall once
more the process: O4nsMano = 1N404M2Mo = Man203n0 = Man2no02). It is easy to
understand the benefits of the Kenzo approach from the performance point of
view. It should also be clear that the correctness of the Kenzo function is not
evident (contrary to its EAT counterpart), and then an ACL2 verification is a

highly valuable objective.

(defun 1dlop-dgop (1dlop dgop)
(progn
(when (logbitp 1dlop dgop)

(let ((share (ash -1 1dlop)))
(declare (fixnum share))
(return-from 1dlop-dgop

(values
(logxor
(logand share (ash dgop -1))
(logandcl share dgop))
nil))))
(when (and (plusp 1dlop)
(logbitp (1- 1dlop) dgop))

(let ((share (ash -1 1dlop)))

(declare (fixnum share))
(setf share (ash share -1))
(return-from 1dlop-dgop
(values
(logxor
(logand share (ash dgop -1))
(logandcl share dgop))
nil))))
(let ((share (ash -1 1dlop)))

(declare (fixnum share))

(let ((right (logandcl share dgop)))
(declare (fixnum right))

(values
(logxor
right
(logand share (ash dgop -1)))
(- 1dlop (logcount right)))))))

(defun 1dlop-dgop-dgop (1dlop dgop)
(if (and (natp 1dlop) (natp dgop))
(cond ((logbitp 1dlop dgop)
(logxor
(logand (ash -1 1dlop)
(ash dgop -1))
(logandcl (ash -1 1dlop)
dgop)))
((and (plusp 1dlop)
(logbitp (- 1dlop 1) dgop))
(logxor
(logand (ash (ash -1 1dlop) -1)
(ash dgop -1))
(logandcl (ash (ash -1 1dlop) -1)
dgop)))
(t (logxor
(logandcl (ash -1 1dlop) dgop)
(logand (ash -1 1dlop)
(ash dgop -1)))))
nil))

(defun 1dlop-dgop-indx (1dlop dgop)
(if (or (logbitp 1dlop dgop)
(and (plusp 1dlop)
(logbitp (- 1dlop 1) dgop)))
nil
(- 1dlop
(logcount (logandci (ash -1 1dlop) dgop)
))))

Fig. 1. 1dlop-dgop definition in Kenzo and in ACL2

The right box of Figure 1 contains our ACL2 definition. The function 1dlop-dgop
is separated into two functions (a different, but equivalent, alternative consists
in using the mv ACL2 macro which returns two or more values). However, this
is the only important difference between the two sides of Figure 1, since all the
binary operations of Common Lisp (logxor and the like) are present in ACL2.
Thus, the two ACL2 programs make up an accurate version of the Kenzo one.
But, of course, the challenge of proving the equivalence with the (ACL2 veri-
fied) EAT version remains. Following the guidelines given in [10], and with some
effort, our methodology was used with success.

Once the correctness of the face and degeneracy maps over degeneracy op-
erators has been proven, the task of certifying properties like Theorem 1 can
be carried out. First proving them using the EAT formal specification and later
on translating the properties to Kenzo by means of the domain transformation
theorems. Figure 2 shows our ACL2 version of Kenzo definitions of the face
and degeneracy maps for simplicial sets over abstract simplexes. The name of
the functions (with the prefix imp-) is reminiscent of the imp-construction in-
troduced in [8] to explain, in an algebraic specification framework, the way in
which EAT manipulates its objects. Here it is used, at a syntactical level, to get
a signature closer to mathematical Definition 1 (with three arguments: an index
n, a dimension q and a simplex), and then to hide the irrelevant information
to the operational functions (both the ambient simplicial set and the dimension
are irrelevant for the degeneracy function, but only the dimension is irrelevant
for the face map). More importantly, the imp-construction allows us to organize
simplicial sets as indexed families (the parameter ss being the “index” of the
space in the family), factoring out proofs for each element of the family (the fam-
ilies we are thinking of having already been mentioned: spheres, Moore spaces,
simplicial complexes, and so on).

