Combining formalization and computation in Coq: a case-study with algebraic structures¹

César Domínguez

Universidad de La Rioja

Algebraic computing, soft computing, and program verification

Castro Urdiales, April 2010

¹Partially supported by Ministerio de Ciencia e Innovación, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath.

- 2 A formalization in Coq of a hierarchy of data structures.
- 3 Some proofs and some instances.
- 4 Computing with instances in Coq.
- 5 Conclusions and further work.

2 A formalization in Coq of a hierarchy of data structures.

3 Some proofs and some instances.

4 Computing with instances in Coq.

• Objective: To formalize some algorithms implemented in Kenzo.

- Objective: To formalize some algorithms implemented in Kenzo.
- First milestone: mechanized proof of the Basic Perturbation Lemma in Isabelle/HOL.

- Objective: To formalize some algorithms implemented in Kenzo.
- First milestone: mechanized proof of the Basic Perturbation Lemma in Isabelle/HOL.
- An approach to formalize this result in Type Theory in an abstract context (using Category theory concepts) is being carried out by T. Coquand and A. Spiwack.

- Objective: To formalize some algorithms implemented in Kenzo.
- First milestone: mechanized proof of the Basic Perturbation Lemma in Isabelle/HOL.
- An approach to formalize this result in Type Theory in an abstract context (using Category theory concepts) is being carried out by T. Coquand and A. Spiwack.
- C. Domínguez, Julio Rubio The effective homology of bicomplexes, formalized in Coq

- Objective: To formalize some algorithms implemented in Kenzo.
- First milestone: mechanized proof of the Basic Perturbation Lemma in Isabelle/HOL.
- An approach to formalize this result in Type Theory in an abstract context (using Category theory concepts) is being carried out by T. Coquand and A. Spiwack.
- C. Domínguez, Julio Rubio The effective homology of bicomplexes, formalized in Coq
- A hierarchy of algebraic (graded and infinite dimensional) data structures are required.

- Objective: To formalize some algorithms implemented in Kenzo.
- First milestone: mechanized proof of the Basic Perturbation Lemma in Isabelle/HOL.
- An approach to formalize this result in Type Theory in an abstract context (using Category theory concepts) is being carried out by T. Coquand and A. Spiwack.
- C. Domínguez, Julio Rubio The effective homology of bicomplexes, formalized in Coq
- A hierarchy of algebraic (graded and infinite dimensional) data structures are required.
- A sound and useful working representation in Coq: providing instances and proving theorems.

- Objective: To formalize some algorithms implemented in Kenzo.
- First milestone: mechanized proof of the Basic Perturbation Lemma in Isabelle/HOL.
- An approach to formalize this result in Type Theory in an abstract context (using Category theory concepts) is being carried out by T. Coquand and A. Spiwack.
- C. Domínguez, Julio Rubio The effective homology of bicomplexes, formalized in Coq
- A hierarchy of algebraic (graded and infinite dimensional) data structures are required.
- A sound and useful working representation in Coq: providing instances and proving theorems.
- Constructive type theory allows proofs of computable terms. Idea: test and then formalize on particular instances.

2 A formalization in Coq of a hierarchy of data structures.

3 Some proofs and some instances.

4 Computing with instances in Coq.

Basic algebraic structures from the CoRN repository

Formalization built on CoRN structures (in a simpler setting: setoids without apartness).

Basic algebraic structures from the CoRN repository

Formalization built on CoRN structures (in a simpler setting: setoids without apartness).

A new formulation of these structures in now in process.

Let R be a ring. Given a set B, we consider the *free R-module* generated by B, denoted by R[B].
Its Coq formalization follows Algebra contribution by L. Pottier.

- Let R be a ring. Given a set B, we consider the *free R-module* generated by B, denoted by R[B].
 Its Coq formalization follows Algebra contribution by L. Pottier.
- A *free R*-module *M* is a module where an explicit isomorphism is known between *M* and *R*[*B*]. The set of generators *B* is also explicitly given.

