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Abstract Automation and reliability are the two main requirements when
computers are applied in Life Sciences. In this paper we report on an ap-
plication to neuron recognition, an important step in our long-term project
of providing software systems to the study of neural morphology and func-
tionality from biomedical images. Our algorithms have been implemented in
an ImageJ plugin called NeuronPersistentJ, which has been validated exper-
imentally. The soundness and reliability of our approach are based on the
interpretation of our processing methods with respect to persistent homology,
a well-known tool in computational mathematics.

Keywords: Neuron tracing; Dendrite recognition; Persistent Homology;
Algebraic Topology.

1 Introduction

The pioneer works of Ramón y Cajal suggested that neuronal morphology and
physiology were intrinsically correlated. The specificity of connections and in-
formation flux, as Cajal proposed, were closely dependent of neuronal struc-
ture [3].

Neuronal reconstruction and recognition were, since Cajal’s work, hindered
by a similar problem: the discerning of a single neuron over hundreds of mil-
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lions. Several staining techniques are employed to identify a single neuron [22];
for instance, Golgi staining, iontophoretic intracellular injection [10,1] and
Diolostic gun [13]. The use of optical and confocal microscopy and digital
reconstruction of neuronal morphology has become a powerful technique for
investigating the nervous system structure, providing us with a large scale
collection of images.

On the other hand, dendritic neuronal trees and axonal growing are in-
volved in neuronal computation and brain functions. Dendritic growing and
axonal pathfinding are modified during brain development [15,26] neuronal
plasticity process [12] and neural disorders such autism [4] or degenerative
diseases such Alzheimer; for instance, in this neurodegenerative process brains
are characterized by the presence of numerous atrophic neurons near the amy-
loidal plaques [27,11]. Therefore, visualization and analysis of neuronal mor-
phology and structure is of a critical importance to elucidate physiological
changes.

The majority of reconstruction available software are manual or semiauto-
matic (see [19]), in which axonal and dendritic process are drawing by hand
and consequently are not suitable for the analysis of large arrays of data sets.
Subsequently the traces would transform into a geometrical format suitable for
quantitative analysis and computational modeling. Algorithmic automation of
neuronal tracing promises to increase the speed, accuracy, and reproducibility
of morphological reconstructions. In this way, large scale analysis is feasible
and would allow a high throughput strategy for the study of nervous system
morphology in pharmacology or degenerative diseases [8]. The properties of op-
tical microscopes images make it difficult to identify and automatically trace
dendrites accurately, the presence of noise and biological contaminations, i.e.
dendritic segments from neighbors neurons make difficult the digital encoding
and reconstruction of a single neuronal structure.

To solve these problems, here, we employ geometric persistence models to
extract the dendrites and neuronal morphology from a series of inmunohis-
tochemical images. The application developed is based on the idea that the
neuron that we want to study persists in all the levels of the z-stack. The
method presented in this paper is not just theoretical but also has been im-
plemented as a new plugin, called NeuronPersistentJ [17], for the systems
ImageJ [23] and Fiji [25].

The rest of this paper is organized as follows. The following section is
devoted to describe the cell cultures and image acquisition methods. The pro-
cedure that we have developed for tracking neuronal morphology and its in-
terpretation in terms of persistent homology is presented in Section 3. The
experimental results obtained with our software are discussed in Section 4.
The paper ends with a discussion section and the bibliography.
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2 Methods

2.1 Cell cultures

Primary cultures of hippocampal neurons were prepared from postnatal (P0-
P1) rat pups as described previously in [2,20,7]. Briefly, glass coverslips (12
mm diameter) were coated with poly-L-lysine (100 µg/ml) and laminin (4
µg/ml). In brief, hippocampal neurons were seeded at 15000/cm2 in culture
medium consisting on Neurobasal medium (Invitrogen, USA) supplemented
with glutamine 0.5 mM, 50 mg/ml penicillin, 50 units/ml streptomycin, 4%
FBS and 4% B27 supplement (Invitrogen). At 4, 7, 14 and 21 days in culture,
100 µl (from a 500 ml total) of culture medium were replaced by 120 ml of fresh
medium. At day 4, 4 µM of cytosine-D-arabinofuranoside was added to prevent
overgrowth of glial cells. Electroporation prior to plating was achieved using a
square pulse electroporator (GenePulseXCell, BioRad). Usually, 4× 106 cells
resuspended in 400 µl of volumen, were mixed with 10 µg plasmid (PDGF-
GFP-Actin) and electroporated following the following protocol: Voltage 200
V, Capacitance 250 µF in 400 into a 4 mm cuvette.

