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Introduction

The interest in Mechanized Mathematics appeared at the beginning of Computer Sci-
ence, or even before: see the work of Alan Turing [Tur36], one of the fathers of Computer
Science. Leaving scientific applications of numerical analysis (which gave rise to the first
computers) far behind, from the fifties Symbolic Computation started to be developed
with the aim of reproducing the mathematicians way of working, with the help of com-
puters. Symbolic Computation has two branches: Computer Algebra and Mechanized
Reasoning based on computational logic. For the early history of Computer Algebra, see
the reference [DST93]. Related to both Mechanized Reasoning and proof assistant tools
we can quote the influential GPS (General Problem Solver) of Newell and Simon [NSS59],
whose first version appeared around 1955, linked to the birth of Artificial Intelligence.

These two lines of symbolic manipulation (Computer Algebra and Mechanized Rea-
soning) underwent a parallel development in the next 40 years, without too much relation
between them. However, the scene radically changed 15 years ago, when the Calculemus
initiative [Cal], funded by European projects, set out the challenge of integrating both
Computer Algebra (computation) and Mechanized Reasoning (deduction) systems. In
the same line, the MAP (Mathematics, Algorithms and Proofs) network [MAP], founded
in 2003, works in the foundations of that integration mainly based on constructive math-
ematics.

Moreover, at the same time, with the success of Internet technologies, several op-
tions appeared to make feasible (symbolic) Mathematics on the Net. Perhaps, the
most solid contribution was the one of the initiative IAMC (Internet Accessible Math-
ematical Computation) [IAM]. From this point on, several architectures (such as
“buses” [CH97], [MATd], “brokers” [Mata], [Matb], generic servers [Matc], or based
on web services [DSW05], [SSW04])) and design patterns [Dus06] have been proposed,
culminating in both the MoNET (Mathematics on the Net) paradigm [Mon] and the
Mathematics on semantic web [CDDP04]. The specification of XML standards, namely
MathML [A+08] and OpenMath [Con04], has been instrumental in all the quoted con-
tributions, since they provide communication protocols to transfer mathematical knowl-
edge. A successful initiative, but independent of these standards, is SAGE [Ste]; an
alternative to currently dominant paradigms.

From the confluence of these lines (the one related to the integration of computation
and deduction, and the one focused on the Mathematics on the Net), a community de-
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2 Introduction

voted to Mathematical Knowledge Management (MKM) [MKM] emerged in 2003. Its
final goal is the development of integral assistants for Mathematics including computa-
tion, deduction, internet access and powerful user interfaces able to make the daily work
of mathematical researchers easier, as well as influencing the strategies in mathematical
teaching. Of course, this is a quite ambitious goal which retakes some of the classic
Artificial Intelligence topics.

After this general introduction about the scope of this thesis, let us present now our
application context: Algebraic Topology. This mathematical subject studies topological
spaces by means of algebraic means, in particular through algebraic invariants (groups or
rings, usually). This allows one to study interesting properties about topological spaces
by means of statements about groups which are often easier to prove.

However, in spite of being an abstract mathematical subject, Algebraic Topology
methods can be implemented in software systems and then applied to different contexts
such as coding theory [Woo89], robotics [Mac03] or digital image analysis [GDMRSP05,
GDR05] (in this last case, in particular in the study of medical images [SGF03]).

We can say that the work presented in this memoir tries to particularize the MKM
work to the Algebraic Topology scope.

In this work, the Kenzo program [DRSS98], a Computer Algebra system devoted
to research in Algebraic Topology, will be instrumental. This system has been mainly
developed by Francis Sergeraert and is implemented in Common Lisp [Gra96]. The
Kenzo system implements the Effective Homology method appeared in the eighties trying
to make available real algorithms for the computation of homology and homotopy groups
(two of the most important invariants in Algebraic Topology). Introduced by Francis
Sergeraert in [Ser87] and [Ser94], the present state of this technique is described in [RS97]
and [RS06].

From the year 2000 the work of the Programming and Symbolic Computation Team
of University of La Rioja, supervised by Julio Rubio, has been, in some way, parallel to
the one outlined for the general discipline. After a first stage where efforts were devoted
both to increase and improve the algorithms and programs of Kenzo, a new research line
was launched, without leaving the previous one, dedicated to apply Formal Methods of
Software Engineering to the Kenzo system. Related to this research, relevant results
were achieved about algebraic specification of Kenzo and, in general, of object oriented
software systems (see, for instance, [LPR03] and [DLR07]). Deepening in this line, the
Isabelle/HOL proof assistant was used to verify in [ABR08] a very important algorithm
in Homological Algebra: the Basic Perturbation Lemma. In the same line, we can find
the work of [DR11] where the Effective Homology of the Bicomplexes (another important
result in Homological Algebra) was formalized in Coq, or the proof of the Normalization
Theorem [LMMRRR10] in the ACL2 Theorem Prover. Regarding Algebraic Topology
on the Net, a first approach was published in [APRR05], where a (partial) remote access
to the Kenzo system was achieved using CORBA [Gro].

In this memoir the three previous research lines (development of algorithms, formal-
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ization with proof assistant tools and implementation of user interfaces for Algebraic
Topology) converge. To be more concrete, the goal of this work has consisted in devel-
oping an integral assistant for research in Algebraic Topology. The “integral” adjective
means that the assistant not only provides a graphical interface for using the Kenzo
kernel, but also guides the user in his interaction with the system, and, as far as pos-
sible, produces certificates about the correctness of the computations performed. As
a by-product, several subgoals have been achieved. First of all, we have improved the
usability and the accessibility of Kenzo, trying to increase in this way the number of
users who can take profit of Kenzo. Moreover, we have also enhanced the computation
capabilities of the Kenzo system providing, on the one hand, new Kenzo modules and,
on the other hand, a connection with the GAP Computer Algebra system [GAP]. In
addition, the goal of integrating computation (Kenzo) and deduction (ACL2 [KM]) is
reached in this work by means of the formalization of Kenzo programs in the ACL2
Theorem Prover.

The rest of this memoir is organized as follows. The first chapter includes some
preliminary notions and results that will be used in the rest of the work. Basic notions
about Homological Algebra, Simplicial Topology and Effective Homology are presented
in the first section of this chapter. The second part introduces the Kenzo Computer
Algebra system, as well as some of its more important features. Finally, the ACL2
Theorem Prover is briefly presented.

After this first chapter, the memoir is split into three different parts. Chapters 2
and 3 are devoted to improve the usability and the accessibility of the Kenzo system.
The computational capability of Kenzo is increased in Chapters 4 and 5 by means of
the connection with other systems and the development of new Kenzo modules verified
in ACL2. Chapter 6 is fully devoted to prove the correctness of some Kenzo programs
by means of ACL2.

Chapter 2 presents an environment, called Kenzo framework, which provides a me-
diated access to the Kenzo system, constraining the Kenzo functionality, but providing
guidance to the user in his navigation on the system. The architecture, the components
and the execution flow of the Kenzo framework are described in this chapter. More-
over, at the end of the chapter, two ongoing works related to increase the computation
capabilities of the Kenzo framework by means of ideas about remote and distributed
computations are presented.

Once we have presented the Kenzo framework, we want to be able to increase the
capabilities of the system by means of new Kenzo functionalities or the connection
with other systems such as Computer Algebra systems or Theorem Prover tools but
without modifying the kernel source code. Moreover, we realize that the interface of the
Kenzo framework is not desirable for a human user, since it is based on XML [B+08];
then, a more suitable way of interacting with the Kenzo framework should be provided.
Chapter 3 is devoted to present how these problems have been handled. The first part
of this chapter is focused on introducing a plug-in framework which allows us to extend
the Kenzo framework without modifying the source code. A customizable graphical user
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interface which makes the interaction with the Kenzo framework easier is presented in
the second part of this chapter. This graphical user interface improves the usability and
the accessibility of the Kenzo system. The whole system, that is to say, the combination
of the two frameworks and the front-end, is called fKenzo, an acronym for friendly Kenzo.
The next two chapters focus on extending fKenzo by means of the connection with other
systems and new Kenzo functionalities respectively.

Chapter 4 describes the integration of several systems in fKenzo. First of all, the
Computer Algebra system GAP [GAP] is linked to fKenzo, allowing the computation
of group homology. Moreover, the GAP system is not only used individually but also
some of its programs are composed with the Kenzo system in order to obtain new tools,
which increase the computational capabilities of fKenzo; this part of the memoir is an
enhancement to a previous work [RER09]. The second part of this chapter is devoted
to integrate the ACL2 Theorem Prover in fKenzo, achieving in this way the integration
of computation and deduction in the same system. Likewise that in the GAP case, the
ACL2 system is not only used individually but it is also combined with Kenzo to increase
the reliability of the new programs of our system. From this chapter on, ACL2 will play
a key role in our work.

Chapter 5 carries out a contribution to the algorithms and programs of the Kenzo
system by means of new Kenzo modules which in turn extend the fKenzo system. First
of all, a new Kenzo module in charge of working with simplicial complexes is presented.
This module about simplicial complexes is the foundation to develop a setting to analyze
monochromatic digital images. Namely, a new module which can be used to study
digital images is explained in the second part of this chapter. Finally, the necessary
algorithms and programs to build the effective homology of the pushout of simplicial
sets are presented in the last section of the chapter. As an application of the pushout,
we compute with Kenzo the first homotopy groups of the suspension of the classifying
space of SL2(Z), the group of 2 × 2 matrices with determinant 1 over Z, with the
group operations of ordinary matrix multiplication and matrix inversion. Moreover, this
chapter is not only devoted to present the new Kenzo modules but also to increase the
reliability of the programs implemented in that modules by means of the ACL2 Theorem
Prover.

