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Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Introduction The Formath project

The Formath project

European project

Formath: Formalization of Mathematics

University of Gothenburg
Radboud University Nijmegen
INRIA
Universidad de La Rioja
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Verification and Theorem prover tools

Program Verification

Interactive Proof AssistantsAutomated Verification
(Model checking, SMT. . . )
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Introduction Theorem prover tools

Interactive Proof Assistants

What is an Interactive Proof Assistant?

Software tool for the development of formal proofs
Man-Machine collaboration:

Human: design the proofs
Machine: fill the gaps

Examples: Isabelle, HOL, ACL2, Coq. . .

Applications
Mathematical proofs:

Four Color Theorem
Kepler Conjecture
Feit-Thompsom Theorem (Odd Order Theorem)
. . .

Software and Hardware verification:

C compiler
AMD5K86 microprocessor
. . .
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Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Introduction Theorem prover tools

Coq/SSReflect

Program Verification

Interactive Proof AssistantsAutomated Verification

Coq

Coq:

Based on Calculus of Inductive Constructions
Interesting feature: program extraction from a constructive proof

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions Series. Texts in
Theoretical Computer Science. An EATCS Series, 2004.
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Introduction Theorem prover tools

Coq/SSReflect

Program Verification

Interactive Proof AssistantsAutomated Verification

Coq

Coq:

Based on Calculus of Inductive Constructions
Interesting feature: program extraction from a constructive proof

SSReflect:

Extension of Coq
Developed while formalizing the Four Color Theorem by G. Gonthier
Used in the formalization of Feit-Thompson Theorem
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Algebraic Topology

Topological Spaces Invariant Groups

H0

H1

. . .
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Introduction Algebraic Topology

Algebraic Topology

Topological Spaces Invariant Groups

Kenzo

Computer Algebra system devoted to Algebraic Topology implemented in
Common Lisp
Homology groups which have not been obtained by other means

fKenzo

fKenzo: graphical user interface for the system Kenzo
It is not necessary to be an expert in Algebraic Topology or Common Lisp
to use it
Provides new functionalities to Kenzo such as the homology computation
for digital images
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Introduction Algebraic Topology

Algebraic Topology

Goal

Formalize the analysis of monochromatic digital images

Context

To deal with biomedical images:

Reliability

Efficiency

Our approach

Formalize a technique to reduce the size of the information about a biomedical image
(preserving its homological properties)

Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Introduction Algebraic Topology

Algebraic Topology

Goal

Formalize the analysis of monochromatic digital images

Context

To deal with biomedical images:

Reliability

Efficiency

Our approach

Formalize a technique to reduce the size of the information about a biomedical image
(preserving its homological properties)
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Introduction Goal

Goal

Verification
Algebraic Topology

}
+
{

Digital images
}
→ Formalization of Digital Topology

The 95% of this thesis is devoted to formal verification
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Biomedical images and certified software Biomedical Images

Biomedical Problem: counting synapses

Synapses are the points of connection between neurons

Relevance: Computational capabilities of the brain

Procedures to modify the synaptic density may be an
important asset in the treatment of neurological diseases, such
as Alzheimer
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Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Biomedical images and certified software Biomedical Images

Manual process to count synapses

Count the synapses manually
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Semiautomatic process to count synapses
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Biomedical images and certified software Certified Software

The method

Biomedical Image

B&W Image

Simplicial Complex

Chain Complex

Homology

preprocessing

triangulation

algebraic structure

reduction

computing

interpreting
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Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Biomedical images and certified software Certified Software

The method

Biomedical Image

B&W Image

Simplicial Complex

Chain Complex

Homology

preprocessing

triangulation

algebraic structure

reduction

computing

interpreting
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Biomedical images and certified software Certified Software

Digital Algebraic Topology

Digital Image

Simplicial Complex Chain Complex

Homology Groups

C0 = vertices
C1 = edges
C2 = triangles

H1 = Z⊕ Z⊕ Z
H0 = Z⊕ Z
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Biomedical images and certified software Certified Software

Simplicial Complex

Definition

Let V be a set, called the vertex set, a simplex over V is any finite subset of V

Definition

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the
property:

∀α ∈ C , si β ⊆ α⇒ β ∈ C

Variable V : finType.

Definition simplex := {set V}.

Definition simplicial_complex (c : {set simplex}) :=

forall x, x \in c -> forall y : simplex, y \subset x -> y \in c.
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Biomedical images and certified software Certified Software

Chain Complex

Definition

A chain complex C∗ is a pair of sequences C∗ = (Cq , dq)q∈Z where:

For every q ∈ Z, the component Cq is a R-module, the chain group in degree q

For every q ∈ Z, the component dq is a morphism dq : Cq → Cq−1, the
differential function

For every q ∈ Z, the composition dqdq+1 is null: dqdq+1 = 0

Definition

Let K be a finite simplicial complex, Cn(K) is a free module and the n-simplices of K
form the standard basis of it. Then, given an order, for all n we can represent the
differential map dn : Cn(K)→ Cn−1(K) relative to the standard basis of the chain
groups as a Z2 matrix. Such a matrix is called the n-th incidence matrix of a simplicial
complex.
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Chain Complex

Definition

A chain complex C∗ is a pair of sequences C∗ = (Cq , dq)q∈Z where:

For every q ∈ Z, the component Cq is a R-module, the chain group in degree q

For every q ∈ Z, the component dq is a morphism dq : Cq → Cq−1, the
differential function

For every q ∈ Z, the composition dqdq+1 is null: dqdq+1 = 0

Definition

Let K be a finite simplicial complex, Cn(K) is a free module and the n-simplices of K
form the standard basis of it. Then, given an order, for all n we can represent the
differential map dn : Cn(K)→ Cn−1(K) relative to the standard basis of the chain
groups as a Z2 matrix. Such a matrix is called the n-th incidence matrix of a simplicial
complex.

Definition incidenceMatrix :=

\matrix_(i < m, j < n)

if (nth set0 Left i) \in (boundary (nth set0 Top j)) then 1 else 0:

bool.

