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Context

Mathematical Knowledge Management (MKM)

Computation
Deduction
Communication

Algebraic Topology

Mathematical subject which studies topological spaces by
algebraic means
Applications in Coding theory, Robotics, Digital Image analysis

Kenzo

Computer Algebra system devoted to Algebraic Topology
developed by F. Sergeraert
Common Lisp package
Homology groups unreachable by any other means
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Communication Motivation

Motivation

Algebraic Topology Expert
Common Lisp Expert

}
⇒ Makes the most of Kenzo

Non Common Lisp Expert ⇒ Unfriendly front-end

Non Algebraic Topology Expert ⇒ Needs guidance
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Goal

Develop a system which increases Kenzo accessibility

Friendly front-end
Mediated access to Kenzo
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Communication Providing a mediated access to Kenzo

Providing a mediated access to Kenzo

Mediated access

Client Kenzo

Representation of mathematical knowledge

Independent of programming language
Easily interchangeable

}
⇒ XML⇒

 OpenMath
MathML
New language
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construction and computation requests

Includes some mathematical knowledge

Small Type System: CC, SS, SG, ASG

Some restrictions about arguments (Sn)
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Towards the whole framework

This architecture provides

Mediated access to Kenzo
Friendly front-end
but . . .

Desirable features

Different clients
Efficient
Extensible
Adaptable to different needs
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Towards Efficiency
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The Kenzo framework
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Including new Kenzo functionality

<code id="new-constructor">

<data format="Kf/internal-server"> new-constructor-is.lisp </data>

<data format="Kf/microkernel"> new-constructor-m.lisp </data>

<data format="Kf/external-server"> XML-Kenzo.xsd </data>

<data format="Kf/adapter"> new-constructor-a.lisp </data>

</code>
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Communication The whole framework

A distinguished client of our frameworks

A Graphical User Interface implemented in Common Lisp

Design decisions

Functionality (Common Lisp) + Structure (XUL) + Layout (stylesheet)

Guided by heuristics

Design of interaction: Noesis method

Object Selected in 
Main tab?

Is the object, X, a 
Simplicial Set?

[Yes]

Select Object X from a list of simplicial sets

[No]

[No]

[Yes]

Introduce the dimension,n, of the loop space

Is the dimension a 
natural number?

[No]

Construction of the loop space iterated n times of the object X

[Yes]

Error: Invalid Object

Error: Invalid dimension
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Communication The whole framework

A customizable GUI

Features

Extensibility
Adaptability

The Graphical User Interface is

client of Kenzo framework
client of plug-in framework

GUI organized through modules: basic and experimental

fKenzo
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Kenzo framework 
plug-in registry
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The whole system is called fKenzo
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Communication fKenzo

fKenzo: A tool adaptable to different needs

Beginner student of Algebraic Topology

Load and remove basic modules

Advanced student or researcher of Algebraic Topology

Load and remove basic modules
Load and remove experimental modules

Digital images
GAP
ACL2
. . .
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fKenzo summary

fKenzo

Integral assistant for Algebraic Topology
Constrains Kenzo functionality
Provides guidance in the interaction and a friendly front-end
Extensible
Adaptable to different needs

Our architecture can be applied in other contexts
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Computation

New Kenzo modules

Increase Kenzo computational capabilities

Simplicial Complexes
Digital Images
Pushout of Simplicial Sets

Integrated in fKenzo

Verified using ACL2
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Computation Effective Homology preliminaries

Effective Homology preliminaries: Intuitive Idea

Compute homology groups of a space X

H∗(X ) = H∗(C∗(X ))

C∗(X ) has finite nature

(Effective Chain Complex)

Differential maps can be expressed as integer matrices

Homology groups: Smith Normal Form

C∗(X ) has non finite nature

(Locally Effective Chain Complex)

Previous methods cannot be applied

Effective Homology

· Sergeraert’s ideas

· Provides real algorithms to compute homology groups

· Implemented in the Kenzo system

Jónathan Heras Vicente Mathematical Knowledge Management in Algebraic Topology



Computation Effective Homology preliminaries

Effective Homology preliminaries: Intuitive Idea

Compute homology groups of a space X

H∗(X ) = H∗(C∗(X ))

C∗(X ) has finite nature

(Effective Chain Complex)

