Certifying homological algorithms to study biomedical images*

María Poza López de Echazarreta

Supervisors: Dr. César Domínguez Pérez Dr. Julio Rubio García

Department of Mathematics and Computer Science University of La Rioja Spain

June 14, 2013

María Poza López de Echazarreta

^{*}Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847

Introduction

- 2 Biomedical images and certified software
- 3 Reduction procedure
- 4 Methodology and experimental aspects
- **5** Conclusions and further work

Table of Contents

- 2 Biomedical images and certified software
- 3 Reduction procedure
- 4 Methodology and experimental aspects
- 5 Conclusions and further work

- European project
- Formath: Formalization of Mathematics

European project

- University of Gothenburg
- Radboud University Nijmegen
- INRIA
- Universidad de La Rioja

European project

- University of Gothenburg
- Radboud University Nijmegen
- INRIA
- Universidad de La Rioja
 - Integration of Theorem Prover Tools
 - Representation of Simplicial Complexes
 - Certified Computation of Homology Groups
 - The Basic Perturbation Lemma
 - Applications to Medical Imagery

European project

- University of Gothenburg
- Radboud University Nijmegen
- INRIA
- Universidad de La Rioja
 - Integration of Theorem Prover Tools
 - Representation of Simplicial Complexes
 - Certified Computation of Homology Groups
 - The Basic Perturbation Lemma
 - Applications to Medical Imagery

European project

- University of Gothenburg
- Radboud University Nijmegen
- INRIA
- Universidad de La Rioja
 - Integration of Theorem Prover Tools
 - Representation of Simplicial Complexes
 - Certified Computation of Homology Groups
 - The Basic Perturbation Lemma
 - Applications to Medical Imagery

Verification

Verification and Theorem prover tools

María Poza López de Echazarreta

Interactive Proof Assistants

- What is an Interactive Proof Assistant?
 - Software tool for the development of formal proofs
 - Man-Machine collaboration:
 - Human: design the proofs
 - Machine: fill the gaps
 - Examples: Isabelle, HOL, ACL2, COQ...

Interactive Proof Assistants

- What is an Interactive Proof Assistant?
 - Software tool for the development of formal proofs
 - Man-Machine collaboration:
 - Human: design the proofs
 - Machine: fill the gaps
 - Examples: Isabelle, HOL, ACL2, COQ...
- Applications
 - Mathematical proofs:
 - Four Color Theorem
 - Kepler Conjecture
 - Feit-Thompsom Theorem (Odd Order Theorem)
 - ...
 - Software and Hardware verification:
 - C compiler
 - AMD5K86 microprocessor
 - . . .

• Coq:

- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof
- Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions Series. Texts in Theoretical Computer Science. An EATCS Series, 2004.

$\mathrm{Coq}/\mathsf{SSReflect}$

• Coq:

- Based on Calculus of Inductive Constructions
- Interesting feature: program extraction from a constructive proof

SSReflect:

- $\bullet~$ Extension of Coq
- Developed while formalizing the Four Color Theorem by G. Gonthier
- Used in the formalization of Feit-Thompson Theorem

Topological Spaces
Invariant Groups

- Kenzo
 - Computer Algebra system devoted to Algebraic Topology implemented in *Common Lisp*
 - Homology groups which have not been obtained by other means

• fKenzo

- fKenzo: graphical user interface for the system Kenzo
- It is not necessary to be an expert in Algebraic Topology or Common Lisp to use it
- Provides new functionalities to Kenzo such as the homology computation for digital images

Goal

Formalize the analysis of monochromatic digital images

Goal

Formalize the analysis of monochromatic digital images

Context

To deal with biomedical images:

- Reliability
- Efficiency

Goal

Formalize the analysis of monochromatic digital images

Context

To deal with biomedical images:

- Reliability
- Efficiency

Our approach

Formalize a technique to reduce the size of the information about a biomedical image (preserving its homological properties)

$$\left. \begin{array}{l} {\sf Verification} \\ {\sf Algebraic Topology} \end{array} \right\} + \left\{ \begin{array}{l} {\sf Digital images} \end{array} \right\} \rightarrow {\sf Formalization of Digital Topology} \end{array} \right.$$

 $\left. \begin{array}{l} \mbox{Verification} \\ \mbox{Algebraic Topology} \end{array} \right\} + \left\{ \begin{array}{l} \mbox{Digital images} \end{array} \right\} \rightarrow \mbox{Formalization of Digital Topology} \end{array} \right.$

The 95% of this thesis is devoted to formal verification

Table of Contents

Introduction

2 Biomedical images and certified software

- 3 Reduction procedure
- 4 Methodology and experimental aspects
- 5 Conclusions and further work

Biomedical Problem: counting synapses

- Synapses are the points of connection between neurons
- Relevance: Computational capabilities of the brain
- Procedures to modify the synaptic density may be an important asset in the treatment of neurological diseases, such as Alzheimer

María Poza López de Echazarreta

María Poza López de Echazarreta

Count the synapses manually

María Poza López de Echazarreta

Semiautomatic process to count synapses

María Poza López de Echazarreta

Semiautomatic process to count synapses

María Poza López de Echazarreta

Semiautomatic process to count synapses

María Poza López de Echazarreta

María Poza López de Echazarreta

María Poza López de Echazarreta

María Poza López de Echazarreta
The method

Digital Image

Digital Image

Digital Image

Digital Image Homology Groups $\begin{array}{l} H_0 = \mathbb{Z} \oplus \mathbb{Z} \\ H_1 = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \end{array}$ $C_0 = \text{vertices}$ $C_1 = \text{edges}$ $C_2 = \text{triangles}$ Simplicial Complex Chain Complex

Simplicial Complex

Definition

Let V be a set, called the vertex set, a *simplex* over V is any finite subset of V

Simplicial Complex

Definition

Let V be a set, called the vertex set, a simplex over V is any finite subset of V

Definition

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the property:

 $\forall \alpha \in \mathcal{C}, \ \textit{si} \ \beta \subseteq \alpha \Rightarrow \beta \in \mathcal{C}$

Simplicial Complex

Definition

Let V be a set, called the vertex set, a simplex over V is any finite subset of V

Definition

An (abstract) simplicial complex over V is a set of simplices C over V satisfying the property:

 $\forall \alpha \in C, \ si \ \beta \subseteq \alpha \Rightarrow \beta \in C$

```
Variable V : finType.
Definition simplex := {set V}.
Definition simplicial_complex (c : {set simplex}) :=
forall x, x \in c -> forall y : simplex, y \subset x -> y \in c.
```

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a R-module, the chain group in degree q
- For every $q \in \mathbb{Z}$, the component d_q is a morphism $d_q : C_q \to C_{q-1}$, the differential function
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a R-module, the chain group in degree q
- For every $q \in \mathbb{Z}$, the component d_q is a morphism $d_q : C_q \to C_{q-1}$, the differential function
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

Definition

Let \mathcal{K} be a finite simplicial complex, $C_n(\mathcal{K})$ is a free module and the *n*-simplices of \mathcal{K} form the standard basis of it. Then, given an order, for all *n* we can represent the differential map $d_n : C_n(\mathcal{K}) \to C_{n-1}(\mathcal{K})$ relative to the standard basis of the chain groups as a \mathbb{Z}_2 matrix. Such a matrix is called the *n*-th incidence matrix of a simplicial complex.