The face-kenzo function of Figure 2 uses the previously introduced func-
tions 1dlop-dgop-dgop and 1dlop-dgop-indx, and the function face which con-
tains the actual Kenzo definition for faces of geometric simplexes in a simplicial
set belonging to a concrete family of spaces. The degeneracy-kenzo function uses
dgop-ext-int to changing of domain from lists (of natural numbers) to natural
numbers; then it applies the Kenzo function dgop*dgop to compute the compo-
sition of degeneracy lists (the ACL2 reification and verification of these Kenzo
functions were dealt with in [10]). Let us remark that the ACL2 verified code is
the Kenzo code with the sole transformation depicted in Figure 1.

Each function presented in Figure 2 has an equivalent for the EAT represen-
tation. Figure 3 uses them to state the theorem eat-property-3, which reflects
accurately the equation (3) of Definition 1. That theorem must be proven in
ACL2 from scratch, by using only the EAT models. Then the domain transfor-
mation theorems are applied, and the theorem kenzo-property-3 of Figure 3 is
obtained for free in ACL2. The same schema applies for the rest of properties in
Definition 1.

(defun face-kenzo (ss d dgop gmsm)
(if (1dlop-dgop-dgop d dgop)
(list (1dlop-dgop-dgop d dgop) gmsm)
(list (1dlop-dgop-dgop d dgop) (face ss (1dlop-dgop-indx d dgop) gmsm))))

(defun imp-face-kenzo (ss d q absm)
(declare (ignore q)) (face-kenzo ss d (car absm) (cadr absm)))

(defun degeneracy-kenzo (d dgop gmsm)
(list (dgop*dgop (dgop-ext-int (list d)) dgop) gmsm))

(defun imp-degeneracy-kenzo (ss d q absm)
(declare (ignore ss q)) (degeneracy-kenzo d (car absm) (cadr absm)))

Fig. 2. ACL2 definition of Kenzo operators over abstract simplexes

(defthm eat-property-3
(implies (and (< i j) (imp-inv-eat ss q absm)))
(equal (imp-degeneracy-eat ss (- j 1) (- q 1) (imp-face-eat ss i q absm))
(imp-face-eat ss i (+ q 1) (imp-degeneracy-eat ss j q absm)))))

(defthm kenzo-property-3
(implies (and (< i j) (natp j) (natp i) (imp-inv-kenzo ss q absm))
(equal (imp-degeneracy-kenzo ss (- j 1) (- q 1) (imp-face-kenzo ss i q absm))
(imp-face-kenzo ss i (+ q 1) (imp-degeneracy-kenzo ss j q absm)))))

Fig. 3. A Kenzo property from an EAT property

4.2 A generic simplicial set theory

The strength of Theorem 3 relies on the few preconditions needed in order to
prove that a Kenzo object is a simplicial set. It is worth providing an ACL2 tool
such that, when a user proves the preconditions in ACL2, the system generates
automatically the complete proof.

To this aim, a generic instantiation tool [9] has been used. This tool provides
a way to develop a generic theory and to instantiate the definitions and theorems
of the theory for different implementations, in our case different Kenzo objects.

We must specify our simplicial sets generic theory, by means of an ACL2 tool
called encapsulate. The signatures of the encapsulated functions are as follows:

— (face * * *): to compute the face of a geometric simplex,

— (dimension *): to compute the dimension of a simplex,

— (canonical *): to determine if an object is a simplex in canonical form,

— (member-ss * *): to know if the second argument is a simplex of the first
one, a simplicial set.

To finish our generic model we have to assume the properties of Figure 4
(these properties correspond with hypothesis of Theorem 3) and to prove them
with respect to a witness, to ensure that the consistency of the logical world is
kept.