Differential maps can be expressed as integer matrices

Homology groups: Smith Normal Form

C∗(X ) has non finite nature

(Locally Effective Chain Complex)

Previous methods cannot be applied

Effective Homology

· Sergeraert’s ideas

· Provides real algorithms to compute homology groups

· Implemented in the Kenzo system

Jónathan Heras Vicente Mathematical Knowledge Management in Algebraic Topology



Computation Effective Homology preliminaries

Effective Homology preliminaries: Intuitive Idea

Compute homology groups of a space X

H∗(X ) = H∗(C∗(X ))

C∗(X ) has finite nature

(Effective Chain Complex)

Differential maps can be expressed as integer matrices

Homology groups: Smith Normal Form

C∗(X ) has non finite nature

(Locally Effective Chain Complex)

Previous methods cannot be applied

Effective Homology

· Sergeraert’s ideas

· Provides real algorithms to compute homology groups

· Implemented in the Kenzo system

Jónathan Heras Vicente Mathematical Knowledge Management in Algebraic Topology



Computation Effective Homology preliminaries

Effective Homology preliminaries: Intuitive Idea

Compute homology groups of a space X

H∗(X ) = H∗(C∗(X ))

C∗(X ) has finite nature (Effective Chain Complex)

Differential maps can be expressed as integer matrices

Homology groups: Smith Normal Form

C∗(X ) has non finite nature (Locally Effective Chain Complex)

Previous methods cannot be applied

Effective Homology

· Sergeraert’s ideas

· Provides real algorithms to compute homology groups

· Implemented in the Kenzo system

Jónathan Heras Vicente Mathematical Knowledge Management in Algebraic Topology



Computation Effective Homology preliminaries

Effective Homology preliminaries

Definition

An effective chain complex is a free chain complex of Z-modules, C∗ = (Cn, dn)n∈N,
where each group Cn is finitely generated and

an algorithm returns a Z-base in each grade n

an algorithm provides the differentials dn

differentials dn : Cn → Cn−1 can be expressed as integer matrices

possible to compute Ker dn and Im dn+1

possible to compute the homology groups

Definition

A locally effective chain complex is a free chain complex of Z-modules
C∗ = (Cn, dn)n∈N where each group Cn can have infinite nature, but there exists an
algorithm such that ∀x ∈ Cn, we can compute dn(x)

impossible to compute Ker dn and Im dn+1

possible to perform local computations, differential of a generator
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Effective Homology preliminaries

Definition

A reduction ρ between two chain complexes C∗ y D∗ (denoted by ρ : C∗⇒⇒D∗) is a
triple ρ = (f , g , h)

C∗

h

�� f
++
D∗

g

kk

satisfying the following relations

1) fg = IdD∗ ;

2) dC h + hdC = IdC∗ −gf ;

3) fh = 0; hg = 0; hh = 0.

Theorem

If C∗⇒⇒D∗, then C∗ ∼= D∗ ⊕ A∗, with A∗ acyclic, which implies that
Hn(C∗) ∼= Hn(D∗) for all n.
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Effective Homology preliminaries

Definition

A (strong chain) equivalence ε between C∗ and D∗, ε : C∗⇐⇐⇒⇒D∗, is a triple
ε = (B∗, ρ, ρ′) where B∗ is a chain complex, ρ : B∗⇒⇒C∗ and ρ′ : B∗⇒⇒D∗.

B∗

s{ #+

42
30

s{ #+
C∗ D∗

14
10

21
15

Definition

An object with effective homology is a quadruple (X ,C∗(X ),HC∗, ε) where

X is a locally effective object

C∗(X ) is a (locally effective) chain complex canonically associated with X ,
which allows the study of the homological nature of X

HC∗ is an effective chain complex

ε is a equivalence ε : C∗(X )⇐⇐⇒⇒HC∗

Theorem

Let an object with effective homology (X ,C∗(X ),HC∗, ε) then Hn(X ) ∼= Hn(HC∗) for
all n.
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Pushout preliminaries

Definition

Let f , g morphisms,

the pushout of f , g is an object P(f ,g) for which the diagram

X
f //

g

��

Y

f ′

��
f ′′

��

Z
g′ //

g′′ ,,

P(f ,g)

∃!p

!!
Q

commutes

respects the universal
property

Standard Construction

P(f ,g)
∼= (Y q (X × I )q Z)/ ∼ where

I is the unit interval

for every x ∈ X , ∼

(x , 0) ∼ f (x) ∈ Y
(x , 1) ∼ g(x) ∈ Z
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Construction of the Effective Homology of the Pushout I