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a R-module, the chain group in degree q
- For every $q \in \mathbb{Z}$, the component d_q is a morphism $d_q : C_q \to C_{q-1}$, the differential function
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

Definition

Let \mathcal{K} be a finite simplicial complex, $C_n(\mathcal{K})$ is a free module and the *n*-simplices of \mathcal{K} form the standard basis of it. Then, given an order, for all *n* we can represent the differential map $d_n : C_n(\mathcal{K}) \to C_{n-1}(\mathcal{K})$ relative to the standard basis of the chain groups as a \mathbb{Z}_2 matrix. Such a matrix is called the *n*-th incidence matrix of a simplicial complex.

```
Definition incidenceMatrix :=
  \matrix_(i < m, j < n)
  if (nth set0 Left i) \in (boundary (nth set0 Top j)) then 1 else 0:
      bool.
Definition incidence_mx_n :=
   incidenceMatrix (enum n_1_simplices)(enum n_simplices).</pre>
```

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a R-module, the chain group in degree q
- For every $q \in \mathbb{Z}$, the component d_q is a morphism $d_q : C_q \to C_{q-1}$, the differential function
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

Definition

Let \mathcal{K} be a finite simplicial complex, $C_n(\mathcal{K})$ is a free module and the *n*-simplices of \mathcal{K} form the standard basis of it. Then, given an order, for all *n* we can represent the differential map $d_n : C_n(\mathcal{K}) \to C_{n-1}(\mathcal{K})$ relative to the standard basis of the chain groups as a \mathbb{Z}_2 matrix. Such a matrix is called the *n*-th incidence matrix of a simplicial complex.

```
Theorem incidence_matrices_sc_product:
  forall (V:finType) (n:nat) (sc: {set (simplex V)}),
  simplicial_complex sc ->
  (incidence_mx_n sc n) *m (incidence_mx_n sc (n.+1)) = 0.
```

Definition

A chain complex C_* is a pair of sequences $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ where:

- For every $q \in \mathbb{Z}$, the component C_q is a R-module, the chain group in degree q
- For every $q \in \mathbb{Z}$, the component d_q is a morphism $d_q : C_q \to C_{q-1}$, the differential function
- For every $q \in \mathbb{Z}$, the composition $d_q d_{q+1}$ is null: $d_q d_{q+1} = 0$

Definition

Let \mathcal{K} be a finite simplicial complex, $C_n(\mathcal{K})$ is a free module and the *n*-simplices of \mathcal{K} form the standard basis of it. Then, given an order, for all *n* we can represent the differential map $d_n : C_n(\mathcal{K}) \to C_{n-1}(\mathcal{K})$ relative to the standard basis of the chain groups as a \mathbb{Z}_2 matrix. Such a matrix is called the *n*-th incidence matrix of a simplicial complex.

J. Heras, M. Poza, M. Dénès and L. Rideau. Incidence simplicial matrices formalized in COQ/SSREFLECT, Proceedings 18th Symposium on the Integration of Symbolic Computation and Mechanised Reasoning (Calculemus'11), Lecture Notes in Computer Science, vol. 6824, pages 30-44, 2011.

Definition

If $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)module of q-boundaries
- The kernel $Z_q = ker \ d_q \subseteq C_q$ is the (sub)module of q-cycles

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex. For each degree $n \in \mathbb{Z}$, the n-homology module of C_* is defined as the quotient module

$$H_n(C_*)=\frac{Z_n}{B_n}$$

Definition

If $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)module of q-boundaries
- The kernel $Z_q = ker \ d_q \subseteq C_q$ is the (sub)module of q-cycles

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex. For each degree $n \in \mathbb{Z}$, the n-homology module of C_* is defined as the quotient module

$$H_n(C_*)=\frac{Z_n}{B_n}$$

Definition

If $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)module of q-boundaries
- The kernel $Z_q = ker \ d_q \subseteq C_q$ is the (sub)module of q-cycles

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex. For each degree $n \in \mathbb{Z}$, the n-homology module of C_* is defined as the quotient module

$$H_n(C_*)=\frac{Z_n}{B_n}$$

Definition dim_homology (mxf:'M[K]_(v1,v2)) (mxg:'M[K]_(v2,v3)) := v2 - \rank mxg - \rank mxf.

Lemma dimHomologyrankE: mxf *m mxg = 0 -> \dim Homology (LinearApp mxf)(LinearApp mxg) = dim_homology mxf mxg.

Definition

If $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ is a chain complex:

- The image $B_q = im \ d_{q+1} \subseteq C_q$ is the (sub)module of q-boundaries
- The kernel $Z_q = ker \ d_q \subseteq C_q$ is the (sub)module of q-cycles

Definition

Let $C_* = (C_q, d_q)_{q \in \mathbb{Z}}$ be a chain complex. For each degree $n \in \mathbb{Z}$, the n-homology module of C_* is defined as the quotient module

$$H_n(C_*)=\frac{Z_n}{B_n}$$

J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza and V. Siles. Towards a certified computation of homology groups for digital images, Proceedings 4th International Workshoph on Computational Topology in Image Context (CTIC'12), Lecture Notes in Computer Science, vol. 7309, pages 49-57, 2012.

Summary and problems

Summary and problems

• This process can be applied to any digital image

Reliability

Summary and problems

This process can be applied to any digital image

- Reliability
- Biomedical images:
 - Reliability
 - Efficiency: size of the images
- Solution to our approach to the tackle the efficiency problem

María Poza López de Echazarreta

Certifying homological algorithms to study biomedical images

Table of Contents

Introduction

- 2 Biomedical images and certified software
- 3 Reduction procedure
- 4 Methodology and experimental aspects
- 5 Conclusions and further work

Reduction

Definition

A reduction ρ between two chain complexes C_* y D_* (denoted by $\rho : C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$

satisfying the following relations:

1)
$$fg = id_{D_*}$$

2)
$$d_{C_*}h + hd_{C_*} = id_{C_*} - gf;$$

3)
$$fh = 0;$$
 $hg = 0;$ $hh = 0.$

Theorem

If $C_* \Rightarrow D_*$, then $C_* \cong D_* \oplus A_*$, with A_* acyclic, this implies that $H_n(C_*) \cong H_n(D_*)$ for all n.

- Reduce the amount of information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce the amount of information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce the amount of information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce the amount of information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce the amount of information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce the amount of information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce the amount of information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

- Reduce the amount of information but keeping the homological properties
- Discrete Morse Theory
 - Vector fields are a tool to cancel "useless" information

$$0 \leftarrow \mathbb{Z} \stackrel{\widehat{d_1}}{\leftarrow} \mathbb{Z} \stackrel{\widehat{d_2}}{\leftarrow} 0 \leftarrow 0$$

Discrete Vector Fields

Definition

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ be a free chain complex with distinguished \mathbb{Z} -basis $\beta_p \subset C_p$. A (p-1)-cell σ is a face of a p-cell τ if the coefficient of σ in $d\tau$ is non-null. It is a regular face if this coefficient is +1 or -1.