The expression vector encoding the protein chimeric with the N-terminus
of chick b-actin under the control the platelet-derived growth factor promoter
region was kindly provided by Yukiko Goda [6].

2.2 Imaging and data analysis

Culture plates were mounted in the stage of a Leica DMITCS SL laser scan-
ning confocal spectral microscope (Leica Microsystems Heidelberg, GmbH)
with Argon laser attached to a Leica DMIRE2 inverted microscope. For vi-
sualization and reconstruction of GFP-Actin, z-stacks images were acquired
using 63x oil immersion objective lens (NA 1.32), 488 nm laser line, excitation
beam splitter RSP 500, emission range detection: 500− 600 nm, pixel size of:
58 nm × 58 nm and confocal pinhole set to 1 Airy units and 1, 01 µm between
planes. The maximum intensity projection is computed from the z-stack.

3 Algorithmic background and method

3.1 The method

Our method to detect the neuronal structure from images, like the one of
Figure 1(a), can be split into two steps, which will be called respectively salt-
and-pepper removal and persistent. In the former one, we reduce the salt-and-
pepper noise, and in the latter one we dismiss the elements which appear in the
image but which are not part of the structure of the main neuron (astrocytes,
other neurons and so on).

In order to carry out the task of reducing the salt-and-pepper noise, we ap-
ply the following process both to the images of the stack and to the maximum
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Fig. 1 A 21 days in culture rat hippocampal neuron in culture, transfected with Actin-
GFP. (a) Maximum intensity projection from a z-stack. (b) Median filter of the same image.
(c) Huang’s thresholding method applied to the same image. Scale bar 5 µM.

intensity projection image. Firstly, we apply a low-pass filter [5] to the images.
In our case, the filter which fits better with our problem is the median one,
since such a filter reduces speckle noise while retaining sharp edges. The filter
length is set to 10 pixels for the situation described in Section 2, this value
has been pragmatically determined and it is the only parameter of the whole
method which must be changed if the acquisition procedure is modified. The
result produced for the maximum intensity projection image of Figure 1(a) is
shown in Figure 1(b).

Afterwards, we obtain binary images using Huang’s method [14]. This pro-
cedure automatically determines an adequate threshold value for the images.
Applying that method to the image of Figure 1(b), we obtain the result de-
picted in Figure 1(c).

However, in the image of Figure 1(c) we can see elements which does not
belong to the main neuronal structure. Let us explain how we manage to
remove those undesirable elements.

It is worth noting that in every slide of a z-stack appears part of the
neuronal structure. On the contrary, irrelevant elements just appear in some
of the slides. This will be the key idea of our method.

More concretely, we proceed as follows. As we have explained previously,
we apply the salt-and-pepper removal step to all the slides of the z-stack, the
result of that in our case study can be seen in Figure 2.

In the persistent step, we firstly construct a filtration of the binary image
associated with the maximum projection image. A monochromatic image, D,
can be seen as a set of black pixels (which represent the foreground of the
image), and a filtration of D is a nested subsequence of images D0 ⊆ D1 ⊆
. . . ⊆ Dm = D.

In order to construct a filtration of the binary image associated with the
maximum projection image we proceed as follows. Dm is the maximum pro-
jection image. Dm−1 consists of the connected components of Dm whose in-
tersection with the first slide of the stack is non empty. Dm−2 consists of the
connected components of Dm−1 whose intersection with the second slide of
the stack is non empty, and so on. In general, Dm−n consists of the connected
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Fig. 2 Processed median and Huang’s filter of each z-stack plane from Figure 1 neuron.

components of Dm−n+1 whose intersection with the n-th slide of the stack
is non empty. In this way, a filtration of the maximum projection image is
obtained, see Figure 3.