Chapter 6 is devoted to prove the correctness of some programs implemented in the
Kenzo system by means of ACL2. In the first part of this chapter, a set of ACL2 tools
which will be fundamental onwards are presented. The second part is focussed on prov-
ing the correctness of the Kenzo simplicial set constructors which do not involve other
spaces. Subsequently, an infrastructure for modeling mathematical structures in ACL2
is introduced. Eventually, a methodology to verify the correctness of the construction of
Kenzo spaces from other ones applying topological constructors is presented in the last
section of this chapter.

The memoir ends with a chapter which includes conclusions and further work, a
glossary and the bibliography.



Chapter 1

Preliminaries

In this chapter we introduce some preliminaries that we will use in the rest of this
memoir. The first section is devoted to the main mathematical notions employed in this
work. The Kenzo system, a Common Lisp program developed by Francis Sergeraert and
some coworkers devoted to perform computations in Algebraic Topology, is presented
in Section 1.2. Finally, the deduction machinery employed in this memoir, the ACL2
system, is briefly introduced in Section 1.3.

1.1 Mathematical preliminaries

Algebraic Topology is a vast and complex subject, in particular mixing Algebra and
(combinatorial) Topology. Algebraic Topology consists in trying to use as much as
possible “algebraic” methods to attack topological problems. For instance, one can
define some special groups associated with a topological space, in a way that respects
the relation of homeomorphism of spaces. This allows us to study properties about
topological spaces by means of statements about groups, which are often easier to prove.

1.1.1 Homological Algebra

The following basic definitions can be found, for instance, in [Mac63].

Definition 1.1. Let R be a ring with a unit element 1 6= 0. A left R-module M is an
additive abelian group together with a map p : R×M →M , denoted by p(r,m) ≡ rm,
such that for every r, r′ ∈ R and m,m′ ∈M

(r + r′)m = rm+ r′m

r(m+m′) = rm+ rm′

(rr′)m = r(r′m)

1m = m

5
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A similar definition is given for a right R-module.

If R = Z (the integer ring), a Z-module M is simply an abelian group. The map
p : Z×M →M is given by

p(n,m) =


m+

n· · · +m if n > 0
0 if n = 0

(−m)+
−n· · · +(−m) if n < 0

Definition 1.2. Let R be a ring and M and N be R-modules. An R-module morphism
α : M → N is a function from M to N such that for every m,m′ ∈M and r ∈ R

α(m+m′) = α(m) + α(m′)

α(rm) = rα(m)

α(0M) = 0N

Definition 1.3. Given a ring R, a graded module M is a family of left R-modules
(Mn)n∈Z.

Definition 1.4. Given a pair of graded modules M and M ′, a graded module mor-
phism f of degree k between them is a family of module morphisms (fn)n∈Z such that
fn : Mn → M ′

n+k for all n ∈ Z.

Definition 1.5. Given a graded module M , a differential (dn)n∈Z is a family of module
endomorphisms of M of degree −1 such that dn−1 ◦ dn = 0 for all n ∈ Z.

From the previous definitions, the notion of chain complex can be defined. Chain
complexes are the central notion in Homological Algebra and can be used as an algebraic
means to study properties of topological spaces in several dimensions.

Definition 1.6. A chain complex C∗ is a family of pairs (Cn, dn)n∈Z where (Cn)n∈Z is a
graded module and (dn)n∈Z is a differential of C∗.

The module Cn is called the module of n-chains. The image Bn = Im dn+1 ⊆ Cn is
the (sub)module of n-boundaries. The kernel Zn = Ker dn ⊆ Cn is the (sub)module of
n-cycles.

In many situations the ring R is the integer ring, R = Z. In this case, a chain
complex C∗ is given by a graded abelian group (Cn)n∈Z and a graded group morphism
of degree -1, (dn : Cn → Cn−1)n∈Z, satisfying dn−1 ◦ dn = 0 for all n. From now on in
this memoir, we will work with R = Z.

Let us present some examples of chain complexes.

Example 1.7. • The unit chain complex has a unique non null component, namely
a Z-module in degree 0 generated by a unique generator and the differential is the
null map.
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• A chain complex to model the circle is defined as follows. This chain complex has
two non null components, namely a Z-module in degree 0 generated by a unique
generator and a Z-module in degree 1 generated by another generator; and the
differential is the null map.

• The diabolo chain complex has associated three chain groups:

– C0, the free Z-module on the set {s0, s1, s2, s3, s4, s5}.
– C1, the free Z-module on the set {s01, s02, s12, s23, s34, s35, s45}.
– C2, the free Z-module on the set {s345}.

and the differential is provided by:

– d0(si) = 0,

– d1(sij) = sj − si,
– d2(sijk) = sjk − sik + sij.

and it is extended by linearity to the combinations c =
∑m

i=1 λixi ∈ Cn where
λi ∈ Z and xi ∈ Cn.

We can construct chain complexes from other ones, applying constructors such as
the direct sum or the tensor product.

Definition 1.8. Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be chain complexes.
The direct sum of C∗ and D∗ is the chain complex C∗ ⊕ D∗ = (Mn, dn)n∈Z such that,
Mn = (Cn, Dn) and the differential map is defined on the generators (x, y) with x ∈ Cn
and y ∈ Dn by dn((x, y)) = (dCn(x), dDn(y)) for all n ∈ Z.

Definition 1.9. Let M be a right R-module, and N a left R-module. The tensor product
M ⊗R N is the abelian group generated by the symbols m ⊗ n for every m ∈ M and
n ∈ N , subject to the relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n
m⊗ (n+ n′) = m⊗ n+m⊗ n′

mr ⊗ n = m⊗ rn

for all r ∈ R, m,m′ ∈M , and n, n′ ∈ N .

If R = Z (the integer ring), then M and N are abelian groups and their tensor
product will be denoted simply by M ⊗N .

Definition 1.10. Let C∗ = (Cn, dCn)n∈Z and D∗ = (Dn, dDn)n∈Z be chain complexes of
right and left Z-modules respectively. The tensor product C∗⊗D∗ is the chain complex
of Z-modules C∗ ⊗D∗ = ((C∗ ⊗D∗)n, dn)n∈Z with

(C∗ ⊗D∗)n =
⊕
p+q=n

(Cp ⊗Dq)
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where the differential map is defined on the generators x ⊗ y with x ∈ Cp and y ∈ Dq,
according to the Koszul rule for the signs, by

dn(x⊗ y) = dCp(x)⊗ y + (−1)px⊗ dDq(y)

Let us present now, one of the most important invariants used in Homological Al-
gebra. Given a chain complex C∗ = (Cn, dn)n∈Z, the identities dn−1 ◦ dn = 0 mean the
inclusion relations Bn ⊆ Zn: every boundary is a cycle (the converse in general is not
true). Thus the next definition makes sense.

Definition 1.11. Let C∗ = (Cn, dn)n∈Z be a chain complex of R-modules. For each
degree n ∈ Z, the n-homology module of C∗ is defined as the quotient module

Hn(C∗) =
Zn
Bn

It is worth noting that the homology groups of a space X are the ones of its as-
sociated chain complex C∗(X); the way of constructing the chain complex associated
with a space X is explained, for instance, in [Mau96]. In an intuitive sense, homology
groups measure “n-dimensional holes” in topological spaces. H0 measures the number of
connected components of a space. The homology groups Hn measure higher dimensional
connectedness. For instance, the n-sphere, Sn, has exactly one n-dimensional hole and
no m-dimensional holes if m 6= n.

Moreover, it is worth noting that homology groups are an invariant, see [Mau96].
That is to say, if two topological spaces are homeomorphic, then their homology groups
are isomorphic.

Let us finish this section with some additional definitions related to chain complexes.

Definition 1.12. A chain complex C∗ = (Cn, dn)n∈Z is acyclic if Hn(C∗) = 0 for all n,
that is to say, if Zn = Bn for every n ∈ Z.

Definition 1.13. Let C∗ = (Cn, dCn)n∈Z andD∗ = (Dn, dDn)n∈Z be two chain complexes,
a chain complex morphism between them is a family of module morphisms (fn)n∈Z of
degree 0 between (Cn)n∈Z and (Dn)n∈Z such that d′n ◦ fn = fn−1 ◦ dn for each n ∈ Z.

Definition 1.14. Let C∗ = (Cn, dn)n∈Z be a chain complex. A chain complex
D∗ = (Dn , d

′
n)n∈Z is a chain subcomplex of C∗ if

• Dn is a submodule of Cn, for all n ∈ Z

• d′n = dn |D∗

The condition d′n = dn |D∗ means that the boundary operator of the chain subcomplex
is just the differential operator of the larger chain complex restricted to its domain. We
denote D∗ ⊂ C∗ if D∗ is a chain subcomplex of C∗.
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Definition 1.15. A short exact sequence is a sequence of modules:

0← C ′′
j←− C

i←− C ′ ← 0

which is exact, that is, the map i is injective, the map j is surjective and Im i = Ker j.

From now on in this memoir, we will work with non-negative chain complexes, that
is to say, (Cn)n∈Z such that Cn = 0 if n < 0. A non-negative chain complex C∗ will be
denoted by C∗ = (Cn)n∈N. Moreover, the chain complexes we work with are supposed
to be free.

Definition 1.16. A chain complex C∗ = (Cn, dn)n∈N of Z-modules is said to be free if
Cn is a free Z-module (a Z-module which admits a basis) for each n ∈ N.

1.1.2 Simplicial Topology

1.1.2.1 Simplicial Sets

Simplicial sets were first introduced by Eilenberg and Zilber [EZ50], who called them
semi-simplicial complexes. They can be used to express some topological properties
of spaces by means of combinatorial notions. A good reference for the definitions and
results of this section is [May67].

Definition 1.17. A simplicial set K, is a union K =
⋃
q≥0

Kq, where the Kq are disjoints

sets, together with functions:

∂qi : Kq → Kq−1, q > 0, i = 0, . . . , q,
ηqi : Kq → Kq+1, q ≥ 0, i = 0, . . . , q,

subject to the relations:

(1) ∂q−1i ∂qj = ∂q−1j−1∂
q
i if i < j,

(2) ηq+1
i ηqj = ηq+1

j ηqi−1 if i > j,

(3) ∂q+1
i ηqj = ηq−1j−1∂

q
i if i < j,

(4) ∂q+1
i ηqi = identity = ∂q+1

i+1 η
q
i ,

(5) ∂q+1
i ηqj = ηq−1j ∂qi−1 if i > j + 1.

