Mathematical Knowledge Management in Algebraic Topology

Jónathan Heras Vicente

Supervisors: Dr. Vico Pascual Martínez-Losa Dr. Julio Rubio García

Department of Mathematics and Computer Science University of La Rioja Spain

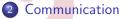
May 31, 2011

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

(日本) (日本) (日本)

Table of Contents



Jónathan Heras Vicente

Table of Contents

4 Deduction

5 Conclusions and Further work

Jónathan Heras Vicente

Context

Mathematical Knowledge Management (MKM)

- Computation
- Deduction
- Communication

Context

Mathematical Knowledge Management (MKM)

- Computation
- Deduction
- Communication
- Algebraic Topology
 - Mathematical subject which studies topological spaces by algebraic means
 - Applications in Coding theory, Robotics, Digital Image analysis

(日本) (日本) (日本)

Context

Mathematical Knowledge Management (MKM)

- Computation
- Deduction
- Communication
- Algebraic Topology
 - Mathematical subject which studies topological spaces by algebraic means
 - Applications in Coding theory, Robotics, Digital Image analysis
- Kenzo
 - Computer Algebra system devoted to Algebraic Topology developed by F. Sergeraert
 - Common Lisp package
 - Homology groups unreachable by any other means

(日本) (日本) (日本)

- Communication
 - Human beings
 - Other programs

- Communication
 - Human beings
 - Other programs
- Computation
 - Kenzo

- Communication
 - Human beings
 - Other programs
- Computation
 - Kenzo
 - GAP

- Communication
 - Human beings
 - Other programs
- Computation
 - Kenzo
 - GAP
 - New modules

- Communication
 - Human beings
 - Other programs
- Computation
 - Kenzo
 - GAP
 - New modules
- Deduction

- Communication
 - Human beings
 - Other programs
- Computation
 - Kenzo
 - GAP
 - New modules
- Deduction
 - Certification of Kenzo algorithms
 - Isabelle/Hol
 - Coq

Communication

- Human beings
- Other programs
- Computation
 - Kenzo
 - GAP
 - New modules
- Deduction
 - Certification of Kenzo algorithms
 - Isabelle/Hol
 - Coq
 - Certification of Kenzo programs
 - ACL2

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

< A >

T = 1

Table of Contents

4 Deduction

5 Conclusions and Further work

Jónathan Heras Vicente

Motivation

Motivation

Algebraic Topology Expert Common Lisp Expert $\}$ \Rightarrow Makes the most of Kenzo

Jónathan Heras Vicente

Motivation

Motivation

Algebraic Topology Expert $\left.\right\} \Rightarrow$ Makes the most of Kenzo Common Lisp Expert

Non Common Lisp Expert \Rightarrow Unfriendly front-end

イロン (得) (ヨ) (ヨ)

Jónathan Heras Vicente

Motivation

Algebraic Topology Expert Common Lisp Expert $\}$ \Rightarrow Makes the most of Kenzo

Non Common Lisp Expert \Rightarrow Unfriendly front-end

Non Algebraic Topology Expert \Rightarrow Needs guidance

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

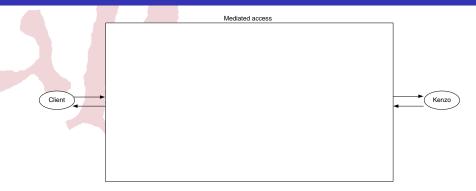
イロン (得) (ヨ) (ヨ)

• Develop a system which increases Kenzo accessibility

Jónathan Heras Vicente

- Develop a system which increases Kenzo accessibility
 - Friendly front-end
 - Mediated access to Kenzo

Jónathan Heras Vicente



Jónathan Heras Vicente

Representation of mathematical knowledge

 $\left. \begin{array}{l} \mbox{Independent of programming language} \\ \mbox{Easily interchangeable} \end{array} \right\} \Rightarrow XML \Rightarrow \left\{ \begin{array}{l} \mbox{OpenMath} \\ \mbox{MathML} \\ \mbox{New language} \end{array} \right.$

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

(日) (ヨ) (ヨ)

XML-Kenzo

- construction and computation requests
- Includes some mathematical knowledge
 - Small Type System: CC, SS, SG, ASG
 - Some restrictions about arguments (Sⁿ)

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

・ 同 ト ・ ヨ ト ・ ヨ ト

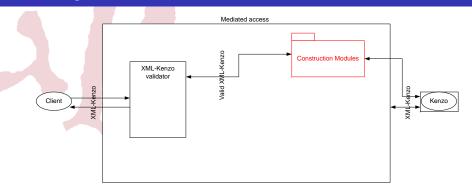
XML-Kenzo validator

- Common Lisp module
- ${lackstyle}$ Receives XML-Kenzo requests \rightarrow validates them against XML schema definition
 - Type restrictions
 - Mathematical restrictions
 - Kenzo restrictions

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

ヘロナ 人間 とくほと 人ほど



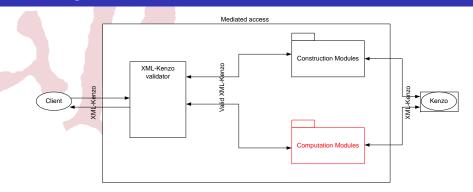
Construction modules

- Process construction requests
- Check restrictions not included in XML-Kenzo (functional dependencies)
- 4 modules: CC, SS, SG and ASG

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロナ イヨナ イヨナ イヨナ



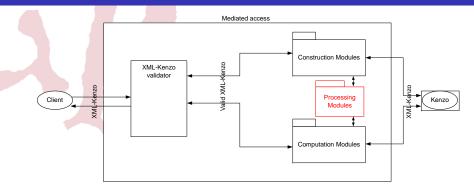
Computation modules

- Process computation requests
- Check restrictions not included in XML-Kenzo (reduction degree)
- 2 modules: Homology and Homotopy

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロン 人間 とくさと くさと



Processing modules

- Help construction and computation modules
- 2 modules: Reduction degree and Homotopy assistant

The whole framework

Towards the whole framework

- Mediated access to Kenzo
- Friendly front-end
- but . . .

Towards the whole framework

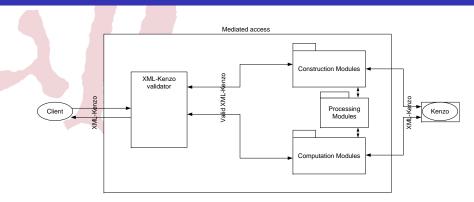
This architecture provides

- Mediated access to Kenzo
- Friendly front-end
- but . . .

Desirable features

- Different clients
- Efficient
- Extensible
- Adaptable to different needs

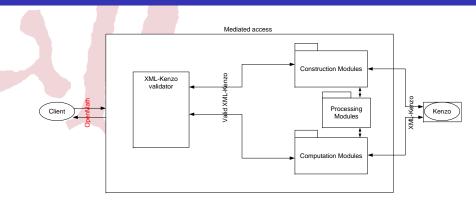
Towards different clients



• XML-Kenzo is ad-hoc

Jónathan Heras Vicente

Towards different clients



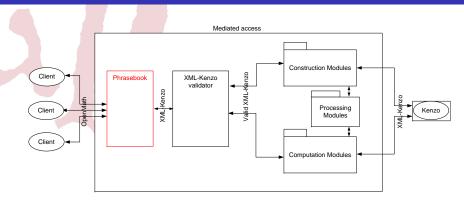
- XML-Kenzo is ad-hoc
- OpenMath
 - Standard
 - Communication with the outside world

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロナ イボナ イヨナ イヨナ

Towards different clients



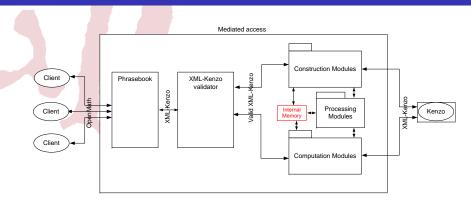
- XML-Kenzo is ad-hoc
- OpenMath
 - Standard
 - Communication with the outside world
- Phrasebook

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロナ イボナ イヨナ イヨナ

Towards Efficiency



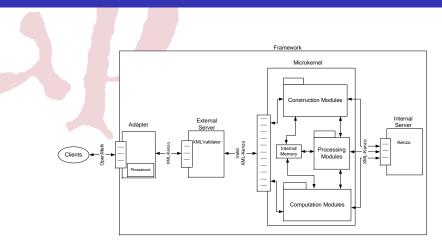
- System roughly equivalent to Kenzo
- Internal memory
 - Memoization technique
 - Store spaces and computations

