Homological Processing of Biomedical digital images: automation and certification*

Jónathan Heras, Gadea Mata, María Poza and Julio Rubio

Department of Mathematics and Computer Science University of La Rioja Spain

June 27, 2011

J. Heras, G. Mata, M. Poza and J. Rubio Homological Processing of Biomedical digital images

^{*}Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847

Table of Contents

- 2 Automating the process
- 3 Main problems
- 4 Conclusions and further work

Table of Contents

2 Automating the process

- 3 Main problems
- 4 Conclusions and further work

Motivation: Synapses counting

- Synapses are the points of connection between neurons
- Relevance: Computational capabilities of the brain
- The different number of synapses may be an important asset in the treatment of neurological diseases

Manual processing to count synapses

• Apply two different antibody markers, bassoon and synapsin

Manual processing to count synapses

• Process the images in order to count the synapses (ImageJ)

Manual processing to count synapses

• Overlap both images

Manual processing to count synapses

• The synapses are manually counted one by one

Problems and goal to count synapses

Problems

- Huge time investment
- This process is applied over a battery of neurons

Goal

Provide a reliable and automatic method for counting synapses

in a neuron

^Preprocessing the image Algebraic Topology for digital images analysis General method

Table of Contents

2

Automating the process

- Preprocessing the image
- Algebraic Topology for digital images analysis
- General method

3 Main problems

Preprocessing the image Algebraic Topology for digital images analysis General method

Table of Contents

2

Automating the process

- Preprocessing the image
- Algebraic Topology for digital images analysis
- General method

3 Main problems

4 Conclusions and further work

Preprocessing the image Algebraic Topology for digital images analysis General method

Count synapses automatically

• New ImageJ plugin called SynapCountJ

Preprocessing the image Algebraic Topology for digital images analysis General method

Count synapses automatically

- New ImageJ plugin called SynapCountJ
- Steps
 - Determine the neuron morphology from one of those pictures (NeuronJ plugin)

Preprocessing the image Algebraic Topology for digital images analysis General method

Count synapses automatically

- New ImageJ plugin called SynapCountJ
- Steps
 - Determine the neuron morphology from one of those pictures (NeuronJ plugin)
 - Overlap the images with the two markers with the one with the structure (SynapCountJ)

Preprocessing the image Algebraic Topology for digital images analysis General method

Count synapses automatically

- New ImageJ plugin called SynapCountJ
- Steps
 - Determine the neuron morphology from one of those pictures (NeuronJ plugin)
 - Overlap the images with the two markers with the one with the structure (SynapCountJ)
 - Invert the colors to show the synapses as black points

J. Heras, G. Mata, M. Poza and J. Rubio Homological Processing of Biomedical digital images

Preprocessing the image Algebraic Topology for digital images analysis General method

Table of Contents

2

Automating the process

- Preprocessing the image
- Algebraic Topology for digital images analysis
- General method

3 Main problems

4 Conclusions and further work

Preprocessing the image Algebraic Topology for digital images analysis General method

The method

Digital Image

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

The method

J. Heras, G. Mata, M. Poza and J. Rubio Homological Processing of Biomedical digital images

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

$$0 \leftarrow \mathbb{Z}^{16} \xleftarrow{d_1} \mathbb{Z}^{32} \xleftarrow{d_2} \mathbb{Z}^{16} \leftarrow 0$$

Preprocessing the image Algebraic Topology for digital images analysis General method

Compute Homology groups

- Problem of diagonalizing matrices
- Compute the Smith Normal Form

Preprocessing the image Algebraic Topology for digital images analysis General method

Properties from homology groups

- H_0 measures the number of connected components
- H_1 measures the number of holes

$$H_0(\text{image with the points}) = \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{\mathbb{Z}^{209}}$$

Preprocessing the image Algebraic Topology for digital images analysis General method

Table of Contents

Automating the process

- Preprocessing the image
- Algebraic Topology for digital images analysis
- General method

3 Main problems

4 Conclusions and further work

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

Preprocessing the image Algebraic Topology for digital images analysis General method

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Table of Contents

- 2 Automating the process
- 3 Main problems
- 4 Conclusions and further work

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Problems

- Size of the images
- Correctness of the results

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Problems

- \bullet Size of the images \rightarrow Discrete Morse theory
- \bullet Correctness of the results \rightarrow Certification of the programs

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of chain complex

- Reduce information keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of chain complex

- Reduce information keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

 $\mathbf{0} \leftarrow \mathbb{Z}^{16} \leftarrow \mathbb{Z}^{32} \leftarrow \mathbb{Z}^{16} \leftarrow \mathbf{0}$

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of chain complex

- Reduce information keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

 $0 \to 0 \to \mathbb{Z} \to \mathbb{Z} \to 0$

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Discrete Morse Theory

Definition

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ be a free chain complex with distinguised \mathbb{Z} -basis $\beta_p \subset C_p$. A (p-1)-cell σ is a *face* of a *p*-cell τ if the coefficient of σ in $d\tau$ is non-null. It is a *regular face* if this coefficient is +1 or -1