The ∂qi and ηqi are called face and degeneracy operators respectively.

The elements of Kq are called q-simplexes. A simplex x is called degenerate if x = ηiy
for some simplex y and some degeneracy operator ηi; otherwise x is called non degenerate.

An example of a simplicial set, that can be useful to clarify some notions, is the
standard simplicial set of dimension m, ∆[m].
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3

0

2

1

Figure 1.1: Non degenerate simplexes of the standard simplicial set ∆[3]

Definition 1.18. For m ≥ 0, the standard simplicial set of dimension m, ∆[m], is a
simplicial set built as follows. An n-simplex of ∆[m] is any (n+ 1)-tuple (a0, . . . , an) of
integers such that 0 ≤ a0 ≤ · · · ≤ an ≤ m, and the face and degeneracy operators are
defined as

∂i(a0, . . . , an) = (a0, . . . , ai−1, ai+1, . . . , an)

ηi(a0, . . . , an) = (a0, . . . , ai−1, ai, ai, ai+1 . . . , an)

In Definition 1.18 the super-indexes in the degeneracy and face maps have been
skipped, since they can be inferred from the context. It is a usual practice and will be
freely used in the sequel, both for degeneracy and for face maps.

Example 1.19. Figure 1.19 shows the non degenerate simplexes of the standard sim-
plicial set ∆[3]:

• 0-simplexes (vertices): (0), (1), (2), (3);

• non degenerate 1-simplexes (edges): (0 1), (0 2), (0 3), (1 2), (1 3), (2 3);

• non degenerate 2-simplexes (triangles): (0 1 2), (0 1 3), (0 2 3), (1 2 3); and

• non degenerate 3-simplex (filled tetrahedra): (0 1 2 3).

It is worth noting that there is not any non degenerate n-simplex with n > 3.

Once we have presented the non degenerate simplexes, let us introduce the behavior
of the face and degeneracy maps. For instance, if we apply the face and degeneracy
maps over the 2-simplex (0 1 2) (for the rest of simplexes is analogous) we will obtain:

∂i((0 1 2)) =


(1 2) if i = 0
(0 2) if i = 1
(0 1) if i = 2

ηi((0 1 2)) =


(0 0 1 2) if i = 0
(0 1 1 2) if i = 1
(0 1 2 2) if i = 2
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Let us note that the face operator applied over the 2-simplex (0 1 2) produces sim-
plexes with geometrical meaning (that are the three edges of the simplex (0 1 2)). On
the contrary, the simplexes obtained from applying the degeneracy operator do not have
any geometrical meaning.

In the rest of the memoir a non degenerate simplex will be called geometric simplex,
to stress that only these simplexes really have a geometrical meaning; the degenerate
simplexes can be understood as formal artifacts introduced for technical (combinatorial)
reasons. This becomes clear in the following discussion.

The next essential result, which follows from the commuting properties of degeneracy
maps in the definition of simplicial sets, provides a way to represent any simplex of a
simplicial set in a unique manner.

Proposition 1.20. Let K be a simplicial set. Any n-simplex x ∈ Kn can be expressed
in a unique way as a (possibly) iterated degeneracy of a non degenerate simplex y in the
following way:

x = ηjk . . . ηj1y

with y ∈ Kr, k = n− r ≥ 0, and 0 ≤ j1 < · · · < jk < n.

This proposition allows us to encode all the elements (simplexes) of any simplicial
set in a generic way, by means of a structure called abstract simplex. More concretely,
an abstract simplex is a pair (dgop gmsm) consisting of a sequence of degeneracy
maps dgop (which will be called a degeneracy operator) and a geometric simplex gmsm.
The indexes in a degeneracy operator dgop must be in a strictly decreasing order. For
instance, if σ is a non degenerate simplex, and σ′ is the degenerate simplex η1η2σ, the
corresponding abstract simplexes are respectively (∅ σ) and (η3η1 σ), as η1η2 = η3η1,
due to equality (2) in Definition 1.17.

In a similar way that we defined chain subcomplex we can define the notion of
simplicial subcomplex.

Definition 1.21. Let K = (Kn, ∂i, ηi)n∈Z be a simplicial set. L = (Ln)n∈Z is a simplicial
subcomplex of K if

• Ln ⊂ Kn for all n ∈ Z

• (Ln, ∂i|Ln , ηi|Ln)n∈Z is a simplicial set

Let us show now, other examples of simplicial sets that are (simplicial) models of
well-known topological spaces. The following list comes from the simplicial sets that
will appear frequently in the rest of the memoir.

Definition 1.22. For m ≥ 1, the sphere of dimension m, Sm, is a simplicial set built as
follows. There are just two geometric simplexes: a 0-simplex, let us denote it by ?, and
an m-simplex, let us denote it by sm. The faces of sm are the degeneracies of ?; that is
to say ∂i(sm) = ηm−1ηm−2 . . . η0? for all 0 ≤ i ≤ m.
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Definition 1.23. Let m1, . . . ,mn natural numbers such that mi ≥ 1 for all 1 ≤ i ≤ n,
the wedge of spheres of dimensions m1, . . . ,mn, Sm1 ∨ . . .∨Smn , is a simplicial set built
as follows. It has the following geometric simplexes: in dimension 0 a 0-simplex, let us
denote it by ?, and in dimension p as many simplexes as the number of mj, 1 ≤ j ≤ n,
such that mj = p. The faces of every p-simplex are the degeneracies of ?; that is to say,
let x be a p-simplex, then ∂i(x) = ηp−1ηp−2 . . . η0? for all 0 ≤ i ≤ p.

Definition 1.24. For n > 0, p > 1 and n > 2p − 4, the Moore space of dimensions
p, n, M(Z/pZ, n), is a simplicial set built as follows. There are just three geometric
simplexes: a 0-simplex, let us denote it by ?, an n-simplex, let us denote it by Mn, and
an n + 1-simplex, let us denote it by Mn′. The faces of Mn are the degeneracies of ?;
moreover, p of the faces of Mn′ are identified with Mn and the rest are the degeneracies
of ?.

Definition 1.25. The real projective plane, P∞R, is a simplicial set built as follows.
In dimension n, this simplicial set has only one geometric simplex, namely the integer
n. The faces of this non degenerate simplex n are given by the following formulas:
∂0n = ∂nn = n− 1 and for i 6= 0 and i 6= n, ∂in = ηi−1(n− 2).

The real projective plane n-dimensional, P nR, is a simplicial set analogous to the
model of P∞R but without simplexes in dimensions m ≥ n.

We can also construct simplicial models of truncated real projective planes. Let
n > 1, P∞R/P n−1R is a simplicial set analogous to the model of P∞R but without
simplexes in dimensions 1 ≤ m < n. The faces of the n-simplex n are the degeneracies
of the 0-simplex 0.

Let n > 1 and l ≥ n, P lR/P n−1R is a simplicial set analogous to the model of P lR
but without simplexes in dimensions 1 ≤ m < n.

The four above definitions are related to simplicial models of source topological
spaces. Moreover, we also have models for topological constructors that are applied
to some spaces to obtain new ones.

Definition 1.26. Given two simplicial sets K and L, the Cartesian product K ×L is a
simplicial set with n-simplexes:

(K × L)n = Kn × Ln

and for all (x, y) ∈ Kn × Ln the face and degeneracy operators are defined as follows:

∂i(x, y) = (∂ix, ∂iy) for 0 ≤ i ≤ n

ηi(x, y) = (ηix, ηiy) for 0 ≤ i ≤ n

Let K be a simplicial set and ? ∈ K0 a chosen 0-simplex (called the base point). We
will also denote by ? the degenerate simplexes ηn−1 . . . η0? ∈ Kn for every n.
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Definition 1.27. A simplicial set K is said to be reduced (or 0-reduced) if K has only
one 0-simplex. Given m ≥ 1, K is m-reduced if it is reduced and there are not any non
degenerate simplex ∀n, 0 < n ≤ m.

Definition 1.28. Given a reduced simplicial set X with 0-simplex k0, the suspension
Σ(X) is a simplicial set defined as follows. Σ(X)0 = b0; Σ(X)n = consists of all symbols
(i, x), i ≥ 1, x ∈ Xn−i, modulo the identification (i, kn) = ηn+iηn+i−1 . . . ηnb0 = bn+i,
where kn = ηnηn−1 . . . η0k0. The face and degeneracy operators on Σ(X) are defined by:

ηi . . . η0(j, x) = (i+ j, x)

ηi+1(1, x) = (1, ηix)

∂0(1, x) = bn, x ∈ Xn

∂1(1, x) = b0, x ∈ X0

∂i+1(1, x) = (1, ∂ix), x ∈ Xn, n > 0

We define inductively Σn(X) = Σ(Σn−1(X)) for all n ≥ 1, Σ0(X) = X.

If we impose some conditions on the sets of simplicial sets we will obtain new kinds
of simplicial objects.

Definition 1.29. An (abelian) simplicial group G is a simplicial set where each Gn

is an (abelian, respectively) group and the face and degeneracy operators are group
morphisms.

Let us present some examples of simplicial groups. For instance, the simplicial version
of the loop space of a connected space X, that is to say the space of continuous functions
from the circle S1 to X, is given as follows.

Definition 1.30. Given a reduced simplicial set X, the loop space simplicial version of
X, G(X), is a simplicial group defined as follows: Gn(X) is the free group generated by
Xn+1 with the relations {η0x;x ∈ Xn}. If en is the identity element of Gn(X), we have
the canonical application τ : Xn+1 → Gn(X) defined by:

τ(y) =

{
en if it exists x ∈ Xn such that y = η0x,
y otherwise.