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロン イヨン イヨン イヨン

The Kenzo framework



Based on well-known patterns and methods

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロナ イヨナ イヨナ イヨナ

Towards extensibility

Include new functionality

Jónathan Heras Vicente

Towards extensibility

Include new functionality

Increase Kenzo functionality

Jónathan Heras Vicente

Towards extensibility

Include new functionality

- Increase Kenzo functionality
- Include new systems
 - Computer Algebra systems
 - Theorem Prover tools

Towards extensibility

Include new functionality

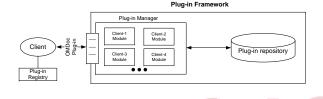
- Increase Kenzo functionality
- Include new systems
 - Computer Algebra systems
 - Theorem Prover tools
- Interoperability

Towards extensibility

Include new functionality

- Increase Kenzo functionality
- Include new systems
 - Computer Algebra systems
 - Theorem Prover tools
- Interoperability

Kenzo framework as a client of a plug-in framework



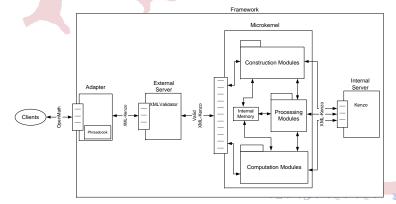
Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

(同) (ヨ) (ヨ)

Including new Kenzo functionality

```
<code id="new-constructor">
   <data format="Kf/internal-server"> new-constructor-is.lisp </data>
   <data format="Kf/microkernel"> new-constructor-m.lisp </data>
   <data format="Kf/external-server"> XML-Kenzo.xsd </data>
   <data format="Kf/adapter"> new-constructor-a.lisp </data>
   <data format="Kf/adapter"> new-constructor-a.lisp </data>
   <data format="Kf/adapter"> new-constructor-a.lisp </data>
   <data format="Kf/adapter"> new-constructor-a.lisp </data>
   </data>
   <data format="Kf/adapter"> new-constructor-a.lisp </data>
   </data>
   </data</pre>
```



Jónathan Heras Vicente

• A Graphical User Interface implemented in Common Lisp

Jónathan Heras Vicente

- A Graphical User Interface implemented in Common Lisp
- Design decisions
 - Functionality (Common Lisp) + Structure (XUL) + Layout (stylesheet)

- A Graphical User Interface implemented in Common Lisp
- Design decisions
 - Functionality (Common Lisp) + Structure (XUL) + Layout (stylesheet)
 - Guided by heuristics

- A Graphical User Interface implemented in Common Lisp
- Design decisions
 - Functionality (Common Lisp) + Structure (XUL) + Layout (stylesheet)
 - Guided by heuristics
 - Design of interaction: Noesis method

- A Graphical User Interface implemented in Common Lisp
- Design decisions
 - Functionality (Common Lisp) + Structure (XUL) + Layout (stylesheet)
 - Guided by heuristics
 - Design of interaction: Noesis method



Jónathan Heras Vicente

A customizable GUI

- Features
 - Extensibility
 - Adaptability

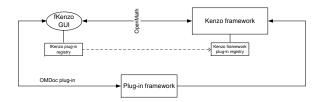
Jónathan Heras Vicente

A customizable GUI

- Features
 - Extensibility
 - Adaptability
- The Graphical User Interface is
 - client of Kenzo framework
 - client of plug-in framework
 - GUI organized through modules: basic and experimental

A customizable GUI

- Features
 - Extensibility
 - Adaptability
- The Graphical User Interface is
 - client of Kenzo framework
 - client of plug-in framework
 - GUI organized through modules: basic and experimental



The whole system is called *fKenzo*

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

(同) (ヨ) (ヨ)

fKenzo

fKenzo: A tool adaptable to different needs

• Beginner student of Algebraic Topology

Load and remove basic modules

Jónathan Heras Vicente

fKenzo: A tool adaptable to different needs

- Beginner student of Algebraic Topology
 - Load and remove basic modules
- Advanced student or researcher of Algebraic Topology
 - Load and remove basic modules
 - Load and remove experimental modules

fKenzo: A tool adaptable to different needs

- Beginner student of Algebraic Topology
 - Load and remove basic modules
- Advanced student or researcher of Algebraic Topology
 - Load and remove basic modules
 - Load and remove experimental modules
 - Digital images
 - GAP
 - ACL2
 - . . .

Jónathan Heras Vicente

fKenzo

fKenzo summary

- fKenzo
 - Integral assistant for Algebraic Topology

Jónathan Heras Vicente

- fKenzo
 - Integral assistant for Algebraic Topology
 - Constrains Kenzo functionality

- fKenzo
 - Integral assistant for Algebraic Topology
 - Constrains Kenzo functionality
 - Provides guidance in the interaction and a friendly front-end

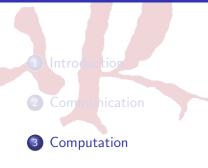
- fKenzo
 - Integral assistant for Algebraic Topology
 - Constrains Kenzo functionality
 - Provides guidance in the interaction and a friendly front-end
 - Extensible

- fKenzo
 - Integral assistant for Algebraic Topology
 - Constrains Kenzo functionality
 - Provides guidance in the interaction and a friendly front-end
 - Extensible
 - Adaptable to different needs

・ 同 ト ・ ヨ ト ・ ヨ ト

- fKenzo
 - Integral assistant for Algebraic Topology
 - Constrains Kenzo functionality
 - Provides guidance in the interaction and a friendly front-end
 - Extensible
 - Adaptable to different needs
- Our architecture can be applied in other contexts

Table of Contents



4 Deduction

5 Conclusions and Further work

Jónathan Heras Vicente

- Increase Kenzo computational capabilities
 - Simplicial Complexes
 - Digital Images
 - Pushout of Simplicial Sets

- Increase Kenzo computational capabilities
 - Simplicial Complexes
 - Digital Images
 - Pushout of Simplicial Sets
- Integrated in *fKenzo*

- Increase Kenzo computational capabilities
 - Simplicial Complexes
 - Digital Images
 - Pushout of Simplicial Sets
- Integrated in *fKenzo*
- Verified using ACL2

- Increase Kenzo computational capabilities
 - Simplicial Complexes
 - Digital Images
 - Pushout of Simplicial Sets
- Integrated in *fKenzo*
- Verified using ACL2

Compute homology groups of a space X

```
• H_*(X) = H_*(C_*(X))
```


Jónathan Heras Vicente

Compute homology groups of a space X

- $H_*(X) = H_*(C_*(X))$
 - C_{*}(X) has finite nature
 - Differential maps can be expressed as integer matrices
 - Homology groups: Smith Normal Form

Compute homology groups of a space X

- $H_*(X) = H_*(C_*(X))$
 - C_{*}(X) has finite nature
 - Differential maps can be expressed as integer matrices
 - Homology groups: Smith Normal Form
 - C_{*}(X) has non finite nature
 - Previous methods cannot be applied
 - Effective Homology
 - · Sergeraert's ideas
 - \cdot Provides real algorithms to compute homology groups
 - · Implemented in the Kenzo system

(同) (ヨ) (ヨ)

Compute homology groups of a space X

- $H_*(X) = H_*(C_*(X))$
 - C_{*}(X) has finite nature (Effective Chain Complex)
 - Differential maps can be expressed as integer matrices
 - Homology groups: Smith Normal Form
 - C_{*}(X) has non finite nature (Locally Effective Chain Complex)
 - Previous methods cannot be applied
 - Effective Homology
 - \cdot Sergeraert's ideas
 - \cdot Provides real algorithms to compute homology groups
 - · Implemented in the Kenzo system

(同) (ヨ) (ヨ)

Definition

An effective chain complex is a free chain complex of \mathbb{Z} -modules, $C_* = (C_n, d_n)_{n \in \mathbb{N}}$, where each group C_n is finitely generated and

- an algorithm returns a Z-base in each grade n
- an algorithm provides the differentials d_n

Definition

A locally effective chain complex is a free chain complex of \mathbb{Z} -modules $C_* = (C_n, d_n)_{n \in \mathbb{N}}$ where each group C_n can have infinite nature, but there exists an algorithm such that $\forall x \in C_n$, we can compute $d_n(x)$

