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Abstract. In this paper we report on a project to obtain a verified
computation of homology groups of digital images. The methodology is
based on programming and executing inside the Coq proof assistant.
Though more research is needed to integrate and make efficient more
processing tools, we present some examples partially computed in Coq
from real biomedical images.
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1 Introduction

The discipline of Algebraic Digital Topology, or more specifically, the compu-
tation of homology groups from digital images is mature enough (see, for in-
stance, [27], one among many good references) to go one step further and inves-
tigate the possibility of a certified computation (i.e., formally verified by proving
correctness using an interactive proof assistant) in digital topology, as it happens
in other areas of computer mathematics (see [8]).

In a very rough manner, the process to be verified is reflected in Figure 1.
Putting it into words, from the black pixels of a monochromatic image a sim-
plicial complex is obtained (by means of a triangulation procedure); subse-
quently, from the simplicial complex, its boundary (or incidence) matrices are
constructed, and finally, homology can be computed. If we work with coefficients
over a field (and it is well-known that it is enough to take as coefficients the field
Z/2Z, when we work with 2D and 3D digital images) and if only the dimensions
of the homology groups (as vector spaces) are looked for, then having a program
able to compute the rank of a matrix is sufficient to accomplish the whole task.
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Fig. 1. Computing homology from a digital image

This architecture is particularized in this paper with a real problem that
appeared in an industrial application and with the Coq proof assistant as pro-
gramming and verifying tool.

The rest of this paper is organized as follows. Section 2 is devoted to present
an example, coming from the biomedical context, as a test-case for our formal
development. The formalization process is explained in Section 3, focusing on the
link between boundary matrices and homology groups. Section 4 explains how
the certified programs can be used to effectively compute homology of images. A
way to deal with the management of the huge matrices produced by biomedical
images is presented in Section 5. The paper ends with a section of Conclusions
and Further work, and the bibliography.

2 Motivation

When developing formal proofs, a major issue is ensuring that concepts are
defined in a way that will be applicable to concrete use. In our case, we are
developing a general theory of effective simplicial homology as part of the For-
math project [1]. We decided to validate our design choices on biomedical digital
images obtained from synaptical structures.

Synapses are the points of connection between neurons. The relevance of
synapses comes from the fact that they are related to the computational capa-
bilities of the brain.

The possibility of changing the number of synapses may be an important as-
set in the treatment of neurological diseases, such as Alzheimer, see [26]. There-
fore, we can claim that an efficient, reliable and automatic method for counting
synapses is instrumental in the study of the evolution of synapses in scientific
experiments.

Up to now, the method to count synapses was manual, see [6]. This was
impractical since it implies a considerable time investment. In order to improve
this process, a plug-in called SynapCountJ [17] for the ImageJ environment [22]
has been developed.

The procedure implemented in this software to handle neuron images can
be split into two steps. First, taking as input three images of a neuron, namely
the neuron with two different antibody markers and the structure of the neuron,
SynapCountJ produces a bitmap where synapses are the connected components,
see Figure 2. Then the second step consists in counting the connected compo-
nents of the bitmap. A detailed explanation of the procedure was given in [13].



Fig. 2. Example of the results produced by SynapCountJ

To test the suitability of this program, biologists consider, on the one hand,
control cultures and, on the other hand, cultures under the effect of some drugs;
in this way, the evolution of the density of the occurrence of synapses under
the effect of those drugs can be determined. For instance, using the chemical
inhibitor GSK3, the evolution percentage manually obtained is 36% and the one
obtained with SynapCountJ is 36.6%. Thus, the experimental results obtained
with SynapCountJ were considered (by the biologists) very satisfactory.

The former step of the procedure implemented in SynapCountJ, the extrac-
tion of a bitmap with the synapses from three images of the neurons, is carried
out based on solid previous experience of experimental scientists; therefore, they
consider it as a safe process. The latter step, the computation of connected com-
ponents, can be solved with many algorithms and is an interesting test case
for our framework where we can compute the homology in dimension 0 of such
images. This is a well known procedure to measure the amount of connected
components of an image, even if more elementary methods are also applicable.

3 Verification in Coq/SSReflect

In the introduction we have explained a method, based on simplicial homology, to
study the homology of a digital image which consists of: (1) building a simplicial
complex from the image, (2) generating the boundary matrices associated with
the simplicial complex, and (3) computing the homology from the boundary
matrices.

The correctness of the programs in charge of both the construction of a
simplicial complex from an image and the generation of the boundary matrices
associated with a simplicial complex have been formally proved using proof as-
sistant tools as can be seen in [21] and [14] respectively. Then, there only remains
the verification of the third point, the computation of homology groups from the
boundary matrices.



In our formalization, we have used the Coq proof assistant [5]. This sys-
tem provides a formal language to write mathematical definitions, executable
algorithms and theorems together with an environment for semi-interactive de-
velopment of machine-checked proofs. In addition, we take advantage of the
features included in SSReflect [9], an extension for Coq whose development
was started by G. Gonthier during the formal proof of the Four Color The-
orem [8]. The SSReflect libraries include enough ingredients to undertake
the task of defining and computing homology from matrices. Some details of
the proofs will be omitted; the interested reader can consult the original and
complete source code at http://wiki.portal.chalmers.se/cse/pmwiki.php/
ForMath/ProofExamples.

