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Abstract

Persistent homology and spectral sequences are two Algebraic Topology tools which are
defined by means of a filtration and can be applied to study topological properties of a space
at different stages. Both concepts are deeply related, and this relation allows us to use some
previous programs developed for computing spectral sequences of filtered complexes to deter-
mine now persistent homology. In particular, spectral sequences can be applied to compute
persistent homology of digital images, which will allow us to determine relevant features, that
will be long-lived on contrast with the “noise” which will be short-lived.
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1 Introduction

Persistent homology [4] is an algebraic method for measuring topological features of shapes and
functions, with many recent applications such as point cloud data, sensor networks, optical char-
acter recognition and protein classification. More concretely, this technique consists in identifying
homological features that persist within the different stages of a filtration. On the other hand, spec-
tral sequences [7] are a tool for computing homology groups by taking successive approximations.
Both concepts are defined by means of a filtration and are deeply related.

In a previous paper [8], we showed that a slight modification of our previous programs for com-
puting spectral sequences [9] is enough to compute also persistent homology. By inheritance from
our spectral sequence program, we obtained for free persistent homology programs applicable to
spaces not of finite type (provided they are spaces with effective homology) and with Z-coefficients
(significantly generalizing the usual presentation of persistent homology over a field). Moreover,
our calculations made it possible to detect an error in [4]: the so called “Spectral sequence the-
orem” [4, p. 171], which shows the relation between spectral sequences and persistent homology,
includes a formula which is not correct (see [8] for details).

In this work, we use our spectral sequence programs to compute persistent homology of digital
images. This allows us to determine relevant features, that will be long-lived – in the sense that
they persist over a certain parameter range – on contrast with the “noise” which will be short-lived.
In order to reduce the time of calculations, we can use the combinatorial notion of Discrete Vector
Field [5]. As a test case, our programs could be applied on a fingerprint database.

∗Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by the Euro-
pean Union’s 7th Framework Programme under grant agreement nr. 243847 (ForMath).
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2 Preliminaries

Definition 2.1. Let K be a simplicial complex. A (finite) filtration of K is a nested sequence of
subcomplexes Ki ⊆ K such that ∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K.

For every i ≤ j we have an inclusion map on the canonically associated chain complexes inci,j :
C(Ki) �→ C(Kj) and therefore we can consider the induced homomorphisms f i,j

n : Hn(K
i) →

Hn(K
j), for each dimension n. The filtration produces then for each dimension n a sequence of

homology groups connected by homomorphisms:

0 = Hn(K
0) → Hn(K

1) → · · · → Hn(K
m) = Hn(K)

Definition 2.2. The n-th persistent homology groups of K, denoted by H i,j
n (K) ≡ Hi,j

n , are the
images of the homomorphisms f i,j

n :

Hi,j
n = Im f i,j

n , for 0 ≤ i ≤ j ≤ m

The group Hi,j
n consists of the n-th homology classes of Ki that are still alive at Kj . A class

γ ∈ Hn(K
i) is said to be born at Ki if γ /∈ Hi−1,i

n . It is said to die entering Kj if it merges with an
older class as we go from Kj−1 to Kj , that is, f i,j−1

n (γ) /∈ Hi−1,j−1
n but f i,j

n (γ) ∈ Hi−1,j
n . If γ is

born at Ki and dies entering Kj , the difference j − i is called the persistence index of γ, denoted
pers(γ). If γ is born at Ki but never dies then pers(γ) = ∞.

If the homology is computed with field coefficients, each group H i,j
n is a vector space which

is determined up to isomorphism by its dimension, and this allows one to represent all persistent
homology groups by means of a barcode diagram [4]. However, in the integer case one can face
extension problems. In order to solve this difficulty, we introduced in [8] a generalization of
persistent homology with Z-coefficients. This can be done by means of a double filtration which
leads to a new (more general) definition of barcode.

Definition 2.3. Let R be a ring, a spectral sequence E = (Er, dr)r≥1 is a sequence of bi-
graded R-modules Er = {Er

p,q}p,q∈Z, each provided with a differential dr = {drp,q : Er
p,q →

Er
p−r,q+r−1}p,q∈Z of bidegree (−r, r − 1) (satisfying dp−r,q+r−1 ◦ dp,q = 0) and with isomorphisms

H(Er, dr) ∼= Er+1 for every r ≥ 1. Since each Er+1
p,q is a subquotient of Er

p,q, one can define the
final groups E∞

p,q of the spectral sequence as the groups which remain after the computation of all
successive homologies.