イロン (得) (ヨ) (ヨ)

Definition

An effective chain complex is a free chain complex of \mathbb{Z} -modules, $C_* = (C_n, d_n)_{n \in \mathbb{N}}$, where each group C_n is finitely generated and

- an algorithm returns a Z-base in each grade n
- an algorithm provides the differentials d_n
- differentials $d_n : C_n \to C_{n-1}^r$ can be expressed as integer matrices
- possible to compute Ker d_n and Im d_{n+1}
- possible to compute the homology groups

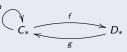
Definition

A locally effective chain complex is a free chain complex of \mathbb{Z} -modules $C_* = (C_n, d_n)_{n \in \mathbb{N}}$ where each group C_n can have infinite nature, but there exists an algorithm such that $\forall x \in C_n$, we can compute $d_n(x)$

- impossible to compute Ker d_n and Im d_{n+1}
- possible to perform local computations, differential of a generator

Definition

A reduction ρ between two chain complexes C_* y D_* (denoted by $\rho : C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$



satisfying the following relations

1) $fg = Id_{D_*}$;

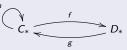
2)
$$d_C h + h d_C = \operatorname{Id}_{C_*} - gf;$$

3)
$$fh = 0;$$
 $hg = 0;$ $hh = 0.$

Jónathan Heras Vicente

Definition

A reduction ρ between two chain complexes C_* y D_* (denoted by $\rho : C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$



satisfying the following relations

1) $fg = Id_{D_*}$;

2)
$$d_C h + h d_C = \operatorname{Id}_{C_*} - gf;$$

3)
$$fh = 0;$$
 $hg = 0;$ $hh = 0.$

Theorem

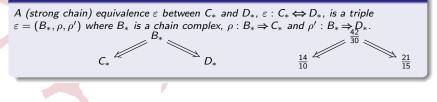
If $C_* \Rightarrow D_*$, then $C_* \cong D_* \oplus A_*$, with A_* acyclic, which implies that $H_n(C_*) \cong H_n(D_*)$ for all n.

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

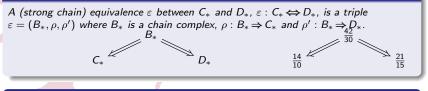
イロナ イボナ イヨナ イヨナ

Definition



Jónathan Heras Vicente

Definition



Definition

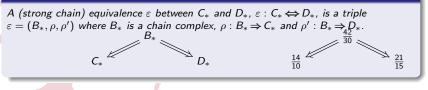
An object with effective homology is a quadruple $(X, C_*(X), HC_*, \varepsilon)$ where

- X is a locally effective object
- C_{*}(X) is a (locally effective) chain complex canonically associated with X, which allows the study of the homological nature of X
- HC_{*} is an effective chain complex
- ε is a equivalence ε : $C_*(X) \Leftrightarrow HC_*$

(日本) (日本) (日本)

Effective Homology preliminaries

Definition



Definition

An object with effective homology is a quadruple $(X, C_*(X), HC_*, \varepsilon)$ where

- X is a locally effective object
- C_{*}(X) is a (locally effective) chain complex canonically associated with X, which allows the study of the homological nature of X
- HC_{*} is an effective chain complex
- ε is a equivalence $\varepsilon : C_*(X) \Leftrightarrow HC_*$

Theorem

Let an object with effective homology $(X, C_*(X), HC_*, \varepsilon)$ then $H_n(X) \cong H_n(HC_*)$ for all n.

Jónathan Heras Vicente

Definition

Let f, g morphisms,

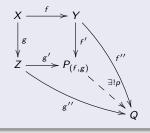
Jónathan Heras Vicente

Definition

Let f, g morphisms, the pushout of f, g is an object $P_{(f,g)}$ for which the diagram

Definition

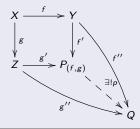
Let f, g morphisms, the pushout of f, g is an object $P_{(f,g)}$ for which the diagram



- commutes
- respects the universal property

Definition

Let f, g morphisms, the pushout of f, g is an object $P_{(f,g)}$ for which the diagram



- commutes
- respects the universal property

Standard Construction

$$\mathcal{P}_{(f,g)}\cong (Y\amalg (X imes I)\amalg Z)/\sim$$
 where

I is the unit interval

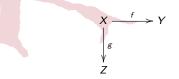
• for every
$$x \in X$$
, ~

•
$$(x, 0) \sim f(x) \in Y$$

•
$$(x,1) \sim g(x) \in Z$$

Jónathan Heras Vicente

Given $f: X \rightarrow Y$ and $g: X \rightarrow Z$ simplicial morphisms where X, Y and Z are simplicial sets



Jónathan Heras Vicente

Given $f: X \rightarrow Y$ and $g: X \rightarrow Z$ simplicial morphisms where X, Y and Z are simplicial sets

Given $f: X \rightarrow Y$ and $g: X \rightarrow Z$ simplicial morphisms where X, Y and Z are simplicial sets

$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ \downarrow g & & \downarrow f' \\ Z & \xrightarrow{g'} & P_{(f,g)} \end{array}$$

Algorithm (Standard Construction)

Input: two simplicial morphisms $f: X \to Y$ and $g: X \to Z$ where X, Y and Z are simplicial sets *Output*: the pushout $P_{(f,g)}$, a simplicial set

イロン イボト イヨト イヨト

Given $f: X \rightarrow Y$ and $g: X \rightarrow Z$ simplicial morphisms where X, Y and Z are simplicial sets with effective homology

$$(X, C_*(X), HX_*, \varepsilon_X) \xrightarrow{f} (Y, C_*(Y), HY_*, \varepsilon_Y)$$

$$\downarrow^g$$

$$(Z, C_*(Z), HZ_*, \varepsilon_Z)$$

Jónathan Heras Vicente

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets with effective homology

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets with effective homology

Jónathan Heras Vicente

Given $f: X \to Y$ and $g: X \to Z$ simplicial morphisms where X, Y and Z are simplicial sets with effective homology

Algorithm (joint work with F. Sergeraert)

Input: two simplicial morphisms $f: X \to Y$ and $g: X \to Z$ where X, Y and Z are simplicial sets with effective homology Output: the effective homology version of $P_{(f,g)}$, that is, an equivalence $C_*(P_{(f,g)}) \Leftrightarrow HP_*$, where HP_* is an effective chain complex

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロト イポト イヨト

Sketch of the algorithm

Theorem (SES Theorems)

Let

$$0 \stackrel{0}{\longleftrightarrow} A_* \stackrel{\sigma}{\underbrace{\longleftrightarrow}} B_* \stackrel{\rho}{\underbrace{\longleftarrow}} C_* \longleftarrow 0$$

be an effective short exact sequence of chain complexes. Then three general algorithms are available

 $\begin{array}{l} SES_1 : (B_{*,EH}, C_{*,EH}) \mapsto A_{*,EH} \\ SES_2 : (A_{*,EH}, C_{*,EH}) \mapsto B_{*,EH} \\ SES_3 : (A_{*,EH}, B_{*,EH}) \mapsto C_{*,EH} \end{array}$

producing the effective homology of one chain complex when the effective homology of both others is given.