If ∂, η are the face and degeneracy operators of X, we define the face and degeneracy
operators, denoted by ∂, η, over the generators of Gn(X) as follows:

∂0τ(x) = [τ(∂0x)]−1τ(∂1x)

∂iτ(x) = τ(∂i+1x) if i > 0

ηiτ(x) = τ(ηi+1x) if i ≥ 0

In the sequel, we will denote G(X) as Ω(X). We define inductively Ωn(X) =
Ω(Ωn−1(X)) for all n ≥ 1, Ω0(X) = X.
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An important example of abelian simplicial groups is the model for an Eilenberg
MacLane space.

Definition 1.31. An Eilenberg MacLane space of type (π, n) is a simplicial group K
with base point e0 ∈ K0 such that πn(K) = π and πi(K) = 0 if i 6= n (where πn(K)
is the n-th homotopy group, that is, the set of homotopy classes of continuous maps
f : Sn → K that map a chosen base point a ∈ Sn to the base point e0, a more detailed
description and results about homotopy groups can be found in [Hat02]). The simplicial
group K is called a K(π, n) if it is an Eilenberg MacLane space of type (π, n) and in
addition it is minimal (see [May67]).

In order to construct the spaces K(π, n)’s several methods can be used, although the
results are necessarily isomorphic [May67]. Let us consider the following one.

Let π be an abelian group. First of all, we construct an abelian simplicial group
K = K(π, 0) given by Kn = π for all n ≥ 0, and with face and degeneracy operators
∂i : Kn = π → Kn−1 = π and ηi : Kn = π → Kn+1 = π, 0 ≤ i ≤ n, equal to the identity
map of the group π. This abelian simplicial group is the Eilenberg MacLane space of
type (π, 0). For n ≥ 0, we build recursively K(π, n) by means of the classifying space
constructor.

Definition 1.32. Let G be an abelian simplicial group. The classifying space of G,
written B(G), is the abelian simplicial group built as follows. The n-simplexes of B(G)
are the elements of the Cartesian product:

B(G)n = Gn−1 ×Gn−2 × · · · ×G0.

In this way B(G)0 is the group which has only one element that we denote by [ ]. For
n ≥ 1, an element of B(G)n has the form [gn−1, . . . , g0] with gi ∈ Gi. The face and
degeneracy operators are given by

η0[ ] = [e0]

∂i[g0] = [ ], i = 0, 1

∂0[gn−1, . . . , g0] = [gn−2, . . . , g0]

∂i[gn−1, . . . , g0] = [∂i−1gn−1, . . . , ∂1gn−i+1, ∂0gn−i + gn−i−1, gn−i−2, . . . , g0], 0 < i ≤ n

η0[gn−1, . . . , g0] = [en, gn−1, . . . , g0]

ηi[gn−1, . . . , g0] = [ηi−1gn−1, . . . , η0gn−i, en−i, gn−i−1, . . . , g0], 0 < i ≤ n

where en denotes the null element of the abelian group Gn.

We define inductively Bn(G) = B(Bn−1(G)) for all n ≥ 1, B0(G) = G.

Theorem 1.33. [May67] Let π be an abelian group and K(π, 0) as explained before.
Then Bn(K) is a K(π, n).
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1.1.2.2 Link between Homological Algebra and Simplicial Topology

Up to now, we have given a brief introduction to Simplicial Topology and Homological
Algebra; let us present now the link between these two subjects that will allow us to
compute the homology groups of simplicial sets.

Definition 1.34. Let K be a simplicial set, we define the chain complex associated
with K, C∗(K) = (Cn(K), dn)n∈N, in the following way:

• Cn(K) = Z[Kn] is the free Z-module generated by Kn. Therefore an n-chain
c ∈ Cn(K) is a combination c =

∑m
i=1 λixi with λi ∈ Z and xi ∈ Kn for 1 ≤ i ≤ m;

• the differential map dn : Cn(K)→ Cn−1(K) is given by

dn(x) =
n∑
i=0

(−1)i∂i(x) for x ∈ Kn

and it is extended by linearity to the combinations c =
∑m

i=1 λixi ∈ Cn(K).

The following statement is an immediate consequence of the previous definition.

Proposition 1.35. Let X, Y simplicial sets, where X is a simplicial subcomplex of Y ,
then C∗(X) is a chain subcomplex of C∗(Y ).

From the link between simplicial sets and chain complexes we can define the homology
groups of a simplicial set as follows.

Definition 1.36. Given a simplicial set K, the n-homology group of K, Hn(K), is the
n-homology group of the chain complex C∗(K):

Hn(K) = Hn(C∗(K))

To sum up, when we want to study properties of a compact topological space which
admits a triangulation, we can proceed as follows. We can associate a simplicial model K
with a topological space X which admits a triangulation. Subsequently, the chain com-
plex C∗(K) associated with K can be constructed. Afterwards, properties of this chain
complex are computed; for instance, homology groups. Eventually, we can interpret the
properties of the chain complex as properties of the topological space X.

1.1.3 Effective Homology

As we have seen, a central problem in our context consists in computing homology
groups of topological spaces. By definition, the homology group of a space X is the
one of its associated chain complex C∗(X). If C∗(X) can be described as a graded free
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abelian group with a finite number of generators at each degree; then, computing each
homology group can be translated to a problem of diagonalizing certain integer matrices
(see [Veb31]). So, we can assert that homology groups are computable in this finite type
case.

However, things are more interesting when a space X is not of finite type (in the
previously invoked sense) but it is known that its homology groups are of finite type.
Then, it is natural to study if these homology groups are computable. The effective
homology method, introduced in [Ser87] and [Ser94], provides a framework where this
computability question can be handled.

In this subsection, we present some definitions and fundamental results about the
effective homology method. More details can be found in [RS02] and [RS06].

In the context of effective homology, we can distinguish two different kinds of objects:
effective and locally effective objects. In particular, we are going to focus on effective
and locally effective chain complexes.

Definition 1.37. An effective chain complex is a free chain complex of Z-modules
C∗ = (Cn, dn)n∈N where each group Cn is finitely generated and:

• a provided algorithm returns a (distinguished) Z-basis in each degree n, and

• a provided algorithm returns the differential maps dn.

If a chain complex C∗ = (Cn, dn)n∈N is effective, the differential maps dn : Cn → Cn−1
can be expressed as finite integer matrices, and then it is possible to know everything
about C∗: we can compute the subgroups Ker dn and Im dn+1, we can determine whether
an n-chain c ∈ Cn is a cycle or a boundary, and in the last case, we can obtain z ∈ Cn+1

such that c = dn+1(z). In particular an elementary algorithm computes its homology
groups using, for example, the Smith Normal Form technique (for details, see [Veb31]).

Definition 1.38. A locally effective chain complex is a free chain complex of Z-modules
C∗ = (Cn, dn)n∈N where each group Cn can have infinite nature, but there exists algo-
rithms such that ∀x ∈ Cn, we can compute dn(x).

In this case, no global information is available. For example, it is not possible in
general to compute the subgroups Ker dn and Im dn+1, which can have infinite nature.

In general, we can talk of locally effective objects when only “local” computations
are possible. For instance, we can consider a locally effective simplicial set; the set of
n-simplexes can be infinite, but we can compute the faces of any specific n-simplex.

The effective homology technique consists in combining locally effective objects with
effective chain complexes. In this way, we will be able to compute homology groups of
locally effective objects.

The following notion is one of the fundamental notions in the effective homology
method, since it will allow us to obtain homology groups of locally effective chain com-
plexes in some situations.
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Definition 1.39. A reduction ρ (also called contraction) between two chain complexes
C∗ and D∗, denoted in this memoir by ρ : C∗⇒⇒D∗, is a triple ρ = (f, g, h)

C∗

h
�� f

++ D∗
g

kk

where f and g are chain complex morphisms, h is a graded group morphism of degree +1,
and the following relations are satisfied:

1) f ◦ g = IdD∗ ;

2) dC ◦ h+ h ◦ dC = IdC∗ −g ◦ f ;

3) f ◦ h = 0; h ◦ g = 0; h ◦ h = 0.

The importance of reductions lies in the following fact. Let C∗⇒⇒D∗ be a reduction,
then C∗ is the direct sum of D∗ and an acyclic chain complex; therefore the graded
homology groups H∗(C∗) and H∗(D∗) are canonically isomorphic.

Very frequently, the small chain complex D∗ is effective; so, we can compute its
homology groups by means of elementary operations with integer matrices. On the other
hand, in many situations the big chain complex C∗ is locally effective and therefore its
homology groups cannot directly be determined. However, if we know a reduction from
C∗ over D∗ and D∗ is effective, then we are able to compute the homology groups of C∗
by means of those of D∗.

Given a chain complex C∗, a trivial reduction ρ = (f, g, h) : C∗⇒⇒C∗ can be con-
structed, where f and g are identity maps and h = 0.

As we see in the next proposition, the composition of two reductions can be easily
constructed.

Proposition 1.40. Let ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) : D∗⇒⇒E∗ be two
reductions. Another reduction ρ′′ = (f ′′, g′′, h′′) : C∗⇒⇒E∗ is defined by:

f ′′ = f ′ ◦ f
g′′ = g ◦ g′

h′′ = h+ g ◦ h′ ◦ f

Another important notion that provides a connection between locally effective chain
complexes and effective chain complexes is the notion of equivalence.

Definition 1.41. A strong chain equivalence (from now on, equivalence) ε between two
chain complexes C∗ and D∗, denoted by ε : C∗⇐⇐⇒⇒D∗, is a triple (B∗, ρ1, ρ2) where B∗
is a chain complex, and ρ1 and ρ2 are reductions from B∗ over C∗ and D∗ respectively:

B∗
ρ1

u}u}
ρ2

!) !)
C∗ D∗
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Very frequently, D∗ is effective; so, we can compute its homology groups by means
of elementary operations with integer matrices. On the other hand, in many situations
both C∗ and B∗ are locally effective and therefore their homology groups cannot directly
be determined. However, if we know a reduction from B∗ over C∗, a reduction from B∗
over D∗, and D∗ is effective, then we are able to compute the homology groups of C∗ by
means of those of D∗.