Theorem 2.4. [7, p.327] Let C be a chain complex with a filtration. There exists a spectral
sequence E ≡ E(C) ≡ (Er, dr)r≥1, defined by

Er
p,q =

Zr
p,q + Cp−1

p+q

dp+q+1(Z
r−1
p+r−1,q−r+2) + Cp−1

p+q

where Zr
p,q is the submodule Zr

p,q = {a ∈ Cp
p+q| dp+q(a) ∈ Cp−r

p+q−1} ⊆ Cp
p+q, and drp,q : Er

p,q →
Er

p−r,q+r−1 is the morphism induced on these subquotients by the differential map dp+q : Cp+q →
Cp+q−1. This spectral sequence converges to the homology groups of C, that is, there are natural
isomorphisms

E∞
p,q

∼=
Hp

p+q(C)

Hp−1
p+q (C)

where Hp
∗ (C) is the filtration on the homology groups H∗(C) induced by the filtration of C.

3 Computing persistent homology by means of spectral se-
quences

There are some works in the literature which include some comments on the relation between spec-
tral sequences and persistent homology (see for instance [12] and [3]), but the only reference where
we have found an explicit formula which relates them is the book “Computational Topology: An
Introduction” by Herbert Edelsbrunner and John Harer [4]. Given a filtered simplicial complex K,
the so called “Spectral sequence theorem” ([4, p. 171]) claims that:
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The total rank of the groups of dimension p + q in the level r ≥ 1 of the associated
spectral sequence equals the number of points in the (p+q)-th persistence diagram whose
persistence is r or larger, that is,

m�

p=1

rankEr
p,q = card{a ∈ Dgmp+q(f)| pers(a) ≥ r}

where Dgmp+q(f) is an appropriate persistence diagram (see [4, Chap.VII]) and where
in the left side q decreases as p increases so that the dimension p+ q remains constant.

However, we have detected that the formula in [4] is erroneous because in the spectral sequence
side (the left side) there can be more elements than in the persistence (right) side; the formula
should be therefore an inequality. To illustrate the error in [4], it suffices to consider as a counterex-
ample a simplicial complex K generated by the interval ab, with the filtration given by K1 = {a, b}
and K2 = K; in dimension 1 one has E1

2,−1 = Z but there are no classes of persistence at least 1
since the unique element of dimension 1 is not a cycle.

The correct relation between persistent homology and spectral sequences can be expressed by
the following theorem:

Theorem 3.1. [8] The total rank of the images of the differential maps in the level r ≥ 1 of the
spectral sequence equals the number of points in the (p+q)-th persistence diagram whose persistence
is r:

m�

p=1

rankAr
p,q = card{a ∈ Dgmp+q(f)| pers(a) = r}

where Ar
p,q = Im(drp+r,q−r+1 : E

r
p+r,q−r+1 → Er

p,q) ⊆ Er
p,q.

This theorem gives us an algorithm for computing the rank of the persistent homology groups
of a filtered simplicial complex from the associated spectral sequence. Let us emphasize that this
information about ranks determines (up to isomorphism) the groups H i,j

n when one works with
coefficients over a field F . Therefore, if we know the groups Er

p,q and the differential maps drp,q
of the spectral sequence of a filtered simplicial complex, thanks to the formula introduced in
Theorem 3.1 we can also easily determine the persistent homology groups of K. If we work
with coefficients over Z, the previous information about the ranks relating spectral sequences and
persistent homology is not sufficient to determine the groups Hi,j

n ; however, we will see later that
one can express the groups Hi,j

n in terms of some subgroups appearing in the definition of the
spectral sequence, which will allow us to determine H i,j

n also in the integer case.
In a previous work [9], we developed a set of programs computing spectral sequences associated

with filtered chain complexes. These programs were implemented in Common Lisp as a new
module for the Kenzo system [2], a computer algebra program developed by the last author of this
paper and some coworkers which implements the effective homology theory [11] and has made it
possible to determine homology and homotopy groups of complicated (infinite) spaces. The new
programs for spectral sequences use also the effective homology technique and allow the Kenzo user
to determine the different components of spectral sequences of filtered complexes even in some cases
where the chain complex has infinite type. Using our programs, and thanks to Theorem 3.1, one
can determine in this way the ranks of the groups Hi,j

n .
In fact the computation of the groups H i,j

n can be directly obtained by a small modification
of our algorithms without doing the complete process of computing the corresponding groups and
differential maps of the spectral sequence. Let us recall that a group Er

p,q in the spectral sequence
is given by the formula:

Er
p,q =

Zr
p,q + Cp−1

p+q

dp+q+1(Z
r−1
p+r−1,q−r+2) + Cp−1

p+q

We can observe that each class in Er
p,q is generated by an “almost” cycle of dimension p+q (a chain

whose boundary in Kp −Kp−r is empty but which may have non-empty boundary in Kp−r), and
the elements of Er

p,q given by a real cycle x (that is, d(x) = 0), correspond to classes of Hp+q(K
p)

which are born at Kp and are still alive at Kp+r−1, and then the persistence indexes of these
classes are at least r.