Jónathan Heras Vicente

Sketch of the algorithm

Theorem (SES Theorems)

Let

$$0 \stackrel{0}{\longleftrightarrow} A_* \stackrel{\sigma}{\underbrace{\longleftrightarrow}} B_* \stackrel{\rho}{\underbrace{\longleftarrow}} C_* \longleftarrow 0$$

be an effective short exact sequence of chain complexes. Then three general algorithms are available

 $\begin{array}{l} SES_1: (B_{*,EH}, C_{*,EH}) \mapsto A_{*,EH} \\ SES_2: (A_{*,EH}, C_{*,EH}) \mapsto B_{*,EH} \\ SES_3: (A_{*,EH}, B_{*,EH}) \mapsto C_{*,EH} \end{array}$

producing the effective homology of one chain complex when the effective homology of both others is given.

$$0 \longleftarrow M_* \xrightarrow[j]{\sigma} C_*P \xrightarrow{\rho} C_*Y \oplus C_*Z \longleftarrow 0$$

 M_* is the chain complex associated with $X \times \Delta^1$ but with the simplexes of $X \times (0)$ and $X \times (1)$ cancelled

Jónathan Heras Vicente

Sketch of the algorithm continued

- Step 1. From $f : X \to Y$ and $g : X \to Z$ simplicial morphisms, $P_{(f,g)}$ and its associated chain complex C_*P are constructed
- Step 2. The effective homology of *M*_{*} is constructed • Define

$$0 \longleftarrow M_* \xleftarrow{\sigma_2}{j_2} C_*(X \times \Delta^1) \xleftarrow{\rho_2}{j_2} C_*(X \times (0)) \oplus C_*(X \times (1)) \longleftarrow 0$$

- Construct the chain complex M_{*}
- Build the effective homology of $C_*(X \times \Delta^1)$
- Construct the effective homology of C_{*} (X × (0)) ⊕ C_{*} (X × (1))
- Construct the effective homology of Cone(i2)
- Construct the reduction M_{*} ⇐ Cone(i2)
- Obtain the effective homology of M_{*} applying case SES₁
- Step 3. The effective homology of $C_*X \oplus C_*Y$ is constructed
- Step 4. The effective homology of the pushout $P_{(f,g)}$ is constructed
 - Define

$$0 \longleftarrow M_* \xleftarrow{\sigma} C_* P \xleftarrow{\rho} C_* Y \oplus C_* Z \longleftarrow 0$$

- Construct the effective homology of $(C_* Y \oplus C_* Z)^{[1]}$
- Define the morphism shift : $C_* Y \oplus C_* Z \to (C_* Y \oplus C_* Z)^{[1]}$
- Define the chain complex morphism χ : M_{*} → (C_{*} Y ⊕ C_{*}Z)^[1]
- Construct the effective homology of Cone(χ)
- Obtain the effective homology of P_(f,g) applying case SES₂

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

(同) (王) (王)

$SL_2(\mathbb{Z})$

• Group of 2 \times 2 matrices with determinant 1 over $\mathbb Z$

Jónathan Heras Vicente

$SL_2(\mathbb{Z})$

- Group of 2 \times 2 matrices with determinant 1 over $\mathbb Z$
- Isomorphic to $\mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$
 - J. P. Serre. *Trees.* Springer-Verlag, 1980

$SL_2(\mathbb{Z})$

- Group of 2 \times 2 matrices with determinant 1 over $\mathbb Z$
- Isomorphic to $\mathbb{Z}_4 *_{\mathbb{Z}_2} \mathbb{Z}_6$

J. P. Serre. *Trees.* Springer-Verlag, 1980

•
$$\mathcal{K}(\mathbb{Z}_2, 1) \xrightarrow{i_1} \mathcal{K}(\mathbb{Z}_4, 1)$$

 $\downarrow^{i_2} \qquad \qquad \downarrow$
 $\mathcal{K}(\mathbb{Z}_6, 1) \longrightarrow \mathcal{K}(SL_2(\mathbb{Z}), 1)$

🦫 K. S. Brown. Cohomology of Groups. Springer-Verlag, 1982

(同) (ヨ) (ヨ)

Construction of the object $K(SL_2(\mathbb{Z}, 1))$

Jónathan Heras Vicente

Construction of the object $K(SL_2(\mathbb{Z}, 1))$

Firstly, we define K(Z₂, 1), K(Z₄, 1) and K(Z₆, 1)
> (setf kz2 (k-zp-1 2)) ★
[K2 Abelian-Simplicial-Group]
> (setf kz4 (k-zp-1 4)) ★
[K15 Abelian-Simplicial-Group]
> (setf kz6 (k-zp-1 6)) ★
[K28 Abelian-Simplicial-Group]

Construction of the object $K(SL_2(\mathbb{Z},1))$

• Firstly, we define $K(\mathbb{Z}_2, 1), K(\mathbb{Z}_4, 1)$ and $K(\mathbb{Z}_6, 1)$

> (setf kz2 (k-zp-1 2)) \ [K2 Abelian-Simplicial-Group] > (setf kz4 (k-zp-1 4)) \ [K15 Abelian-Simplicial-Group] > (setf kz6 (k-zp-1 6)) \ [K28 Abelian-Simplicial-Group]

• Subsequently, we define the two simplicial morphisms i_1 and i_2

> (setf i1 (kzps-incl 2 4)) [K40 Simplicial-Morphism K2 -> K15] > (setf i2 (kzps-incl 2 6)) [K41 Simplicial-Morphism K2 -> K28]

(同) (ヨ) (ヨ)

Construction of the object $K(SL_2(\mathbb{Z},1))$

• Firstly, we define $K(\mathbb{Z}_2, 1), K(\mathbb{Z}_4, 1)$ and $K(\mathbb{Z}_6, 1)$

> (setf kz2 (k-zp-1 2)) \ [K2 Abelian-Simplicial-Group] > (setf kz4 (k-zp-1 4)) \ [K15 Abelian-Simplicial-Group] > (setf kz6 (k-zp-1 6)) \ [K28 Abelian-Simplicial-Group]

- Subsequently, we define the two simplicial morphisms i₁ and i₂
 > (setf i1 (kzps-incl 2 4)) ★
 [K40 Simplicial-Morphism K2 -> K15]
 > (setf i2 (kzps-incl 2 6)) ★
 [K41 Simplicial-Morphism K2 -> K28]
- Finally, we construct the pushout of i₁ and i₂ (K(SL₂(ℤ), 1))
 > (setf ksl2z (pushout i1 i2)) ႃ
 [K52 Simplicial-Set]

(日本) (日本) (日本)

Computation of $\pi_*(\Sigma(SL_2(\mathbb{Z})))$

Jónathan Heras Vicente

Computation of $\pi_*(\Sigma(SL_2(\mathbb{Z})))$

- Firstly, we define $\Sigma(K(SL_2(\mathbb{Z}), 1))$
 - > (setf sksl2z (suspension ksl2z)) 🗜 [K62 Simplicial-Set]

Jónathan Heras Vicente

Computation of $\pi_*(\Sigma(SL_2(\mathbb{Z})))$

- Firstly, we define $\Sigma(K(SL_2(\mathbb{Z}), 1))$
 - > (setf sksl2z (suspension ksl2z)) 🗜 [K62 Simplicial-Set]
- Computing Homotopy groups (Hurewicz theorem)
 - > (homology sksl2z 1 3) 🕏 Homology in dimension 1:

Homology in dimension 2: Component Z/12Z

Computation of $\pi_*(\Sigma(SL_2(\mathbb{Z})))$

- Firstly, we define $\Sigma(K(SL_2(\mathbb{Z}), 1))$
 - > (setf sksl2z (suspension ksl2z)) 🗜 [K62 Simplicial-Set]
- Computing Homotopy groups (Hurewicz theorem)
 - > (homology sksl2z 1 3) Homology in dimension 1:

Homology in dimension 2: Component Z/12Z

•
$$\pi_1(\Sigma(SL_2(\mathbb{Z}))) = 0, \ \pi_2(\Sigma(SL_2(\mathbb{Z}))) = \mathbb{Z}/12\mathbb{Z}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

```
    Computing Homotopy groups continued (Whitehead tower)

  > (setf tau (zp-whitehead 12 sksl2z (chml-clss sksl2z 2))) 🕂
  [K91 Fibration K62 -> K79]
  > (setf x (fibration-total tau))
  [K97 Simplicial-Set]
  > (homology x 3)
  Homology in dimension 3:
  Component Z/12Z
  > (setf tau2 (zp-whitehead 12 x (chml-clss x 3))) 🗜
  [K228 Fibration K97 -> K214]
  > (setf x2 (fibration-total tau2)) 🖌
  [K234 Simplicial-Set]
  > (homology x2 4)
  Homology in dimension 4:
  Component Z/12Z
  Component Z/2Z
  > ...
```

```
    Computing Homotopy groups continued (Whitehead tower)

  > (setf tau (zp-whitehead 12 sksl2z (chml-clss sksl2z 2))) 🕂
  [K91 Fibration K62 -> K79]
  > (setf x (fibration-total tau)) 🕂
  [K97 Simplicial-Set]
  > (homology x 3)
  Homology in dimension 3:
  Component Z/12Z
  > (setf tau2 (zp-whitehead 12 x (chml-clss x 3))) 😾
  [K228 Fibration K97 -> K214]
  > (setf x2 (fibration-total tau2)) 🖁
  [K234 Simplicial-Set]
  > (homology x2 4)
  Homology in dimension 4:
  Component Z/12Z
  Component Z/2Z
  > ...
```

```
• \pi_3(\Sigma(SL_2(\mathbb{Z}))) = \mathbb{Z}/12\mathbb{Z}, \ \pi_4(\Sigma(SL_2(\mathbb{Z}))) = \mathbb{Z}/12\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}, \ldots
```