Definition incidence_mx_n :=

incidenceMatrix (enum n_1_simplices)(enum n_simplices).
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differential map dn : Cn(K)→ Cn−1(K) relative to the standard basis of the chain
groups as a Z2 matrix. Such a matrix is called the n-th incidence matrix of a simplicial
complex.

Theorem incidence_matrices_sc_product:

forall (V:finType) (n:nat) (sc: {set (simplex V)}),

simplicial_complex sc ->

(incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.
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Chain Complex

Definition

A chain complex C∗ is a pair of sequences C∗ = (Cq , dq)q∈Z where:
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Definition

Let K be a finite simplicial complex, Cn(K) is a free module and the n-simplices of K
form the standard basis of it. Then, given an order, for all n we can represent the
differential map dn : Cn(K)→ Cn−1(K) relative to the standard basis of the chain
groups as a Z2 matrix. Such a matrix is called the n-th incidence matrix of a simplicial
complex.

J. Heras, M. Poza, M. Dénès and L. Rideau. Incidence simplicial matrices
formalized in Coq/SSReflect, Proceedings 18th Symposium on the Integration
of Symbolic Computation and Mechanised Reasoning (Calculemus’11), Lecture
Notes in Computer Science, vol. 6824, pages 30-44, 2011.
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Homology

Definition

If C∗ = (Cq , dq)q∈Z is a chain complex:

The image Bq = im dq+1 ⊆ Cq is the (sub)module of q-boundaries

The kernel Zq = ker dq ⊆ Cq is the (sub)module of q-cycles

Definition

Let C∗ = (Cq , dq)q∈Z be a chain complex. For each degree n ∈ Z, the n-homology
module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn
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Homology

Definition

If C∗ = (Cq , dq)q∈Z is a chain complex:

The image Bq = im dq+1 ⊆ Cq is the (sub)module of q-boundaries

The kernel Zq = ker dq ⊆ Cq is the (sub)module of q-cycles

Definition

Let C∗ = (Cq , dq)q∈Z be a chain complex. For each degree n ∈ Z, the n-homology
module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn

Variable (K : fieldType) (V1 V2 V3 : vectType K)

(f : linearApp V1 V2) (g : linearApp V2 V3).

Definition Homology := ((lker g) :\: (limg f)).
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Homology

Definition

If C∗ = (Cq , dq)q∈Z is a chain complex:

The image Bq = im dq+1 ⊆ Cq is the (sub)module of q-boundaries

The kernel Zq = ker dq ⊆ Cq is the (sub)module of q-cycles

Definition

Let C∗ = (Cq , dq)q∈Z be a chain complex. For each degree n ∈ Z, the n-homology
module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn

Definition dim_homology (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v2,v3)) :=

v2 - \rank mxg - \rank mxf.

Lemma dimHomologyrankE: mxf *m mxg = 0 ->

\dim Homology (LinearApp mxf)(LinearApp mxg) = dim_homology mxf mxg.
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Homology

Definition

If C∗ = (Cq , dq)q∈Z is a chain complex:

The image Bq = im dq+1 ⊆ Cq is the (sub)module of q-boundaries

The kernel Zq = ker dq ⊆ Cq is the (sub)module of q-cycles

Definition

Let C∗ = (Cq , dq)q∈Z be a chain complex. For each degree n ∈ Z, the n-homology
module of C∗ is defined as the quotient module

Hn(C∗) =
Zn

Bn

J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza and V. Siles. Towards a
certified computation of homology groups for digital images, Proceedings 4th
International Workshoph on Computational Topology in Image Context
(CTIC’12), Lecture Notes in Computer Science, vol. 7309, pages 49-57, 2012.
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Summary and problems

Biomedical Image

B&W Image

Simplicial Complex

Chain Complex

Homology

preprocessing

triangulation

algebraic structure

reduction

computing

interpreting

This process can be applied to any digital image

Reliability

Biomedical images:

Reliability
Efficiency: size of the images

Solution to our approach to the tackle the efficiency problem
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Reduction procedure Definition

Reduction

Definition

A reduction ρ between two chain complexes C∗ y D∗ (denoted by ρ : C∗⇒⇒D∗) is a
triple ρ = (f , g , h)

C∗

h

�� f
++
D∗

g

kk

satisfying the following relations:

1) fg = idD∗ ;

2) dC∗h + hdC∗ = idC∗ − gf ;

3) fh = 0; hg = 0; hh = 0.

Theorem

If C∗⇒⇒D∗, then C∗ ∼= D∗ ⊕ A∗, with A∗ acyclic, this implies that
Hn(C∗) ∼= Hn(D∗) for all n.
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Reduction procedure Discrete Vector Fields

Discrete Vector Fields: intuitive idea

Reduce the amount of information but keeping the homological properties

Discrete Morse Theory

Vector fields are a tool to cancel “useless” information

0← Z16 d1←− Z32 d2←− Z16 ← 0
↓

0← Z d̂1←− Z d̂2←− 0← 0
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Reduction procedure Discrete Vector Fields

Discrete Vector Fields

Definition

Let C∗ = (Cp , dp)p∈Z be a free chain complex with distinguished Z−basis βp ⊂ Cp . A
(p − 1)-cell σ is a face of a p-cell τ if the coefficient of σ in dτ is non-null. It is a
regular face if this coefficient is +1 or −1.

Definition

A discrete vector field on C∗ is a collection of pairs V = {(σi , τi )}i∈β satisfying the
conditions:

1 Every σi is some element of βp , in which case the other corresponding
component τi ∈ βp+1. The degree p depends on i and in general is not constant

2 Every component σi is a regular face of the corresponding component τi

3 A generator of C∗ appears at most one time in V
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Reduction procedure Discrete Vector Fields

Discrete Vector Fields

Definition

A V -path of degree p is a sequence π = ((σik , τik ))0≤k<m satisfying:

1 Every pair ((σik , τik )) is a component of V and the cell τik is a p-cell

2 For every 0 < k < m, the component σik is a face of τik−1
, non necessarily

regular, but different from σik−1

Definition

A discrete vector field V is admissible if for every p ∈ Z, a function λp : βp → Z is
provided satisfying the property: every V -path starting from σ ∈ βp has a length
bounded by λp(σ).
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Reduction procedure Discrete Vector Fields

Example: an admissible discrete vector field
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Reduction procedure Discrete Vector Fields

Example: an admissible discrete vector field

Dvf x
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Reduction procedure Discrete Vector Fields

Discrete Vector Fields

Definition

A cell χ which does not appear in a discrete vector field V = {(σi , τi )}i∈β is called a
critical cell.

