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Formalizing mathematics: the European Project ForMath

@ European Commission FP7, STREP project ForMath: 2010-2013

@ Objective: formalized libraries for mathematical algorithms.
@ Four nodes:

\4

Gothenburg University: Thierry Coquand, leader.
Radboud University.

INRIA.

Universidad de La Rioja.
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Status of ForMath

o Four Work Packages:

» Infrastructure to formalize mathematics in constructive type theory.
* SSReflect extension of Coq.
Gonthier's library created for the Four Color Theorem.
Now extended and applied to simple finite group classification.
* Mixing deduction and computation, Big-Op library, ...

> Linear Algebra library.

* Verified and efficient matrix manipulation.
* Coherent and strongly discrete rings in type theory.

» Real numbers and differential equations.

* Verified and efficient reals in Coq.
* Numerical integration, Simpson’s rule, Newton method, ...

» Algebraic topology and...(medical) image processing.

o Why formalizing mathematics?
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Summary

Computer-based mathematical error detection.
Essential building blocks.

» Eilenberg-Zilber (EZ) theorem.
» Basic Perturbation Lemma (BPL).

Formalisation of the EZ theorem.
Formalisation of the BPL.

Discrete vector fields.

Biomedical image processing.
Formalisation of homological computing.
Interoperability.

Persistent homology.

Another mathematical error.

Conclusions and further work.
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A published “theorem”

Theorem 5.4: Let A4 be the 4-th alternating group.
Then 7T4(ZK(A4, 1)) = Z4

“On homotopy groups of the suspended classifying spaces”.
Algebraic and Geometric Topology 10 (2010) 565-625.

A4 = 4-th alternating group.
K(A4,1) = Eilenberg-MacLane space.
> = Suspension.

ma() = 4-th homotopy group.

Zy4 = cyclic group with 4 elements.
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A computer calculation

After some previous definitions, we define in Kenzo the alternate group As:

> (setf A4 (groupl (tcc rsltn))) ; rsltn = resolution
[K1 Group]

It is a group with effective homology (Ana Romero's programs):
> (setf (slot-value A4 ’resolution) rsltn)

[K10 Reduction K2 => K5]

We apply the classifying construction, obtaining K (A4, 1):

> (setf k-A4-1 (k-g-1 A4))

[K11 Simplicial-Group]

We apply the suspension construction, obtaining XK (A4, 1):

> (setf s-k-A4-1 (suspension k-A4-1))

[K23 Simplicial-Set]

And finally we compute the controversial homotopy group:

> (homotopy s-k-A4-1 4)

Homotopy in dimension 4 :
Component Z/4Z
Component Z/3Z
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Anatomy of a calculation

@ In this particular case, Kenzo was right and the mathematical text
wrong.

@ In general?

Increasing trust: formal verification of (part of) (the algorithms
supporting) the programs.

Ta(XK(Ag,1)) = Ha(Ka).

A homotopy group is computed as a homology group of an space Kj.
Ky is the total space of a fibration: K(Ze,2) — K4 — Ks.

( Ze = H3(K3) = m3(XK(Ag,1)). )

Ky = K(Ze,2) X+ K3 (twisted Cartesian product).

The (effective) homology of K(Ze,2) and K3 are known.

An effective version of the Serre spectral sequence is needed.
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Reductions

e Given two chain complexes C := {(C,, dp)}nez and
C':={(C},d))}nez a reduction between them is (f, g, h) where
» f:C— C'"and g : C' = C are chain morphisms
» and h is a family of homomorphisms (called homotopy operator)
h,: C, — Cn+1.

satisfying

Q fog=1

Q@ doh+hod+gof=1
@ foh=0

Q hog=0

©Q hoh=0

o If (f,g,h) : C = C’is a reduction, then H(C) = H(C").
@ Theorem: From A =— A’ and B = B’, an algorithm constructs
AR B=—= A ®B'.

o Corollary: If A and B are with effective homology, then A® B is with
effective homology.
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Essential building blocks

Eilenberg-Zilber Theorem: C(F x B) = C(F) ® C(B).

It is the case of a trivial fibration: F — F x B — B.

What about the general (twisted) case? F — F x, B — B.
Then?

Given a chain complex (C, d), a perturbation for it is a family p of
group homomorphisms p, : C, — Cp_1 such that (C,d + p) is again
a chain complex (that is to say: (d + p) o (d + p) = 0).