Deduction

Table of Contents

4 Deduction

5 Conclusions and Further work

Jónathan Heras Vicente

• ACL2 (A Computational Logic for an Applicative Common Lisp)

Jónathan Heras Vicente

ACL2

• ACL2 (A Computational Logic for an Applicative Common Lisp)

- Programming Language
- First-Order Logic
- Theorem Prover

ACL2

• ACL2 (A Computational Logic for an Applicative Common Lisp)

- Programming Language
- First-Order Logic
- Theorem Prover
- Proof techniques
 - Simplification
 - Induction
 - "The Method"

ACL2

• ACL2 (A Computational Logic for an Applicative Common Lisp)

- Programming Language
- First-Order Logic
- Theorem Prover
- Proof techniques
 - Simplification
 - Induction
 - "The Method"
- Encapsulate principle
 - Simulation of Higher-Order Logic

Jónathan Heras Vicente

Goal

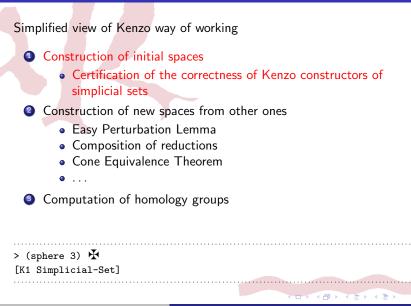
Goal

Simplified view of Kenzo way of working

- Construction of initial spaces
- Construction of new spaces from other ones
- Computation of homology groups

Goal

Goal



Jónathan Heras Vicente

Mathematical context: Simplicial Sets

Definition

A simplicial set K, is a union $K = \bigcup_{q \ge 0} K^q$, where the K^q are disjoints sets, together with functions

$$\begin{array}{ll} \partial_i^q: \mathsf{K}^q \to \mathsf{K}^{q-1}, & q > 0, & i = 0, \dots, q, \\ \eta_i^q: \mathsf{K}^q \to \mathsf{K}^{q+1}, & q \ge 0, & i = 0, \dots, q, \end{array}$$

subject to the relations

$$\begin{array}{rcl} (1) & \partial_{i}^{q-1}\partial_{j}^{q} & = & \partial_{j-1}^{q-1}\partial_{i}^{q} & \mbox{if} & i < j, \\ (2) & \eta_{i}^{q+1}\eta_{j}^{q} & = & \eta_{j+1}^{q+1}\eta_{i}^{q} & \mbox{if} & i \leq j, \\ (3) & \partial_{i}^{q+1}\eta_{j}^{q} & = & \eta_{j-1}^{q-1}\partial_{i}^{q} & \mbox{if} & i < j, \\ (4) & \partial_{i}^{q+1}\eta_{i}^{q} & = & \mbox{identity} & = & \partial_{i+1}^{q+1}\eta_{i}^{q}, \\ (5) & \partial_{i}^{q+1}\eta_{j}^{q} & = & \eta_{j}^{q-1}\partial_{i-1}^{q} & \mbox{if} & i > j+1, \\ \end{array}$$

Jónathan Heras Vicente

Mathematical context: Simplicial Sets

Definition

A simplicial set K, is a union $K = \bigcup_{q \ge 0} K^q$, where the K^q are disjoints sets, together with functions

$$\begin{array}{ll} \partial_i^q: K^q \to K^{q-1}, & q > 0, & i = 0, \dots, q, \\ \eta_i^q: K^q \to K^{q+1}, & q \ge 0, & i = 0, \dots, q, \end{array}$$

subject to the relations

$$\begin{array}{rcl} (1) & \partial_{i}^{q-1}\partial_{j}^{q} & = & \partial_{j-1}^{q-1}\partial_{i}^{q} & \mbox{if} & i < j, \\ (2) & \eta_{i}^{q+1}\eta_{j}^{q} & = & \eta_{j+1}^{q+1}\eta_{i}^{q} & \mbox{if} & i \leq j, \\ (3) & \partial_{i}^{q+1}\eta_{j}^{q} & = & \eta_{j-1}^{q-1}\partial_{i}^{q} & \mbox{if} & i < j, \\ (4) & \partial_{i}^{q+1}\eta_{i}^{q} & = & \mbox{identity} & = & \partial_{i+1}^{q+1}\eta_{i}^{q}, \\ (5) & \partial_{i}^{q+1}\eta_{j}^{q} & = & \eta_{j}^{q-1}\partial_{i-1}^{q} & \mbox{if} & i > j+1, \\ \end{array}$$

The elements of K^q are called q-simplexes

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロン 不良 とくぼう 不良 とう

Mathematical context: Simplicial Sets

Definition

A simplicial set K, is a union $K = \bigcup_{q \ge 0} K^q$, where the K^q are disjoints sets, together with functions

$$\begin{array}{ll} \partial_i^q: K^q \to K^{q-1}, \quad q > 0, \quad i = 0, \dots, q, \\ \eta_i^q: K^q \to K^{q+1}, \quad q \ge 0, \quad i = 0, \dots, q, \end{array}$$

subject to the relations

- The elements of K^q are called q-simplexes
- A q-simplex x is degenerate if $x = \eta_i^{q-1}y$ for some simplex $y \in K^{q-1}$

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロナ イヨナ イヨナ イヨナ

Mathematical context: Simplicial Sets

Definition

A simplicial set K, is a union $K = \bigcup_{q \ge 0} K^q$, where the K^q are disjoints sets, together with functions

$$\begin{array}{ll} \partial_i^q: K^q \to K^{q-1}, \quad q > 0, \quad i = 0, \dots, q, \\ \eta_i^q: K^q \to K^{q+1}, \quad q \ge 0, \quad i = 0, \dots, q, \end{array}$$

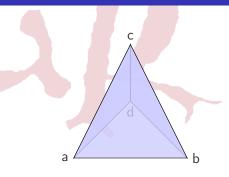
subject to the relations

- The elements of K^q are called q-simplexes
- A q-simplex x is degenerate if $x = \eta_i^{q-1}y$ for some simplex $y \in K^{q-1}$
- Otherwise x is called non-degenerate (or geometric)

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

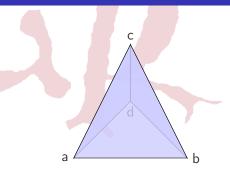
Mathematical context: Example



- 0-simplexes: vertices:
 (a), (b), (c), (d)
- non-degenerate 1-simplexes:
 edges:
 (a b),(a c),(a d),(b c),(b d),(c d)
- non-degenerate 2-simplexes: (filled) triangles: (a b c),(a b d),(a c d),(b c d)
- non-degenerate 3-simplexes:
 (filled) tetrahedron: (a b c d)

・ 同 ト ・ ヨ ト ・ ヨ ト

Mathematical context: Example

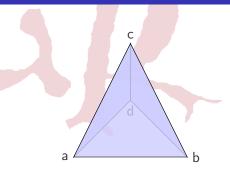


- 0-simplexes: vertices:
 (a), (b), (c), (d)
- non-degenerate 1-simplexes:
 edges:
 (a b),(a c),(a d),(b c),(b d),(c d)
- non-degenerate 2-simplexes: (filled) triangles: (a b c),(a b d),(a c d),(b c d)
- non-degenerate 3-simplexes:
 (filled) tetrahedron: (a b c d)

face:
$$\partial_i(a \ b \ c) = \begin{cases} (b \ c) & \text{if } i = 0\\ (a \ c) & \text{if } i = 1\\ (a \ b) & \text{if } i = 2 \end{cases}$$

(同) (ヨ) (ヨ)

Mathematical context: Example



- 0-simplexes: vertices:
 (a), (b), (c), (d)
- non-degenerate 1-simplexes:
 edges:
 (a b),(a c),(a d),(b c),(b d),(c d)
- non-degenerate 2-simplexes: (filled) triangles: (a b c),(a b d),(a c d),(b c d)
- non-degenerate 3-simplexes:
 (filled) tetrahedron: (a b c d)

face:
$$\partial_i(a \ b \ c) = \begin{cases} (b \ c) & \text{if } i = 0\\ (a \ c) & \text{if } i = 1\\ (a \ b) & \text{if } i = 2 \end{cases}$$

degeneracy:
$$\eta_i(a \ b \ c) = \begin{cases} (a \ a \ b \ c) & \text{if } i = 0 \\ (a \ b \ b \ c) & \text{if } i = 1 \\ (a \ b \ c \ c) & \text{if } i = 2 \end{cases}$$
 non-geometrical meaning

・ 同 ト ・ ヨ ト ・ ヨ ト

Mathematical context: abstract simplexes

Proposition

Let K be a simplicial set. Any n-simplex $x \in K^n$ can be expressed in a unique way as a (possibly) iterated degeneracy of a non-degenerate simplex y in the following way

$$x = \eta_{j_k} \dots \eta_{j_1} y$$

with $y \in K^r$, $k = n - r \ge 0$, and $0 \le j_1 < \cdots < j_k < n$.