Given f : X → Y and g : X → Z simplicial morphisms where X ,Y and Z are
simplicial sets

X
f //

g

��

Y

f ′

��
Z

g′ // P(f ,g)

Algorithm (Standard Construction)

Input: two simplicial morphisms f : X → Y and g : X → Z where X ,Y and Z are
simplicial sets
Output: the pushout P(f ,g), a simplicial set
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Construction of the Effective Homology of the Pushout II

Given f : X → Y and g : X → Z simplicial morphisms where X ,Y and Z are
simplicial sets with effective homology

(X ,C∗(X ),HX∗, εX )
f //

g

��

(Y ,C∗(Y ),HY∗, εY )

��
(Z ,C∗(Z),HZ∗, εZ ) // (P(f ,g),C∗(P(f ,g)),HP∗, εP )

Algorithm (joint work with F. Sergeraert)

Input: two simplicial morphisms f : X → Y and g : X → Z where X ,Y and Z are
simplicial sets with effective homology
Output: the effective homology version of P(f ,g), that is, an equivalence
C∗(P(f ,g))⇐⇐⇒⇒HP∗, where HP∗ is an effective chain complex
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Computation Effective Homology of the Pushout

Sketch of the algorithm

Theorem (SES Theorems)

Let

0 A∗
0oo σ // B∗

j
oo

ρ // C∗
i

oo 0oo

be an effective short exact sequence of chain complexes. Then three general
algorithms are available

SES1 : (B∗,EH ,C∗,EH ) 7→ A∗,EH

SES2 : (A∗,EH ,C∗,EH ) 7→ B∗,EH

SES3 : (A∗,EH ,B∗,EH ) 7→ C∗,EH

producing the effective homology of one chain complex when the effective homology
of both others is given.

0 M∗oo σ // C∗P
j

oo
ρ // C∗Y ⊕ C∗Z
i

oo 0oo

M∗ is the chain complex associated with X ×∆1 but with the simplexes of X × (0)

and X × (1) cancelled
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Computation Effective Homology of the Pushout

Sketch of the algorithm continued

Step 1. From f : X → Y and g : X → Z simplicial morphisms, P(f ,g) and its associated chain complex C∗P are

constructed

Step 2. The effective homology of M∗ is constructed· Define

0 M∗oo σ2 // C∗(X × ∆1)
j2

oo
ρ2// C∗(X × (0))⊕ C∗(X × (1))
i2

oo 0oo

· Construct the chain complex M∗· Build the effective homology of C∗(X × ∆1)· Construct the effective homology of C∗(X × (0))⊕ C∗(X × (1))· Construct the effective homology of Cone(i2)· Construct the reduction M∗⇐⇐Cone(i2)· Obtain the effective homology of M∗ applying case SES1

Step 3. The effective homology of C∗X ⊕ C∗Y is constructed

Step 4. The effective homology of the pushout P(f ,g) is constructed

· Define

0 M∗oo σ // C∗P
j

oo
ρ // C∗Y ⊕ C∗Z
i

oo 0oo

· Construct the effective homology of (C∗Y ⊕ C∗Z)[1]

· Define the morphism shift : C∗Y ⊕ C∗Z → (C∗Y ⊕ C∗Z)[1]

· Define the chain complex morphism χ : M∗ → (C∗Y ⊕ C∗Z)[1]

· Construct the effective homology of Cone(χ)· Obtain the effective homology of P(f ,g) applying case SES2
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Computation Effective Homology of the Pushout

Example: π∗(Σ(SL2(Z)))

SL2(Z)

Group of 2× 2 matrices with determinant 1 over Z

Isomorphic to Z4 ∗Z2 Z6

J. P. Serre. Trees. Springer-Verlag, 1980

K (Z2, 1)
i1 //

i2
��

K (Z4, 1)

��
K (Z6, 1) // K (SL2(Z), 1)

K. S. Brown. Cohomology of Groups. Springer-Verlag, 1982
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Computation Effective Homology of the Pushout

Example: π∗(Σ(SL2(Z)))

Construction of the object K (SL2(Z, 1))

Firstly, we define K (Z2, 1),K (Z4, 1) and K (Z6, 1)