@ Basic Perturbation Lemma: Let (f,g,h): (C,d) = (C',d’) be a
reduction and be p a perturbation for (C, d) which are locally
nilpotent. Then there exists a reduction

(foor 8o0s hso) : (C,d + p) = (C', dL).
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Putting all together

@ Given a fibration F — F x,. B — B where

» F and B are with effective homology (known reductions C(F) = HF
and C(B) = HB) and
» B is simply connected.

EZ application: C(F x B) = C(F) ® C(B).
BPL application: C(F x, B) = C(F) ®: C(B).
Tensor product application: C(F)® C(B) = HF ® HB.

BPL application (B simply connected):
C(F) ®¢ C(B) = HF ©y HB
Composing it all: C(F x, B) = HF ®y HB.

Conclusion: The total space F x, B is with effective homology.
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Statement of the EZ theorem

e (f,g,h): C(F x B)= C(F)® C(B)
» f = AW (Alexander-Whitney)
AW(XmYn) = 27:0 ai—t—l e OnXp ®0g . .. 8/—1}/11
» g = EML (Eilenberg-MacLane)
EML(xp ® yq) =
Z(a,ﬁ)e{(p,q)—shuffles}(_1
> h= SHI (Shih)
SH/(Xm }/n) =
Z(_l)n_p_qusg(a’ﬂ)(77,Bq+nfp7q < MBitn—p—qlin—p—q—10n—g+1 - - - OpXn,

)E@B) (ng, - N Xps Ny - - - TharYg)

Napr1+n—p—q - - - Now+n—p—qOn—p—q - - - an—q—lyn)-

e where a (p, g)-shuffle (o, B) = (a1, ..., ap, f1,...,8q) is a
permutation of the set {0,1,...,p+ g — 1} such that a; < a1 and

Bj < Bj+1-
@ EZ is responsible of much of the exponential behaviour of Kenzo.
o It is essentially unique (so unavoidable).

@ The formulas are very well-structured and of combinatorial nature.
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Formalisation of the EZ theorem

A proof purely based on induction + rewriting.
The ACL2 theorem prover is the right tool for the task.
Main conceptual tool: simplicial polynomials.

It allows one to enhance ACL2 with algebraic rewriting.
Already used in the proof of the Normalisation Theorem.

» CP(K) = C(K).

» L. Lamban, F. J. Martin-Mateos, J. R., J. L. Ruiz-Reina.
“Formalization of a normalization theorem in simplicial topology” .
Annals of Mathematics and Artificial Intelligence 64 (2012) 1-37.

EZ formalisation by the same team, with proving effort

» EZ: 13000 lines.

» Normalisation: 4500 lines.
» Common infrastructure: 6000 lines.
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Statement of the BPL

o Let (f,g,h): (D,dp) = (C,dc) be a reduction and pp: D — D a
perturbation of the differential dp satisfying the local nilpotency
condition with respect to the reduction (f, g, h). Then, a new
reduction (f',g’,h"): (D', dp) = (C’, dc/) can be obtained, where
the underlying graded groups D and D’ (resp. C and C’) are the
same, but the differentials are perturbed: dpr = dp + pp,
dc/ = dc + pc, where pc = fppyg; f' = f¢; g = Yg; h' = ho,
where 6 = 5" (~1) (pohY’, and % = 3%0(—1) (o)’

@ Note the role of the series.

@ The graded groups are general (with infinitely many generators, for
instance).

@ No combinatorial approach possible.
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Formalisation of the BPL

o Isabelle/HOL formalisation:

» J. Aransay, C. Ballarin, J. R.
“A mechanized proof of the Basic Perturbation Lemma”.
Journal of Automated Reasoning 40 (2008) 271-293.
> General statement. Ungraded case. General groups (not effective).

@ Coq formalisation:

» C. Dominguez, J. R.
“Effective homology of bicomplexes, formalized in Coq”.
Theoretical Computer Science 412 (2011) 962-970.
» Bicomplexes only. Graded case. Locally effective and effective groups.

@ SSReflect formalisation:

» C. Dominguez, J. Heras, M. Poza, J. R.

» General statement. Graded case. Only finitely generated groups.