Mathematical context: abstract simplexes

Proposition

Let K be a simplicial set. Any n-simplex $x \in K^n$ can be expressed in a unique way as a (possibly) iterated degeneracy of a non-degenerate simplex y in the following way

$$x = \eta_{j_k} \dots \eta_{j_1} y$$

with $y \in K^r$, $k = n - r \ge 0$, and $0 \le j_1 < \cdots < j_k < n$.

abstract simplex

Jónathan Heras Vicente

Mathematical context: abstract simplexes

Proposition

Let K be a simplicial set. Any n-simplex $x \in K^n$ can be expressed in a unique way as a (possibly) iterated degeneracy of a non-degenerate simplex y in the following way

$$x = \eta_{j_k} \dots \eta_{j_1} y$$

with $y \in K^r$, $k = n - r \ge 0$, and $0 \le j_1 < \cdots < j_k < n$.

abstract simplex

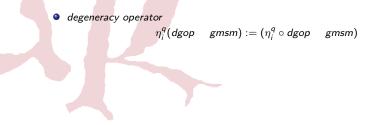
- Examples

$$\begin{array}{rll} \text{simplex} & \text{abstract simplex} \\ \text{non-degenerate} & (a \ b) & (\emptyset \ (a \ b)) \\ \text{degenerate} & (a \ a \ b \ c) & (\eta_0 \ (a \ b \ c)) \end{array}$$

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロナ イボナ イミナ イヨナ



Jónathan Heras Vicente

degeneracy operator

 η

$$q_i^q(dgop gmsm) := (\eta_i^q \circ dgop gmsm)$$

face operator

where

$$r = q - \{$$
number of degeneracies in *dgop* $\}$ and
 $k = i - \{$ number of degeneracies in *dgop* with index lower than $i\}$

degeneracy operator

$$q^q(dgop gmsm) := (\eta^q_i \circ dgop gmsm)$$

• face operator

$$\partial_i^q(\textit{dgop} \quad \textit{gmsm}) := \left\{ \begin{array}{ll} (\partial_i^q \circ \textit{dgop} \quad \textit{gmsm}) & \text{if} \quad \eta_i \in \textit{dgop} \lor \eta_{i-1} \in \textit{dgop} \\ (\partial_i^q \circ \textit{dgop} \quad \partial_k^r \textit{gmsm}) & \text{otherwise}; \end{array} \right.$$

where

 $r = q - \{$ number of degeneracies in $dgop \}$ and

 $k = i - \{$ number of degeneracies in *dgop* with index lower than $i\}$

invariant operator

 $(dgop gmsm) \in K^q$

- (length dgop) < q
- $gmsm \in K^r$ where r = q (length dgop)
- index of the first degeneracy in *dgop* is lower than *q*

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

・ 同 ト ・ 三 ト ・ 三 ト

degeneracy operator

 $\eta_i^q(dgop \quad gmsm) := (\eta_i^q \circ dgop \quad gmsm)$

face operator

 $\partial_i^q (\textit{dgop} \ \textit{gmsm}) := \left\{ \begin{array}{cc} (\partial_i^q \circ \textit{dgop} \ \textit{gmsm}) & \text{if} \ \eta_i \in \textit{dgop} \lor \eta_{i-1} \in \textit{dgop} \\ (\partial_i^q \circ \textit{dgop} \ \partial_k^r \textit{gmsm}) & \text{otherwise}; \end{array} \right.$

where

 $r = q - \{$ number of degeneracies in *dgop* $\}$ and

 $k = i - \{$ number of degeneracies in *dgop* with index lower than $i\}$

invariant operator

 $(dgop gmsm) \in K^q$

- (length dgop) < q
- $gmsm \in K^r$ where r = q (length dgop)
- index of the first degeneracy in *dgop* is lower than *q*

Dependent part from the chosen simplicial set \rightarrow Affect geometric part

Independent parts from the chosen simplicial set \rightarrow Not affect geometric part

Jónathan Heras Vicente

- Functions
 - face-absm
 - degeneracy-absm
 - invariant-absm

Jónathan Heras Vicente

- Functions
 - face-absm
 - degeneracy-absm
 - invariant-absm

Dependent parts

- face-gmsm
- invariant-gmsm

Jónathan Heras Vicente

- Functions
 - face-absm
 - degeneracy-absm
 - invariant-absm

Dependent parts

- face-gmsm
- invariant-gmsm

Independent parts

- degeneracy
- face-independent
- invariant-independent

- Functions
 - face-absm
 - degeneracy-absm
 - invariant-absm
- Properties

$$\begin{array}{l} \bullet \quad \partial_{i}^{q-1}\partial_{j}^{q} = \partial_{j-1}^{q-1}\partial_{i}^{q} \text{ if } i < j \\ \bullet \quad \eta_{i}^{q+1}\eta_{j}^{q} = \eta_{j+1}^{q+1}\eta_{i}^{q} \text{ if } i \leq j \\ \bullet \quad \partial_{i}^{q+1}\eta_{j}^{q} = \eta_{j-1}^{q-1}\partial_{i}^{q} \text{ if } i < j \\ \bullet \quad \partial_{i}^{q+1}\eta_{i}^{q} = identity = \partial_{i+1}^{q+1}\eta_{i}^{q} \\ \bullet \quad \partial_{i}^{q+1}\eta_{j}^{q} = \eta_{j}^{q-1}\partial_{i-1}^{q} \text{ if } i > j+1 \\ \bullet \quad \lambda \in K^{q} \Rightarrow \eta_{i}^{q} \times \in K^{q+1} \\ \bullet \quad x \in K^{q} \Rightarrow \partial_{i}^{q} \times \in K^{q-1} \end{array}$$

Dependent parts

- face-gmsm
- invariant-gmsm

Independent parts

- degeneracy
- face-independent
- invariant-independent

(同) (ヨ) (ヨ)

Functions

- face-absm
- degeneracy-absm
- invariant-absm
- Properties

$$\begin{array}{l} \textcircledleft{0.5} \partial_{i}^{q-1}\partial_{j}^{q}=\partial_{j-1}^{q-1}\partial_{i}^{q} \ \text{if} \ i < j \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{j}^{q}=\eta_{j+1}^{q+1}\eta_{i}^{q} \ \text{if} \ i \leq j \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{j}^{q}=\eta_{j-1}^{q-1}\partial_{i}^{q} \ \text{if} \ i < j \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{i}^{q}=identity =\partial_{i+1}^{q+1}\eta_{i}^{q} \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{j}^{q}=\eta_{j}^{q-1}\partial_{i-1}^{q} \ \text{if} \ i > j+1 \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{j}^{q}=\eta_{j}^{q}\partial_{i+1}^{q} \ \text{if} \ i > j+1 \\ \textcircledleft{0.5} \chi \in K^{q} \Rightarrow \eta_{i}^{q} \chi \in K^{q-1} \\ \end{array}$$

Dependent parts

- face-gmsm
- invariant-gmsm

$$\ \, { \ \, 0 } \ \, \partial_i^{q-1} \partial_j^q { gmsm } = \partial_{j-1}^{q-1} \partial_i^q { gmsm }, i < j$$

• $gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1}$

Independent parts

- degeneracy
- face-independent
- invariant-independent
- Independent parts of Properties
 (1) and (7)