> (setf kz2 (k-zp-1 2)) z
[K2 Abelian-Simplicial-Group]

> (setf kz4 (k-zp-1 4)) z
[K15 Abelian-Simplicial-Group]

> (setf kz6 (k-zp-1 6)) z
[K28 Abelian-Simplicial-Group]

Subsequently, we define the two simplicial morphisms i1 and i2
> (setf i1 (kzps-incl 2 4)) z
[K40 Simplicial-Morphism K2 -> K15]

> (setf i2 (kzps-incl 2 6)) z
[K41 Simplicial-Morphism K2 -> K28]

Finally, we construct the pushout of i1 and i2 (K (SL2(Z), 1))

> (setf ksl2z (pushout i1 i2)) z
[K52 Simplicial-Set]
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Computation Effective Homology of the Pushout

Example: π∗(Σ(SL2(Z)))

Computation of π∗(Σ(SL2(Z)))

Firstly, we define Σ(K (SL2(Z), 1))

> (setf sksl2z (suspension ksl2z)) z
[K62 Simplicial-Set]

Computing Homotopy groups (Hurewicz theorem)

> (homology sksl2z 1 3) z
Homology in dimension 1:

Homology in dimension 2:

Component Z/12Z

π1(Σ(SL2(Z))) = 0, π2(Σ(SL2(Z))) = Z/12Z
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Computation Effective Homology of the Pushout

Example: π∗(Σ(SL2(Z)))

Computing Homotopy groups continued (Whitehead tower)

> (setf tau (zp-whitehead 12 sksl2z (chml-clss sksl2z 2))) z
[K91 Fibration K62 -> K79]

> (setf x (fibration-total tau)) z
[K97 Simplicial-Set]

> (homology x 3)

Homology in dimension 3:

Component Z/12Z

> (setf tau2 (zp-whitehead 12 x (chml-clss x 3))) z
[K228 Fibration K97 -> K214]

> (setf x2 (fibration-total tau2)) z
[K234 Simplicial-Set]

> (homology x2 4)

Homology in dimension 4:

Component Z/12Z

Component Z/2Z

> ...

π3(Σ(SL2(Z))) = Z/12Z, π4(Σ(SL2(Z))) = Z/12Z⊕ Z/2Z, . . .
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> (setf tau (zp-whitehead 12 sksl2z (chml-clss sksl2z 2))) z
[K91 Fibration K62 -> K79]

> (setf x (fibration-total tau)) z
[K97 Simplicial-Set]

> (homology x 3)

Homology in dimension 3:

Component Z/12Z

> (setf tau2 (zp-whitehead 12 x (chml-clss x 3))) z
[K228 Fibration K97 -> K214]

> (setf x2 (fibration-total tau2)) z
[K234 Simplicial-Set]

> (homology x2 4)

Homology in dimension 4:

Component Z/12Z

Component Z/2Z

> ...

π3(Σ(SL2(Z))) = Z/12Z, π4(Σ(SL2(Z))) = Z/12Z⊕ Z/2Z, . . .
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Deduction
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Deduction Goal

Goal

Simplified view of Kenzo way of working

1 Construction of initial spaces

2 Construction of new spaces from other ones

3 Computation of homology groups

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (sphere 3) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Simplified view of Kenzo way of working

1 Construction of initial spaces

Certification of the correctness of Kenzo constructors of
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2 Construction of new spaces from other ones

Easy Perturbation Lemma
Composition of reductions
Cone Equivalence Theorem
. . .
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Deduction Certifying the correctness of Kenzo simplicial sets

Mathematical context: Simplicial Sets

Definition

A simplicial set K, is a union K =
⋃

q≥0
K q , where the K q are disjoints sets, together with functions

∂
q
i : K q → K q−1, q > 0, i = 0, . . . , q,

η
q
i : K q → K q+1, q ≥ 0, i = 0, . . . , q,

subject to the relations

(1) ∂
q−1
i ∂

q
j = ∂

q−1
j−1 ∂

q
i if i < j,

(2) η
q+1
i η

q
j = η

q+1
j+1 η

q
i if i ≤ j,

(3) ∂
q+1
i η

q
j = η

q−1
j−1 ∂

q
i if i < j,

(4) ∂
q+1
i η

q
i = identity = ∂

q+1
i+1 η

q
i ,

(5) ∂
q+1
i η

q
j = η

q−1
j ∂

q
i−1 if i > j + 1,

The elements of K q are called q-simplexes

A q-simplex x is degenerate if x = η
q−1
i y for some simplex y ∈ K q−1

Otherwise x is called non-degenerate (or geometric)
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Deduction Certifying the correctness of Kenzo simplicial sets