Definition

A discrete vector field on C_* is a collection of pairs $V = \{(\sigma_i, \tau_i)\}_{i \in \beta}$ satisfying the conditions:

- 2 Every component σ_i is a *regular face* of the corresponding component τ_i
- 3 A generator of C_* appears at most one time in V

Discrete Vector Fields

Definition

A V-path of degree p is a sequence $\pi = ((\sigma_{i_k}, \tau_{i_k}))_{0 \le k < m}$ satisfying:

- 1 Every pair $((\sigma_{i_k}, \tau_{i_k}))$ is a component of V and the cell τ_{i_k} is a p-cell
- **2** For every 0 < k < m, the component σ_{i_k} is a face of $\tau_{i_{k-1}}$, non necessarily regular, but different from $\sigma_{i_{k-1}}$

Definition

A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{Z}$ is provided satisfying the property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Example: an admissible discrete vector field

Example: an admissible discrete vector field

Example: an admissible discrete vector field

María Poza López de Echazarreta

Certifying homological algorithms to study biomedical images
Example: an admissible discrete vector field

Example: an admissible discrete vector field

 \bigcirc

Discrete Vector Fields

Definition

A cell χ which does not appear in a discrete vector field $V = \{(\sigma_i, \tau_i)\}_{i \in \beta}$ is called a *critical cell*.

Vector-Field Reduction Theorem

Let $C_* = (C_p, d_p, \beta_p)_p$ be a free chain complex and $V = \{(\sigma_i, \beta_i)\}_{i \in \beta}$ be an admissible discrete vector field on C_* . Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_\rho, d_\rho) \Longrightarrow (C_\rho^c, d_\rho')$ where $C_\rho^c = \mathbb{Z} \left[\beta_\rho^c\right]$ is the free \mathbb{Z} -module generated by the critical p-cells.

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Differential maps of a chain complex of finite type can be represented as matrices

$$\ldots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \ldots$$

Differential maps of a chain complex of finite type can be represented as matrices

$$\ldots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \ldots$$

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

$$1 \leq a_i \leq m$$
 and $1 \leq b_i \leq n_i$

4 Non existence of loops

Differential maps of a chain complex of finite type can be represented as matrices

$$\ldots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \ldots$$

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

- $1 \leq a_i \leq m \text{ and } 1 \leq b_i \leq n$
- 2 The entry $M[a_i, b_i]$ of the matrix is 1
- Solution The indices a_i (resp. b_i) are pairwise different
- Mon existence of loops

Differential maps of a chain complex of finite type can be represented as matrices

$$\ldots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \ldots$$

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

$$1 \leq a_i \leq m$$
 and $1 \leq b_i \leq n_i$

On existence of loops

Differential maps of a chain complex of finite type can be represented as matrices

$$\ldots \leftarrow \mathbb{Z}_2^m \xleftarrow{M} \mathbb{Z}_2^n \leftarrow \ldots$$

Definition

An admissible discrete vector field V for M is nothing but a set of integer pairs $\{(a_i, b_i)\}$ satisfying these conditions:

$$\bigcirc 1 \leq \mathsf{a}_i \leq m$$
 and $1 \leq \mathsf{b}_i \leq n$

4 Non existence of loops

Main algorithms

Algorithm

Input: A matrix M Output: An admissible discrete vector field for M

Algorithm

Input: A chain complex C_* and an admissible discrete vector field of C_* Output: A reduction from C_* to a reduced chain complex \hat{C}_*

A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology, 2010. http://arxiv.org/abs/1005.5685v1.

Romero-Sergeraert's Algorithm

Algorithm (The RS Algorithm)

Input: a matrix M with coefficients in \mathbb{Z} . Output: an admissible discrete vector field V for M and a list of relations r.

- Initialize the vector field V to the void vector field and the relations r to empty.
- 2 For every row i of M:
 - For every column j, which is different from the second components of V, such that M[i, j] = 1 or M[i, j] = −1:
 - Look for the rows $k \neq i$ such as $M[k, j] \neq 0$ and obtain the relations i > k. Then, build the transitive closure of r and these relations.

If there is no loop in that transitive closure: then: Add (i,j) to V, let r be that transitive closure, and repeat from Step 2 with the next row. else: Repeat from Step 2.1. with the next column.

Example

	{	$0, 1$ }	$\{0, 2\}$	$\{1, 2\}$	$\{1, 3\}$	{2,3}	$\{3, 4\}$	$\{4, 5\}$	$\{4, 6\}$	$\{5, 6\}$
{0}	1	1	1	0	0	0	0	0	0	0 \
$\{1\}$	1	1	0	1	1	0	0	0	0	0
{2}		0	1	1	0	1	0	0	0	0
{3}		0	0	0	1	1	1	0	0	0
{ 4 }		0	0	0	0	0	1	1	1	0
{5}		0	0	0	0	0	0	1	0	1
<i>{</i> 6 <i>}</i>		0	0	0	0	0	0	0	1	1 /

Example

1 dvf =
$$\{\}$$
, orders = $\{\}$

$$\left(\begin{array}{cccccccc} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{array}\right)$$

The abstract specification

The abstract specification

```
Fixpoint genDvfOrders M V (ords : simpl_rel _) k :=
 if k is 1.+1 then
   let P := [pred ij | admissible (ij::V) M
                      (relU ords (gen_orders M ij.1 ij.2))] in
   if pick P is Some (i,j)
      then genDvfOrders M ((i,j)::V)
                       (relU ords (gen_orders M i j)) 1
   else (V, ords)
 else (V. ords).
Definition gen_adm_dvf M :=
 genDvfOrders M [::] [rel x y | false] (minn m n).
Lemma admissible_gen_adm_dvf m n (M : 'M[Z2]_(m,n)) :
let (vf,ords) := gen_adm_dvf M in admissible vf M ords.
```

The abstract specification

```
Fixpoint genDvfOrders M V (ords : simpl_rel _) k :=
 if k is 1.+1 then
   let P := [pred ij | admissible (ij::V) M
                      (relU ords (gen_orders M ij.1 ij.2))] in
   if pick P is Some (i,j)
      then genDvfOrders M ((i,j)::V)
                       (relU ords (gen_orders M i j)) 1
   else (V, ords)
 else (V. ords).
Definition gen_adm_dvf M :=
 genDvfOrders M [::] [rel x y | false] (minn m n).
Lemma admissible_gen_adm_dvf m n (M : 'M[Z2]_(m,n)) :
let (vf,ords) := gen_adm_dvf M in admissible vf M ords.
```