Functions

- face-absm
- degeneracy-absm
- invariant-absm
- Properties

$$\begin{array}{l} \textcircledleft{0.5} \partial_{j}^{q-1}\partial_{j}^{q}=\partial_{j-1}^{q-1}\partial_{i}^{q} \ \text{if } i < j \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{j}^{q}=\eta_{j+1}^{q+1}\eta_{i}^{q} \ \text{if } i \leq j \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{j}^{q}=\eta_{j-1}^{q-1}\partial_{i}^{q} \ \text{if } i < j \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{i}^{q}=identity = \partial_{i+1}^{q+1}\eta_{i}^{q} \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{j}^{q}=\eta_{j}^{q-1}\partial_{i-1}^{q} \ \text{if } i > j+1 \\ \textcircledleft{0.5} \partial_{i}^{q+1}\eta_{j}^{q}=\eta_{j}^{q}\partial_{i-1}^{q} \\ \textcircledleft{0.5} X \in K^{q} \Rightarrow \eta_{i}^{q} \times \in K^{q+1} \\ \textcircledleft{0.5} X \in K^{q} \Rightarrow \partial_{i}^{q} \times \in K^{q-1} \end{array}$$

Dependent parts

- face-gmsm
- invariant-gmsm

$$\ \, { \ \, 0 } \ \, \partial_i^{q-1} \partial_j^q { gmsm } = \partial_{j-1}^{q-1} \partial_i^q { gmsm }, i < j$$

• $gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1}$

Independent parts

- degeneracy
- face-independent
- invariant-independent
- Independent parts of Properties
 (1) and (7)
- Properties (2) to (6)

イロン (得) イヨン (ヨ)

- Functions
 - face-absm
 - degeneracy-absm
 - invariant-absm
- Properties

$$\begin{array}{c|c} \bullet & \partial_{i}^{q-1}\partial_{j}^{q} = \partial_{j-1}^{q-1}\partial_{i}^{q} \text{ if } i < j \\ \bullet & \eta_{i}^{q+1}\eta_{j}^{q} = \eta_{j+1}^{q+1}\eta_{i}^{q} \text{ if } i \leq j \\ \bullet & \eta_{i}^{q+1}\eta_{j}^{q} = \eta_{j-1}^{q-1}\partial_{i}^{q} \text{ if } i < j \\ \bullet & \partial_{i}^{q+1}\eta_{i}^{q} = \eta_{i-1}^{q-1}\partial_{i-1}^{q} \text{ if } i > j \\ \bullet & \partial_{i}^{q+1}\eta_{i}^{q} = \eta_{j}^{q-1}\partial_{i-1}^{q} \text{ if } i > j + 1 \\ \bullet & \chi \in K^{q} \Rightarrow \eta_{i}^{q} \times \in K^{q+1} \\ \bullet & \chi \in K^{q} \Rightarrow \partial_{i}^{q} \times \in K^{q-1} \end{array}$$

(encapsulate

- ; Signatures
- (((face-absm * * *) => *)
- ((degeneracy-absm * * *) => *)
- ((invariant-absm * *) => *))
- ; Theorems
- (defthm property1 ...)
- (defthm property2 ...)
- (defthm property3 ...)
- (defthm property4 ...)
- (defthm property5 ...)
- (defthm property6 ...)
- (defthm property7 ...))

- Functions
 - face-absm
 - degeneracy-absm
 - invariant-absm
- Properties

$$\begin{array}{c|c} \bullet & \partial_{i}^{q-1}\partial_{j}^{q} = \partial_{j-1}^{q-1}\partial_{i}^{q} \text{ if } i < j \\ \bullet & \eta_{i}^{q+1}\eta_{j}^{q} = \eta_{j+1}^{q+1}\eta_{i}^{q} \text{ if } i \leq j \\ \bullet & \eta_{i}^{q+1}\eta_{j}^{q} = \eta_{j-1}^{q-1}\partial_{i}^{q} \text{ if } i < j \\ \bullet & \partial_{i}^{q+1}\eta_{i}^{q} = \eta_{j-1}^{q-1}\partial_{i-1}^{q} \text{ if } i < j \\ \bullet & \partial_{i}^{q+1}\eta_{j}^{q} = \eta_{j}^{q-1}\partial_{i-1}^{q} \text{ if } i > j + 1 \\ \bullet & \lambda \in K^{q} \Rightarrow \eta_{i}^{q} \times \in K^{q+1} \\ \bullet & \chi \in K^{q} \Rightarrow \partial_{i}^{q} \times \in K^{q-1} \end{array}$$

- (encapsulate
- ; Signatures
- (((face-absm * * *) => *)
- ((degeneracy-absm * * *) => *)
- ((invariant-absm * *) => *))
- ; Theorems
- (defthm property1 ...)
- (defthm property2 ...)
- (defthm property3 ...)
- (defthm property4 ...)
- (defthm property5 ...)
- (defthm property6 ...)
- (defthm property7 ...))

Concrete Simplicial Set

- 3 definitions + 7 theorems
- Proofs are not reusable for other cases

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

・ 同 ト ・ ヨ ト ・ ヨ ト

Dependent parts

- face-gmsm
- invariant-gmsm
- $\partial_i^{q-1} \partial_i^q gmsm = \partial_{i-1}^{q-1} \partial_i^q gmsm, i < j$
- $gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1}$

Independent parts

- degeneracy
- face-independent
- invariant-independent
- Independent parts of Properties (1) and (7)
- Properties (2) to (6)

(encapsulate

- ; Signatures
- (((face-gmsm * * *) => *)
- ((inv-gmsm * *) => *))
- ; Theorems

(defthm faceoface ;; $(\partial_i^{q-1}\partial_j^q gmsm = \partial_{j-1}^{q-1}\partial_i^q gmsm$ if i < j) ...)

(defthm invariant-prop ;; (gmsm $\in K^q \Rightarrow \partial_i^q$ gmsm $\in K^{q-1}$) ...))

Dependent parts

- face-gmsm
- invariant-gmsm
- $\partial_i^{q-1} \partial_i^q gmsm = \partial_{i-1}^{q-1} \partial_i^q gmsm, i < j$
- $gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1}$

Independent parts

- degeneracy
- face-independent
- invariant-independent
- Independent parts of Properties (1) and (7)
- Properties (2) to (6)

(encapsulate

- ; Signatures
- (((face-gmsm * * *) => *)
- ((inv-gmsm * *) => *))
- ; Theorems

(defthm faceoface ;; $(\partial_i^{q-1} \partial_j^q gmsm = \partial_{j-1}^{q-1} \partial_j^q gmsm$ if i < j) ...) (defthm invariant-prop ;; $(gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1})$...))

Definitions of independent parts Proof of the independent theorems

Dependent parts

- face-gmsm
- invariant-gmsm
- $\partial_i^{q-1} \partial_i^q gmsm = \partial_{i-1}^{q-1} \partial_i^q gmsm, i < j$
- $gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1}$

Independent parts

- degeneracy
- face-independent
- invariant-independent
- Independent parts of Properties (1) and (7)
- Properties (2) to (6)

(encapsulate

- ; Signatures
- (((face-gmsm * * *) => *)
- ((inv-gmsm * *) => *))
- ; Theorems

(defthm faceoface ;; $(\partial_i^{q-1} \partial_j^q gmsm = \partial_{j-1}^{q-1} \partial_j^q gmsm$ if i < j) ...) (defthm invariant-prop ;; $(gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1})$...))

Definitions of independent parts Proof of the independent theorems Construction of a simplicial set instance

Dependent parts

- face-gmsm
- invariant-gmsm
- $\partial_i^{q-1} \partial_i^q gmsm = \partial_{i-1}^{q-1} \partial_i^q gmsm, i < j$
- $gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1}$

Independent parts

- degeneracy
- face-independent
- invariant-independent
- Independent parts of Properties (1) and (7)
- Properties (2) to (6)

Concrete Simplicial Set

- 2 definitions + 2 theorems
- Proofs are reusable

(encapsulate

- ; Signatures
- (((face-gmsm * * *) => *)
- ((inv-gmsm * *) => *))
- ; Theorems

(defthm faceoface ;; $(\partial_i^{q-1} \partial_j^q gmsm = \partial_{j-1}^{q-1} \partial_i^q gmsm$ if i < j) ...) (defthm invariant-prop ;; $(gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1})$...))