Mathematical context: Example

d

a

c

b

0-simplexes: vertices:
(a), (b), (c), (d)

non-degenerate 1-simplexes:
edges:
(a b),(a c),(a d),(b c),(b d),(c d)

non-degenerate 2-simplexes:
(filled) triangles:
(a b c),(a b d),(a c d),(b c d)

non-degenerate 3-simplexes:
(filled) tetrahedron: (a b c d)

face: ∂i (a b c) =

 (b c) if i = 0
(a c) if i = 1
(a b) if i = 2

degeneracy: ηi (a b c) =

 (a a b c) if i = 0
(a b b c) if i = 1
(a b c c) if i = 2

 non-geometrical meaning
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Deduction Certifying the correctness of Kenzo simplicial sets

Mathematical context: abstract simplexes

Proposition

Let K be a simplicial set. Any n-simplex x ∈ K n can be expressed in a unique way as a (possibly) iterated
degeneracy of a non-degenerate simplex y in the following way

x = ηjk
. . . ηj1

y

with y ∈ K r , k = n − r ≥ 0, and 0 ≤ j1 < · · · < jk < n.

abstract simplex

(dgop gmsm) :=

{
dgop is a strictly decreasing sequence of degeneracy maps
gmsm is a geometric simplex

Examples

simplex abstract simplex
non-degenerate (a b) (∅ (a b))

degenerate (a a b c) (η0 (a b c))
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Deduction Certifying the correctness of Kenzo simplicial sets

Mathematical context

degeneracy operator

ηq
i (dgop gmsm) := (ηq

i ◦ dgop gmsm)
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Deduction Certifying the correctness of Kenzo simplicial sets

Mathematical context

degeneracy operator

ηq
i (dgop gmsm) := (ηq

i ◦ dgop gmsm)

face operator

∂q
i (dgop gmsm) :=

{
(∂q

i ◦ dgop gmsm) if ηi ∈ dgop ∨ ηi−1 ∈ dgop
(∂q

i ◦ dgop ∂r
k gmsm) otherwise;

where

r = q − {number of degeneracies in dgop} and

k = i − {number of degeneracies in dgop with index lower than i}
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Deduction Certifying the correctness of Kenzo simplicial sets

Mathematical context

degeneracy operator

ηq
i (dgop gmsm) := (ηq

i ◦ dgop gmsm)

face operator

∂q
i (dgop gmsm) :=

{
(∂q

i ◦ dgop gmsm) if ηi ∈ dgop ∨ ηi−1 ∈ dgop
(∂q

i ◦ dgop ∂r
k gmsm) otherwise;

where

r = q − {number of degeneracies in dgop} and

k = i − {number of degeneracies in dgop with index lower than i}
invariant operator

(dgop gmsm) ∈ K q

(length dgop) < q

gmsm ∈ K r where r = q − (length dgop)

index of the first degeneracy in dgop is lower than q
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Deduction Certifying the correctness of Kenzo simplicial sets

Mathematical context

degeneracy operator

ηq
i (dgop gmsm) := (ηq

i ◦ dgop gmsm)

face operator

∂q
i (dgop gmsm) :=

{
(∂q

i ◦ dgop gmsm) if ηi ∈ dgop ∨ ηi−1 ∈ dgop
(∂q

i ◦ dgop ∂r
k gmsm) otherwise;

where

r = q − {number of degeneracies in dgop} and

k = i − {number of degeneracies in dgop with index lower than i}
invariant operator

(dgop gmsm) ∈ K q

(length dgop) < q

gmsm ∈ K r where r = q − (length dgop)

index of the first degeneracy in dgop is lower than q

Dependent part from the chosen simplicial set → Affect geometric part

Independent parts from the chosen simplicial set → Not affect geometric part
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Deduction Certifying the correctness of Kenzo simplicial sets