Vector-Field Reduction Theorem

Let C∗ = (Cp , dp , βp)p be a free chain complex and V = {(σi , βi )}i∈β be an
admissible discrete vector field on C∗. Then the vector field V defines a canonical
reduction ρ = (f , g , h) : (Cp , dp) =⇒ (C c

p , d
′
p) where C c

p = Z
[
βc

p

]
is the free

Z−module generated by the critical p-cells.

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic
Topology, 2010. http://arxiv.org/abs/1005.5685v1.
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Reduction procedure Discrete Vector Fields

Vector fields and matrices

Differential maps of a chain complex of finite type can be represented as matrices

. . .← Zm
2

M←− Zn
2 ← . . .

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs
{(ai , bi )} satisfying these conditions:

1 1 ≤ ai ≤ m and 1 ≤ bi ≤ n

2 The entry M[ai , bi ] of the matrix is 1

3 The indices ai (resp. bi ) are pairwise different

4 Non existence of loops

Definition admissible_dvf (M: ’M[Z2]_(m,n))

(V: seq (’I_m * ’I_n)) (ords : simpl_rel ’I_m) :=

all [pred p | M p.1 p.2 == 1] V &&

uniq (map (@fst _ _) V) && uniq (map (@snd _ _) V) &&

all [pred i | ~~ (connect ords i i)] (map (@fst _ _) V).
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Reduction procedure Discrete Vector Fields

Main algorithms

Algorithm

Input: A matrix M
Output: An admissible discrete vector field for M

Algorithm

Input: A chain complex C∗ and an admissible discrete vector field of C∗
Output: A reduction from C∗ to a reduced chain complex Ĉ∗

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic
Topology, 2010. http://arxiv.org/abs/1005.5685v1.
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Reduction procedure Discrete Vector Fields

Romero-Sergeraert’s Algorithm

Algorithm (The RS Algorithm)

Input: a matrix M with coefficients in Z.
Output: an admissible discrete vector field V for M and a list of relations r .

1 Initialize the vector field V to the void vector field and the relations r to empty.

2 For every row i of M:

1 For every column j, which is different from the second components of V ,

such that M[i , j] = 1 or M[i , j] = −1:

- Look for the rows k 6= i such as M[k, j] 6= 0 and obtain the relations
i > k. Then, build the transitive closure of r and these relations.

If there is no loop in that transitive closure:
then: Add (i , j) to V , let r be that transitive closure, and repeat
from Step 2 with the next row.

else: Repeat from Step 2.1. with the next column.
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Reduction procedure Discrete Vector Fields

Example

0

1

2

3 4

5

6



{0, 1} {0, 2} {1, 2} {1, 3} {2, 3} {3, 4} {4, 5} {4, 6} {5, 6}
{0} 1 1 0 0 0 0 0 0 0
{1} 1 0 1 1 0 0 0 0 0
{2} 0 1 1 0 1 0 0 0 0
{3} 0 0 0 1 1 1 0 0 0
{4} 0 0 0 0 0 1 1 1 0
{5} 0 0 0 0 0 0 1 0 1
{6} 0 0 0 0 0 0 0 1 1



Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Reduction procedure Discrete Vector Fields

Example

0

1

2

3 4

5

6



{0, 1, 2} {4, 5, 6}
{0, 1} 1 0
{0, 2} 1 0
{1, 2} 1 0
{1, 3} 0 0
{2, 3} 0 0
{3, 4} 0 0
{4, 5} 0 1
{4, 6} 0 1
{5, 6} 0 1
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Reduction procedure Discrete Vector Fields

Example



1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1


1 dvf = {}, orders = {}
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Reduction procedure Discrete Vector Fields

Example



1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1


1 dvf = {}, orders = {}
2 dvf = {(1, 1)}, orders = {{1 > 2}}

Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Reduction procedure Discrete Vector Fields

Example



1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1


1 dvf = {}, orders = {}
2 dvf = {(1, 1)}, orders = {{1 > 2}}
3 dvf = {(1, 1), (2, 3)}, orders = {{1 > 2} , {2 > 3}}
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Reduction procedure Discrete Vector Fields

Example



1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1


1 dvf = {}, orders = {}
2 dvf = {(1, 1)}, orders = {{1 > 2}}
3 dvf = {(1, 1), (2, 3)}, orders = {{1 > 2} , {2 > 3}}
4 dvf = {(1, 1), (2, 3), (3, 5)},

orders = {{1 > 2} , {2 > 3} , {3 > 4}}
5 ...

6 dvf = {(1, 1), (2, 3), (3, 5), (4, 6), (5, 7), (6, 9)}
orders = {{1 > 2} , {2 > 3} , {3 > 4} , {4 > 5} , {5 > 6} , {6 > 7}}
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Reduction procedure Discrete Vector Fields

The abstract specification

Fixpoint genDvfOrders M V (ords : simpl_rel _) k :=

if k is l.+1 then

let P := [pred ij | admissible (ij::V) M

(relU ords (gen_orders M ij.1 ij.2))] in

if pick P is Some (i,j)

then genDvfOrders M ((i,j)::V)

(relU ords (gen_orders M i j)) l

else (V, ords)

else (V, ords).

Definition gen_adm_dvf M :=

genDvfOrders M [::] [rel x y | false] (minn m n).

Lemma admissible_gen_adm_dvf m n (M : ’M[Z2]_(m,n)) :

let (vf,ords) := gen_adm_dvf M in admissible vf M ords.

Problem

It is not an executable algorithm
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Reduction procedure Discrete Vector Fields

Verifying the RS-algorithm

Definition Z2 := Fp_fieldType 2.