First of all, we define the notion of homology in Coq. Let K be a field,
V 1, V 2, V 3 vector spaces on K, and f : V 1 → V 2, g : V 2 → V 3 linear applica-
tions; then, the Homology of f, g is the quotient between the kernel of g and the
image of f . This is translated into Coq in the following way.

Variable (K : fieldType) (V1 V2 V3 : vectType K)

(f : linearApp V1 V2) (g : linearApp V2 V3).

Definition Homology := ((lker g) :\: (limg f)).

Nevertheless, we do not usually work with linear applications when trying to
compute homology but with the matrices representing those linear applications.
In particular, as we are working on a field K, given two matrices with coefficients
in this field, let us called them, mxf and mxg of sizes v1 × v2 and v2 × v3
respectively and such that their product is the null matrix, the dimension of the
corresponding homology vector space is given by the formula: v2−rank(mxg)−
rank(mxf). This definition is introduced in Coq as follows.

Definition dim_homology (mxf:’M[K]_(v1,v2)) (mxg:’M[K]_(v2,v3)) :=

v2 - \rank mxg - \rank mxf.

Now, the correctness of dim_homology can be shown by proving that given
two matrices mxf and mxg whose product is the null matrix (mxf *m mxg = 0),
then the result obtained using dim_homology is the dimension of the homol-
ogy group associated with the linear applications defined from mxf and mxg

((LinearApp mxf) and (LinearApp mxg)).

Lemma dimHomologyrankE: mxf *m mxg = 0 ->

\dim Homology (LinearApp mxf) (LinearApp mxg) =

dim_homology mxf mxg.

However the use of SSReflect libraries may trigger heavy computations
during deduction steps, that would not terminate within a reasonable amount
of time. To handle this issue, some definitions like matrices are locked in a way
that do not allow direct computations.

To overcome this pitfall, we use the matrix representation and the rank algo-
rithm developed in [4] to define ex_homology which takes as argument two such
matrices (represented by means of lists of lists) mxf and mxg which dimensions
are v1×v2 and v2×v3 respectively, and computes the homology.

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/ProofExamples
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Definition ex_homology (v1 v2 v3:nat) (mxf mxg : seqMatrix K) :=

v2 - (rank v2 v3 mxg) - (rank v1 v2 mxf).

Finally, we prove the correctness of ex_homology by showing its equivalence
to dim_homology up to a change of representation (this domain transformation
is given by seqmx_of_mx).

Lemma ex_homology_rankE: forall (mxf: ’M[K]_(w1,w2)) (mxg : ’M[K]_

(w2,w3)), ex_homology (seqmx_of_mx mxf) (seqmx_of_mx mxg) =

dim_homology mxf mxg.

Then, we have an executable program to compute homology, for any dimen-
sion, whose correctness has been verified in Coq; therefore, we can claim that
its results will always be correct.

4 Computing homology with Coq

An example is presented in this section in order to clarify how we can compute
homology groups in Coq. Let us consider the simplicial complex of the left side
of Figure 3. If we impose a lexicographical order on the simplices of the same
dimension of this simplicial complex, its boundary matrix in dimension 1 is the
one presented in the right side of Figure 3; it is worth noting that the rest of
boundary matrices are empty, in particular we do not consider the empty set as
an element of dimension −1.

0
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2

3

5

4



(0, 1) (0, 2) (1, 2) (1, 3) (4, 5)

(0) 1 1 0 0 0
(1) 1 0 1 1 0
(2) 0 1 1 0 0
(3) 0 0 0 1 0
(4) 0 0 0 0 1
(5) 0 0 0 0 1



Fig. 3. Simplicial complex and its boundary matrix

The procedure to compute the homology (note that it only makes sense to
compute homology in dimensions 0 and 1) of the simplicial complex of Figure 3
is as follows. Firstly, we define the boundary matrices.

Definition d0_ex1 := [::].

Definition d1_ex1 := [::[::1;1;0;0;0];

[::1;0;1;1;0];

[::0;1;1;0;0];

[::0;0;0;1;0];

[::0;0;0;0;1];



[::0;0;0;0;1]].

Definition d2_ex1 := [::].

Eventually, we can compute the homology using the following instructions.

Eval vm_compute in (ex_homology 0 6 5 d0_ex1 d1_ex1).

Eval vm_compute in (ex_homology 6 5 0 d1_ex1 d2_ex1).

obtaining 2 and 1 respectively. In the same way, we could compute homology
from the boundary matrices associated with the simplicial complex generated
from a digital image. However, if we try to compute the homology from the
images produced by SynapCountJ (see Figure 2), Coq is not able to handle
those images yet, due to the size of data involved.