As we know that the neuron appears in all the slides of the stack, the
component D0 of our filtration will be the structure of the neuron. As a final
remark, we can notice that the construction of the filtration reaches a point
where it is stable; that is, a level of the filtration Di of the filtration such
that Dj is equal to Di for all 0 ≤ j < i. An example can be seen in the
components D0 to D4 of Figure 3. This observation will be important in the
next subsection.

3.2 Interpretation in terms of persistent homology

The persistent adjective of the second step of the method presented in the
previous subsection comes from the nice interpretation which can be given
in terms of the persistent homology theory [9], a branch of Algebraic Topol-
ogy [18]. In a nutshell, persistent homology is a technique which allows one to
study the lifetimes of topological attributes. A detailed description of persistent
homology can be seen in [9,28], here we just present the main ideas.

One of the most important notions in Algebraic Topology is the one of ho-
mology groups. The homology group in dimension n of an object X, denoted
by Hn(X), is a set which consists of the n dimensional holes of X, also called
n dimensional homology classes of X. To be more concrete, H0(X) measures
the number of connected components of X, and the homology groups Hn(X),
with n > 0, measure higher dimensional connectedness. In the case of 2 di-
mensional monochromatic images, the 0 and 1 dimensional homology classes
are, respectively, the connected components and the holes of the image; there
are not homology classes in higher dimensions.
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Fig. 3 A series of pictures depicting the process of filtration from the z-stack of Figure 1.
From D0 to D8: Starting on D0 and following to D8 each level of the filtration represent the
containing, ⊆ information from the previous level. D8 contains all the connected components
from the image.

Now, given a 2 dimensional monochromatic digital image D and a filtration
D0 ⊆ D1 ⊆ . . . ⊆ Dm = D of D, a n-homology class α is born at Di if it
belongs to the set Hn(Di) but not to Hn(Di−1). Furthermore, if α is born
at Di it dies entering Dj , with i < j, if it belongs to the set Hn(Dj−1) but
not to Hn(Dj). The persistence of α is j − i. We may represent the lifetime
of a homology class as an interval, and we define a barcode to be the set of
resulting intervals of a filtration.

In the case of the filtrations presented in the previous subsection, the out-
standing barcode is the one of 0 dimensional homology classes. It is worth
noting that the structure of the neuron lives from the beginning to the end of
the filtration while external elements are short-lived.

For example, the barcode associated with the filtration of Figure 3 is the
one depicted in Figure 4.

Let us analyze the information which can be extracted from such barcode.
There are several connected components which live is reduced to the maxi-
mum projection image, the green connected components of Figure 5, and can
be considered as noise. Notwithstanding that the components x1, x2 and x3
(which are respectively the red, yellow and orange connected components of
Figure 5) live a bit longer than green components; they are also short-lived; so,
they cannot be part of the main structure of the neuron, it is likely that these
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Fig. 4 Barcode summary of the filtration process from Figure 3 obtained using NeuronPer-
sistentJ

Fig. 5 Summary picture of the connected components from Figure 1 projection. Color code:
green, components that last one plane. Orange, 2 planes. Yellow, three planes. Red, four
planes and blue, components that are present in the eight planes.

components come from other biological elements. Eventually, we have the x0
component, the blue connected component of Figure 5, which lives from the
beginning to the end of the filtration; therefore, as it lives from the beginning
to the end of the filtration, it represents the structure of the neuron.

We have devised an efficient algorithm to obtain the barcode of 0 dimen-
sional homology classes associated with the images that we have presented
in the previous subsection. This method takes advantage of both the way of
building the filtration and the stability of such a filtration. Firstly, we obtain
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the connected components of the level 0 of the filtration, D0; this is a well-
known process called connected component labeling which can be solved using
different efficient algorithms, see [21,16]. Such connected components are 0
dimensional homology classes which are born at D0 and live until the end of
the filtration, this fact comes from the filtration construction process. Now,
we focus on the level 1 of the filtration, D1. As we have seen at the end of the
previous subsection, the filtration has a stability level; therefore, we consider
two feasible cases. If D0 is equal to D1, we can pass to the next level of the
filtration. Otherwise, we obtain the connected components which appear at
D1 but not at D0, such components are 0 dimensional homology classes which
are born at D1 and live until the end of the filtration. In order to check if
D0 and D1 are equal, we use the MD6 Message-Digest Algorithm [24]. Such
algorithm is a cryptographic hash function which given an image returns a
unique string; therefore, if the result produced for D0 and D1 is the same, we
can claim that both images are equal. This procedure is faster than comparing
pixel by pixel the images.