Once we have introduced the notion of equivalence, it is possible to give the definition
of object with effective homology, which is the fundamental idea of the effective homology
technique. These objects will allow us to compute homology groups of locally effective
objects by means of effective chain complexes.

Definition 1.42. An object with effective homology X is a quadruple (X,C∗(X), HC∗, ε)
where:

• X is a locally effective object;

• C∗(X) is a (locally effective) chain complex associated with X, that allows us to
study the homological nature of X;

• HC∗ is an effective chain complex;

• ε is an equivalence ε : C∗(X)⇐⇐⇒⇒HC∗.

Then, the graded homology groups H∗(X) and H∗(HC∗) are canonically isomorphic,
then we are able to compute the homology groups of X by means of those of HC∗.

The main problem now is the following one: given a chain complex C∗ = (Cn, dn)n∈N,
is it possible to determine its effective homology? We must distinguish three cases:

• First of all, if a chain complex C∗ is by chance effective, then we can choose the
trivial effective homology: ε is the equivalence C∗⇐⇐C∗⇒⇒C∗, where the two
components ρ1 and ρ2 are both the trivial reduction on C∗.

• In some cases, some theoretical results are available providing an equivalence be-
tween some chain complex C∗ and an effective chain complex. Typically, the
Eilenberg MacLane space K(Z, 1) has the homotopy type of the circle S1 and a
reduction C∗(K(Z, 1))⇒⇒C∗(S

1) can be built.

• The most important case: let X1, . . . , Xn be objects with effective homology and
Φ a constructor that produces a new space X = Φ(X1, . . . , Xn) (for example, the
Cartesian product of two simplicial sets, the classifying space of a simplicial group,
etc). In natural “reasonable” situations, there exists an effective homology ver-
sion of Φ that allows us to deduce a version with effective homology of X, the
result of the construction, from versions with effective homology of the arguments
X1, . . . , Xn. For instance, given two simplicial sets K and L with effective homol-
ogy, then the Cartesian product K × L is an object with effective homology too;
this is obtained by means of the Eilenberg-Zilber Theorem, see [RS06].
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Two of the most basic (in the sense of fundamental) results in the effective homology
method are the two perturbation lemmas. The main idea of both lemmas is that given
a reduction, if we perturb one of the chain complexes then it is possible to perturb the
other one so that we obtain a new reduction between the perturbed chain complexes.
The first theorem (the Easy Perturbation Lemma) is very easy, but it can be useful. The
Basic Perturbation Lemma is not trivial at all. It was discovered by Shih Weishu [Shi62],
although the abstract modern form was given by Ronnie Brown [Bro67].

Definition 1.43. Let C∗ = (Cn, dn)n∈N be a chain complex. A perturbation δ of the
differential d is a collection of group morphisms δ = {δn : Cn → Cn−1}n∈N such that the
sum d+ δ is also a differential, that is to say, (d+ δ) ◦ (d+ δ) = 0.

The perturbation δ produces a new chain complex C ′∗ = (Cn, dn + δn)n∈N; it is the
perturbed chain complex.

Theorem 1.44 (Easy Perturbation Lemma, EPL). Let C∗ = (Cn, dCn)n∈N and D∗ =
(Dn, dDn)n∈N be two chain complexes, ρ = (f, g, h) : C∗⇒⇒D∗ a reduction, and δD a
perturbation of dD. Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be constructed
where:

1) C ′∗ is the chain complex obtained from C∗ by replacing the old differential dC by
a perturbed differential dC + g ◦ δD ◦ f ;

2) the new chain complex D′∗ is obtained from the chain complex D∗ only by replacing
the old differential dD by dD + δD;

3) f ′ = f ;

4) g′ = g;

5) h′ = h.

The perturbation δD of the small chain complex D∗ is naturally transferred (using
the reduction ρ) to the big chain complex C∗, obtaining in this way a new reduction ρ′

between the perturbed chain complexes. On the other hand, if we consider a perturbation
dC of the top chain complex C∗, in general it is not possible to perturb the small chain
complex D∗ so that there exists a reduction between the perturbed chain complexes. As
we will see, we need an additional hypothesis.

Theorem 1.45 (Basic Perturbation Lemma, BPL). [Bro67] Let us consider a reduction
ρ = (f, g, h) : C∗⇒⇒D∗ between two chain complexes C∗ = (Cn, dCn)n∈N and D∗ =
(Dn, dDn)n∈N, and δC a perturbation of dC . Furthermore, the composite function h ◦ δC
is assumed locally nilpotent, in other words, given x ∈ C∗ there exists m ∈ N such that
(h ◦ δC)m(x) = 0. Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be constructed
where:
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1) C ′∗ is the chain complex obtained from the chain complex C∗ by replacing the old
differential dC by dC + δC ;

2) the new chain complex D′∗ is obtained from D∗ by replacing the old differential dD
by dD + δD, with δD = f ◦ δC ◦ φ ◦ g = f ◦ ψ ◦ δC ◦ g;

3) f ′ = f ◦ ψ = f ◦ (IdC∗ −δC ◦ φ ◦ h);

4) g′ = φ ◦ g;

5) h′ = φ ◦ h = h ◦ ψ;

with the operators φ and ψ defined by

φ =
∞∑
i=0

(−1)i(h ◦ δC)i

ψ =
∞∑
i=0

(−1)i(δC ◦ h)i = IdC∗ −δC ◦ φ ◦ h,

the convergence of these series being ensured by the local nilpotency of the compositions
h ◦ δC and δC ◦ h.

It is worth noting that the effective homology method is not only a theoretical method
but it has also been implemented in a software system called Kenzo [DRSS98]. In this
system, the BPL is a central result and has been intensively used.

1.2 The Kenzo system

Kenzo is a 16000 lines program written in Common Lisp [Gra96], devoted to Symbolic
Computation in Algebraic Topology. It was developed by Francis Sergeraert and some
co-workers, and is www-available (see [DRSS98] for documentation and details). It works
with the main mathematical structures used in Simplicial Algebraic Topology, [HW67],
(chain complexes, differential graded algebras, simplicial sets, morphisms between these
objects, reductions and so on) and has obtained some results (for example, homology
groups of iterated loop spaces of a loop space modified by a cell attachment, see [Ser92])
which have not been confirmed nor refuted by any other means.

The fundamental idea of the Kenzo system is the notion of object with effective
homology combined with functional programming . By using functional programming,
some Algebraic Topology concepts are encoded in the form of algorithms. In addition,
not only known algorithms were implemented but also new methods were developed to
transform the main “tools” of Algebraic Topology, mainly the spectral sequences (which
are not algorithmic in the traditional organization), into actual computing methods.
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The computation process in the Kenzo system requires a great amount of algebraic
structures and equivalences to be built, and thus a lot of resources.

This section is devoted to present some important features of Kenzo that will be
relevant onward.

1.2.1 Kenzo mathematical structures

The data structures of the Kenzo system are organized in two layers. As algebraically
modeled in [LPR03, DLR07], the first layer is composed of algebraic data structures
(chain complexes, simplicial sets, and so on) and the second one of standard data struc-
tures (lists, trees, and so on) which are representing elements of data from the first
layer.

Here we give an overview of how mathematical structures (the first layer) are repre-
sented in the Kenzo system, using object oriented (CLOS ) and functional programming
features simultaneously.

Most often, an object of some type in Mathematics is a structure with several com-
ponents, frequently of functional nature. Let us consider the case of a user who wants
to handle groups; this simple particular case is sufficient to understand how CLOS gives
the right tools to process mathematical structures.

We can define a GRP class whose instances correspond to concrete groups as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (DEFCLASS GRP ()
((elements :type list :initarg :elements :reader elements)
(mult :type function :initarg :mult :reader mult1)
(inv :type function :initarg :inv :reader inv1)
(nullel :type function :initarg :nullel :reader nullel)
(cmpr :type function :initarg :cmpr :reader cmpr1))) z

#<STANDARD-CLASS GRP>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this organization, a group is made of five slots which represent a list of the elements
of the group (elements), the product of two elements of the group (mult), the inverse
of an element of the group (inv), the identity element of the group (nullel) and a
comparison test (cmpr) between the elements of the group. It is worth noting that mult,
inv, nullel and cmpr slots are functional slots.

The most important difference between the mathematical definition and its imple-
mentation is that no axiomatic information appears in CLOS. Kenzo, being a system for
computing, does not need any information about the properties of the operations, only
their behavior is relevant. As a consequence of this, abelian groups can be implemented
in Common Lisp similarly to groups, even when their mathematical definitions differ.

Let us construct now the group Z/2Z; that is to say, the cyclic group of dimension
2. In our context we define the comparison, the product and the inverse functions with
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kenzo-object

chain-complex

coalgebra algebra

simplicial-set hopf-algebra

kan

simplicial-group

ab-simplicial-group

reduction

equivalence

morphism

simplicial-mrph

Figure 1.2: Kenzo class diagram

the help of the mod function, a predefined Lisp function.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (MAKE-INSTANCE ’GRP
:elements ’(0 1)
:mult #’(lambda (g1 g2) (mod (+ g1 g2) 2))
:inv #’(lambda (g) (mod (- 2 g) 2))
:nullel #’(lambda () 0)
:cmpr #’(lambda (g1 g2) (= 0 (mod (- g1 g2) 2)))) z

#<GROUP @ #x26f4bc12>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this way, we can define mathematical structures in Common Lisp using object
oriented (CLOS ) and functional programming features. The interested reader can con-
sult [Ser01] where a detailed explanation about how defining mathematical structures
in Common Lisp is presented.

The previously explained organization is moved to the Kenzo context in order to
define the main mathematical structures used in Simplicial Algebraic Topology, [HW67].
Figure 1.2 shows the Kenzo class diagram where each class corresponds to the respective
mathematical structure.