- Let R be a ring. Given a set B, we consider the free R-module generated by B, denoted by R[B].
 Its Coq formalization follows Algebra contribution by L. Pottier.
- A *free R*-module *M* is a module where an explicit isomorphism is known between *M* and *R*[*B*]. The set of generators *B* is also explicitly given.
- A graded free *R*-module is a family of free *R*-modules $\{M_i\}_{i \in \mathbb{Z}}$.

- Let R be a ring. Given a set B, we consider the *free R-module* generated by B, denoted by R[B].
 Its Coq formalization follows Algebra contribution by L. Pottier.
- A *free R*-module *M* is a module where an explicit isomorphism is known between *M* and *R*[*B*]. The set of generators *B* is also explicitly given.
- A graded free *R*-module is a family of free *R*-modules $\{M_i\}_{i \in \mathbb{Z}}$.
- A chain complex is a pair ({M_i}_{i∈Z}, {d_i}_{i∈Z}) where {M_i}_{i∈Z} is graded free module and {d_i: M_{i+1} → M_i}_{i∈Z} is a family of module morphisms, called *differential operator*, such that d_i ∘ d_{i+1} = 0 for all n ∈ Z.

Chain complexes in Coq

• Given a ring R: Ring, a graded module can be formalized in Coq with the following type: Z -> FreeModule R.

Chain complexes in Coq

- Given a ring R: Ring, a graded module can be formalized in Coq with the following type: Z -> FreeModule R.
- Record ChainComplex: Type:=
 {GrdMod:> Z -> FreeModule R;
 Diff: forall i: Z,
 ModHom (R:=R) (GrdMod (S i)) (GrdMod i);
 NilpotenceDiff: forall i: Z,
 (Nilpotence (Diff i)(Diff (S i))).
- where the differential (nilpotence) property is defined by Nilpotence(g: ModHom B C)(f: ModHom A B):= forall a: A, ((g[oh]f) a)[=]Zero.

A hierarchy of data structures

Reductions

A reduction is a 5-tuple (TCC, BCC, f, g, h)

where TCC = (M, d) and BCC = (M', d') are chain complexes (named top and bottom chain complex), $f: TCC \rightarrow BCC$ and $g: BCC \rightarrow TCC$ are chain morphisms, $h = (h_i: M_i \rightarrow M_{i+1})_{i \in \mathbb{Z}}$ is a family of module morphisms (called *homotopy operator*), which satisfy the following properties for all $i \in \mathbb{Z}$:

If
$$i \circ g_i = id_{M'_i}$$
 discrete for $h_i \circ d_i + g_{i+1} \circ f_{i+1} = id_{M_{i+1}}$
 discrete for $f_{i+1} \circ h_i = 0$
 fi $h_i \circ g_i = 0$
 hi $h_i \circ g_i = 0$
 hi $h_{i+1} \circ h_i = 0$

Reductions in Coq

. . .

• In Coq, this concept is again formalized as a record: Record Reduction:Type:= {topCC: ChainComplex R; bottomCC: ChainComplex R; f_t_b: ChainComplex_hom topCC bottomCC; g_b_t: ChainComplex_hom bottomCC topCC; h_t_t: HomotopyOperator topCC; rp1: forall (i: Z)(a:(bottomCC i)), ((f_t_b i)[oh](g_b_t i))a[=]a;

A hierarchy of data structures

• Given a natural number $k \in \mathbb{N}$, let us denote FS(k) the (finite) set $\{0, \ldots, k-1\}$.

- Given a natural number $k \in \mathbb{N}$, let us denote FS(k) the (finite) set $\{0, \ldots, k-1\}$.
- A set B is *finite* if it is endowed with a natural k ∈ N and an explicit bijection ψ : B → FS(k) with an explicit inverse ψ⁻¹ : FS(k) → B.

- Given a natural number $k \in \mathbb{N}$, let us denote FS(k) the (finite) set $\{0, \ldots, k-1\}$.
- A set *B* is *finite* if it is endowed with a natural $k \in \mathbb{N}$ and an explicit bijection $\psi : B \to FS(k)$ with an explicit inverse $\psi^{-1} : FS(k) \to B$.
- A free R-module M is of finite type if its set of generators is finite.