Record matZ2:=

{M:> seq (seq Z2);

m:nat;

n:nat;

is_matrix: M = [::] \/

[/\ m = size M & forall i, i < m -> size (rowseqmx M i) = n]

}.

Definition vectorfield:= seq (prod nat nat).

Definition rels:= seq (seq nat).

Definition Vecfieldadm (M: matZ2)(vf: vectorfield)(r:rels) :=

(all [pred i | 0<= i < (M m)](getfirstseq vf)) /\

(all [pred i | 0<= i < (M n)](getsndseq vf)) /\

(forall i j:nat, (i,j) \in vf -> (nth 0 (nth nil M i) j) = 1%R) /\

(uniq (getfirstseq vf)) /\

(uniq (getsndseq vf)) /\

(forall i j l:nat, (i,j) \in vf -> i!=l

-> (nth 0 (nth nil M l) j)!= 0%R -> (i::l::nil) \in r) /\

prop_cat2 r /\

(all uniq r) /\

(ordered glMax vf r).
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Reduction procedure Discrete Vector Fields

Verifying the RS-algorithm

Theorem dvfordisVecfieldadm (M:matZ2):

Vecfieldadm M (dvford M)(genOrders M).
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Reduction procedure Discrete Vector Fields

Verifying the RS-algorithm

Theorem dvfordisVecfieldadm (M:matZ2):

Vecfieldadm M (dvford M)(genOrders M).

Lemma v_in_genDvf_Mv1 (M: matZ2): (forall a b:nat,

((a,b) \in (dvford M)) -> nth 0 (nth nil M a) b = 1%R).
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Reduction procedure Discrete Vector Fields

Verifying the RS-algorithm

Theorem dvfordisVecfieldadm (M:matZ2):

Vecfieldadm M (dvford M)(genOrders M).

Lemma inDvf_compij1 (p a b:nat) (M : matZ2):

(a,b) \in (fst (genDvfOrders p 0 0 M M [::] [::]))

-> nth 0 (nth nil M a) b = 1%R.
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Reduction procedure Discrete Vector Fields

Verifying the RS-algorithm

Theorem dvfordisVecfieldadm (M:matZ2):

Vecfieldadm M (dvford M)(genOrders M).

Lemma inDvf_compij1 (p a b:nat) (M : matZ2):

(a,b) \in (fst (genDvfOrders p 0 0 M M [::] [::]))

-> nth 0 (nth nil M a) b = 1%R.

Lemma inDvf_compij1_general (p i j a b :nat) (M M2: matZ2)

(vf: vectorfield)(r: rels):

(forall k2, nth 0 (nth nil M (i + a)) k2 = nth 0 (nth nil M2 a) k2)

-> (i + a,j + b) \in fst (genDvfOrders p i j M M2 vf r)

-> nth 0 (nth nil M (i + a)) (j + b) = 1%R.
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Reduction procedure Discrete Vector Fields

Verifying the RS-algorithm

Theorem dvfordisVecfieldadm (M:matZ2):

Vecfieldadm M (dvford M)(genOrders M).

The proofs detailed in this section involve 49 definitions and 109 lemmas. In general,
the development takes up 3772 code lines.
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Reduction procedure Discrete Vector Fields

Verifying the RS-algorithm

Theorem dvfordisVecfieldadm (M:matZ2):

Vecfieldadm M (dvford M)(genOrders M).

The proofs detailed in this section involve 49 definitions and 109 lemmas. In general,
the development takes up 3772 code lines.

J. Heras, M. Poza and J. Rubio. Verifying an algorithm computing Discrete
Vector Fields for digital imaging. Proceedings Conferences on Intelligence
Computer Mathematics (CICM’12), Lecture Notes in Computer Science, vol.
7362, pages 215-229,2012. http://arxiv.org/abs/1005.5685v1.
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Reduction procedure Discrete Vector Fields

General idea of the Vector-Field Reduction Theorem

Vector-Field Reduction Theorem

Let C∗ = (Cp , dp , βp)p be a free chain complex and V = {(σi , βi )}i∈β be an
admissible discrete vector field on C∗. Then the vector field V defines a canonical
reduction ρ = (f , g , h) : (Cp , dp) =⇒ (C c

p , d
′
p) where C c

p = Z
[
βc

p

]
is the free

Z−module generated by the critical p-cells.
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Vector-Field Reduction Theorem
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reduction ρ = (f , g , h) : (Cp , dp) =⇒ (C c

p , d
′
p) where C c

p = Z
[
βc

p

]
is the free

Z−module generated by the critical p-cells.

Chain complex

Ordered chain complex

Reduced chain complex

Composition

Isomorphism

Reduction

- Hexagonal Lemma

- Basic Perturbation Lemma
- Decomposition Theorem

- Generalization of the Hexagonal Lemma
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reduction ρ = (f , g , h) : (Cp , dp) =⇒ (C c

p , d
′
p) where C c

p = Z
[
βc

p

]
is the free

Z−module generated by the critical p-cells.

Chain complex

Ordered chain complex

Reduced chain complex

Composition

Isomorphism

Reduction

- Hexagonal Lemma

- Basic Perturbation Lemma
- Decomposition Theorem

- Generalization of the Hexagonal Lemma
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Reduction procedure Discrete Vector Fields

Vector-Field Reduction Theorem using HL

Hexagonal Lemma

Let C = (Cp , dp)p be a chain complex. For some k ∈ Z, the chain groups Ck and
Ck+1 are given with decompositions Ck = C ′k ⊕ C ′′k and Ck+1 = C ′k+1 ⊕ C ′′k+1, so that
between the degrees k − 1 and k + 2 this chain complex is described by the diagram:

C ′k C ′k+1

Ck−1 Ck+2

C ′′k C ′′k+1

α

β

γ

δ ε η
ϕ

ψ

ε−1

⊕ ⊕d dd
(1)

The partial differential ε : C ′′k+1 → C ′′k is assumed to be an isomorphism. Then a

canonical reduction can be defined ρ : C⇒⇒C ′ where C ′ is the same chain complex as
C except between the degrees k − 1 and k + 2:

. . .←− Ck−2 ←− Ck−1
α←−−− C ′k

β−ψε−1ϕ←−−−−−−− C ′k+1

γ←−−− Ck+2 ←− Ck+3 ←− . . .