The above process is iterated for the rest of the levels of the filtration.
In general, if we are in the level i of the filtration, there are two cases: if
Di−1 = Di (this is tested with MD6 algorithm) then pass to level i + 1;
otherwise the connected components which appear in Di but not in Di−1 are
the 0 dimensional homology classes which are born at Di and live until the
end of the filtration. In this way, we can obtain the barcode of 0 dimensional
homology classes without explicitly computing persistent homology.

4 Experimental results

The procedure to detect neural structure presented in the previous section
has been implemented as a new plugin for ImageJ [23] called NeuronPersis-
tentJ [17]. Figure 6 illustrates the results which are obtained with Neuron-
PersistentJ using three different examples considering 10 as the length of the
median filter. As can be seen in such examples both the noise and structures
of neighbor neurons are removed from the final result.

We have validated our method and plugin with a set of image stacks of
real 3D neuron dendrites acquire using the procedure explained in Section 2.
In order to test the suitability of our software, we have compared a manual
selection of the region of interest with the results obtained using NeuronPer-
sistentJ. The manual selection was performed using the polygonal selection
tool from ImageJ. In order to compare the two tracings (the manual and the
one obtained using NeuronPersistentJ), we have considered both the accuracy
and the efficiency.

The accuracy of the plugin is measured with the three following relevant
features: (1) the number of branches obtained with the manual tracing com-
pared with the number of branches detected with NeuronPersistentJ, (2) the
area of the region selected manually recognized with NeuronPersistentJ (that
is, the intersection, ∩, of the region selected manually and the one obtained
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Fig. 6 Top (from a to c): Three examples of dendritic fragments of hippocampal neurons
in culture transfected with Actin-GFP. Bottom (from a’ to c’): Structures obtained with the
NeuronpersistentJ application with a median filter 10.

with NeuronPersistentJ) and (3) the area of the region detected by Neuron-
PersistentJ which does not appear in the manual tracing with respect to the
area which does not contain the manual tracing (i.e. the area of the region
recognized by NeuronPersistentJ minus, \, the region manually selected with
respect to the complement, C , of the region manually selected). To compute
the percentages associated with these features, we use the following formulas.

(1) =
Number of branches of NeuronPersistentJ tracing

Number of branches of manual tracing
× 100

(2) =
Area (NeuronPersistentJ tracing ∩ Manual tracing)

Area (Manual tracing)
× 100

(3) =
Area (NeuronPersistentJ tracing \ Manual tracing)

Area((Manual tracing)C)
× 100

It is worth noting that the higher the values for both (1) and (2) the better
since this means that we are close to detect all the branches and the whole
region of interest. On the contrary, the value of (3) should be small in order
to avoid the inclusion of regions which are not relevant.

The experimental results that we have obtained with our dataset, consider-
ing different lengths for the median filter, using NeuronPersistentJ are shown
in Table 1. As we are seeking an equilibrium between the values of the features
(2) and (3), the best value for the length of the filter is 10.
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hhhhhhhhhhhhlength of filter
percentage

(1) (2) (3)

5 96.2% 78.06% 4.43%
10 98.2% 93.3% 4.19%
15 98.7% 94.9% 6.25%

Table 1 Percentages of accuracy of NeuronPersistentJ. (1) Percentage of components de-
tects with NeuronPersistentJ versus manual tracking. (2) Percentage of area detected with
NeuronPersistentJ versus manual tracking. (3) Percentage of area draw by NeuronPersin-
tentJ not present in the manual tracking. Percentage is the mean value from eight images.

Let us consider the efficiency of the plugin. As we have explained previ-
ously the manual method to select the region of interest consists in using the
polygonal tool of ImageJ in the maximum projection image. This manual pro-
cedure takes approximately three minutes per neuron. On the contrary, the
results are obtained in half the time using NeuronPersistentJ. This is quite
relevant since in order to test the effect of some experimental treatments over
neurons we do not study just one neuron but batteries of neurons. Therefore,
the use of NeuronPersistentJ means a decreasing of the time invested to detect
the neuronal structure.