» Based on a shorter and brand new proof by:
A. Romero, F. Sergeraert. “Discrete Vector Fields and Fundamental
Algebraic Topology”. ArXiv 2010.
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Discrete Vector Fields

BNBN
¥ ¥
BNBN

o Given a chain complex C, and a dvf, V over C,
» C,. = (¢
» generators of C¢ are critical cells of C,
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DVF Reduction Theorem

o Let C, = (Cp, dp)pez a free chain complex with distinguished Z-basis
Bp C Cp. A discrete vector field V on C, is a collection of pairs
V = {(0j; i) }ie/ satisfying the conditions:

» Every o; is some element of 3,, in which case 7; € Bp41.
» Every component o; is a regular face of the corresponding ;.
» Each generator (cell) of C, appears at most once in V.

e DVF Reduction Theorem: Let C, = (Cp, dp)pez be a free chain
complex and V = {(o;; i) }ic/ be an admissible discrete vector field
on C.. Then the vector field V defines a canonical reduction
(f.g,h): (Cp,dp) = (C5,d,) where C5 = Z[B5] is the free
Z-module generated by the critical p-cells.

@ One proof by Romero and Sergeraert uses the BPL.

@ Formalised in: J. Heras, M. Poza, J. R. “Verifying an Algorithm
Computing Discrete Vector Fields for Digital Imaging”. Calculemus
2012, LNCS 7362 (2012) 216-230.
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Biomedical image processing

@ Constraints in the previous formalisation:

» Computing over Zo,.
» Only finitely generated groups (finite dimensional vector spaces,
matrices, SSReflect).

@ Application: counting synapses.

v

Synapses are the points of connection between neurons.

Relevance: Computational capabilities of the brain.

Procedures to modify the synaptic density may be an important asset
in the treatment of neurological diseases.

» An automated and reliable method is necessary.

v

v
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Computing Homology Groups

o Counting synapses:
» Counting connected components.
» Computing a homology group: Hp.
o It is a matter of matrix diagonalisation.
@ Formalisation of Smith Normal Form:
C. Cohen, M. Dénes, A. Mortberg, V. Siles.
“Smith Normal Form and executable rank for matrices”.
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/
@ Formalisation of homological computing:
J. Heras, M. Dénes, G. Mata, A. Mortberg, M. Poza, V. Siles.
“Towards a certified computation of homology groups for digital
images”. CTIC 2012, LNCS 7309 (2012) 49-57.
@ Results with biomedical images:

» Without DVF reduction procedure:

* Coq is not able to compute homology of this kind of images.
» After reduction procedure:

* Coq computes in just 25 seconds.
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Interoperability

Could different proof assistants cooperate in a same proof?

Matrix computing: essentially a first-order problem.

Formalisation in Isabelle/HOL: Hermite form (J. Aransay, J. Divasén).
Could the specification be translated automatically to ACL27
Interlingua: OCL, the constraint language for UML.

Largely based in XML manipulation and already-made tools (Eclipse
tools, as Ecore).

Joint work: J. Aransay, J. Divasén, J. Heras, AL Rubio, J. R.
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Persistent Homology

@ Another biological problem: neuron recognition (where counting
synapses).

@ Topological tool: persistent homology.

@ Formalisation in SSReflect:
J. Heras, T. Coquand, A. Mortberg, V. Siles.
“Computing Persistent Homology within Coq/SSReflect”.

@ To define persistent homology a filtration of a simplicial complex is
required.

@ From the same data, a spectral sequence can be defined.

@ Ana Romero made Kenzo compute spectral sequences. . .

@ ...and then persistent homology.
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Another published “theorem”

Spectral Sequence Theorem:
> p—1rankE] . = card{a € Dgm, q(f)|pers(a) > r}

“Computational Topology".
Americal Mathematical Society, 2010.

Ana Romero (Kenzo) found a discrepancy.
The formula was corrected.
Another more accurate formula was given.

Computer Algebra is going beyond. ..

... more formal verification is needed.
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Conclusions and further work

@ Conclusion. .. of the ForMath european project.

Infrastructure to formalize mathematics in constructive type theory.
Linear Algebra library.

Real numbers and differential equations.

Algebraic topology.

v

vvyy

* Representation of simplicial complexes.

* Certified computation of homology groups.

* Representation of the Basic Perturbation Lemma.
* Integration with other proofs systems.

* Applications to medical imagery.

o Future:

» From certified computing to efficient certified computing.
» More applications.

* More Topology in biomedical applications.
* More verification in Topology.
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