Development: 303 definitions, 361 lemmas and 7511 lines
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Reduction procedure Discrete Vector Fields

Basic Perturbation Lemma

Basic Perturbation Lemma (BPL)

Let us consider a reduction ρ = (f , g , h) : C∗⇒⇒ Ĉ∗ between two chain complexes

(C∗, d) and (Ĉ∗, d̂), and δ a perturbation of d . Furthermore, the composite function

δh is assumed locally nilpotent. Then, a perturbation δ̂ can be defined for the
differential map d̂ and a new reduction ρ′ = (f ′, g ′, h′) : (C∗, d + δ)⇒⇒ (Ĉ∗, d̂ + δ̂)
can be constructed.
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Reduction procedure Discrete Vector Fields

Basic Perturbation Lemma

Basic Perturbation Lemma (BPL)

Let us consider a reduction ρ = (f , g , h) : C∗⇒⇒ Ĉ∗ between two chain complexes

(C∗, d) and (Ĉ∗, d̂), and δ a perturbation of d . Furthermore, the composite function

δh is assumed locally nilpotent. Then, a perturbation δ̂ can be defined for the
differential map d̂ and a new reduction ρ′ = (f ′, g ′, h′) : (C∗, d + δ)⇒⇒ (Ĉ∗, d̂ + δ̂)
can be constructed.

The non-graded case of this lemma was proved in Isabelle/HOL.

J. Aransay, C. Ballarin and J. Rubio. A mechanized proof of the Basic
Perturbation Lemma, Journal of Automated Reasoning, volume 40-4,
pages 271-292, 2008.

A particular case of the BPL was also proved in Coq using bicomplexes.

C. Doḿınguez and J. Rubio. Effective Homology of Bicomplexes,
formalized in Coq, Theoretical Computer Science, volume 412, pages
962-970, 2011.
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Reduction procedure Discrete Vector Fields

Basic Perturbation Lemma

Basic Perturbation Lemma (BPL)

Let us consider a reduction ρ = (f , g , h) : C∗⇒⇒ Ĉ∗ between two chain complexes

(C∗, d) and (Ĉ∗, d̂), and δ a perturbation of d . Furthermore, the composite function

δh is assumed locally nilpotent. Then, a perturbation δ̂ can be defined for the
differential map d̂ and a new reduction ρ′ = (f ′, g ′, h′) : (C∗, d + δ)⇒⇒ (Ĉ∗, d̂ + δ̂)
can be constructed.

The non-graded case of this lemma was proved in Isabelle/HOL.

J. Aransay, C. Ballarin and J. Rubio. A mechanized proof of the Basic
Perturbation Lemma, Journal of Automated Reasoning, volume 40-4,
pages 271-292, 2008.

A particular case of the BPL was also proved in Coq using bicomplexes.

C. Doḿınguez and J. Rubio. Effective Homology of Bicomplexes,
formalized in Coq, Theoretical Computer Science, volume 412, pages
962-970, 2011.

Goal

A formalization of the general case in SSReflect with finitely generated structures.
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Reduction procedure Discrete Vector Fields

Basic Perturbation Lemma

Basic Perturbation Lemma (BPL)

Let us consider a reduction ρ = (f , g , h) : C∗⇒⇒ Ĉ∗ between two chain complexes

(C∗, d) and (Ĉ∗, d̂), and δ a perturbation of d . Furthermore, the composite function

δh is assumed locally nilpotent. Then, a perturbation δ̂ can be defined for the
differential map d̂ and a new reduction ρ′ = (f ′, g ′, h′) : (C∗, d + δ)⇒⇒ (Ĉ∗, d̂ + δ̂)
can be constructed.

Variable K: fieldType.

Variable rho : FGReduction K.

Variable delta : forall i:Z, ’M[K]_(m (C rho)(i+1), m (C rho) i).

Hypothesis boundary_dp : forall i:Z,

((diff (C rho)(i+1) + delta (i+1)) *m ((diff (C rho)i + delta i) = 0.

Variable (n : nat).

Hypothesis nilpotency_hp : forall i:Z,

(pot_matrix (delta i *m (Ho (H rho) i)) n = 0).
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Reduction procedure Discrete Vector Fields

Basic Perturbation Lemma

Basic Perturbation Lemma (BPL)

Let us consider a reduction ρ = (f , g , h) : C∗⇒⇒ Ĉ∗ between two chain complexes

(C∗, d) and (Ĉ∗, d̂), and δ a perturbation of d . Furthermore, the composite function

δh is assumed locally nilpotent. Then, a perturbation δ̂ can be defined for the
differential map d̂ and a new reduction ρ′ = (f ′, g ′, h′) : (C∗, d + δ)⇒⇒ (Ĉ∗, d̂ + δ̂)
can be constructed.

Variable K: fieldType.

Variable rho : FGReduction K.

Variable delta : forall i:Z, ’M[K]_(m (C rho)(i+1), m (C rho) i).

Hypothesis boundary_dp : forall i:Z,

((diff (C rho)(i+1) + delta (i+1)) *m ((diff (C rho)i + delta i) = 0.

Variable (n : nat).

Hypothesis nilpotency_hp : forall i:Z,

(pot_matrix (delta i *m (Ho (H rho) i)) n = 0).

Definition quasi_bpl :=

(rhoHL (Di:= Di_pert) (boundary_Di := boundary_dp_new)

inverse_dp_12_inverse).
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Reduction procedure Discrete Vector Fields

Basic Perturbation Lemma

Basic Perturbation Lemma (BPL)

Let us consider a reduction ρ = (f , g , h) : C∗⇒⇒ Ĉ∗ between two chain complexes

(C∗, d) and (Ĉ∗, d̂), and δ a perturbation of d . Furthermore, the composite function

δh is assumed locally nilpotent. Then, a perturbation δ̂ can be defined for the
differential map d̂ and a new reduction ρ′ = (f ′, g ′, h′) : (C∗, d + δ)⇒⇒ (Ĉ∗, d̂ + δ̂)
can be constructed.