Representation of a Simplicial Set

Functions

face-absm

degeneracy-absm

invariant-absm

Dependent parts

face-gmsm

invariant-gmsm

∂
q−1
i ∂

q
j gmsm = ∂

q−1
j−1 ∂

q
i gmsm, i < j

gmsm ∈ K q ⇒ ∂
q
i gmsm ∈ K q−1

Independent parts

degeneracy

face-independent

invariant-independent

Independent parts of Properties
(1) and (7)

Properties (2) to (6)
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q
i
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Deduction Certifying the correctness of Kenzo simplicial sets

ACL2 representation of a Simplicial Set

Functions

face-absm

degeneracy-absm

invariant-absm

Properties

1 ∂
q−1
i ∂

q
j = ∂

q−1
j−1 ∂

q
i if i < j

2 η
q+1
i η

q
j = η

q+1
j+1 η

q
i if i ≤ j

3 ∂
q+1
i η

q
j = η

q−1
j−1 ∂

q
i if i < j

4 ∂
q+1
i η

q
i = identity = ∂

q+1
i+1 η

q
i

5 ∂
q+1
i η

q
j = η

q−1
j ∂

q
i−1 if i > j + 1

6 x ∈ K q ⇒ η
q
i x ∈ K q+1

7 x ∈ K q ⇒ ∂
q
i x ∈ K q−1

(encapsulate

; Signatures

(((face-absm * * *) => *)

((degeneracy-absm * * *) => *)

((invariant-absm * *) => *))

; Theorems

(defthm property1 ...)

(defthm property2 ...)

(defthm property3 ...)

(defthm property4 ...)

(defthm property5 ...)

(defthm property6 ...)

(defthm property7 ...))

Concrete Simplicial Set

3 definitions + 7 theorems

Proofs are not reusable for other cases
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(defthm property7 ...))

Concrete Simplicial Set

3 definitions + 7 theorems

Proofs are not reusable for other cases
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ACL2 representation of a Simplicial Set

Dependent parts

face-gmsm

invariant-gmsm

∂
q−1
i ∂

q
j gmsm = ∂

q−1
j−1 ∂

q
i gmsm, i < j

gmsm ∈ K q ⇒ ∂
q
i gmsm ∈ K q−1

Independent parts

degeneracy

face-independent

invariant-independent
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and (7)
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(((face-gmsm * * *) => *)
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q
j gmsm = ∂
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q
i gmsm if i < j)

...)

(defthm invariant-prop ;; (gmsm ∈ K q ⇒ ∂
q
i gmsm ∈ K q−1)

...))

Definitions of independent parts

Proof of the independent theorems

Construction of a simplicial set instance

Concrete Simplicial Set

2 definitions + 2 theorems

Proofs are reusable
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Deduction Certifying the correctness of Kenzo simplicial sets

Summary of our methodology

(reduced) encapsulate + independent functions

proof−−−→ Generic Simplicial Set
↑ ↓

encapsulate instance Concrete Simplicial Set
+

Proof correctness

From 2 definitions and 2 theorems

Instantiates 3 definitions and 7 theorems

The proof of the 7 theorems involves: 92 definitions and 969 theorems

The proof effort is considerably reduced

Generic Instantiation tool

F. J. Mart́ın-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A
Generic Instantiation Tool and a Case Study: A Generic Multiset Theory.
Proceedings of the Third ACL2 workshop. Grenoble, Francia, pp. 188–203,
2002

This methodology can be extrapolated to other cases
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Deduction Certifying the correctness of Kenzo simplicial sets

Generic Theory for families of Simplicial Sets

A simplicial set
(encapsulate

; Signatures

(((face-absm * * *) => *)

((degeneracy-absm * * *) => *)

((invariant-absm * *) => *))

; Theorems

(defthm property1 ...)

(defthm property2 ...)

(defthm property3 ...)

(defthm property4 ...)

(defthm property5 ...)

(defthm property6 ...)

(defthm property7 ...))

A family of simplicial sets
indexed by K
(encapsulate

; Signatures

(((imp-face-absm * * * *) => *)

((imp-degeneracy-absm * * * *) => *)

((imp-invariant-absm * * *) => *))

; Theorems

(defthm imp-property1 ...)

(defthm imp-property2 ...)

(defthm imp-property3 ...)

(defthm imp-property4 ...)

(defthm imp-property5 ...)

(defthm imp-property6 ...)

(defthm imp-property7 ...))

Generic Simplicial Set Theory

Spheres family

Standard Simplicial sets family

Simplicial Complexes family
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