- Given a natural number $k \in \mathbb{N}$, let us denote FS(k) the (finite) set $\{0, \ldots, k-1\}$.
- A set *B* is *finite* if it is endowed with a natural $k \in \mathbb{N}$ and an explicit bijection $\psi : B \to FS(k)$ with an explicit inverse $\psi^{-1} : FS(k) \to B$.
- A free R-module M is of finite type if its set of generators is finite.
- These definitions extend and apply naturally to graded modules, chain complexes, chain morphisms, ...

- Given a natural number $k \in \mathbb{N}$, let us denote FS(k) the (finite) set $\{0, \ldots, k-1\}$.
- A set *B* is *finite* if it is endowed with a natural $k \in \mathbb{N}$ and an explicit bijection $\psi : B \to FS(k)$ with an explicit inverse $\psi^{-1} : FS(k) \to B$.
- A free R-module M is of finite type if its set of generators is finite.
- These definitions extend and apply naturally to graded modules, chain complexes, chain morphisms, ...
- A chain complex *CC* with effective homology is a reduction (*CC*, *FCC*, *f*, *g*, *h*) where *FCC* is a *free of finite type* chain complex.

Free of finite type modules

```
Record FinFreeModule: Type :=
{FFM :> FreeModule R;
Finite_SetoidFFM: Finite_Set;
equal_FFM: (is_FFModule FFM Finite_SetoidFFM)
}.
```

SGen = Set of generators of the FreeModule.

A hierarchy of data structures

A formalization in Coq of a hierarchy of data structures

3 Some proofs and some instances.

4 Computing with instances in Coq.

Mapping cones

Definition

Given a pair of chain complexes $CC = ((M_i)_{i \in \mathbb{Z}}, (d_i)_{i \in \mathbb{Z}})$ and $CC' = ((M'_i)_{i \in \mathbb{Z}}, (d'_i)_{i \in \mathbb{Z}})$ and a chain complex morphism $\alpha \colon CC \to CC'$, the cone of α , denoted by $Cone(\alpha)$, is a chain complex $((M''_i)_{i \in \mathbb{Z}}, (d''_i)_{i \in \mathbb{Z}})$ such that, for each $i \in \mathbb{Z}$, $M''_i = M_i \oplus M'_{i+1}$ and $d''_i(x, x') = (-d_i(x), d'_{i+1}(x') + \alpha_{i+1}(x))$ for any $x \in M_{i+1}$ and $x' \in M'_{i+2}$.

Mapping cones

Definition

Given a pair of chain complexes $CC = ((M_i)_{i \in \mathbb{Z}}, (d_i)_{i \in \mathbb{Z}})$ and $CC' = ((M'_i)_{i \in \mathbb{Z}}, (d'_i)_{i \in \mathbb{Z}})$ and a chain complex morphism $\alpha \colon CC \to CC'$, the cone of α , denoted by $Cone(\alpha)$, is a chain complex $((M''_i)_{i \in \mathbb{Z}}, (d''_i)_{i \in \mathbb{Z}})$ such that, for each $i \in \mathbb{Z}$, $M''_i = M_i \oplus M'_{i+1}$ and $d''_i(x, x') = (-d_i(x), d'_{i+1}(x') + \alpha_{i+1}(x))$ for any $x \in M_{i+1}$ and $x' \in M'_{i+2}$.

$$\cdots \stackrel{d_{-3}}{\longleftarrow} M_{-2} \stackrel{d_{-2}}{\longleftarrow} M_{-1} \stackrel{d_1}{\longleftarrow} M_0 \stackrel{d_0}{\longleftarrow} M_1 \stackrel{d_1}{\longleftarrow} M_2 \stackrel{d_2}{\longleftarrow} \cdots$$
$$\cdots \stackrel{d''_{-3}}{\longrightarrow} \cdots \stackrel{d''_{-2}}{\longleftarrow} \cdots \stackrel{d''_{-1}}{\longrightarrow} \cdots \stackrel{d''_{-1}}{\longleftarrow} M_0 \stackrel{d_1}{\longleftarrow} M_1 \stackrel{d_1}{\longleftarrow} M_2 \stackrel{d_2}{\longleftarrow} \cdots$$
$$\cdots \stackrel{d''_{-2}}{\longleftarrow} M_{-1} \stackrel{d_{-1}}{\longleftarrow} M_0 \stackrel{d_{-1}}{\longleftarrow} M_1 \stackrel{d_{-1}}{\longleftarrow} M_2 \stackrel{d_{-1}}{\longleftarrow} M_2 \stackrel{d_{-1}}{\longleftarrow} \dots$$