Definition

A discrete vector field on C_* is a collection of pairs $V = \{(\sigma_i, \tau_i)\}_{i \in \beta}$ satisfying the conditions:

- Every σ_i is some element of β_p, in which case the other corresponding component τ_i ∈ β_{p+1}. The degree p depends on i and in general is not constant
- 2 Every component σ_i is a *regular face* of the corresponding component τ_i
- **③** A generator of C_* appears at most one time in V

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Discrete Morse Theory

Definition

A V-path of degree p is a sequence $\pi = ((\sigma_{i_k}, \tau_{i_k}))_{0 \le k < m}$ satisfying:

- Every pair $((\sigma_{i_k}, \tau_{i_k}))$ is a component of V and the cell τ_{i_k} is a *p*-cell
- Por every 0 < k < m, the component σ_{ik} is a face of τ_{ik-1}, non necessarily regular, but different from σ_{ik-1}

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{Z}$ is provided satisfying the property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Discrete Morse Theory

Definition

A cell χ which does not appear in a discrete vector field $V = \{(\sigma_i, \tau_i)\}_{i \in \beta}$ is called a *critical cell*

Vector-Field Reduction Theorem

Let $C_* = (C_p, d_p \beta_p)_p$ be a free chain complex and $V = \{(\sigma_i, \beta_i)\}_{i \in \beta}$ be an admissible discrete vector field on C_* . Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_p, d_p) \Longrightarrow (C_p^c, d_p')$ where $C_p^c = \mathbb{Z} [\beta_p^c]$ is the free \mathbb{Z} -module generated by the critical p-cells

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Discrete vector field over matrices

- 2D-images
- Chain complex associated with an image is finite

$$0 \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow 0$$

- Differential maps can be represented by integer matrices
- Reduction chain complex \rightarrow Reduction matrices

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Discrete vector field over matrices

Definition

A vector field V for a matrix $M \in Mat_{m,n}(\mathbb{Z})$ is a set of integer pairs $\{(a_i, b_i)\}_i$ satisfying these conditions:

$$\texttt{0} \ 1 \leq \mathsf{a_i} \leq \mathsf{m} \ \mathsf{and} \ 1 \leq \mathsf{b_i} \leq \mathsf{n}$$

- **2** The entry $M[a_i, b_i]$ is ± 1
- **3** The indices a_i (respectively b_i) are pairwise different

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of Chain Complex

Goal

- Let M_n be a finite matrix which represents the differential map d_n of C_*
 - Compute an admissible discrete vector field V from M_n
 - Obtain a new matrix M_n from M_n and V

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of Chain Complex

Goal

- Let M_n be a finite matrix which represents the differential map d_n of C_*
 - Compute an admissible discrete vector field V from M_n
 - Obtain a new matrix \widehat{M}_n from M_n and V

In our case, we have to reduce two matrices M_1 and M_2 . Compute the homology groups of C_* with \widehat{M}_1 and \widehat{M}_2 can be much faster.

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of Chain Complex

Algorithm 1

Input: an integer matrix M_n Output: an admissible discrete vector field V

Algorithm 2

Input: an integer matrix M_n Output: a reduced matrix \widehat{M}_n

• Implemented in Haskell

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Coq/SSReflect

- Coq
 - Theorem Prover tool
 - High-order logic
- SSReflect
 - Extension of Coq
 - Introduce new tactics and libraries
 - Used to formalize of the Four Colour Theorem

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of chain complex

Steps

- Translate our Haskell code into the Coq language
- Obefine the test functions to specify the properties which our programs must satisfy
- State and prove the lemmas which ensure the correctness of our programs

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of chain complex

Steps

- Translate our Haskell code into the Coq language
- 2 Define the test functions to specify the properties which our programs must satisfy
- State and prove the lemmas which ensure the correctness of our programs

Example: Let M be an integer matrix, (vectorCvd M) builds an admissible discrete vector field

Reduce the size: Discrete Morse theory Correctness of the results: Certification of the programs

Reduction of chain complex

Steps

- Translate our Haskell code into the Coq language
- Define the test functions to specify the properties which our programs must satisfy
- State and prove the lemmas which ensure the correctness of our programs

Example: Let M be an integer matrix, (vectorCvd M) builds an admissible discrete vector field

Lemma admissible-vf:

forall M, (int-matrix M) -> (admissible (vectorCvd M))

Table of Contents

- 2 Automating the process
- 3 Main problems
- 4 Conclusions and further work

Conclusions

- Methodology to study Biomedical images
- Programs partially verified with Theorem Prover tools
- Application to count synapses

Further work

- Verification of our *Haskell* programs by means of *Coq/SSReflect* is still an ongoing work
- Verification of Smith Normal Form of a matrix
- Find other applications of our homological tools in the Biomedical imaging context

Homological Processing of Biomedical digital images: automation and certification*

Jónathan Heras, Gadea Mata, María Poza and Julio Rubio

Department of Mathematics and Computer Science University of La Rioja Spain

June 27, 2011

J. Heras, G. Mata, M. Poza and J. Rubio Homological Processing of Biomedical digital images

^{*}Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847