Problem

It is not an executable algorithm

```
Definition Z2 := Fp_fieldType 2.
Record matZ2:=
  {M:> seq (seq Z2);
    m:nat;
    is_matrix: M = [::] \/
       [/\ m = size M & forall i, i < m -> size (rowseqmx M i) = n]
  }.
Definition vectorfield:= seq (prod nat nat).
Definition rels:= seq (seq nat).
```

```
Definition Z2 := Fp_fieldType 2.
Record mat72:=
 {M:> seq (seq Z2);
  m:nat;
  n:nat:
  is_matrix: M = [::] \setminus /
     [/\ m = size M & forall i, i < m -> size (rowseqmx M i) = n]
 }.
Definition vectorfield:= seq (prod nat nat).
Definition rels:= seq (seq nat).
Definition Vecfieldadm (M: matZ2)(vf: vectorfield)(r:rels) :=
  (all [pred i | 0<= i < (M m)](getfirstseq vf)) /\</pre>
  (all [pred i | 0<= i < (M n)](getsndseq vf)) /\
  (forall i j:nat, (i,j) i vf \rightarrow (nth 0 (nth nil M i) j) = 1%R) /
  (uniq (getfirstseq vf)) /\
  (uniq (getsndseq vf)) /\
  (forall i j l:nat, (i,j) \in vf -> i!=1
    -> (nth 0 (nth nil M l) j)!= 0%R -> (i::1::nil) \in r) /\
  prop cat2 r /\
  (all uniq r) /
  (ordered glMax vf r).
```

Theorem dvfordisVecfieldadm (M:matZ2): Vecfieldadm M (dvford M)(genOrders M).

Theorem dvfordisVecfieldadm (M:matZ2): Vecfieldadm M (dvford M)(genOrders M).

Lemma v_in_genDvf_Mv1 (M: matZ2): (forall a b:nat, ((a,b) \in (dvford M)) -> nth 0 (nth nil M a) b = 1%R).

```
Theorem dvfordisVecfieldadm (M:matZ2):
Vecfieldadm M (dvford M)(genOrders M).
```

```
Lemma inDvf_compij1 (p a b:nat) (M : matZ2):
  (a,b) \in (fst (genDvfOrders p 0 0 M M [::] [::]))
  -> nth 0 (nth nil M a) b = 1%R.
```

```
Theorem dvfordisVecfieldadm (M:matZ2):
Vecfieldadm M (dvford M)(genOrders M).
```

```
Lemma inDvf_compij1 (p a b:nat) (M : matZ2):
  (a,b) \in (fst (genDvfOrders p 0 0 M M [::] [::]))
  -> nth 0 (nth nil M a) b = 1%R.
```

```
Lemma inDvf_compij1_general (p i j a b :nat) (M M2: matZ2)
  (vf: vectorfield)(r: rels):
  (forall k2, nth 0 (nth nil M (i + a)) k2 = nth 0 (nth nil M2 a) k2)
  -> (i + a, j + b) \in fst (genDvfOrders p i j M M2 vf r)
  -> nth 0 (nth nil M (i + a)) (j + b) = 1%R.
```

Theorem dvfordisVecfieldadm (M:matZ2): Vecfieldadm M (dvford M)(genOrders M).

The proofs detailed in this section involve 49 definitions and 109 lemmas. In general, the development takes up 3772 code lines.

```
Theorem dvfordisVecfieldadm (M:matZ2):
Vecfieldadm M (dvford M)(genOrders M).
```

The proofs detailed in this section involve 49 definitions and 109 lemmas. In general, the development takes up 3772 code lines.

J. Heras, M. Poza and J. Rubio. Verifying an algorithm computing Discrete Vector Fields for digital imaging. Proceedings Conferences on Intelligence Computer Mathematics (CICM'12), Lecture Notes in Computer Science, vol. 7362, pages 215-229,2012. http://arxiv.org/abs/1005.5685v1.

Vector-Field Reduction Theorem

Vector-Field Reduction Theorem

Vector-Field Reduction Theorem

Vector-Field Reduction Theorem

Vector-Field Reduction Theorem

Vector-Field Reduction Theorem

Vector-Field Reduction Theorem using HL

Hexagonal Lemma

Let $C = (C_{\rho}, d_{\rho})_{\rho}$ be a chain complex. For some $k \in \mathbb{Z}$, the chain groups C_k and C_{k+1} are given with decompositions $C_k = C'_k \oplus C''_k$ and $C_{k+1} = C'_{k+1} \oplus C''_{k+1}$, so that between the degrees k - 1 and k + 2 this chain complex is described by the diagram:

The partial differential $\varepsilon: C_{k+1}' \to C_k''$ is assumed to be an isomorphism. Then a canonical reduction can be defined $\rho: C \Longrightarrow C'$ where C' is the same chain complex as C except between the degrees k-1 and k+2:

$$\ldots \leftarrow C_{k-2} \leftarrow C_{k-1} \leftarrow \frac{\alpha}{k} C'_k \leftarrow \frac{\beta - \psi \varepsilon^{-1} \varphi}{k-1} C'_{k+1} \leftarrow \frac{\gamma}{k-1} C_{k+2} \leftarrow C_{k+3} \leftarrow \ldots$$

Vector-Field Reduction Theorem using HL

Hexagonal Lemma

Let $C = (C_{\rho}, d_{\rho})_{\rho}$ be a chain complex. For some $k \in \mathbb{Z}$, the chain groups C_k and C_{k+1} are given with decompositions $C_k = C'_k \oplus C''_k$ and $C_{k+1} = C'_{k+1} \oplus C''_{k+1}$, so that between the degrees k - 1 and k + 2 this chain complex is described by the diagram:

The partial differential $\varepsilon: C_{k+1}' \to C_k''$ is assumed to be an isomorphism. Then a canonical reduction can be defined $\rho: C \Longrightarrow C'$ where C' is the same chain complex as C except between the degrees k-1 and k+2:

$$\ldots \leftarrow C_{k-2} \leftarrow C_{k-1} \leftarrow \frac{\alpha}{k} C'_k \leftarrow \frac{\beta - \psi \varepsilon^{-1} \varphi}{k-1} C'_{k+1} \leftarrow \frac{\gamma}{k-1} C_{k+2} \leftarrow C_{k+3} \leftarrow \ldots$$

Development: 303 definitions, 361 lemmas and 7511 lines

María Poza López de Echazarreta

Certifying homological algorithms to study biomedical images

Basic Perturbation Lemma

Basic Perturbation Lemma (BPL)

Let us consider a reduction $\rho = (f, g, h) : C_* \Rightarrow \widehat{C}_*$ between two chain complexes (C_*, d) and $(\widehat{C}_*, \widehat{d})$, and δ a perturbation of d. Furthermore, the composite function δh is assumed *locally nilpotent*. Then, a perturbation $\widehat{\delta}$ can be defined for the differential map \widehat{d} and a new reduction $\rho' = (f', g', h') : (C_*, d + \delta) \Rightarrow (\widehat{C}_*, \widehat{d} + \widehat{\delta})$ can be constructed.
Basic Perturbation Lemma (BPL)

Let us consider a reduction $\rho = (f, g, h) : C_* \Rightarrow \widehat{C}_*$ between two chain complexes (C_*, d) and $(\widehat{C}_*, \widehat{d})$, and δ a perturbation of d. Furthermore, the composite function δh is assumed *locally nilpotent*. Then, a perturbation $\widehat{\delta}$ can be defined for the differential map \widehat{d} and a new reduction $\rho' = (f', g', h') : (C_*, d + \delta) \Rightarrow (\widehat{C}_*, \widehat{d} + \widehat{\delta})$ can be constructed.

