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Introduction

Objective: To formalize some algorithms implemented in Kenzo.

First milestone: mechanized proof of the Basic Perturbation Lemma
in Isabelle/HOL.

An approach to formalize this result in Type Theory in an abstract
context (using Category theory concepts) is being carried out by
T. Coquand and A. Spiwack.

C. Doḿınguez, Julio Rubio
The effective homology of bicomplexes, formalized in Coq

A hierarchy of algebraic (graded and infinite dimensional) data
structures are required.

A sound and useful working representation in Coq: providing
instances and proving theorems.

Constructive type theory allows proofs of computable terms.
Idea: test and then formalize on particular instances.
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Basic algebraic structures from the CoRN repository
Formalization built on CoRN structures (in a simpler setting: setoids
without apartness).

Setoid SetoidFun

Semigroup

OO

SemigroupMrph

OO

Monoid

OO

MonoidMrph

OO

Group

OO

GroupMrph

ff

AbGroup

OO

AbGroupMrph

OO

Ring

OO

RingMrph

OO

Module

;;

ModHom

ee

A new formulation of these structures in now in process.
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Definitions for (constructive) free structures

Let R be a ring. Given a set B, we consider the free R-module
generated by B, denoted by R[B].
Its Coq formalization follows Algebra contribution by L. Pottier.

A free R-module M is a module where an explicit isomorphism is
known between M and R[B]. The set of generators B is also
explicitly given.

A graded free R-module is a family of free R-modules {Mi}i∈Z.

A chain complex is a pair ({Mi}i∈Z, {di}i∈Z) where {Mi}i∈Z is
graded free module and {di : Mi+1 → Mi}i∈Z is a family of module
morphisms, called differential operator, such that di ◦ di+1 = 0 for all
n ∈ Z.
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C. Doḿınguez (Univ. La Rioja) Formalization and computation in Coq 7 / 29



Definitions for (constructive) free structures

Let R be a ring. Given a set B, we consider the free R-module
generated by B, denoted by R[B].
Its Coq formalization follows Algebra contribution by L. Pottier.

A free R-module M is a module where an explicit isomorphism is
known between M and R[B]. The set of generators B is also
explicitly given.

A graded free R-module is a family of free R-modules {Mi}i∈Z.

A chain complex is a pair ({Mi}i∈Z, {di}i∈Z) where {Mi}i∈Z is
graded free module and {di : Mi+1 → Mi}i∈Z is a family of module
morphisms, called differential operator, such that di ◦ di+1 = 0 for all
n ∈ Z.
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Chain complexes in Coq

Given a ring R: Ring, a graded module can be formalized in Coq
with the following type: Z -> FreeModule R.

Record ChainComplex: Type:=
{GrdMod:> Z -> FreeModule R;
Diff: forall i: Z,

ModHom (R:=R) (GrdMod (S i)) (GrdMod i);
NilpotenceDiff: forall i: Z,

(Nilpotence (Diff i)(Diff (S i))}.

where the differential (nilpotence) property is defined by
Nilpotence(g: ModHom B C)(f: ModHom A B):=
forall a: A, ((g[oh]f) a)[=]Zero.
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A hierarchy of data structures

Setoid SetoidFun

Module

OO

ModHom

OO

FreeModule

OO

::

I
>

�
�

u

44hhhhh

GrdFreeModule

OO�
�

GrdModHom

OO�
�
�
�

Differential

eeJ
J

J
J

J
J

J

ChainComplex

OO 22dddddddddd
ChainComplexHom

OO
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Reductions
A reduction is a 5-tuple (TCC ,BCC , f , g , h)

TCC
f ,,

h 44 BCC
g

ll

where TCC = (M, d) and BCC = (M ′, d ′) are chain complexes (named
top and bottom chain complex), f : TCC → BCC and g : BCC → TCC
are chain morphisms, h = (hi : Mi → Mi+1)i∈Z is a family of module
morphisms (called homotopy operator), which satisfy the following
properties for all i ∈ Z:

1 fi ◦ gi = idM′i
2 di+1 ◦ hi+1 + hi ◦ di + gi+1 ◦ fi+1 = idMi+1

3 fi+1 ◦ hi = 0

4 hi ◦ gi = 0

5 hi+1 ◦ hi = 0
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Reductions in Coq

In Coq, this concept is again formalized as a record:

Record Reduction:Type:=
{topCC: ChainComplex R;
bottomCC: ChainComplex R;
f_t_b: ChainComplex_hom topCC bottomCC;
g_b_t: ChainComplex_hom bottomCC topCC;
h_t_t: HomotopyOperator topCC;
rp1: forall (i: Z)(a:(bottomCC i)),

((f_t_b i)[oh](g_b_t i))a[=]a;
...
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A hierarchy of data structures
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Definitions for (constructive) effective homology

Given a natural number k ∈ N, let us denote FS(k) the (finite) set
{0, . . . , k − 1}.

A set B is finite if it is endowed with a natural k ∈ N and an explicit
bijection ψ : B → FS(k) with an explicit inverse ψ−1 : FS(k)→ B.

A free R-module M is of finite type if its set of generators is finite.

These definitions extend and apply naturally to graded modules, chain
complexes, chain morphisms, . . .

A chain complex CC with effective homology is a reduction
(CC ,FCC , f , g , h) where FCC is a free of finite type chain complex.
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Free of finite type modules

Record FinFreeModule: Type :=
{FFM :> FreeModule R;
Finite_SetoidFFM: Finite_Set;
equal_FFM: (is_FFModule FFM Finite_SetoidFFM)
}.

Definition is_FFModule(FM:FreeModule R)(X:Finite_Set):=
SGen(FM) = X.

SGen = Set of generators of the FreeModule.
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A hierarchy of data structures

Setoid FiniteSetoo GrdFiniteSetoo_ _ _ _

FreeModule

OOAA

6
� �

FinFreeModuleoo

OO�
�
�

ChainComplex

OO�
�
�

FinFreeChainComplex

OO�
�
�
�
�
�

oo

Reduction

OO�
�
�

EffectiveHomologyoo

hh

o
r

w
�




�
4

?
G

L
O

Q
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Mapping cones

Definition

Given a pair of chain complexes CC = ((Mi )i∈Z, (di )i∈Z) and
CC ′ = ((M ′i )i∈Z, (d ′i )i∈Z) and a chain complex morphism α : CC → CC ′,
the cone of α, denoted by Cone(α), is a chain complex
((M ′′i )i∈Z, (d ′′i )i∈Z) such that, for each i ∈ Z, M ′′i = Mi ⊕M ′i+1 and
d ′′i (x , x ′) = (−di (x), d ′i+1(x ′) + αi+1(x)) for any x ∈ Mi+1 and x ′ ∈ M ′i+2.

. . . M−2
d−3oo M−1

d−2oo M0
d1oo M1

d0oo M2
d1oo . . .d2oo

. . . ×d ′′−3
oo ×d ′′−2

oo ×d ′′−1
oo ×d ′′0

oo ×d ′′1
oo . . .d ′′2

oo

. . . M ′−1d−2

oo M ′0d−1

oo M ′1d2

oo M ′2d1

oo M ′3d2

oo . . .
d4

oo

In Coq:

Definition ConeDiffGround:=fun(i:Z)(ab:(ConeGround (i+1)))=>
([--](Diff CC1 i(fst ab)),
((Diff CC0(i+1))(snd ab)[+]f(i+1)(fst ab))).
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Effective homology of a mapping cone

Theorem

Given two reductions r = (TCC ,BCC , f , g , h) and r ′ = (TCC ′,BCC ′, f ′, g ′, h′)
and a chain morphism α : TCC → TCC ′, it is possible to define a reduction
r ′′ = (Cone(α),BCC ′′, f ′′, g ′′, h′′) with Cone(α) as top chain complex and:

BCC ′′ = Cone(α′) with α′ : BCC → BCC ′ defined by α′ = f ′ ◦ α ◦ g

f ′′ = (f , f ′ ◦α ◦ h + f ′), g ′′ = (g ,−h′ ◦α ◦ g + g ′), h′′ = (−h, h′ ◦α ◦ h + h′)

TCC
f

--

h

��

α

��

BCC
g

mm

α′

���
�
�

TCC ′
f ′

--

h′

RR BCC ′

g ′

mm

Besides, if TCC and TCC ′ are objects with effective homology through r and r ′,
then Cone(α) is and object with effective homology through r ′′.
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Effective homology of a cone, in Coq

Given two reductions r1 r2: Reduction R, and a chain morphism
between their top chain complexes
alpha: ChainComplex hom (topCC r1) (topCC r2),

Define a chain morphism alpha’ between the bottom chain
complexes through the function
Definition alpha’’:= fun i: Z =>
(f t b r2 i) [oh] (alpha i) [oh] (g b t r1 i).

Then we build a reduction between Cone(alpha) and Cone(alpha’).

For instance, the first chain morphism of the reduction is:

Definition f_cone_reductionGround:
forall i: Z, (Cone alpha)i -> (Cone alpha’)i:=
fun (i: Z)(ab: (Cone alpha)i) => ((f_t_b r1 i)(fst ab),
(((f_t_b r2 (i+1)) [oh] (alpha (i+1)) [oh]
(h_t_t r1 i))(fst ab)) [+] (f_t_b r2 (i+1))(snd ab)).
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Effective homology of a cone, in Coq

Given two reductions r1 r2: Reduction R, and a chain morphism
between their top chain complexes
alpha: ChainComplex hom (topCC r1) (topCC r2),
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Instances of the structures, in Coq
Finite Type:

I Null free module

I Integer numbers

I The chain complex FCC (1):

. . . Z
0oo Z

×2oo Z
0oo Z

×2oo Z
0oo . . .×2oo

degree -2 -1 0 1 2

Infinite Type:

I Module Z[N]

I The chain complex CC (2):

Z[N] Z[N]
(d (2))i

i evenoo Z[N] Z[N]
(d (2))i

i oddoo

x0 x0
�oo 0 x0

�oo

0 x1
�oo x1 x1

�oo

x2 x2
�oo 0 x2

�oo

0 x3
�oo x3 x3

�oo
. . . . . . . . . . . .
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C. Doḿınguez (Univ. La Rioja) Formalization and computation in Coq 20 / 29



Instances of the structures, in Coq
Finite Type:

I Null free module

I Integer numbers

I The chain complex FCC (1):

. . . Z
0oo Z

×2oo Z
0oo Z

×2oo Z
0oo . . .×2oo

degree -2 -1 0 1 2

Infinite Type:

I Module Z[N]

I The chain complex CC (2):

Z[N] Z[N]
(d (2))i

i evenoo Z[N] Z[N]
(d (2))i

i oddoo

x0 x0
�oo 0 x0

�oo

0 x1
�oo x1 x1

�oo

x2 x2
�oo 0 x2

�oo

0 x3
�oo x3 x3

�oo
. . . . . . . . . . . .
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Instances of effective homologies, in Coq

CC (1) is FCC (1) without the finiteness condition:

CC (1)

id
--

0

��
FCC (1)

id

mm

h(2) defined as the d (2) differential:

CC (1) ⊕ CC (2)

π1

--

(0,h(2))

��
FCC (1)

(id,0)

nn

C. Doḿınguez (Univ. La Rioja) Formalization and computation in Coq 21 / 29



Instances of effective homologies, in Coq

CC (1) is FCC (1) without the finiteness condition:

CC (1)

id
--

0

��
FCC (1)

id

mm

h(2) defined as the d (2) differential:

CC (1) ⊕ CC (2)

π1

--

(0,h(2))

��
FCC (1)

(id,0)

nn
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Instances of effective homologies, in Coq

CC (1) ⊕ CC (2)

π1

--

(0,h(2))

��

π1

��

FCC (1)

(id,0)

nn

α′

���
�
�

CC (1)

id
--

0

RR FCC (1)

id

mm

Effective homology of the cone of π1

Cone(π1)
f Ex

--
hEx

��
Cone(α′)

gEx

mm
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1 Introduction.