(defthm faceoface
(implies (and (natp i) (matp j) (< i j) (canonical gmsm))
(equal (face ss i (face ss j gmsm)) (face ss (- j 1) (face ss i gmsm)))))

(defthm face-dimension
(implies (and (canonical gmsm) (natp i) (< i (dimension gmsm)))
(equal (dimension (face ss i gmsm)) (1- (dimension gmsm)))))

(defthm face-member
(implies (and (canonical gmsm) (member-ss ss gmsm) (natp i) (< i (dimension gmsm)))
(member-ss ss (face ss i gmsm))))

(defthm natp-dimension
(implies (canonical gmsm)
(natp (dimension gmsm))))

Fig. 4. Assumed axioms

Once the generic theory has been built, producing a book? (for further ref-
erence, let us name this book by generic-kenzo-properties-imp), if a user gives
instances for the previous definitions and proves for them the theorems in Fig-
ure 4, ACL2 produces a certification ensuring that all the properties of a sim-
plicial set hold, achieving a proof of Theorem 3 for these instances. Let us note
the importance of the automatic generation of the proof by means of some data:
from 4 definitions and 4 generic theorems the instantiation tool generates (and
instantiates) 15 definitions and 375 theorems, in addition to 77 definitions and
601 theorems which are included from other books. In this way, the hard task
of proving that a Kenzo object is a simplicial set from scratch can be relaxed to
introduce 4 definitions and to prove 4 theorems.

4.3 Obtaining ACL2 correctness certifications for concrete Kenzo
simplicial sets families

We have applied the previous infrastructure to two families of simplicial sets
in Kenzo: spheres (indexed by a natural number n, with n > 0) and simplicial
sets coming from finite simplicial complexes (here, each space in the family is
determined by a list of maximal simplexes).

If our intention is simply to prove the correctness of finite spaces like the
previous ones, one strategy could be to verify the Kenzo function which is used
to generate this kind of simplicial sets, called build-finite-ss. Nevertheless, our
aim is also to provide proofs for infinite dimensional spaces which are offered by
Kenzo to the user to initiate computations. Examples are Eilenberg-MacLane
spaces (see [11]) and the universal simplicial set, usually denoted by A (this

2 Book refers in the ACL2 jargon to a file containing definitions and statements that
have been certified as admissible by the system.

particular space already played an important role in the ACL2 proof of Propo-
sition 1 in [1]). To reach this objective, our approach is more general, as it can
be applied to any simplicial set, regardless of its dimension.

We now explain how the generic tool is instantiated in the particular case of
spheres. Spheres are produced in Kenzo by invoking the function sphere over a
positive natural number n. The constructed object contains, in particular, a slot
with a A-term computing the faces of each simplex in the given sphere.

Consider that we want to write an ACL2 book ss-sphere.lisp which gener-
ates a proof of the fact that spheres with this Kenzo implementation are sim-
plicial sets, through the functions and properties of the generic theory. To this
aim, we include the following: (include-book "generic-kenzo-properties—imp").
This event generates definstance-*simplicial-set-kenzo*, a macro which will
be used to instantiate the events from the generic book. It is now needed to
define the counterparts of the generic functions. For instance, the counterpart of
the function face will be called face-sphere, and will be, essentially, the A-term
previously evoked. Later on, the statements presented in the previous subsec-
tion in Fig. 4 must be also proven. For instance, the following theorem must be
proven.

(defthm faceoface-sphere
(implies (and (natp i) (matp j) (< i j) (canonical-sphere gmsm))
(equal (face-sphere n i (face-sphere n j gmsm))
(face-sphere n (+ -1 j) (face-sphere n i gmsm)))))

Finally we instantiate all the events from *simplicial-set-kenzo*, simply
by this macro call:

(definstance—*simplicial—set—kenzo*

((face face-sphere) (canonical canonical-sphere)

(dimension dimension-sphere) (member-ss member-ss-sphere))
"-sphere")

At this moment, new instantiated definitions and theorems are available in
the ACL2 logical world, proving that Kenzo spheres satisfy all the conditions of
Definition 1.