- The non-graded case of this lemma was proved in Isabelle/HOL.
 - J. Aransay, C. Ballarin and J. Rubio. A mechanized proof of the Basic Perturbation Lemma, Journal of Automated Reasoning, volume 40-4, pages 271-292, 2008.
- A particular case of the BPL was also proved in COQ using bicomplexes.
 - C. Domínguez and J. Rubio. Effective Homology of Bicomplexes, formalized in Coq, Theoretical Computer Science, volume 412, pages 962-970, 2011.

Basic Perturbation Lemma (BPL)

Let us consider a reduction $\rho = (f, g, h) : C_* \Rightarrow \widehat{C}_*$ between two chain complexes (C_*, d) and $(\widehat{C}_*, \widehat{d})$, and δ a perturbation of d. Furthermore, the composite function δh is assumed *locally nilpotent*. Then, a perturbation $\widehat{\delta}$ can be defined for the differential map \widehat{d} and a new reduction $\rho' = (f', g', h') : (C_*, d + \delta) \Rightarrow (\widehat{C}_*, \widehat{d} + \widehat{\delta})$ can be constructed.

- The non-graded case of this lemma was proved in Isabelle/HOL.
 - J. Aransay, C. Ballarin and J. Rubio. A mechanized proof of the Basic Perturbation Lemma, Journal of Automated Reasoning, volume 40-4, pages 271-292, 2008.
- A particular case of the BPL was also proved in Coq using bicomplexes.
 - C. Domínguez and J. Rubio. Effective Homology of Bicomplexes, formalized in Coq, Theoretical Computer Science, volume 412, pages 962-970, 2011.

Goal

A formalization of the general case in $\operatorname{SSRefLECT}$ with finitely generated structures.

María Poza López de Echazarreta

Certifying homological algorithms to study biomedical images

Basic Perturbation Lemma (BPL)

Let us consider a reduction $\rho = (f, g, h) : C_* \Rightarrow \widehat{C}_*$ between two chain complexes (C_*, d) and $(\widehat{C}_*, \widehat{d})$, and δ a perturbation of d. Furthermore, the composite function δh is assumed *locally nilpotent*. Then, a perturbation $\widehat{\delta}$ can be defined for the differential map \widehat{d} and a new reduction $\rho' = (f', g', h') : (C_*, d + \delta) \Rightarrow (\widehat{C}_*, \widehat{d} + \widehat{\delta})$ can be constructed.

```
Variable K: fieldType.
Variable rho : FGReduction K.
Variable delta : forall i:Z, 'M[K]_(m (C rho)(i+1), m (C rho) i).
Hypothesis boundary_dp : forall i:Z,
 ((diff (C rho)(i+1) + delta (i+1)) *m ((diff (C rho)i + delta i) = 0.
Variable (n : nat).
Hypothesis nilpotency_hp : forall i:Z,
 (pot_matrix (delta i *m (Ho (H rho) i)) n = 0).
```

Basic Perturbation Lemma (BPL)

Let us consider a reduction $\rho = (f, g, h) : C_* \Rightarrow \widehat{C}_*$ between two chain complexes (C_*, d) and $(\widehat{C}_*, \widehat{d})$, and δ a perturbation of d. Furthermore, the composite function δh is assumed *locally nilpotent*. Then, a perturbation $\widehat{\delta}$ can be defined for the differential map \widehat{d} and a new reduction $\rho' = (f', g', h') : (C_*, d + \delta) \Rightarrow (\widehat{C}_*, \widehat{d} + \widehat{\delta})$ can be constructed.

```
Variable K: fieldType.
Variable rho : FGReduction K.
Variable delta : forall i:Z, 'M[K]_(m (C rho)(i+1), m (C rho) i).
Hypothesis boundary_dp : forall i:Z,
 ((diff (C rho)(i+1) + delta (i+1)) *m ((diff (C rho)i + delta i) = 0.
Variable (n : nat).
Hypothesis nilpotency_hp : forall i:Z,
 (pot_matrix (delta i *m (Ho (H rho) i)) n = 0).
Definition quasi_bpl :=
 (rhoHL (Di:= Di_pert) (boundary_Di := boundary_dp_new)
 inverse_dp_12_inverse).
```

María Poza López de Echazarreta

Basic Perturbation Lemma (BPL)

Let us consider a reduction $\rho = (f, g, h) : C_* \Rightarrow \widehat{C}_*$ between two chain complexes (C_*, d) and $(\widehat{C}_*, \widehat{d})$, and δ a perturbation of d. Furthermore, the composite function δh is assumed *locally nilpotent*. Then, a perturbation $\widehat{\delta}$ can be defined for the differential map \widehat{d} and a new reduction $\rho' = (f', g', h') : (C_*, d + \delta) \Rightarrow (\widehat{C}_*, \widehat{d} + \widehat{\delta})$ can be constructed.

- Development
 - 63 definitions
 - 117 lemmas
 - 2416 lines

M. Poza, C. Domínguez, J. Heras, and J. Rubio. A certified reduction strategy for homological image processing. Submitted, 2013, http://www.unirioja.es/cu/cedomin/crship/

Key aspects of the formalization

- The role of SSREFLECT
- Different representations
- Casts
- Dealing with kernels

The role of SSREFLECT

Libraries:

• matrix.v: theory matrix, determinant, matrix decomposition,... $d'_{1} * d'_{2} = 0 \rightarrow \left(\frac{\varepsilon}{|\psi|} \frac{|\varphi|}{|\beta|}\right) * \left(\frac{\eta}{|\gamma|}\right) = 0. \text{ Therefore,}$ (1) $\varepsilon * \eta + \varphi * \gamma = 0$ which implies that $\varphi * \gamma = -\varepsilon * \eta$ (2) $\psi * \eta + \beta * \gamma = 0$

Definition block_mx Aul Aur Adl Adr : 'M_(m1 + m2, n1 + n2) :=
 col_mx (row_mx Aul Aur) (row_mx Adl Adr).

The role of SSReflect

Libraries:

- matrix.v: theory matrix, determinant, matrix decomposition...
- finset.v and fintype.v

```
Variable V : finType.
Definition simplex := {set V}.
Definition simplicial_complex (c : {set simplex}) :=
forall x, x \in c -> forall y : simplex, y \subset x -> y \
in c.
```

The role of $\operatorname{SSReflect}$

Libraries:

- matrix.v: theory matrix, determinant, matrix decomposition...
- finset.v and fintype.v
- bigop.v

$$\sum_{i \in r | P_i} F_i = \sum_{i \in r | P_i \land a_i} F_i + \sum_{i \in r | P_i \land \sim a_i} F_i$$

• ...