2 A formalization in Coq of a hierarchy of data structures.

3 Some proofs and some instances.

4 Computing with instances in Coq.

5 Conclusions and further work.
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Computing with instances in Coq

Looking for a contracting homotopy in Cone(α′), i.e. a
h : Cone(α′)→ Cone(α′) such that h ◦ h = 0 and d ◦ h + h ◦ d = id in

Cone(π1)
f Ex

--
hEx

��
Cone(α′)

gEx

mm

h
��

Candidates:

I h1 = (h1i )i∈Z, such that h1i (a, b) := (0, a), for all i ∈ Z
I h2 = (h2i )i∈Z, such that h2i (a, b) := (b, 0), for all i ∈ Z
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Computing with finite instances, in Coq

Candidates in Coq:
I Definition h1:=fun(i:Z)(c:bottomCC Example i)=>(0,fst c)

I Definition h2:=fun(i:Z)(c:bottomCC Example i)=>(snd c,0)

Computing in Coq (d ◦ h + h ◦ d = id) with finite structures:

I Eval vm_compute in
(((Diff (bottomCC Example) 2)[oh](h1 2))[+h]
((h1 1)[oh](Diff(bottomCC Example) 1)))(5, 7).

resulting in: =(0, 0):bottomCC Example 2

I Eval vm_compute in
(((Diff (bottomCC Example) 2)[oh](h2 2))[+h]
((h2 1)[oh](Diff(bottomCC Example) 1)))(5, 7).

resulting in: =(5, 7):bottomCC Example 2
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Computing with infinite instances, in Coq

Cone(π1)
f Ex

--
hEx

��

hEx + gEx ◦ h2 ◦ f Ex

KK
Cone(α′)

gEx

mm

h2
��

In Coq

Definition h_topCone:= fun n: Z => (h_t_t Example) n [+h]
(((g_b_t Example) n) [oh] (h2 n) [oh] ((f_t_b Example) n)).

Computing in Coq with infinite structures:
(e represents the element (7 ∗ x4 + 8 ∗ x0)).

I Eval vm_compute in
(((Diff(topCC Example) 2)[oh](h_topCone 2))[+h]
((h_topCone 1)[oh]((Diff(topCC Example) 1))))(5, e, 3).

resulting in an element equal (in the setoid) to (5, e, 3).
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Computing with infinite instances, in Coq

Undecidible problem in general

When working with chain complexes of infinite type, if an element x is a
cycle (that is to say, dn(x) = 0) and the chain complex has a contracting
homotopy, then there exists an element z such that dn+1(z) = x .

For a chain complex with a contracting homotopy it is possible to
calculate that pre-image for some elements.

Example (-10, Inv e, 5)

Computing in Coq with infinite structures:

Eval vm compute in (h topCone 2)(-10, Inv e, 5).

resulting in an element equal to (5, e, 0).

Eval vm compute in ((Diff(topCC Example) 2))(5, e, 0).

resulting the required element (-10, Inv e, 5).
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Conclusions and further work

Conclusions:

I Algebraic Topology can be formalized in Coq.

I In particular, we have obtained the formalization of a hierarchy of data
structures in Algebraic Topology

I We have provided some proofs and some instances of the structures.

I The instances allow us to relate deduction and computing in Coq.

Further work:

I We are ready to rebuild our hierarchy using new formalization
techniques in CoRN and/or ssreflect.

I Extracting programs to (Common) Lisp.
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C. Doḿınguez (Univ. La Rioja) Formalization and computation in Coq 29 / 29


	Contenidos
	Introduction.
	A formalization in Coq of a hierarchy of data structures.
	Some proofs and some instances.
	Computing with instances in Coq.
	Conclusions and further work.