Development

63 definitions
117 lemmas
2416 lines

M. Poza, C. Doḿınguez, J. Heras, and J. Rubio. A certified reduction strategy
for homological image processing. Submitted, 2013,
http://www.unirioja.es/cu/cedomin/crship/
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Reduction procedure Discrete Vector Fields

Key aspects of the formalization

The role of SSReflect

Different representations

Casts

Dealing with kernels
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Reduction procedure Discrete Vector Fields

The role of SSReflect

Libraries:

matrix.v: theory matrix, determinant, matrix decomposition,...

d ′1 ∗ d ′2 = 0→
(

ε ϕ
ψ β

)
∗
(

η
γ

)
= 0. Therefore,

1 ε ∗ η + ϕ ∗ γ = 0 which implies that ϕ ∗ γ = −ε ∗ η
2 ψ ∗ η + β ∗ γ = 0

Definition block_mx Aul Aur Adl Adr : ’M_(m1 + m2, n1 + n2) :=

col_mx (row_mx Aul Aur) (row_mx Adl Adr).
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Reduction procedure Discrete Vector Fields

The role of SSReflect

Libraries:

matrix.v: theory matrix, determinant, matrix decomposition...
finset.v and fintype.v

Variable V : finType.

Definition simplex := {set V}.

Definition simplicial_complex (c : {set simplex}) :=

forall x, x \in c -> forall y : simplex, y \subset x -> y \

in c.
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Reduction procedure Discrete Vector Fields

The role of SSReflect

Libraries:

matrix.v: theory matrix, determinant, matrix decomposition...
finset.v and fintype.v

bigop.v ∑
i∈r|Pi

Fi =
∑

i∈r|Pi∧ai

Fi +
∑

i∈r|Pi∧∼ai

Fi

. . .
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Reduction procedure Discrete Vector Fields

The role of SSReflect

Libraries:

matrix.v: theory matrix, determinant, matrix decomposition...
finset.v and fintype.v

bigop.v ∑
i∈r|Pi

Fi =
∑

i∈r|Pi∧ai

Fi +
∑

i∈r|Pi∧∼ai

Fi

. . .

Efficiency when writing of proofs

Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Reduction procedure Discrete Vector Fields

The role of SSReflect

Libraries:

matrix.v: theory matrix, determinant, matrix decomposition...
finset.v and fintype.v

bigop.v ∑
i∈r|Pi

Fi =
∑

i∈r|Pi∧ai

Fi +
∑

i∈r|Pi∧∼ai

Fi

. . .

Efficiency when writing of proofs

Definitions are blocked not to be expanded during type checking

Definitions lack direct effective computation
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Reduction procedure Discrete Vector Fields

Two SSReflect matrix representations

As functions

Definition of different operations and proved properties about them
Not directly executable

As sequences of sequences

Operations can be executed
Prove properties is much harder
There is not an extensive SSReflect development

Conclusions

To compute 7→ Sequences
To prove 7→ Abstract matrices

Abstract matrices

Sequences

seqmx of mx mx of seqmx
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Reduction procedure Discrete Vector Fields

Chain complexes representations

The chain complex associated with a simplicial complex related to a 2D image

. . .← 0← 0← C0
d1←− C1

d2←− C2 ← 0← 0← . . .

A truncated chain complex is

C0
d1←− C1

d2←− C2

Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Reduction procedure Discrete Vector Fields

Chain complexes representations

The chain complex associated with a simplicial complex related to a 2D image

. . .← 0← 0← C0
d1←− C1

d2←− C2 ← 0← 0← . . .

A truncated chain complex is

C0
d1←− C1

d2←− C2

Definition is_chaincomplex (d1 d2: matZ2) (m n p: nat):=

is_matrix m n d1 /\

is_matrix n p d2 /\

(mx_of_seqmx m n d1) *m (mx_of_seqmx n p d2) = 0.

Record chaincomplex:=

{d1: matZ2;

d2: matZ2;

m: nat;

n: nat;

p: nat;

chaincomplex_proof: is_chaincomplex d1 d2 m n p}.
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Reduction procedure Discrete Vector Fields

Chain complexes representations

The chain complex associated with a simplicial complex related to a 2D image

. . .← 0← 0← C0
d1←− C1

d2←− C2 ← 0← 0← . . .

A truncated chain complex is

C0
d1←− C1

d2←− C2

Variable K : fieldType.

Record FGChain_Complex :=

{ m : Z -> nat;

diff : forall i:Z, ’M[K]_(m (i + 1), m i);

boundary : forall i:Z, (diff (i + 1)) *m (diff i) = 0}.
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Reduction procedure Discrete Vector Fields

Casts

There exists a rigid typing strategy in Coq

M_i ; M_(i+1-1)

In a reduction, g ◦ f + d ◦ h + h ◦ d = id where di : Ci → Ci−1 and hi : Ci → Ci+1

Then, di+1hi : Ci → Ci+1−1 ’M_(m C i, m C (i+1-1)) ; ’M_(m C i)

Lemma cast1: m C i = m C i.

Lemma cast2: m C (i+1-1) = m C i.

castmx (cast1, cast2) ((Ho H i) *m (diff C (i+1)))
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Reduction procedure Discrete Vector Fields

Casts

There exists a rigid typing strategy in Coq

M_i ; M_(i+1-1)

In a reduction, g ◦ f + d ◦ h + h ◦ d = id where di : Ci → Ci−1 and hi : Ci → Ci+1

Then, di+1hi : Ci → Ci+1−1 ’M_(m C i, m C (i+1-1)) ; ’M_(m C i)

Lemma cast1: m C i = m C i.

Lemma cast2: m C (i+1-1) = m C i.

castmx (cast1, cast2) ((Ho H i) *m (diff C (i+1)))

Re-indexing structures

If di : Ci+1 → Ci then di+1hi : Ci → Ci and the obtained matrix is ’M_(m C i).