It is worth noting that Coq is a Proof Assistant and not a Computer Algebra
system. Efficient implementations of mathematical algorithms running inside
Coq is an ongoing effort, as shown by recent works on efficient real numbers [16],
machine integers and arrays [2] or a previous approach to compiled execution of
internal computations [10].

We devise a couple of ways to achieve better efficiency:

– Improve the runtime system using the extraction mechanism which trans-
lates Coq code to a functional programming language like OCaml or Haskell.
However, this would not allow us to reuse the result of our homological
computations for further proofs. Indeed, output of external programs are
untrusted so they cannot be imported. Instead, we are using a recent inter-
mediate approach consisting in internally compiling Coq terms to OCaml
with performance comparable to extracted code [18].

– Optimize algorithms and representations using sparse matrices, which is well
suited to simplicial complexes obtained from digital images. We have devel-
oped an Haskell implementation of such an algorithm but we still need to
formally verify its correctness.

In the next section we describe another method to overcome the efficiency
drawback, based on reducing the size of matrices while keeping the same homo-
logical information.

5 Computing discrete vector fields

The method that we are using for the reduction process is based on Discrete
Morse Theory [7]; namely, we work in the algebraic setting of this theory which
was described in [25]. Roughly speaking, the aim of Discrete Morse Theory con-
sists of finding simplicial collapses which transform a simplicial complex K into
a smaller one but keeping its homological properties. In this context, the instru-
mental tool are admissible discrete vector fields which allows one to reduce the
amount of information removing “useless” information but keeping the homo-
logical properties of the original object.

The use of these techniques from Discrete Morse Theory has been welcomed
in the study of homological properties of digital images, see [3,11,15], for instance.



This is due to the fact that the size of the cellular object associated with an image
can be huge, but the choice of an appropriate vector field can produce a much
smaller object.

So, the question now is given a cellular complex how we can produce a vector
field as large as possible (the larger the vector field, the smaller the reduced
object). Several approaches to solve this problem have been studied as can be
seen in [24,12,23,19], the strategy that we have chosen was explained in [25]. It
is not the aim of this paper to describe that algorithm (from now on, called RS’s
algorithm; RS stands for Romero–Sergeraert); but, we just introduce some ideas.
This algorithm takes as input one of the boundary matrices associated with the
cellular complex and provides an admissible discrete vector field (subsequently,
from the matrix and the vector field a reduced matrix can be obtained).

The algorithm has been implemented in Haskell; and, some remarkable re-
sults have been obtained in the reduction process. As benchmark to test our
programs, we have considered matrices coming from, on the one hand, 500 ran-
domly generated images; and, on the other hand, biomedical images. In the
former case, the size of the matrices was initially around 100 × 300, and after
the reduction process the average size was 5 × 50. Using the original matrices
Coq takes around 12 seconds to compute their rank; on the contrary, using the
reduced matrices Coq only needs milliseconds. In the latter case, the matrices
coming from biomedical images, the size of matrices is reduced from around
690×1400 to 97×500. In this case, Coq cannot deal with the original matrices;
on the contrary, it is able to handle matrices as the ones obtained after applying
the reduction programs and compute the results in, approximately, 25 seconds.

As a final remark, let us explain the main reason for using Haskell to imple-
ment the RS algorithm. The use of this language is due to the fact that Haskell
is quite close to Coq; and, therefore, algorithms implemented in Haskell can be
verified using Coq, a question which is, as we have seen, instrumental in our
developments. In particular, the formalization of the correctness of the algorithm
in charge of constructing an admissible discrete vector field given a matrix is on-
going work; and, up to now, we have certified that our programs build a discrete
vector field. The proof of the admissibility property remains as further work.

6 Conclusions and further work

In this paper, we have presented how we can use Algebraic Topology techniques
to study biomedical images in a reliable manner. The first step consists in pro-
cessing the biomedical images to obtain an image where homological informa-
tion is as explicit as possible. Subsequently, using programs whose correctness
has been verified in the Coq/SSReflect proof assistant, homological proper-
ties from the pre-processed image are obtained, which in turn are interpreted as
features of the original image.

This methodology has been applied in this paper to the problem of deter-
mining the number of synapses of a neuron. In this case, the problem is reduced
to measure the number of connected components of a monochromatic image. An



issue which can be solved, even if it is not the straightforward manner, thanks
to the computation of the homology group in dimension 0 of the image.

The use of certified tools able to compute homology groups will be important
in the future; for instance, to recognize the structure of a neuron; a problem which
seems to involve the homology group in dimension 1, see [20]. Other techniques,
like the ones of persistent homology, could be applied in stacks of neurons to
remove the noise of the images and help to the detection of the dendrites (the
branches of the neuron).

Some formalization aspects also remain as future work. We have already
mentioned the on-going work around proving the correctness of the admissible
discrete vector fields programs. Moreover, certifying the correctness of integer
homology computation is also further work (some results about the formalization
of the Smith Normal Form are already encoded in Coq, see [4]).

As we previously mentioned, we are still working on efficiency issues but
switching to better representations and more efficient algorithms will not require
to redo the proofs related to homology.
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