In Coq:

Definition ConeDiffGround:=fun(i:Z)(ab:(ConeGround (i+1)))=>
 ([--](Diff CC1 i(fst ab)),
 ((Diff CC0(i+1))(snd ab)[+]f(i+1)(fst ab))).

Effective homology of a mapping cone

Theorem

Given two reductions r = (TCC, BCC, f, g, h) and r' = (TCC', BCC', f', g', h')and a chain morphism α : $TCC \rightarrow TCC'$, it is possible to define a reduction $r'' = (Cone(\alpha), BCC'', f'', g'', h'')$ with $Cone(\alpha)$ as top chain complex and:

- $BCC'' = Cone(\alpha')$ with $\alpha' : BCC \rightarrow BCC'$ defined by $\alpha' = f' \circ \alpha \circ g$
- $f'' = (f, f' \circ \alpha \circ h + f'), g'' = (g, -h' \circ \alpha \circ g + g'), h'' = (-h, h' \circ \alpha \circ h + h')$

Besides, if TCC and TCC' are objects with effective homology through r and r', then $Cone(\alpha)$ is and object with effective homology through r''.

• Given two reductions r1 r2: Reduction R, and a chain morphism between their top chain complexes alpha: ChainComplex_hom (topCC r1) (topCC r2),

- Given two reductions r1 r2: Reduction R, and a chain morphism between their top chain complexes alpha: ChainComplex_hom (topCC r1) (topCC r2),
- Define a chain morphism alpha' between the bottom chain complexes through the function
 Definition alpha'':= fun i: Z =>
 (f_t_b r2 i) [oh] (alpha i) [oh] (g_b_t r1 i).

- Given two reductions r1 r2: Reduction R, and a chain morphism between their top chain complexes alpha: ChainComplex_hom (topCC r1) (topCC r2),
- Define a chain morphism alpha' between the bottom chain complexes through the function
 Definition alpha'':= fun i: Z =>
 (f_t_b r2 i) [oh] (alpha i) [oh] (g_b_t r1 i).
- Then we build a reduction between Cone(alpha) and Cone(alpha').

- Given two reductions r1 r2: Reduction R, and a chain morphism between their top chain complexes alpha: ChainComplex_hom (topCC r1) (topCC r2),
- Define a chain morphism alpha' between the bottom chain complexes through the function
 Definition alpha'':= fun i: Z =>
 (f_t_b r2 i) [oh] (alpha i) [oh] (g_b_t r1 i).
- Then we build a reduction between Cone(alpha) and Cone(alpha').
- For instance, the first chain morphism of the reduction is:

Definition f_cone_reductionGround: forall i: Z, (Cone alpha)i -> (Cone alpha')i:= fun (i: Z)(ab: (Cone alpha)i) => ((f_t_b r1 i)(fst ab), (((f_t_b r2 (i+1)) [oh] (alpha (i+1)) [oh] (h_t_t r1 i))(fst ab)) [+] (f_t_b r2 (i+1))(snd ab)).

- Finite Type:
 - Null free module

- Finite Type:
 - Null free module
 - Integer numbers

- Finite Type:
 - Null free module
 - Integer numbers
 - ► The chain complex *FCC*⁽¹⁾:

- Finite Type:
 - Null free module
 - Integer numbers
 - ▶ The chain complex *FCC*⁽¹⁾:

- Infinite Type:
 - Module $\mathbb{Z}[\mathbb{N}]$

- Finite Type:
 - Null free module
 - Integer numbers
 - ▶ The chain complex *FCC*⁽¹⁾:

- Infinite Type:
 - Module $\mathbb{Z}[\mathbb{N}]$
 - The chain complex $CC^{(2)}$:

. . .