Notations

An n-suspended up or n-suspended down chain complex for a chain complex is built
moving up or down n degrees of a chain complex.
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Reduction procedure Discrete Vector Fields

Dealing with kernels

Decomposition Theorem

Let ρ = (f , g , h) : (C∗, d)⇒⇒ (Ĉ∗, d̂) be a reduction. This reduction is equivalent to a
decomposition: C∗ = A∗ ⊕ B∗ ⊕ C ′∗ where A∗ = ker f ∩ ker h, B∗ = ker f ∩ ker d and
C ′∗ = im g .

The kernel of a finite map is defined by the kernel of the matrix which represents this
map.

Definition kermx m n (A: ’M_(m,n)): ’M_m :=

copid_mx (\rank A) *m invmx (col_ebase A).

Lemma mulmx_ker m n (A : ’M_(m, n)) : kermx A *m A = 0.
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Let ρ = (f , g , h) : (C∗, d)⇒⇒ (Ĉ∗, d̂) be a reduction. This reduction is equivalent to a
decomposition: C∗ = A∗ ⊕ B∗ ⊕ C ′∗ where A∗ = ker f ∩ ker h, B∗ = ker f ∩ ker d and
C ′∗ = im g .

The kernel of a finite map is defined by the kernel of the matrix which represents this
map.

Definition kermx m n (A: ’M_(m,n)): ’M_m :=

copid_mx (\rank A) *m invmx (col_ebase A).

Lemma mulmx_ker m n (A : ’M_(m, n)) : kermx A *m A = 0.
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Reduction procedure Discrete Vector Fields

Dealing with kernels

Decomposition Theorem

Let ρ = (f , g , h) : (C∗, d)⇒⇒ (Ĉ∗, d̂) be a reduction. This reduction is equivalent to a
decomposition: C∗ = A∗ ⊕ B∗ ⊕ C ′∗ where A∗ = ker f ∩ ker h, B∗ = ker f ∩ ker d and
C ′∗ = im g .

The kernel of a finite map is defined by the kernel of the matrix which represents this
map.

Definition kermx m n (A: ’M_(m,n)): ’M_m :=

copid_mx (\rank A) *m invmx (col_ebase A).

Lemma mulmx_ker m n (A : ’M_(m, n)) : kermx A *m A = 0.

Drawbacks

The kernel consists of the elements that are made null when they are
applied to the left
It is necessary to work with transposed matrices
The product is reversed
Only partial identities are obtained

Advantages

Some useful lemmas about kermx are already proven in the SSReflect
library
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Reduction procedure Discrete Vector Fields

Dealing with kernels

Decomposition Theorem

Let ρ = (f , g , h) : (C∗, d)⇒⇒ (Ĉ∗, d̂) be a reduction. This reduction is equivalent to a
decomposition: C∗ = A∗ ⊕ B∗ ⊕ C ′∗ where A∗ = ker f ∩ ker h, B∗ = ker f ∩ ker d and
C ′∗ = im g .

The kernel of a finite map is defined by the kernel of the matrix which represents this
map.

Definition kermx m n (A: ’M_(m,n)): ’M_m :=

copid_mx (\rank A) *m invmx (col_ebase A).

Lemma mulmx_ker m n (A : ’M_(m, n)) : kermx A *m A = 0.

Definition ker_min (m n : nat) (M : ’M_(m,n)) :=

(castmx ((Logic.eq_refl (m-\rank M)),(\rank M) + (m-(\rank M))) = m)

(row_mx (@const_mx _ (m-\rank M) (\rank M) 0) 1%:M)) *m (kermx M).

Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Reduction procedure Discrete Vector Fields

Dealing with kernels

Decomposition Theorem

Let ρ = (f , g , h) : (C∗, d)⇒⇒ (Ĉ∗, d̂) be a reduction. This reduction is equivalent to a
decomposition: C∗ = A∗ ⊕ B∗ ⊕ C ′∗ where A∗ = ker f ∩ ker h, B∗ = ker f ∩ ker d and
C ′∗ = im g .

The kernel of a finite map is defined by the kernel of the matrix which represents this
map.

Definition kermx m n (A: ’M_(m,n)): ’M_m :=

copid_mx (\rank A) *m invmx (col_ebase A).

Lemma mulmx_ker m n (A : ’M_(m, n)) : kermx A *m A = 0.

Definition ker_min (m n : nat) (M : ’M_(m,n)) :=

(castmx ((Logic.eq_refl (m-\rank M)),(\rank M) + (m-(\rank M))) = m)

(row_mx (@const_mx _ (m-\rank M) (\rank M) 0) 1%:M)) *m (kermx M).

Lemma ker_min_kermx (m n : nat) (M : ’M_(m,n)) :

(kermx M :=: (ker_min M))%MS.

Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Methodology and experimental aspects
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Methodology and experimental aspects Methodology

Methodology

Goal

A methodology to verify a software program which smooths the “steep learning curve”

1 Implement a version of our algorithms in Haskell

2 Test properties about the Haskell programs

3 Verify the programs using Coq and its SSReflect library
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Methodology and experimental aspects Methodology

Methodology

Goal

A methodology to verify a software program which smooths the “steep learning curve”

1 Implement a version of our algorithms in Haskell

2 Test properties about the Haskell programs

3 Verify the programs using Coq and its SSReflect library

Advantages of Haskell

Both the code and the way of working are similar to the ones in Coq

The clean semantics of purely functional languages

Haskell functions often satisfy simple algebraic properties

Provides a profiling system

Where the system wastes time
Which parts of the proof should be improved
Data structures are suitable
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Methodology and experimental aspects Methodology

Methodology

Goal

A methodology to verify a software program which smooths the “steep learning curve”

1 Implement a version of our algorithms in Haskell.

2 Test properties about the Haskell programs

3 Verify the programs using Coq and its SSReflect library

Testing

Goal: The testing process can be useful in order to detect bugs

Manual testing

Small images
Very tedious and requires a lot of time

Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images
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Methodology

Goal

A methodology to verify a software program which smooths the “steep learning curve”