5 Conclusions and future work

A framework to prove the correctness of simplicial sets as implemented in the
Kenzo system has been presented. As examples of application we have given a
complete correctness proof of the implementation in Kenzo of spheres and of
simplicial sets coming from simplicial complexes (modulo a safe translation of
Kenzo programs to ACL2 syntax) has been done. By means of the same generic
theory the correctness of other Kenzo simplicial sets can be proved.

Some parts of the future work are quite natural. With the acquire experience,
the presented methodology could be extrapolated to other algebraic Kenzo data
structures. So, this work can be considered a solid step towards our objective of
verifying in ACL2 first order fragments of the Kenzo computer algebra system.
Nevertheless, it is not evident how ACL2 could be used to certify the correctness

of constructors which generate new spaces from another ones because, as was
explained in the Introduction, higher-order functional programming is involved.

In a different line, we want to integrate ACL2 certification capabilities in our
user interface fKenzo [6]. The idea is to interact in a same friendly front-end
with Kenzo and ACL2. For instance, and closely related to the contributions
presented in this paper, the user could give information to construct a new
simplicial set with Kenzo. In addition, he could provide minimal clues to ACL2
explaining why his construction is sensible (technically, he should afford the
system with the ACL2 hypothesis of Theorem 3); then ACL2 would produce a
complete proof of the correctness of the construction. This kind of interaction
between computer algebra and theorem provers would be very valuable, but
severe difficulties related to finding common representation models are yet to be
overcome.

References

1. M. Andrés, L. Lambén, J. Rubio, and J. L. Ruiz-Reina. Formalizing Simplicial
Topology in ACL2. Proceedings ACL2 Workshop 2007. University of Austin, pages
34-39, 2007.

2. J. Aransay, C. Ballarin, and J. Rubio. A mechanized proof of the Basic Perturba-
tion Lemma. Journal of Automated Reasoning, 40(4):271-292, 2008.

3. J. Aransay, C. Ballarin, and J. Rubio. Generating certified code from formal proofs:
a case study in homological algebra. Formal Aspects of Computing, 22(2):193-213,
2010.

4. X. Dousson, F. Sergeraert, and Y. Siret. The Kenzo program. Institut Fourier,
Grenoble, 1998. http://wuw-fourier.ujf-grenoble.fr/~sergerar/Kenzo.

5. J. Heras. ACL2 verification of Kenzo simplicial sets, 2010. http://www.unirioja.
es/cu/joheras/ss-tool.html.

6. J. Heras, V. Pascual, and J. Rubio. Using Open Mathematical Documents to in-
terface Computer Algebra and Proof Assistant systems. Lecture Notes in Artificial
Intelligence, 5625:467-473, 2009.

7. M. Kaufmann and J. S. Moore. ACL2 Home Page. http://www.cs.utexas.edu/
users/moore/acl2/.

8. L. Lambén, V. Pascual, and J. Rubio. An object-oriented interpretation of the
EAT system. Applicable Algebra in Engineering, Communication and Computing,
14(3):187-215, 2003.

9. F. J. Martin-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A Generic
Instantiation Tool and a Case Study: A Generic Multiset Theory. Proceedings of
the Third ACL2 Workshop. University of Grenoble, France, pages 188-203, 2002.

10. F.J. Martin-Mateos, J. Rubio, and J. L. Ruiz-Reina. ACL2 verification of simplicial
degeneracy programs in the Kenzo system. Lecture Notes in Computer Science,
5625:106-121, 2009.

11. J. P. May. Simplicial objects in Algebraic Topology, volume 11 of Van Nostrand
Mathematical Studies. 1967.

12. J. Rubio, F. Sergeraert, and Y. Siret. EAT: Symbolic Software for Effective Ho-
mology Computation. Institut Fourier, Grenoble, 1990. http://www-fourier.
ujf-grenoble.fr/~sergerar/Kenzo/#Eat.

13. F. Sergeraert. The computability problem in Algebraic Topology. Advances in
Mathematics, 104:1-29, 1994.