$$\mathbb{Z}[\mathbb{N}] \stackrel{\text{i even}}{\leftarrow} \mathbb{Z}[\mathbb{N}] \qquad \mathbb{Z}[\mathbb{N}] \stackrel{\text{i odd}}{\leftarrow} \mathbb{Z}[\mathbb{N}]$$

$$x_{0} \stackrel{(d^{(2)})_{i}}{\leftarrow} x_{0} \qquad 0 \stackrel{(d^{(2)})_{i}}{\leftarrow} x_{0}$$

$$0 \stackrel{(d^{(2)})_{i}}{\leftarrow} x_{1} \qquad x_{1} \stackrel{(d^{(2)})_{i}}{\leftarrow} x_{1}$$

$$x_{2} \stackrel{(d^{(2)})_{i}}{\leftarrow} x_{2} \qquad 0 \stackrel{(d^{(2)})_{i}}{\leftarrow} x_{1}$$

$$0 \stackrel{(d^{(2)})_{i}}{\leftarrow} x_{1} \stackrel{(d^{(2)})_{i}}{\leftarrow} x_{1}$$

• $CC^{(1)}$ is $FCC^{(1)}$ without the finiteness condition:

• $CC^{(1)}$ is $FCC^{(1)}$ without the finiteness condition:

• $h^{(2)}$ defined as the $d^{(2)}$ differential:

2 A formalization in Coq of a hierarchy of data structure

3 Some proofs and some instances.

Computing with instances in Coq

Looking for a contracting homotopy in $Cone(\alpha')$, *i.e.* a $h: Cone(\alpha') \rightarrow Cone(\alpha')$ such that $h \circ h = 0$ and $d \circ h + h \circ d = id$ in

Computing with instances in Coq

Looking for a contracting homotopy in $Cone(\alpha')$, *i.e.* a $h: Cone(\alpha') \rightarrow Cone(\alpha')$ such that $h \circ h = 0$ and $d \circ h + h \circ d = id$ in

• Candidates:

- ▶ $h1 = (h1_i)_{i \in \mathbb{Z}}$, such that $h1_i(a, b) := (0, a)$, for all $i \in \mathbb{Z}$
- ▶ $h2 = (h2_i)_{i \in \mathbb{Z}}$, such that $h2_i(a, b) := (b, 0)$, for all $i \in \mathbb{Z}$

- Candidates in Coq:
 - Definition h1:=fun(i:Z)(c:bottomCC Example i)=>(0,fst c)
 - Definition h2:=fun(i:Z)(c:bottomCC Example i)=>(snd c,0)

- Candidates in Coq:
 - Definition h1:=fun(i:Z)(c:bottomCC Example i)=>(0,fst c)
 - Definition h2:=fun(i:Z)(c:bottomCC Example i)=>(snd c,0)
- Computing in Coq $(d \circ h + h \circ d = id)$ with *finite* structures:
 - Eval vm_compute in
 (((Diff (bottomCC Example) 2)[oh](h1 2))[+h]
 ((h1 1)[oh](Diff(bottomCC Example) 1)))(5, 7).
 resulting in: =(0, 0):bottomCC Example 2

- Candidates in Coq:
 - Definition h1:=fun(i:Z)(c:bottomCC Example i)=>(0,fst c)
 - Definition h2:=fun(i:Z)(c:bottomCC Example i)=>(snd c,0)
- Computing in Coq $(d \circ h + h \circ d = id)$ with *finite* structures:
 - Eval vm_compute in
 (((Diff (bottomCC Example) 2)[oh](h1 2))[+h]
 ((h1 1)[oh](Diff(bottomCC Example) 1)))(5, 7).
 resulting in: =(0, 0):bottomCC Example 2

In Coq

Definition h_topCone:= fun n: Z => (h_t_t Example) n [+h] (((g_b_t Example) n) [oh] (h2 n) [oh] ((f_t_b Example) n)).

In Coq

Definition h_topCone:= fun n: Z => (h_t_t Example) n [+h] (((g_b_t Example) n) [oh] (h2 n) [oh] ((f_t_b Example) n)).