The lefthand part of the class diagram is made of the main mathematical objects
that are used in combinatorial Algebraic Topology. As we said previously, a chain
complex is a graded differential module; an algebra is a chain complex with a compatible
multiplicative structure, the same for a coalgebra but with comultiplicative structure. If
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a multiplicative and a comultiplicative structures are added and if they are compatible
with each other in a natural sense, then it is a Hopf algebra, and so on. The righthand
part of the class diagram is made of the operations over the mathematical structures
of the lefthand. It is worth noting that all the mathematical structures in the Kenzo
system are graded structures.

The following class definition corresponds to the simplest algebraic structure imple-
mented in Kenzo, free chain complexes:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS CHAIN-COMPLEX ()
((cmpr :type cmprf :initarg :cmpr :reader cmpr1)
(basis :type basis :initarg :basis :reader basis1)
;; BaSe GeNerator
(bsgn :type gnrt :initarg :bsgn :reader bsgn)
;; DiFFeRential
(dffr :type morphism :initarg :dffr :reader dffr1)
;; GRound MoDule
(grmd :type chain-complex :initarg :grmd :reader grmd)
;; EFfective HoMology
(efhm :type homotopy-equivalence :initarg :efhm :reader efhm)
;; IDentification NuMber
(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
;; ORiGiN
(orgn :type list :initarg :orgn :reader orgn)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The relevant slots are cmpr, a function coding the equality between the generators
of the chain complex; basis, the function defining the basis of each group of n-chains,
or the keyword :locally-effective if the chain complex is not effective; dffr, the
differential morphism, which is an instance of the class MORPHISM; efhm, which stores
information about the effective homology of the chain complex; and orgn, is used to
keep record of information about the object.

The class CHAIN-COMPLEX is extended by inheritance with new slots, obtaining more
elaborate structures. For instance, extending it with an aprd (algebra product) slot, we
obtain the ALGEBRA class. Multiple inheritance is also available; for example, the class
SIMPLICIAL-GROUP is obtained by inheritance from the classes KAN and HOPF-ALGEBRA.

It is worth emphasizing here that simplicial sets have also been implemented as a
subclass of CHAIN-COMPLEX. To be precise, the class SIMPLICIAL-SET inherits from the
class COALGEBRA, which is a direct subclass of CHAIN-COMPLEX, with a slot cprd (the
coproduct). The class SIMPLICIAL-SET has then one slot of its own: face, a Lisp
function computing any face of a simplex of the simplicial set. The basis is in this case
(when working with effective objects) a function associating to each dimension n the list
of non degenerate n-simplexes, and the differential map of the associated chain complex
is given by the alternate sum of the faces, where the degenerate simplexes are cancelled.
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1.2.2 Kenzo way of working

In Kenzo there is one objective: compute groups associated with topological spaces.
This main objective can be broken in two actions: (1) constructing spaces, and (2)
computing groups. Note that the first task is necessary to carry out the second one.

When a user has decided to construct a space in Kenzo, he should decide which type
he wants to build: a simplicial set, a simplicial group and so on; namely, an object of
one of the types of the lefthand part of the class diagram of Figure 1.2. Therefore, the
user has to construct an instance of one of those classes.

As this task can be quite difficult for a non expert user, Kenzo provides useful
functions to create interesting objects of regular usage, which belong to four types:
chain complexes, simplicial sets, simplicial groups and abelian simplicial groups.

These functions can be split in two different kinds: (1) functions to construct ini-
tial spaces and, (2) functions to construct spaces from other ones applying topological
constructors.

The following elements, gathered by the types of the constructed object, represent
the main spaces that can be constructed in Kenzo from scratch (that is to say, which
belong to the first kind):

• Chain Complexes:

– Unit chain complex : the zcc function, with no arguments, constructs the unit
chain complex, see Example 1.7.

– Circle: the circle function, with no arguments, constructs the circle chain
complex, see Example 1.7.

• Simplicial Sets:

– Standard simplicial set : the delta function, with a natural number n as
argument, constructs ∆[n], see Definition 1.18.

– Sphere: the sphere function, with a natural number n as argument, constructs
Sn, see Definition 1.22.

– Sphere Wedge: the sphere-wedge function, with a sequence of natural num-
bers n1, . . . , nk as arguments, constructs Sn1 ∨ . . . ∨ Snk, see Definition 1.23.

– Moore space: the moore function, with two natural numbers n and p as argu-
ments, constructs M(Z/nZ, p), see Definition 1.24.

– Projective space: the r-proj-space function has two optional arguments k
and l. If neither k and l are provided, then the function constructs P∞R. If
k is provided but l is not, then the function constructs P∞R/P k−1R. If both
k and l are provided, then the function constructs P lR/P k−1R. In the latter
case, if k = 1, then the function constructs P lR; see Definition 1.25.
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– Finite simplicial set : the build-finite-ss function, with a list of lists as
argument, constructs a simplicial set, see [DRSS98].

• Abelian Simplicial Group:

– Eilenberg MacLane space type (Z, n): the k-z function, with a natural number
n as argument, constructs K(Z, n), see Definition 1.31.

– Eilenberg MacLane space type (Z/2Z, n): the k-z2 function, with a natural
number n as argument, constructs K(Z/2Z, n), see Definition 1.31.

On the contrary, the following elements, gathered by types, represent the main spaces
that can be constructed in Kenzo from other spaces applying topological constructors
(that is to say, which belong to the second kind):

• Chain Complexes:

– Tensor Product : the tnsr-prdc function, with two chain complexes C∗, D∗
as arguments, constructs the tensor product C∗ ⊗D∗, see Definition 1.10.

• Simplicial Sets:

– Cartesian product : the crts-prdc function, with two simplicial sets K, L as
arguments, constructs the Cartesian product K × L, see Definition 1.26.

– Suspension: the suspension function, with a simplicial set X and a natural
number n as arguments, constructs the suspension Σn(X), see Definition 1.28.

• Simplicial Group:

– Loop space: the loop-space function, with a simplicial set X and a natural
number n as arguments, constructs the loop space Ωn(X), see Definition 1.30.

– Classifying space: the classifying function, with a simplicial group X, con-
structs the classifying space B(X), see Definition 1.32.

Eventually, once we have constructed some spaces in our Kenzo session, the Kenzo
user can perform computations. Namely, the homology function with a chain complex X
(or an instance of one of its subclasses: simplicial set, simplicial group and so on) and a
natural number n as arguments computes Hn(X).

To sum up, a simplification of the way of working with Kenzo is as follows. As a first
step, the user constructs some initial spaces by means of some built-in Kenzo functions
(as spheres, Moore spaces, Eilenberg MacLane spaces and so on); then, in a second step,
he constructs new spaces by applying topological constructions (as Cartesian products,
loop spaces, and so on); as a third, and final, step, the user asks Kenzo for computing
the homology groups of the spaces. Let us remark that this kind of interaction does not
fully cover all the Kenzo capabilities, but it is just a simplification.
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1.2.3 Kenzo in action

Let us show a didactic example to illustrate the interaction with the Kenzo program. The
homology group H5(Ω

3(M(Z/2Z, 4))) is “in principle” reachable thanks to old methods,
see [CM95], but experience shows even the most skilful topologists meet some difficulties
to determine it, see [RS02]. With the Kenzo program, you construct the Moore space
M(Z/2Z, 4) in the following way:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf m4 (moore 2 4)) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Kenzo display must be read as follows. The initial > is the Lisp prompt
of this Common Lisp implementation. The user types out a Lisp statement, here
(setf m4 (moore 2 4)) and the maltese cross z (in fact not visible on the user screen)
marks in this text the end of the Lisp statement, just to help the reader: the right num-
ber of closing parentheses is reached. The Return key then asks Lisp to evaluate the
Lisp statement. Here the Moore space M(Z/2Z, 4) is constructed by the Kenzo function
moore, taking into account of the arguments 2 and 4, and this Moore space is assigned
to the Lisp symbol m4 for later use. Also evaluating a Lisp statement returns an object,
the result of the evaluation, in this case the Lisp object implementing the Moore space,
displayed as [K1 Simplicial-Set], that is, the Kenzo object #1, a Simplicial-Set. The
internal structure of this object, made of a rich set of data, in particular many functional
components, is not displayed. The identification number printed by Kenzo allows the
user to recover the whole object by means of a function called simply k (for instance, the
evaluation of (k 1) returns the Moore space M(Z/2Z, 4), in our running example). In
addition, another function (called orgn and which is one of the slots of the Chain-Complex

class) allows the user to obtain the origin of the object (i.e. from which function and
with which arguments has been produced), and thus the printed information is enough
to get a complete control of the different objects built with Kenzo.

It is then possible to construct the third loop space of the Moore space,
Ω3(M(Z/2Z, 4)), as a simplicial group.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf o3m4 (loop-space m4 3)) z
[K30 Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The combinatorial version of the loop space is highly infinite: it is a combinatorial
version of the space of continuos maps S3 → M(Z/2Z, 4), but functionally encoded as
a small set of functions in a Simplicial-Group object.

Eventually, the user can compute the fifth homology group of this space.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology o3m4 5) z
Homology in dimension 5:
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z
Component Z/2Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This result must be interpreted as stating H5(Ω
3(M(Z/2Z, 4))) = Z5

2. In this way,
Kenzo computes the homology groups of complicated spaces. This is due to the Kenzo
implementation of the effective homology method which is explained in the following
subsection.

1.2.4 Effective Homology in Kenzo

As we have previously said, the central idea of the Kenzo system is the notion of ob-
ject with effective homology. In this subsection, we are going to show how this notion
explained in Subsection 1.1.3 is used in Kenzo.

As we stated in Subsection 1.1.3, the main problem is the following one: given an
object, determine its effective homology version. Three cases have been distinguished.