It is not difficult to observe then that the groups Hi,j
n can also be described as a quotient:

Hi,j
n =

Ker dn ∩ Ci
n

dn+1(Z
j−i
j,n−j+1)

=
Zi
i,n−i

dn+1(Z
j−i
j,n−j+1)
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Figure 1: Filtered digital image.

IfK is a finite filtered simplicial complex, then our programs determine the different elements of
the associated spectral sequence by means of some elementary operations on matrices. More con-
cretely, the programs determine in particular the subgroups Zr

p,q, C
p−1
p+q and dp+q+1(Z

r−1
p+r−1,q−r+2)

which appear in the formula of Theorem 2.4 (which can be determined if K is finite), and then
calculate the desired quotient. The groups Hi,j

n are determined in terms of similar subgroups and
then it has been very easy to adapt our programs in order to compute also Hi,j

n for finite (filtered)
simplicial complexes. It is important to remark that this is also valid in the integer case and this
makes it possible to solve the possible extension problems. Our programs can also be applied in
the infinite case, where the effective homology method can be used to determine the groups Hi,j

n

by means of a reduction of the initial chain complex C to an auxiliary chain complex of finite type
(see [8] for details).

4 Persistent homology of digital images

Given a digital image, we can naturally associate a simplicial complexK and compute its homology
groups in dimensions 0 and 1 which show respectively the number of connected components and
holes that the image contains. If the image is filtered (for example, it comes from a stack of images),
one can also determine the persistent homology groups which will allow us to determine relevant
features, that will be long-lived – in the sense that they persist over a certain parameter range –
on contrast with the “noise” which will be short-lived.

Let us consider the filtered image of Figure 1. The final homology groups are H0 = Z7 and
H1 = Z4. We can see the evolution of the corresponding homology classes along the four filtration
steps by using our programs for computing persistent homology groups based on spectral sequences.
For example, H1,4

0 = Z4, which means that in dimension 0 there are 4 classes which are born at
the first step and are still alive at (the last) step 4:

> (prst-hmlg-group K 1 4 0)

Persistent Homology H^{1,4}_0

Component Z

Component Z

Component Z

Component Z

Similarly, H2,4
1 = Z2 means that there are 2 holes at stage 2 which are still alive at step 4:

> (prst-hmlg-group K 2 4 1)

Persistent Homology H^{2,4}_1

Component Z

Component Z

These same results have been also obtained by a certified program, executed inside the Coq
proof assistant (this kind of verified programs have been developed in the frame of the ForMath
European project [1], and have been documented in [6]).

For bigger digital images, we can reduce the time of calculations by using the combinatorial
notion of Discrete Vector Field, which is an essential component of Forman’s Discrete Morse
Theory [5], adapted to the algebraic setting in [10]. As explained in [10], given a digital image,
an admissible discrete vector field can be constructed by means of some elementary operations on
the differential matrices of the associated chain complex. This vector field produces a reduction
from the initial (big) chain complex to a (much) smaller one whose homology groups are explicitly
isomorphic to the homology groups of the image, so that the computation of these homology groups
can be done in a more efficient way.
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If we are interested in computing persistent homology groups, we can follow a similar process to
construct a discrete vector field and reduce the initial (big) chain complex. In this case the discrete
vector field must be compatible with the filtration, which can be done applying the same elementary
methods of [10] to the differential submatrices corresponding to each step of the filtration. The
vector field so obtained is of course smaller than the non-filtered one, but it usually decreases
significantly the number of generators. This vector field produces again a reduction, which in this
case is compatible with the given filtration, which implies that the persistent homology groups
of the initial image are isomorphic to the persistent homology groups of the reduced one (see [8]
for details). Applying now our programs for computing persistent homology to the small chain
complex, we can compute the persistent homology groups of big images in an efficient way.

Computation of persistent homology groups of digital images could be applied to study finger-
prints. Given a fingerprint image, we could filter it taking at the first step some initial horizontal
lines, adding at each stage of the filtration some additional lines and ending with the whole image.
This filtration would produce some persistent homology groups. A similar process could be done
in the vertical direction, taking successively the columns of the image, producing in that way dif-
ferent persistent homology groups. It seems natural that given two (different) fingerprint images
corresponding to the same person, the so obtained persistent homology groups should be similar.
Persistent homology could help in this way for fingerprint recognition.
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