Prufer domain

June 23, 2010

We consider integral domain. They are rings R with a decidable equality and such that
ab = 0 implies @ = 0 or b = 0. Equivalently, they are the subrings of field, where a field is a
ring with a decidable equality satisfying

a=0VvV3dbab=1

and 1 # 0. If K is a field, it is decidable whether an element a in K is invertible or not.

It may be convenient to formalize the notion of field as a ring with a decidable equality and
a function inv such that a inv(a) = 1 whenever a # 0, and taking inv(0) = 0.

Given a ring R one important problem we want to study is how to solve linear systems
over R. Given a rectangular matrix M over R we want to find a finite number of solutions
X1,..., X, of the system M X = 0 such that any solution is of the form a1 X1 +...+a,X,. We
say that the module of solutions of the system M X = 0 is finitely generated.

We can reformulate this with matrices. What we ask is to find a matrix L such that ML =0
and

MX =0 < 3JY. X=LY

A ring is coherent iff for any matrix M, we can find a matrix L such that this implication
holds.

For this, it is enough to consider the case where M has only one line. Indeed, assme that
for any 1 x n matrix M we can find a n x m matrix L such that ML =0 and M X = 0 iff X is
of the form LY. If we want to solve the system

() MX =...= MpX =0

where each M; is a 1 x n matrix. We first compute L; such that M; X = 0 iff X is of the form
L1X,. We compute then Lo such that MsL1X; = 0 iff X; is of the form L;X5. At the end
we obtain L1,..., L such that M1 X = ... = MpX =0 iff X is of the form L;... LY, and so
Ly ... Ly provide a system of generators for the system ().

Special cases: we can generate the solutions of a system ax = 0 (this is trivial if the ring is an
integral domain), and given two finitely generated ideals I = (a1, ...,a,) and J = (b1,...,by)
we can generate the intersection I N J. This is possible if the ring is coherent since we can look
at the system

AX —BY =0

with A is the 1 X n matrix (a1,...,a,) and B is the 1 x m matrix (b1,...,by). We can find a
finite number (X1,Y7),...,(X,,Y,) of generators. Then AXy,..., AX), generate I NJ. Another
system of generators is BY7,..., BY),.

Conversely, assume that R is an integral domain ring such that: the intersection of two
finitely generated ideal is finitely generated, then R is coherent. Then I claim that R is coherent.
Indeed, consider first the system

ax +by=20



By hypothesis we can find ¢1,...,t, such that
(@) N (=b) = (t1,...,tp)
We can then write t; = au; = —bv;. If we have ax 4+ by = 0 we can write ax = —by and so
axr = —by = Xx;t;

this implies x = Yz;u; and y = Ya;v;. Hence we have (u;, v;) as a system of generators for the
solutions of ax + by = 0.
Next, consider the system
ar +by+cz=0

By hypothesis we can find ¢1,...,t, such that
(@) N (=b,—c) = (t1,...,1p)

We can then write t; = au; = —bv; — cw;. If we have ax+by+cz = 0 we can write ax = —by—cz
and so
ar = —by — cz = Xx;t;

this implies x = Xx;u; and
by — Xzjv;) + c(z — Lxyw;) =0

We can then find e;, f; such that be; + cf; = 0 and
Y — Xxv; = Xyje;, 2 — Nriw; = 2y, f;

In this way we find the system of generators (u;,v;, w;) and (0, e;, f;).

The same argument actually shows that if R is an arbitrary ring (not necessarily an integral
domain) such that: the intersection of two finitely generated ideal is finitely generated, and for
any a the ideal {x € R | ax = 0} is finitely generated, then R is coherent.

Riesz space

The multiplicative monoid of an integral domain has the cancellation property: if ab = ac then
b = c. The structure of Riesz space plays a role both for GCD domain and for Priifer domain,
two rather different structures, and so it is nice to be explicit about this structure. One usually
uses an additive notation instead of a multiplicative notation when dealing with Riesz spaces.

Let us consider a commutative monoid M, + with a zero element 0 which has the cancellation
property: a + b= a + ¢ implies b = c.

We define a < b iff there exists ¢ such that a + ¢ = b. By the cancellation property a < b
iff d+a < d+b. We assume also that any two elements ¢ and b have a meet a A b. We write
al biff aNb < 0. We have a; and by such that a1 +aAb=a and by +a A b =b. We then
have a1 A by = 0. We can then check that the element

aVb=a; +aANb+b

is the least upper bound of a and b.
Dually, one can assume given the sup operation a V b and since a V b < a + b define a A b by

aVbt+aNnb=a+b



The main Lemma is Euclide’s Lemma: if a < b+ ¢ and a L ¢ then a < b. This is because
a<bt+aandsoa<b+cAha=0hb

The lattice M, A,V is then automatically distributive. Furthermore n(a A b) = na A nb.
Indeed, we write a1 +a Ab=a, by +a Ab= b and we have to show na; Anb; = 0. This follows
from a direct consequence of Euclide’s Lemma: if a L. b and a L ¢ then a L b+ ¢. Indeed
u=aA (b+c) satisfies v < a and so u L b and u L ¢. Since u < b+ c it follows from Euclide’s
Lemma that u = 0.

Bezout ring

A ring is a Bezout ring iff any finitely generated ideal is principal, i.e. generated by one element.