First of all, let X be an object; if the chain complex C∗(X) is by chance ef-
fective, then we can choose the trivial effective homology: ε is the equivalence
C∗(X)⇐⇐C∗(X)⇒⇒C∗(X), where both reductions are the trivial reduction on C∗. This
situation happens, for instance, in the case of the sphere S3 (we consider a fresh Kenzo
session).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s3 (sphere 3)) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can ask for the effective homology of S3 as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (efhm s3) z
[K9 Homotopy-Equivalence K1 <= K1 => K1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An homotopy equivalence is automatically constructed by Kenzo where both re-
ductions are the trivial reduction on C∗(S

3) (let us note that the K1 object not only
represents the simplicial set S3 but also the chain complex C∗(S

3) due to the heritage
relationship between simplicial sets and chain complexes). In this case, the effective
homology technique does not provide any additional tool to the computation of the ho-
mology groups of S3. On the contrary, we will see the power of this technique when the
initial space X is locally effective.
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The second feasible situation happened when given a locally effective object X some
theoretical result was available providing an equivalence between the chain complex
C∗(X) and an effective chain complex.

According to Subsubsection 1.1.2.1, a simplicial model of the Eilenberg MacLane
space K(Z, 1) is defined by K(Z, 1)n = Zn; an infinite number of simplexes is required
in every dimension n ≥ 1; that is, we have a locally effective object. This does not
prevent such an object from being installed and handled by Kenzo.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf kz1 (k-z 1)) z
[K10 Abelian-Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The k-z Kenzo function construct the standard Eilenberg MacLane space. In ordi-
nary mathematical notation (as seen in Subsubsection 1.1.2.1), a 3-simplex of kz1 could
be for example [3, 5,−5], denoted by (3 5 − 5) in Kenzo. The faces of this simplex can
be determined as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (dotimes (i 4) (print (face kz1 i 3 ’(3 5 -5)))) z
<AbSm - (5 -5)>
<AbSm - (8 -5)>
<AbSm 1 (3)>
<AbSm - (3 5)>
nil
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The faces are computed as explained in Subsubsection 1.1.2.1. Then, local compu-
tations are possible, so, the object kz1 is locally effective. But no global information
is available. For example, if we try to obtain the list of non degenerate simplexes in
dimension 3, we obtain an error.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (basis kz1 3) z
Error: The object [K10 Abelian-Simplicial-Group] is locally-effective
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This basis in fact is Z3, an infinite set whose element list cannot be explicitly stored
nor displayed. So, the homology groups of kz1 cannot be elementarily computed. How-
ever, K(Z, 1) has the homotopy type of the circle S1 and the Kenzo program knows this
fact.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (efhm kz1) z
[K31 Homotopy-Equivalence K10 <= K10 => K25]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A reduction K10 = K(Z, 1)⇒⇒ K25 is constructed by Kenzo. What is K25?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (orgn (k 25)) z
(circle)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K25 is the expected object, the circle S1 which is an effective chain complex; so we
can compute its homology groups by means of tradicional methods. Therefore, we can
compute the homology groups of the space K(Z, 1) by means of the effective homology
method.

Eventually, the last situation happened when given X1, . . . , Xn objects with effective
homology and Φ a constructor that produced a new space X = Φ(X1, . . . , Xn), we
wanted to compute the effective homology version of X. Let us present an example.

The Cartesian product of two locally effective simplicial sets produces another locally
effective simplicial set.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf kz1xkz1 (crts-prdc kz1 kz1)) z
[K15 Simplicial-Set]
> (basis kz1xkz1 3) z
Error: The object [K15 Simplicial-Set] is locally-effective
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So, the homology groups of kz1xkz1 cannot be elementarily computed. However,
Kenzo is able to construct an equivalence between this object and an effective chain
complex.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (efhm kz1xkz1) z
[K63 Homotopy-Equivalence K15 <= K53 => K43]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An equivalence K15 = K(Z, 1) × K(Z, 1)⇐⇐ K53 ⇒⇒ K43 is constructed by Kenzo.
What is K43?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (orgn (k 43)) z
(TNSR-PRDC (circle) (circle))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The object K43 is the tensor product of two circles C∗(S
1) ⊗ C∗(S1) (the reduction

is obtained from the Eilenberg-Zilber Theorem, see [RS06]), an effective chain complex;
so we can compute its homology groups by means of tradicional methods. Therefore,
we can compute the homology groups of the space K(Z, 1) ×K(Z, 1) by means of the
effective homology method.

It is worth noting that a Kenzo user does not need to explicitly construct the equiva-
lence to compute the homology groups of a locally effective object. This task is automat-
ically performed by the Kenzo system which constructs the necessary objects without
any additional help.
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For instance, let us consider a fresh Kenzo session where we have constructed the
space Ω3(M(Z/2Z, 4)), the example of the previous subsection:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf m4 (moore 2 4)) z
[K1 Simplicial-Set]
> (setf o3m4 (loop-space m4 3)) z
[K30 Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At this moment, we can check the number of objects constructed in Kenzo (this
information is stored in a global variable called *idnm-counter*).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> *idnm-counter* z
41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, after computing the third homology, we ask again the number of ob-
jects constructed in Kenzo and we obtain the following result.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology o3m4 3) z
Homology in dimension 3 :
Component Z/4Z
Component Z/2Z
> *idnm-counter* z
404
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This means that Kenzo has constructed 363 intermediary objects in order to compute
the homology groups of Ω3(M(Z/2Z, 4)); namely, in order to construct an equivalence
between the locally effective object Ω3(M(Z/2Z, 4)) and an effective chain complex.

1.2.5 Memoization in Kenzo

The Kenzo program is certainly a functional system. It is frequent that several thousands
of functions are present in memory, each one being dynamically defined from other ones,
which in turn are defined from other ones, and so on. In this quite original situation, the
same calculations are frequently asked again. To avoid repeating these calculations, it
is better to store the results and to systematically examine for each calculation whether
the result is already available (memoization strategy).

As a consequence, the state of a space evolves after it has been used in a computation
(of a homology group, for instance). Thus, the time needed to compute, let us say, a
homology group, depends on the concrete state of the space involved in the calculation (in
the more explicit case, to re-calculate the homology group of a space could be negligible
in time, even if in the first occasion this was very time consuming).

Let us shown an example, of the Kenzo memoization. We want to compute the fifth
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homology group of the space Ω3(S4 × S4) in a fresh Kenzo session and see how much
time this computation takes (using the time function); therefore, we proceed as usual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s4 (sphere 4)) z
[K1 Simplicial-Set]
> (setf s4xs4 (crts-prdc s4 s4)) z
[K6 Simplicial-Set]
> (setf o3s4xs4 (loop-space s4xs4 3)) z
[K35 Simplicial-Group]
> (time (homology o3s4xs4 5)) z
;; some lines skipped
; real time 1,139,750 msec (00:18:59.750)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first time that we compute H5(Ω
3(S4 × S4)), Kenzo takes almost 20 minutes to

obtain the result. However, if we ask again for the same computation:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (time (homology o3s4xs4 5)) z
;; some lines skipped
; real time 262,484 msec (00:04:22.484)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

in this case Kenzo only needs 4 minutes. It is worth noting that Kenzo does not store the
final result (that is to say, the group H5(Ω

3(S4 × S4))) but intermediary computations
related to the differential of the generators of the space. Then, when a Kenzo user asks
a computation previously computed, Kenzo does not simply look up and returned it,
but it uses some previously stored computations to calculate the result faster.

Moreover, it is very important not to have several copies of the same function; oth-
erwise it is impossible for one copy to guess some calculation has already been done by
another copy. This is a very important question in Kenzo, so that the following idea
has been used. Each Kenzo object has a rigorous definition, stored as a list in the orgn

slot of the object (orgn stands for origin of the object). This is the main reason of
the top class kenzo-object: making this process easier. The actual definition of the
kenzo-object class is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS KENZO-OBJECT ()
((idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
(orgn :type list :initarg :orgn :reader orgn))) z

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, when any kenzo-object is to be considered, its definition is constructed
and the program firstly looks at *k-list* (a list which stores the already constructed
kenzo-object instances) whether some object corresponding to this definition already
exists; if yes, no kenzo-object is constructed, the already existing one is simply returned.
Look at this small example where we construct the second loop space of S3, then the
first loop space, and then again the second loop space. In fact the initial construction
of the second loop space required the first loop space, and examining the identification
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number K?? of these objects shows that when the first loop space is later asked for,
Kenzo is able to return the already existing one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s3 (sphere 3)) z
[K372 Simplicial-Set]
> (setf o2s3 (loop-space s3 2)) z
[K380 Simplicial-Group]
> (setf os3 (loop-space s3 1)) z
[K374 Simplicial-Group]
> (setf o2s3-2 (loop-space s3 2)) z
[K380 Simplicial-Group]
> (eq o2s3 o2s3-2) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The last statement shows the symbols o2s3 and o2s3-2 points to the same machine
address. In this way we are sure any kenzo-object has no duplicate, so that the memory
process for the values of numerous functions cannot miss an already computed result.

1.2.6 Reduction degree

Working with Kenzo, a constructor for the space X has associated a number g(X) ∈ Z.
When we apply an operation O over the space X, a set of rules are used to compute
g(O(X)). We will call reduction degree of X to this number, g(X), which is attached to
our concrete representation of the spaces. This number is a lower bound of the simply
connectedness degree; that is to say, the homotopy groups of the space X are null at least
from 1 to g(X). We list as follows the set of rules for the initial spaces and topological
operators which are going to be employed in this memoir.

Tensor product (X ⊗ Y ): g(X ⊗ Y ) = min{g(X), g(Y )}.

Suspension (Σn(X)): g(Σn(X)) =

{
g(X) + n if g(X) ≥ 0
g(X) if g(X) < 0

Sphere (Sn): g(Sn) = n− 1.

Moore space (M(Z/pZ, n)): g(M(Z/pZ, n)) = n− 1.

Standard simplicial set (∆n): g(∆n) = 0.

Sphere wedge (Sn1 ∨ Sn2 ∨ . . . ∨ Snk):

g(Sn1 ∨ Sn2 ∨ . . . ∨ Snk) = min{g(Sn1), g(Sn2), . . . , g(Snk)}.