The role of $\operatorname{SSReflect}$

Libraries:

- matrix.v: theory matrix, determinant, matrix decomposition...
- finset.v and fintype.v

bigop.v

$$\sum_{i \in r | P_i} F_i = \sum_{i \in r | P_i \land a_i} F_i + \sum_{i \in r | P_i \land \sim a_i} F_i$$

• . . .

• Efficiency when writing of proofs

The role of SSReflect

Libraries:

- matrix.v: theory matrix, determinant, matrix decomposition...
- finset.v and fintype.v

bigop.v

$$\sum_{i \in r | P_i} F_i = \sum_{i \in r | P_i \land a_i} F_i + \sum_{i \in r | P_i \land \sim a_i} F_i$$

• . . .

- Efficiency when writing of proofs
- Definitions are blocked not to be expanded during type checking
- Definitions lack direct effective computation

Two SSREFLECT matrix representations

- As functions
 - Definition of different operations and proved properties about them
 - Not directly executable
- As sequences of sequences
 - Operations can be executed
 - Prove properties is much harder
 - $\bullet~$ There is not an extensive ${\rm SSReflect}$ development

Two SSREFLECT matrix representations

- As functions
 - Definition of different operations and proved properties about them
 - Not directly executable
- As sequences of sequences
 - Operations can be executed
 - Prove properties is much harder
 - $\bullet~$ There is not an extensive ${\rm SSReflect}$ development

Conclusions

To compute \mapsto Sequences To prove \mapsto Abstract matrices

María Poza López de Echazarreta

Certifying homological algorithms to study biomedical images

Chain complexes representations

The chain complex associated with a simplicial complex related to a 2D image

$$\ldots \leftarrow 0 \leftarrow 0 \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow 0 \leftarrow 0 \leftarrow \ldots$$

A truncated chain complex is

$$C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2$$

Chain complexes representations

The chain complex associated with a simplicial complex related to a 2D image

$$\ldots \leftarrow 0 \leftarrow 0 \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow 0 \leftarrow 0 \leftarrow \ldots$$

A truncated chain complex is

$$C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2$$

```
Definition is_chaincomplex (d1 d2: matZ2) (m n p: nat):=
    is_matrix m n d1 /\
    is_matrix n p d2 /\
    (mx_of_seqmx m n d1) *m (mx_of_seqmx n p d2) = 0.
```

```
Record chaincomplex:=
  {d1: matZ2;
  d2: matZ2;
  m: nat;
  n: nat;
  p: nat;
  chaincomplex_proof: is_chaincomplex d1 d2 m n p}.
```

Chain complexes representations

The chain complex associated with a simplicial complex related to a 2D image

$$\ldots \leftarrow \mathbf{0} \leftarrow \mathbf{0} \leftarrow C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \leftarrow \mathbf{0} \leftarrow \mathbf{0} \leftarrow \ldots$$

A truncated chain complex is

$$C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2$$

Variable K : fieldType.

```
Record FGChain_Complex :=
{ m : Z -> nat;
   diff : forall i:Z, 'M[K]_(m (i + 1), m i);
   boundary : forall i:Z, (diff (i + 1)) *m (diff i) = 0}.
```


There exists a rigid typing strategy in Coq

 $M_i \Rightarrow M_(i+1-1)$

Casts

There exists a rigid typing strategy in Coq

 $M_i \Rightarrow M_(i+1-1)$

In a reduction, $g \circ f + d \circ h + h \circ d = \text{id}$ where $d_i : C_i \to C_{i-1}$ and $h_i : C_i \to C_{i+1}$ Then, $d_{i+1}h_i : C_i \to C_{i+1-1}$, $M_{-}(m \text{ C i, } m \text{ C (i+1-1)}) \Rightarrow M_{-}(m \text{ C i)}$

Casts

There exists a rigid typing strategy in Coq

 $M_i \Rightarrow M_(i+1-1)$

```
In a reduction, g \circ f + d \circ h + h \circ d = \text{id} where d_i : C_i \to C_{i-1} and h_i : C_i \to C_{i+1}
Then, d_{i+1}h_i : C_i \to C_{i+1-1} 'M_(m C i, m C (i+1-1)) \Rightarrow 'M_(m C i)
```

```
Lemma cast1: m C i = m C i.
Lemma cast2: m C (i+1-1) = m C i.
castmx (cast1, cast2) ((Ho H i) *m (diff C (i+1)))
```

Casts

There exists a rigid typing strategy in Coq

 $M_i \Rightarrow M_(i+1-1)$

In a reduction, $g \circ f + d \circ h + h \circ d = id$ where $d_i : C_i \to C_{i-1}$ and $h_i : C_i \to C_{i+1}$ Then, $d_{i+1}h_i : C_i \to C_{i+1-1}$ 'M_(m C i, m C (i+1-1)) \Rightarrow 'M_(m C i)

```
Lemma cast1: m C i = m C i.
Lemma cast2: m C (i+1-1) = m C i.
castmx (cast1, cast2) ((Ho H i) *m (diff C (i+1)))
```

Re-indexing structures

If $d_i: C_{i+1} \to C_i$ then $d_{i+1}h_i: C_i \to C_i$ and the obtained matrix is 'M_(m C i).

Notations

An *n*-suspended up or *n*-suspended down chain complex for a chain complex is built moving up or down n degrees of a chain complex.

María Poza López de Echazarreta

Decomposition Theorem

Let $\rho = (f, g, h) : (C_*, d) \Rightarrow (\widehat{C}_*, \widehat{d})$ be a reduction. This reduction is equivalent to a decomposition: $C_* = A_* \oplus B_* \oplus C'_*$ where $A_* = \ker f \cap \ker h$, $B_* = \ker f \cap \ker d$ and $C'_* = \operatorname{im} g$.

Decomposition Theorem

Let $\rho = (f, g, h) : (C_*, d) \Rightarrow (\widehat{C}_*, \widehat{d})$ be a reduction. This reduction is equivalent to a decomposition: $C_* = A_* \oplus B_* \oplus C'_*$ where $A_* = \ker f \cap \ker h$, $B_* = \ker f \cap \ker d$ and $C'_* = \operatorname{im} g$.

The kernel of a finite map is defined by the kernel of the matrix which represents this map.

Decomposition Theorem

Let $\rho = (f, g, h) : (C_*, d) \Rightarrow (\widehat{C}_*, \widehat{d})$ be a reduction. This reduction is equivalent to a decomposition: $C_* = A_* \oplus B_* \oplus C'_*$ where $A_* = \ker f \cap \ker h$, $B_* = \ker f \cap \ker d$ and $C'_* = \operatorname{im} g$.

The kernel of a finite map is defined by the kernel of the matrix which represents this map.

Definition kermx m n (A: 'M_(m,n)): 'M_m := copid_mx (\rank A) *m invmx (col_ebase A). Lemma mulmx_ker m n (A : 'M_(m, n)) : kermx A *m A = 0.