Definitions of independent parts Proof of the independent theorems Construction of a simplicial set instance

(同) (ヨ) (ヨ)

 $\begin{array}{l} (\texttt{encapsulate} \\ \texttt{; Signatures} \\ (((\texttt{face-gmsm } \ast \ast \ast) \implies \ast) \\ ((\texttt{inv-gmsm } \ast \ast) \implies \ast)) \\ \texttt{; Theorems} \\ (\texttt{defthm faceoface }\texttt{; } (\partial_i^{q-1} \partial_j^q \textit{gmsm} = \partial_{j-1}^{q-1} \partial_i^q \textit{gmsm} \textit{ if } i < j) \\ \dots) \\ (\texttt{defthm invariant-prop }\texttt{; } (\textit{gmsm} \in K^q \Rightarrow \partial_i^q \textit{gmsm} \in K^{q-1}) \\ \dots)) \end{array}$

Definitions of independent parts Proof of the independent theorems Construction of a simplicial set instance

Concrete Simplicial Set

- 2 definitions + 2 theorems
- Proofs are reusable

- (encapsulate
- ; Signatures
- (((face-absm * * *) => *)
- ((degeneracy-absm * * *) => *)
- ((invariant-absm * *) => *))
- ; Theorems
- (defthm property1 ...)
- (defthm property2 ...)
- (defthm property3 ...)
- (defthm property4 ...)
- (defthm property5 ...)
- (defthm property6 ...)
- (defthm property7 ...))

Concrete Simplicial Set

- 3 definitions + 7 theorems
- Proofs are not reusable for other cases

Jónathan Heras Vicente

(reduced) encapsulate + independent functions

Jónathan Heras Vicente

(reduced) encapsulate + independent functions

proof →

Generic Simplicial Set

Jónathan Heras Vicente

Jónathan Heras Vicente

Jónathan Heras Vicente

proof

Summary of our methodology

(reduced) encapsulate + independent functions ↑ encapsulate instance Generic Simplicial Set ↓ Concrete Simplicial Set + Proof correctness

- From 2 definitions and 2 theorems
- Instantiates 3 definitions and 7 theorems
- The proof of the 7 theorems involves: 92 definitions and 969 theorems
- The proof effort is considerably reduced

(ロ)(周)(E)(E) E りへの

proof

Summary of our methodology

(reduced) encapsulate + independent functions t encapsulate instance Generic Simplicial Set ↓ Concrete Simplicial Set + Proof correctness

- From 2 definitions and 2 theorems
- Instantiates 3 definitions and 7 theorems
- The proof of the 7 theorems involves: 92 definitions and 969 theorems
- The proof effort is considerably reduced
- Generic Instantiation tool
 - F. J. Martín-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A Generic Instantiation Tool and a Case Study: A Generic Multiset Theory. Proceedings of the Third ACL2 workshop. Grenoble, Francia, pp. 188–203, 2002

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

イロン (得) (ヨ) (ヨ)

proof

Summary of our methodology

(reduced) encapsulate + independent functions t encapsulate instance Generic Simplicial Set ↓ Concrete Simplicial Set + Proof correctness

- From 2 definitions and 2 theorems
- Instantiates 3 definitions and 7 theorems
- The proof of the 7 theorems involves: 92 definitions and 969 theorems
- The proof effort is considerably reduced
- Generic Instantiation tool
 - F. J. Martín-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina. A Generic Instantiation Tool and a Case Study: A Generic Multiset Theory. Proceedings of the Third ACL2 workshop. Grenoble, Francia, pp. 188–203, 2002
- This methodology can be extrapolated to other cases

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

Generic Theory for families of Simplicial Sets

A simplicial set

(encapsulate

- ; Signatures
- (((face-absm * * *) => *)
- ((degeneracy-absm * * *) => *)
- ((invariant-absm * *) => *))
- ; Theorems
- (defthm property1 ...)
- (defthm property2 ...)
- (defthm property3 ...)
- (defthm property4 ...)
- (defthm property5 ...)
- (defthm property6 ...)
- (defthm property7 ...))

A family of simplicial sets indexed by $\ensuremath{\mathcal{K}}$

(encapsulate

- ; Signatures
- (((imp-face-absm * * * *) => *)
- ((imp-degeneracy-absm * * * *) => *)
- ((imp-invariant-absm * * *) => *))
- ; Theorems
- (defthm imp-property1 ...)
- (defthm imp-property2 ...)
- (defthm imp-property3 ...)
- (defthm imp-property4 ...)
- (defthm imp-property5 ...)
- (defthm imp-property6 ...)
- (defthm imp-property7 ...))

Generic Theory for families of Simplicial Sets

A simplicial set

(encapsulate

- ; Signatures
- (((face-gmsm * * *) => *)
 - ((inv-gmsm * *) => *))
- ; Theorems

(defthm faceoface

;;
$$(\partial_i^{q-1}\partial_j^q gmsm = \partial_{j-1}^{q-1}\partial_i^q gmsm \text{ if } i < j)$$

...)

(defthm invariant-prop

;;
$$(gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1})$$

...)

A family of simplicial sets indexed by $\ensuremath{\mathcal{K}}$

(encapsulate

- ; Signatures
- (((face-gmsm * * * *) => *)
- ((inv-gmsm * * *) => *)

((indexp *) => *))

; Theorems

(defthm imp-faceoface ;; $(\partial_i^{q-1} \partial_j^q gmsm = \partial_{j-1}^{q-1} \partial_i^q gmsm$ if i < j) ...)

(defthm imp-invariant-prop ;; $(gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1})$...))

Generic Theory for families of Simplicial Sets

A simplicial set

(encapsulate ; Signatures (((face-gmsm * * *) \Rightarrow *) ((inv-gmsm * *) \Rightarrow *)) ; Theorems (defthm faceoface ;; $(\partial_i^{q-1}\partial_j^q gmsm = \partial_{j-1}^{q-1}\partial_i^q gmsm \text{ if } i < j)$...) (defthm invariant-prop ;; $(gmsm \in K^q \Rightarrow \partial_j^q gmsm \in K^{q-1})$...))

A family of simplicial sets indexed by $\ensuremath{\mathcal{K}}$

(encapsulate

- ; Signatures
- (((face-gmsm * * * *) => *)
- ((inv-gmsm * * *) => *)

((indexp *) => *))

; Theorems

(defthm imp-faceoface ;; $(\partial_i^{q-1}\partial_j^q gmsm = \partial_{j-1}^{q-1}\partial_i^q gmsm$ if i < j) ...) (defthm imp-invariant-prop

;; $(gmsm \in K^q \Rightarrow \partial_i^q gmsm \in K^{q-1})$...)

Generic Simplicial Set Theory

- Spheres family
- Standard Simplicial sets family
- Simplicial Complexes family

Jónathan Heras Vicente

Table of Contents

4 Deduction

5 Conclusions and Further work

Jónathan Heras Vicente

Conclusions

Conclusions

Conclusions

- Communication (*fKenzo*)
 - Integral assistant for Algebraic Topology
 - Provides a mediated access to Kenzo
 - Friendly front-end ۲

Conclusions

Conclusions

Conclusions

- Communication (*fKenzo*)
 - Integral assistant for Algebraic Topology
 - Provides a mediated access to Kenzo
 - Friendly front-end
- Computation
 - Implementation of new Kenzo modules
 - Integration with other Computer Algebra systems

Conclusions

Conclusions

Conclusions

- Communication (*fKenzo*)
 - Integral assistant for Algebraic Topology
 - Provides a mediated access to Kenzo
 - Friendly front-end
- Computation
 - Implementation of new Kenzo modules
 - Integration with other Computer Algebra systems
- Deduction
 - Formalization of correctness of Kenzo programs using ACL2

(日本) (日本) (日本)

Further work

Further work

- Formalization of Homological Algebra and Algebraic Topology libraries
 - ACL2
 - Coq/SSReflect

Further work

Further work

- Formalization of Homological Algebra and Algebraic Topology libraries
 - ACL2
 - Coq/SSReflect
- Integration of Theorem Prover tools
 - Compare developments in different theorem provers
 - ACL2 as Coq's oracle

Further work

Further work

- Formalization of Homological Algebra and Algebraic Topology libraries
 - ACL2
 - Coq/SSReflect
- Integration of Theorem Prover tools
 - Compare developments in different theorem provers
 - ACL2 as Coq's oracle
- Applications to biomedical images

Mathematical Knowledge Management in Algebraic Topology

Jónathan Heras Vicente

Supervisors: Dr. Vico Pascual Martínez-Losa Dr. Julio Rubio García

Department of Mathematics and Computer Science University of La Rioja Spain

May 31, 2011

Jónathan Heras Vicente

Mathematical Knowledge Management in Algebraic Topology

・ 同 ト ・ ヨ ト ・ ヨ ト