Main examples of Bezout rings are Z the ring of integers, and the ring K[X] of polynomials
with one variable.

In contrast, the ring K[X, Y] is not a Bezout ring since the ideal (X,Y") cannot be generated
by one element. The ring Z[X] is not a Bezout ring since the ideal (2, X') cannot be generated
by one element.

Both Z and K[X] are Euclidian domain: we have a norm |a| and if b # 0 we can find ¢
and r such that a = bg + r and |r| < |[b]. All we need to apply the Euclidian algorithm for
computing the ged g of a and b is then that the relation < on norms is well-founded. We then
have (a,b) = (g).

GCD domain

We say that an integral domain R is a GCD domain iff two nonzero elements a and b have a
ged, i.e. an element g such that g divides a and b and such that if ¢ divides a and b then ¢
divides g.

A fundamental result is that if R is a GCD domain then so is R[X]. This implies that the
rings Z[X1,..., X, and K[X,...,X,] are GCD domain.

The main Lemma in the proof of this result is Gauss Lemma. We define the G-content ¢(P)
of a polynomial P in R[X] to be the ged of the coefficients of P (this is well defined up to an
unit of R). We say that a polynomial P is G-primitive iff ¢(P) = 1.

Lemma 0.1 ¢(PQ) = ¢(P)c(Q). In particular, the product of two G-primitive polynomials is
G-primitive.

Priifer domain

The definition is very simple logically
Vab3Juvw. au=buAb(l—u)=aw

What really matters is that b divides a in R[1/u] and a divides b in R[1/(1 — u)].

An equivalent definition is that for any elements a and b we can find uy,...,u, such that
1= (uy,...,up) and a divides b or b divides a on each localisation R[1/u;].

From this, it follows that for any nonzero finitely generated ideal I we can find a nonzero
finitely generated ideal J such that IJ is principal.

Here is the idea of the algorithm: let aq,...,a, be (nonzero) generators of I, we can find
a m X n matrix (u;;) such that Yu; = 1 and w;ja; = wa;. This matrix is called a principal
localization matriz and can be computed for any Priifer domain.



We get then <U11, ce un1>I = <a1>

It follows that the monoid of (nonzero) finitely generated ideal has the cancellation property.
Indeed, if IJ = I K and I’ is such that II' = (a) we get aJ = aK and hence J = K.

An important other corollary (that was a crucial property for Dedekind) is that if 7 C J
then there exists K such that JK = I. For this, we compute J’ such that JJ' = (b). We have
then I.J" C (b) and we find K such that bK = I.J'. We have then bJK = I.JJ' = bl and hence
JK = I. Thus the order of the monoid operation: there exists K such that IK = J coincides
with the inclusion ordering J C [.

Since we have a sup operation (the sum of two finitely generated ideal is finitely generated)
we have a meet as well, and this gives an algorithm showing that in a Priifer domain, the
intersection of two finitely generated ideal is finitely generated. It follows that any Priifer
domain is coherent. More precisely, the algorithm for computing I N J is the following. We have
IJ C I+ J. But the corollary we have just seen, this implies that there exists K such that
IJ = K(I+J). One can then show K =1NJ.

Notice that K[X,Y] is a gcd domain which is not a Priifer domain.

Integral closure

The last step is to show that if R is a Bezout domain, of field of fraction K and L is an extension
of K, then the integral closure S of R inside K (i.e. the ring of elements of L integral over R)
is a Priifer domain.

For instance, the ring K[z,y] with 42> = 1 — 2 or the ring Z[/—5| are Priifer domain, and
hence are coherent. Hence we can find generators for solution of any system of homogeneous
equations over these rings.

Here is the idea of the algorithm. Given a and b that are nonzero and integral over R, the
element s = b/a is algebraic over K and hence satisfies an equation of the form

aps" +a1s" M+ ... +a,=0

with ag,...,a, in R. Since R is a Bezout domain, we can assume (ag, ..., a,) = 1.
The main remark is that the following elements are in S (integral over R). First agps is in S
because we have
(aps)™ + ai(aps)" ' + ... +ap ta, =0

Hence also ags + ap is in S. We can rewrite the original equation as
(ags +a1)s" ' +...4a, =0
It follows that (ags + a1)s is in S. At the end, we get that
ap, aps, aps+ a1, (aps +a1)s, (aps +ai)s+az, ...
are all in S. We have in S
(ap, aps, aps + a1, (aps+ai)s, (aps +ai)s +az, ...) = (ag,a1,...)=1

and a divides b or b divides a on each localization R[1/ap], R[1/aps], ... So we have shown
that S is a Priifer domain.



Strongly discrete

A very strong computational property of a ring is to be strongly discrete, that is, for any finitely
generated ideal I, we can decide the membership in I. If the ring is strongly discrete and
coherent, not only we can solve in a satisfactory way any homogeneous system M X = 0, but
we can even solve any system MX = A.

For a Prifer domain to be strongly discrete, it is enough that the divisibility relation is
decidable. To decide if z is in I we compute I’ such that I’ = (a). We have x in [ iff (x) C I
iff xI' C (a) and we can decide this if we can decide when an element is divisible by a.

In this case, the equality of finitely generated ideal is decidable as well as the inclusion
relation.