Decomposition Theorem

Let $\rho = (f, g, h) : (C_*, d) \Rightarrow (\widehat{C}_*, \widehat{d})$ be a reduction. This reduction is equivalent to a decomposition: $C_* = A_* \oplus B_* \oplus C'_*$ where $A_* = \ker f \cap \ker h$, $B_* = \ker f \cap \ker d$ and $C'_* = \operatorname{im} g$.

The kernel of a finite map is defined by the kernel of the matrix which represents this map.

```
Definition kermx m n (A: 'M_(m,n)): 'M_m :=
copid_mx (\rank A) *m invmx (col_ebase A).
Lemma mulmx_ker m n (A : 'M_(m, n)) : kermx A *m A = 0.
```

Drawbacks

- The kernel consists of the elements that are made null when they are applied to the left
- It is necessary to work with transposed matrices
- The product is reversed
- Only partial identities are obtained
- Advantages
 - Some useful lemmas about kermx are already proven in the SSREFLECT library

María Poza López de Echazarreta

Decomposition Theorem

Let $\rho = (f, g, h) : (C_*, d) \Rightarrow (\widehat{C}_*, \widehat{d})$ be a reduction. This reduction is equivalent to a decomposition: $C_* = A_* \oplus B_* \oplus C'_*$ where $A_* = \ker f \cap \ker h$, $B_* = \ker f \cap \ker d$ and $C'_* = \operatorname{im} g$.

The kernel of a finite map is defined by the kernel of the matrix which represents this map.

```
Definition kermx m n (A: 'M_(m,n)): 'M_m :=
copid_mx (\rank A) *m invmx (col_ebase A).
Lemma mulmx_ker m n (A : 'M_(m, n)) : kermx A *m A = 0.
```

```
Definition ker_min (m n : nat) (M : 'M_(m,n)) :=
  (castmx ((Logic.eq_refl (m-\rank M)), (\rank M) + (m-(\rank M))) = m)
  (row_mx (@const_mx _ (m-\rank M) (\rank M) 0) 1%:M)) *m (kermx M).
```

Decomposition Theorem

Let $\rho = (f, g, h) : (C_*, d) \Rightarrow (\widehat{C}_*, \widehat{d})$ be a reduction. This reduction is equivalent to a decomposition: $C_* = A_* \oplus B_* \oplus C'_*$ where $A_* = \ker f \cap \ker h$, $B_* = \ker f \cap \ker d$ and $C'_* = \operatorname{im} g$.

The kernel of a finite map is defined by the kernel of the matrix which represents this map.

```
Definition kermx m n (A: 'M_(m,n)): 'M_m :=
copid_mx (\rank A) *m invmx (col_ebase A).
Lemma mulmx_ker m n (A : 'M_(m, n)) : kermx A *m A = 0.
```

```
Definition ker_min (m n : nat) (M : 'M_(m,n)) :=
  (castmx ((Logic.eq_refl (m-\rank M)),(\rank M) + (m-(\rank M))) = m)
  (row_mx (@const_mx _ (m-\rank M) (\rank M) 0) 1%:M)) *m (kermx M).
```

```
Lemma ker_min_kermx (m n : nat) (M : 'M_(m,n)) :
  (kermx M :=: (ker_min M))%MS.
```

Table of Contents

Introduction

- 2 Biomedical images and certified software
- 3 Reduction procedure
- 4 Methodology and experimental aspects
- 5 Conclusions and further work

Goal

A methodology to verify a software program which smooths the "steep learning curve"

- Implement a version of our algorithms in Haskell
- 2 Test properties about the Haskell programs
- 0 Verify the programs using Coq and its $\mathrm{SSReflect}$ library

Goal

A methodology to verify a software program which smooths the "steep learning curve"

- Implement a version of our algorithms in Haskell
- 2 Test properties about the Haskell programs
- **3** Verify the programs using COQ and its SSREFLECT library

Advantages of Haskell

- ullet Both the code and the way of working are similar to the ones in Coq
- The clean semantics of purely functional languages
- Haskell functions often satisfy simple algebraic properties
- Provides a profiling system
 - Where the system wastes time
 - Which parts of the proof should be improved
 - Data structures are suitable

Goal

A methodology to verify a software program which smooths the "steep learning curve"

- Implement a version of our algorithms in Haskell.
- 2 Test properties about the Haskell programs
- **3** Verify the programs using COQ and its SSREFLECT library

Testing

Goal: The testing process can be useful in order to detect bugs

- Manual testing
 - Small images
 - Very tedious and requires a lot of time

Goal

A methodology to verify a software program which smooths the "steep learning curve"

- Implement a version of our algorithms in Haskell
- 2 Test properties about the Haskell programs
- O Verify the programs using COQ and its SSREFLECT library

Testing

Goal: The testing process can be useful in order to detect bugs

- Manual testing
- Automated testing
 - Use fKenzo
 - File with a battery of pairs of matrices (2D images randomly generated)
 - Compute homology
 - Use Haskell
 - Compute homology in Haskell with or without applying a reduction process

María Poza López de Echazarreta

Certifying homological algorithms to study biomedical images

Goal

A methodology to verify a software program which smooths the "steep learning curve"

- Implement a version of our algorithms in Haskell
- 2 Test properties about the Haskell programs
- **3** Verify the programs using COQ and its SSREFLECT library

Testing

Goal: The testing process can be useful in order to detect bugs

- Manual testing
- Automated testing

Study over 250 images	d1	d2
% of reduction	98	49

Goal

A methodology to verify a software program which smooths the "steep learning curve"

- Implement a version of our algorithms in Haskell
- 2 Test properties about the Haskell programs
- 0 Verify the programs using Coq and its $\mathrm{SSReflect}$ library

Testing

Goal: The testing process can be useful in order to detect bugs

- Manual testing
- Automated testing
- QuickCheck
 - A specification of the properties which must be satisfied by our programs is given
 - Testing the properties included in the specification

Goal

A methodology to verify a software program which smooths the "steep learning curve"

- Implement a version of our algorithms in Haskell
- 2 Test properties about the Haskell programs
- **3** Verify the programs using COQ and its SSREFLECT library

Testing

Goal: The testing process can be useful in order to detect bugs

- Manual testing
- Automated testing
- QuickCheck

This step is not enough to ensure that a program is correct

Alternatives in the methodology

- Efficiency: Haskell is a programming language
- Reliability: we are not sure of the correctness of our programs

Haskell as an oracle

The heavy computations are done in Haskell and then the properties of the output of the computation are proved in ${\rm SSReFLECT}$

Computing over digital images

	Haskell	SSReflect
Without advf	0.06	0.46
With advf	0.046875	1.016

• We can compute in both systems
Computing over digital images

UVA

		Haskell	SSReflect
Without advf		0.9	9
With advf	Computation advf	2.484	101
	Ordered matrices	0	14
	Reduced matrix d_1	0	*
	Reduced matrix d ₂	0.0624	5
	H_0 and H_1	1.252	3
	Total	3.9	139