In view of the results, our method can be considered as a good approach,
both from the accuracy and efficiency point of view, to automatically trace
neuronal morphology from z-stacks.

5 Discussion

The geometric persistence method reported here has been used to develop
an ImageJ/Fiji plugin able to extract the neuronal structure. In particular,
the contour of the neuron is segmented and therefore the region of interest is
recognized.

The application is based on the fact that the neuron structure is present,
“or persists”, in all the levels of z-stack images. Our plugin, automatically,
generates a digital 2D representation of a three-dimensional neuron in the
final picture. After the extraction process, structures from neighbor neurons,
background noise and unspecific staining are eliminated from the final image.

The plugin works analyzing every optical plane and comparing the maxi-
mum intensity projection with the slides of the z-stack. After a preprocessing
step where the salt-and-paper noise is removed, using the median filter, from
the slides of the z-stack and the maximum intensity projection, the plugin
removes from the maximum intensity projection the elements which does not
live enough (i.e. the elements which do not appear in all the slices of the stack)
obtaining as result the structure of the neuron.

Histological and imaging protocols are crucial to determine the number of
neurons that would be stained and their relative signal to the background of the
images. In this report we have chosen the transfection of a GFP protein (Actin-
GFP) in hippocampal neurons in culture. Electroporation after plating renders
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a large number of transfected cells 48 hours after electroporation [20]. During
the successive days in culture neuronal density of transfected cells decay slowly
to a final density of 20 − 30 neurons in a 12 mm coverlips. Therefore, this
culture conditions allows the growing of fully develop neurons withing a broad
distance from another transfected neuron. The high GFP quantal yield, results
in a excellent contrast staining, improving signal/background ratio. Moreover
the plasmid vector employed a PDGF-neuronal promoter, ensuring physiologic
levels of expression; as it was previously reported cells could undergo Actin-
GFP expression without further developmental problems [20].

To validate our method we have compared a manual surface tracking em-
ploying the polygonal selection from ImageJ. The validation uses as a control
the total area delimiting by a manual tracing and compares it with the area
delimited by NeuronPersistentJ. It is worth noting that the result of the com-
parison depends on the value of the length of the low pass filter selected; large
values will led to a broad structure, on the contrary small values will produce
sharp and more defined images. Employing this validation method our results
indicate that NeuronPersistentJ is suitable to carry out the recognition of the
neuron structure.

The number of manipulations during the reconstruction process is always
a drawback for a fully automatic process. NeuronPersitentJ requires a set of
binary images; thus, selection of the length of a low-pass filter value that
retains the maximal information from the z-stack pictures is the only param-
eter determined by the experimenter and clearly it depends on the images
conditions. NeuronPersitentJ, as other public or commercial available plug-
ins, works better with highly contrasted images, such the ones obtained by
inmunofluorescence. The topological approach employed here and the use of
binary pictures is independent from the nature of the picture. However, as
mentioned, highly contrasted pictures and a clear and continuous staining are
key elements for a fine reconstruction.

Skeletonization of neuronal structure has been a popular solution to neu-
ronal reconstruction and structure extraction [19]. Most of the public and com-
mercial solutions available require a manual or semi manual process. Drawing
the structure, connecting the dendritic fragments or selecting end or branching
points are typical approximations. NeuronPersitentJ renders an automatically
structure into a 2D image that contains only the connected dendrites of the
neuron. The image can easily been implemented to an automatic Sholl analysis
to quantify changes in dendritic morphology. Even though, our plugin must
be consider as a first step in the full process of reconstruction.

As mentioned, NeuronPersistentJ would be used a basic towards the au-
tomatic detection and clasification of diferent features of neuronal structure,
such spine density or dendritic arborization.
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Information Sharing Statement

NeuronPersistentJ is available through the ImageJ wiki (http://imagejdocu.
tudor.lu/) using the link http://imagejdocu.tudor.lu/doku.php?id=plugin:

utilities:neuronpersistentj:start. NeuronPersistentJ is open source; it
can be redistributed and/or modified under the terms of the GNU General
public License.
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