- Computing in Coq with *infinite* structures: (e represents the element (7 * x₄ + 8 * x₀)).
 - Eval vm_compute in
 (((Diff(topCC Example) 2)[oh](h_topCone 2))[+h]
 ((h_topCone 1)[oh]((Diff(topCC Example) 1))))(5, e, 3).

resulting in an element equal (in the setoid) to (5, e, 3).

Undecidible problem in general

When working with chain complexes of infinite type, if an element x is a cycle (that is to say, $d_n(x) = 0$) and the chain complex has a contracting homotopy, then there exists an element z such that $d_{n+1}(z) = x$.

Undecidible problem in general

When working with chain complexes of infinite type, if an element x is a cycle (that is to say, $d_n(x) = 0$) and the chain complex has a contracting homotopy, then there exists an element z such that $d_{n+1}(z) = x$.

- For a chain complex with a contracting homotopy it is possible to calculate that pre-image for some elements.
- Example (-10, Inv e, 5)

Undecidible problem in general

When working with chain complexes of infinite type, if an element x is a cycle (that is to say, $d_n(x) = 0$) and the chain complex has a contracting homotopy, then there exists an element z such that $d_{n+1}(z) = x$.

- For a chain complex with a contracting homotopy it is possible to calculate that pre-image for some elements.
- Example (-10, Inv e, 5)
- Computing in Coq with *infinite* structures: Eval vm_compute in (h_topCone 2)(-10, Inv e, 5). resulting in an element equal to (5, e, 0).

Undecidible problem in general

When working with chain complexes of infinite type, if an element x is a cycle (that is to say, $d_n(x) = 0$) and the chain complex has a contracting homotopy, then there exists an element z such that $d_{n+1}(z) = x$.

- For a chain complex with a contracting homotopy it is possible to calculate that pre-image for some elements.
- Example (-10, Inv e, 5)
- Computing in Coq with *infinite* structures: Eval vm_compute in (h_topCone 2)(-10, Inv e, 5).
 resulting in an element equal to (5, e, 0).

Eval vm_compute in ((Diff(topCC Example) 2))(5, e, 0). resulting the required element (-10, Inv e, 5).

A formalization in Coq of a hierarchy of data structures.

3 Some proofs and some instances.

4 Computing with instances in Coq.

• Conclusions:

Algebraic Topology can be formalized in Coq.

- Conclusions:
 - Algebraic Topology can be formalized in Coq.
 - In particular, we have obtained the formalization of a hierarchy of data structures in Algebraic Topology

- Conclusions:
 - Algebraic Topology can be formalized in Coq.
 - In particular, we have obtained the formalization of a hierarchy of data structures in Algebraic Topology
 - We have provided some proofs and some instances of the structures.

- Conclusions:
 - Algebraic Topology can be formalized in Coq.
 - In particular, we have obtained the formalization of a hierarchy of data structures in Algebraic Topology
 - ▶ We have provided some proofs and some instances of the structures.
 - The instances allow us to relate deduction and computing in Coq.

- Conclusions:
 - Algebraic Topology can be formalized in Coq.
 - In particular, we have obtained the formalization of a hierarchy of data structures in Algebraic Topology
 - ▶ We have provided some proofs and some instances of the structures.
 - ▶ The instances allow us to relate deduction and computing in Coq.
- Further work:

- Conclusions:
 - Algebraic Topology can be formalized in Coq.
 - In particular, we have obtained the formalization of a hierarchy of data structures in Algebraic Topology
 - ▶ We have provided some proofs and some instances of the structures.
 - The instances allow us to relate deduction and computing in Coq.
- Further work:
 - We are ready to rebuild our hierarchy using new formalization techniques in CoRN and/or ssreflect.

- Conclusions:
 - Algebraic Topology can be formalized in Coq.
 - In particular, we have obtained the formalization of a hierarchy of data structures in Algebraic Topology
 - ▶ We have provided some proofs and some instances of the structures.
 - ▶ The instances allow us to relate deduction and computing in Coq.
- Further work:
 - ► We are ready to rebuild our hierarchy using new formalization techniques in CoRN and/or ssreflect.
 - Extracting programs to (Common) Lisp.