• ${\rm SSReflect}$ cannot compute the inverse of a matrix 64×64

Experimental aspects

Computing over digital images

UV/A

		Haskell	SSReflect
Without advf		0.9	9
With advf	Computation advf	2.484	101
	Ordered matrices	0	14
	Reduced matrix d ₁	0	*
	Reduced matrix d ₂	0.0624	5
	H_0 and H_1	1.252	3
	Total	3.9	139

- Haskell as an oracle:
 - $\bullet~$ Compute the admissible discrete vector field and reorder the matrix in $\rm Coq$
 - The top-left block ulM is extracted to Haskell and the inverse matrix is returned invmx_ulM
 - Prove in Coq:
 - The inverse of a matrix is unique
 - $\forall M, MM^{-1} = \mathsf{id} \Rightarrow M^{-1}M = \mathsf{id}$

```
Lemma m_invmxm : (mulseqmx ulM invmx_ulM)
== (scalar_seqmx 64 (Ordinal (ltn_pmod 1 (ltnOSn 1)))).
```

María Poza López de Echazarreta

Computing over digital images

UVA

		Haskell	SSReflect
Without advf		0.9	9
With advf	Computation advf	2.484	101
	Ordered matrices	0	14
	Reduced matrix d_1	0	*
	Reduced matrix d ₂	0.0624	5
	H_0 and H_1	1.252	3
	Total	3.9	139

- The RS algorithm is not necessary ۲
- We can compute the dimension of the homology groups with the direct method

Computing over biomedical images

Biomedical context

Counting the number of synapses in a neuron

Problem

• SSREFLECT cannot compute the homology directly

Experimental aspects

Computing over biomedical images

Biomedical context

Counting the number of synapses in a neuron

Goal

Obtain the H_0 by means of a certified process

María Poza López de Echazarreta

Computing over biomedical images

Biomedical context

Counting the number of synapses in a neuron

Goal

Obtain the H_0 by means of a certified process

- Computing in Haskell the reduced matrix *Mred* and the components f0, f1, g0, g1 and h0 which define a 2-truncated reduction
- 2 Transform the matrices to m Coq/SSReflect
- 3 Prove in Coq/SSReflect that these matrices establish a reduction
- **9** Compute H_0 from the reduced matrix *Mred* in COQ/SSREFLECT

María Poza López de Echazarreta

Computing over biomedical images

Biomedical context

Counting the number of synapses in a neuron

		Haskell (min)	SSReflect
Without advf		0.68	Not available
With advf	Computation advf	108	Proofs
	Reduced matrices	26	12h 4min 55sec
	H_0	0.012	5sec
	Total	130	12h 5min

- We need to use the reduction method to obtain H_0 in a reliable way
- The matrix 743×1424 is reduced to 59×740

Sources of inefficiency

- Data types in languages of functional programming
 - Matrices
- Use of simplicial complexes instead of cubical complexes
- Execution inside the proof assistant
- Coq is a Proof Assistant and not a Computer Algebra system
- Concrete algorithms
 - Kenzo (ad-hoc algorithm to compute an admissible discrete vector field)
 - Heuristic techniques
- Proving needs more redundancy in algorithms

Table of Contents

Introduction

- 2 Biomedical images and certified software
- 3 Reduction procedure
- 4 Methodology and experimental aspects
- **5** Conclusions and further work

Development effort

María Poza López de Echazarreta

- Development effort
- $\bullet~\mbox{The implementation}$ in $\rm Coq/SSReflect$ of the RS algorithm

- Development effort
- $\bullet\,$ The implementation in $\mathrm{Coq}/\mathrm{SSReflect}$ of the RS algorithm
- $\bullet\,$ The complete formalization in $\mathrm{COQ}/\mathrm{SSReflect}$ of the BPL

- Development effort
- $\bullet\,$ The implementation in $\mathrm{Coq}/\mathrm{SSReflect}$ of the RS algorithm
- $\bullet\,$ The complete formalization in $\mathrm{Coq}/\mathrm{SSReflect}$ of the BPL
- Two formalizations of the Vector-Field Reduction Theorem for matrices

- Development effort
- $\bullet\,$ The implementation in $\mathrm{Coq}/\mathrm{SSReflect}$ of the RS algorithm
- $\bullet\,$ The complete formalization in $\mathrm{Coq}/\mathrm{SSReflect}$ of the BPL
- Two formalizations of the Vector-Field Reduction Theorem for matrices
- A verified program to compute homology groups of a simplicial complex obtained from a digital image

- Development effort
- $\bullet\,$ The implementation in $\mathrm{Coq}/\mathrm{SSReflect}$ of the RS algorithm
- $\bullet\,$ The complete formalization in $\mathrm{COQ}/\mathrm{SSReflect}$ of the BPL
- Two formalizations of the Vector-Field Reduction Theorem for matrices
- A verified program to compute homology groups of a simplicial complex obtained from a digital image
- A discussion on different methods to overcome the efficiency problems appearing when executing programs inside proof assistants

- Development effort
- $\bullet\,$ The implementation in $\mathrm{Coq}/\mathrm{SSReflect}$ of the RS algorithm
- $\bullet\,$ The complete formalization in $\mathrm{COQ}/\mathrm{SSReflect}$ of the BPL
- Two formalizations of the Vector-Field Reduction Theorem for matrices
- A verified program to compute homology groups of a simplicial complex obtained from a digital image
- A discussion on different methods to overcome the efficiency problems appearing when executing programs inside proof assistants
- An application of Algebraic Topology to study biomedical images

- Other algorithms to compute the main objects
 - Discrete vector fields
 - Inverse of a matrix

- Other algorithms to compute the main objects
 - Discrete vector fields
 - Inverse of a matrix
- Data structures and better representations
 - Work with cubical complexes
 - Data refinements could be considered

- Other algorithms to compute the main objects
 - Discrete vector fields
 - Inverse of a matrix
- Data structures and better representations
 - Work with cubical complexes
 - Data refinements could be considered
- Running environments in proof assistants

- Other algorithms to compute the main objects
- Data structures and better representations
- Running environments in proof assistants
- Formalization aspects
 - $\bullet\,$ Matrices with coefficients over $\mathbb Z$
 - Integer homology computation

- Other algorithms to compute the main objects
- Data structures and better representations
- Running environments in proof assistants
- Formalization aspects
 - $\bullet\,$ Matrices with coefficients over $\mathbb Z$
 - Integer homology computation
- Homology certified programs applied to biomedical cases
 - Homology group in dimension 1 (structure detection)
 - Persistent Homology (denoising)

- Other algorithms to compute the main objects
- Data structures and better representations
- Running environments in proof assistants
- Formalization aspects
 - $\bullet\,$ Matrices with coefficients over $\mathbb Z$
 - Integer homology computation
- Homology certified programs applied to biomedical cases:
 - Homology group in dimension 1 (structure detection)
 - Persistent Homology (denoising)
- \bullet Integration between Coq and ACL2

Certifying homological algorithms to study biomedical images*

María Poza López de Echazarreta

Supervisors: Dr. César Domínguez Pérez Dr. Julio Rubio García

Department of Mathematics and Computer Science University of La Rioja Spain

June 14, 2013

María Poza López de Echazarreta

^{*}Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847