1 Implement a version of our algorithms in Haskell

2 Test properties about the Haskell programs

3 Verify the programs using Coq and its SSReflect library

Testing

Goal: The testing process can be useful in order to detect bugs

Manual testing

Automated testing

Use fKenzo
File with a battery of pairs of matrices (2D images randomly generated)
Compute homology

Use Haskell
Compute homology in Haskell with or without applying a reduction process
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Methodology

Goal

A methodology to verify a software program which smooths the “steep learning curve”

1 Implement a version of our algorithms in Haskell

2 Test properties about the Haskell programs

3 Verify the programs using Coq and its SSReflect library

Testing

Goal: The testing process can be useful in order to detect bugs

Manual testing

Automated testing

Study over 250 images d1 d2
% of reduction 98 49
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Methodology

Goal

A methodology to verify a software program which smooths the “steep learning curve”

1 Implement a version of our algorithms in Haskell

2 Test properties about the Haskell programs

3 Verify the programs using Coq and its SSReflect library

Testing

Goal: The testing process can be useful in order to detect bugs

Manual testing

Automated testing

QuickCheck

A specification of the properties which must be satisfied by our programs
is given
Testing the properties included in the specification
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Methodology

Goal

A methodology to verify a software program which smooths the “steep learning curve”

1 Implement a version of our algorithms in Haskell

2 Test properties about the Haskell programs

3 Verify the programs using Coq and its SSReflect library

Testing

Goal: The testing process can be useful in order to detect bugs

Manual testing

Automated testing

QuickCheck

This step is not enough to ensure that a program is correct
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Alternatives in the methodology

Efficiency: Haskell is a programming language

Reliability: we are not sure of the correctness of our programs

Haskell as an oracle

The heavy computations are done in Haskell and then the properties of the output of
the computation are proved in SSReflect
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Computing over digital images

Haskell SSReflect
Without advf 0.06 0.46
With advf 0.046875 1.016

We can compute in both systems
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Computing over digital images

Haskell SSReflect
Without advf 0.9 9

With advf

Computation advf 2.484 101
Ordered matrices 0 14

Reduced matrix d1 0 ?
Reduced matrix d2 0.0624 5

H0 and H1 1.252 3
Total 3.9 139

SSReflect cannot compute the inverse of a matrix 64× 64
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Computing over digital images

Haskell SSReflect
Without advf 0.9 9

With advf

Computation advf 2.484 101
Ordered matrices 0 14

Reduced matrix d1 0 ?
Reduced matrix d2 0.0624 5

H0 and H1 1.252 3
Total 3.9 139

Haskell as an oracle:

Compute the admissible discrete vector field and reorder the matrix in
Coq
The top-left block ulM is extracted to Haskell and the inverse matrix is
returned invmx_ulM

Prove in Coq:
- The inverse of a matrix is unique
- ∀M,MM−1 = id⇒ M−1M = id

Lemma m_invmxm : (mulseqmx ulM invmx_ulM)

== (scalar_seqmx 64 (Ordinal (ltn_pmod 1 (ltn0Sn 1)))).
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Computing over digital images

Haskell SSReflect
Without advf 0.9 9

With advf

Computation advf 2.484 101
Ordered matrices 0 14

Reduced matrix d1 0 ?
Reduced matrix d2 0.0624 5

H0 and H1 1.252 3
Total 3.9 139

The RS algorithm is not necessary

We can compute the dimension of the homology groups with the direct method
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Computing over biomedical images

Biomedical context

Counting the number of synapses in a neuron

Problem

SSReflect cannot compute the homology directly

Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Methodology and experimental aspects Experimental aspects

Computing over biomedical images

Biomedical context

Counting the number of synapses in a neuron

Goal

Obtain the H0 by means of a certified process
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Computing over biomedical images

Biomedical context

Counting the number of synapses in a neuron

Goal

Obtain the H0 by means of a certified process

1 Computing in Haskell the reduced matrix Mred and the components f 0, f 1, g0,
g1 and h0 which define a 2-truncated reduction

2 Transform the matrices to Coq/SSReflect

3 Prove in Coq/SSReflect that these matrices establish a reduction

4 Compute H0 from the reduced matrix Mred in Coq/SSReflect
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Computing over biomedical images

Biomedical context

Counting the number of synapses in a neuron

Haskell (min) SSReflect
Without advf 0.68 Not available

With advf

Computation advf 108 Proofs
Reduced matrices 26 12h 4min 55sec

H0 0.012 5sec
Total 130 12h 5min

We need to use the reduction method to obtain H0 in a reliable way

The matrix 743× 1424 is reduced to 59× 740
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Sources of inefficiency

Data types in languages of functional programming

Matrices

Use of simplicial complexes instead of cubical complexes

Execution inside the proof assistant

Coq is a Proof Assistant and not a Computer Algebra system

Concrete algorithms

Kenzo (ad-hoc algorithm to compute an admissible discrete vector field)
Heuristic techniques

Proving needs more redundancy in algorithms
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Maŕıa Poza López de Echazarreta Certifying homological algorithms to study biomedical images



Conclusions and further work Conclusions

Conclusions

Development effort

The implementation in Coq/SSReflect of the RS algorithm

The complete formalization in Coq/SSReflect of the BPL
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The implementation in Coq/SSReflect of the RS algorithm

The complete formalization in Coq/SSReflect of the BPL

Two formalizations of the Vector-Field Reduction Theorem for
matrices

A verified program to compute homology groups of a simplicial
complex obtained from a digital image

A discussion on different methods to overcome the efficiency
problems appearing when executing programs inside proof assistants

An application of Algebraic Topology to study biomedical images
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Conclusions and further work Further work

Further work

Efficiency issues

Other algorithms to compute the main objects
Data structures and better representations
Running environments in proof assistants

Formalization aspects

Matrices with coefficients over Z
Integer homology computation

Homology certified programs applied to biomedical cases:

Homology group in dimension 1 (structure detection)
Persistent Homology (denoising)

Integration between Coq and ACL2
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Department of Mathematics and Computer Science
University of La Rioja

Spain

June 14, 2013

∗
Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European

Commission FP7, STREP project ForMath, n. 243847
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