Projective space (P∞R) : g(P∞R) = 0.

Projective space (P∞R/P nR) : g(P∞R/P nR) = n− 1.
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Projective space (P lR) : g(P lR) = 0.

Projective space (P lR/P nR) : g(P lR/P nR) = n− 1.

K(Z, n) : g(K(Z, n)) = n− 1.

K(Z/2Z, n) : g(K(Z/2Z, n)) = n− 1.

Loop space (Ωn(X)): g(Ωn(X)) = g(X)− n.

Cartesian product (X × Y ): g(X × Y ) = min{g(X), g(Y )}.

Classifying space (Bn(X)): g(Bn(X)) =

{
g(X) + n if g(X) ≥ 0
g(X) if g(X) < 0

The reduction degree of a space X provides us information about the capabilities
of the Kenzo system to obtain the homology groups of X. When g(X) < 0, a Kenzo
attempt to compute the homology groups of X will raise in an error; otherwise the Kenzo
system can compute the homology groups of X.

For instance, the reduction degree of Ω2S2 is −1; then, let us show what happens if
we try to compute the third homology group of this space.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s2 (sphere 2)) z
[K1 Simplicial-Set]
> (setf o2s2 (loop-space s2 2)) z
[K18 Simplicial-Group]
> (homology o2s2 3) z
Error: ‘NIL’ is not of the expected type ‘NUMBER’
[condition type: TYPE-ERROR]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As we can see an error is produced; then, the Kenzo system cannot compute the
homology groups for Ω2(S2).

1.2.7 Homotopy groups in Kenzo

Up to now, we have been working with one of the most important algebraic invariants
in Algebraic Topology: homology groups. We can wonder what happens with the other
main algebraic invariant: homotopy groups.

The n-homotopy group of a topological space X with a base point x0 is defined as
the set of homotopy classes of continuous maps f : Sn → X that map a chosen base
point a ∈ Sn to the base point x0 ∈ X. A more detailed description and results about
homotopy groups can be found in [Hat02, May67].

Homotopy groups were defined by Hurewicz in [Hur35] and [Hur36] as a generaliza-
tion of the fundamental group [Poi95]. It is worth noting that except in special cases,
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homotopy groups are hard to be computed. For instance, whereas the homology groups
of spheres are easily computed, computing their homotopy groups remains as a difficult
subject, see [Tod62, Mah67, Rav86].

For the general case, Edgar Brown published in [Bro57] a theoretical algorithm for the
computation of homotopy groups of simply connected spaces such that their homology
groups are of finite type. However Brown himself explained that his “algorithm” has
not practical use.

An interesting algorithm based on the effective homology theory was developed by
P. Real, see [Rea94]. In that paper, an algorithm that computes the homotopy groups
of a 1-reduced simplicial set was explained. Here, we just state the algorithm.

Algorithm 1.46 ([Rea94]).
Input: a 1-reduced simplicial set with effective homology X and a natural number n
such that n ≥ 1.
Output: the n-th homotopy group of the underlying simplicial set X.

This algorithm is based on the Whitehead tower process [Hat02], a method which
allows one to reach any homotopy group of a 1-reduced simplicial set.

It is worth noting that Kenzo, in spite of not providing a function called homotopy, like
in the case of homology groups, implements all the necessary tools to use the algorithm
presented in [Rea94]. A detailed explanation about how to use this method in Kenzo was
explained in Chapter 21 of the Kenzo documentation [DRSS98]. However, it is worth
noting that in the current Kenzo version, homotopy groups of a 1-reduced simplicial
set X can only be computed if the first non null homology group of X is Z or Z/2Z;
this is due to the fact that the algorithm presented in [Rea94] needs the calculation
of homology groups of Eilenberg-MacLane spaces K(G, n), and in the original Kenzo
distribution only the homology of spaces K(Z, n) and K(Z/2Z, n) are built-in.

1.3 ACL2

The ACL2 Theorem Prover has been used to verify the correctness of some Kenzo
programs, which will be presented in chapters 5 and 6. This section is devoted to
provide a brief description of ACL2. In spite of being a glimpse introduction to this
system, this description provides enough information to read the sections dedicated to
ACL2 topics. A complete description of ACL2 can be found in [KMM00b, KM].

In addition, an interesting ACL2 feature, that will be really important in our devel-
opments, is described in this section, too. Some other necessary concepts about ACL2
will be introduced later on for a better understanding of this memoir.
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1.3.1 Basics on ACL2

Information in this section has been mainly extracted from [KMM00b].

ACL2 stands for A Computational Logic for Applicative Common Lisp. ACL2 is a
programming language, a logic and a theorem prover. Thus, the system constitutes an
environment in which algorithms can be defined and executed, and their properties can
be formally specified and proved with the assistance of a mechanical theorem prover.

The first version of ACL2 was developed by B. Boyer and J S. Moore in 1989, using
the functional programming language Common Lisp. ACL2 is the successor to the
Nqthm [BM97] (or Boyer-Moore) logic and proof system and its Pc-Nqthm interactive
enhancement. ACL2 was born as response to the problems Nqthm users faced in applying
that system to large-scale proof projects. Namely, the main drawback of the Nqthm
appears when the logic specification were used not only for reasoning about the modeling
system but also for executing. The main difference between ACL2 and Nqthm lies in
the chance of executing the models of the ACL2 logic in Common Lisp.

ACL2 and Nqthm have already shown their effectiveness for implementing (non-
trivial) large proofs in Mathematics. One of these examples can be found in [Kau00],
where the Fundamental Theorem of Calculus is formalized; another development can be
found in [BM84], where a mechanical proof of the unsolvability of the halting problem
is implemented; other examples of theorems certified with ACL2 and Nqthm are: the
Gauss’s Law of Quadratic Reciprocity [Rus92], the Church-Rosser theorem for lambda
calculus [Sha88], the Gödel’s incompleteness theorem [Sha94], and so on.

Besides, ACL2 has been used for a variety of important formal methods projects
of industrial and commercial interest, including (for example) the verification of the
RTL code which implements elementary floating point operations of the AMD Athlon
processor [Rus98] and ROM microcode programs of CAP digital signal processor of
Motorola [BKM96].

More references about these and other developments related to ACL2 and Nqthm
are www-available at [KM, BM97].

After this brief historical introduction, let us devote some lines to explain the pro-
gramming language, the logic and the theorem prover of ACL2.

As a programming language, ACL2 is an extension of an applicative subset of Com-
mon Lisp. The logic considers every function defined in the programming language as
a first-order function in the mathematical sense. For that reason, the programming
language is restricted to the applicative subset of Common Lisp. This means, for ex-
ample, that there is no side-effects, no global variables, no destructive updates and all
the functions must be total and terminate. Even with these restrictions, there is a close
connection between ACL2 and Common Lisp: ACL2 primitives that are also Common
Lisp primitives behave exactly in the same way, and this means that, in general, ACL2
programs can be executed in any compliant Common Lisp.
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The ACL2 logic is a first-order logic, in which formulas are written in prefix notation;
they are quantifier free and the variables in them are implicitly universally quantified.
The logic includes axioms for propositional logic (with connectives implies, and, . . .),
equality (equal) and properties related to a subset of primitive Common Lisp functions.
Rules of inference include those for propositional logic, equality and instantiation of
variables. The logic also provides a principle of proof by induction that allows the user
to prove a conjecture splitting it into cases and inductively assuming some instances of
the conjecture that are smaller with respect to some well founded measure.

An interesting feature of ACL2 is that the same language is used to define programs
and to specify properties of those programs. Every time a function is defined with defun,
in addition to define a program, it is also introduced as an axiom in the logic. Theorems
and lemmas are stated in ACL2 by the defthm command, and this command also starts
a proof attempt in the ACL2 theorem prover. In the ACL2 jargon a file containing
definitions and statements that have been certified as admissible by the system is called
a book.

The main proof techniques used by ACL2 in a proof attempt are simplification and
induction. The theorem prover is automatic in the sense that once defthm is invoked, the
user can no longer interact with the system. However, in a deeper sense the system is
interactive: very often non-trivial proofs are not found by the system in a first attempt
and then it is needed to guide the prover by adding lemmas, suggested by a preconceived
hand proof or by inspection of failed proofs. These lemmas are then used as rewrite rules
in subsequent proof attempts. This kind of interaction with the system is called “The
Method” by ACL2 authors.

In the following subsection, an introduction to an interesting ACL2 feature, that will
be critical in our developments, is presented.

1.3.2 ACL2 encapsulates

In this subsection, an introduction to the ACL2 encapsulates is given. Encapsulates are
a powerful tool which allow the structural development of theories. The encapsulation
facility is much more general than sketched here, see [KMM00b, KMM00a, BGKM91,
KM01]. They will be used, in this memoir, in Section 4.3 and onward.

The encapsulate principle allows the introduction of function symbols in ACL2, with-
out a complete specification of them, but just assuming some properties which partially
define them. To be admissible and to preserve the consistency, there must exist some
functions (called “local witness”) verifying the properties assumed as axioms. Once this
is proved, the local witness definitions can be neglected, and the function symbols in-
troduced with the encapsulate principle are partially specified by means of the assumed
properties. Then, we can assume a property described by the formula F for the functions
f1, . . ., fn if:
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• f1, . . ., fn are new function symbols.

• There exist admissible definitions of n functions whose names are f1, . . ., fn such
that the formula F can be proved for those functions.

If the encapsulate is admissible, the function symbols f1, . . ., fn are added to the
ACL2 language and the formula F is added as axiom to the logic. It is worth noting that
the local witness are only used to ensure the admissibility of the encapsulate, since the
axioms associated with their definitions are not kept.

In order to clarify this ACL2 mechanism an example will be presented. Let us
suppose that we want to assume the existence of a binary function which is associative
and commutative. The ACL2 command in charge of this task is the following one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
; the signatures
(((op * *) => *))

; the witnesses
(local (defun op (a b) (+ a b)))

; the axioms
(defthm op-associative
(equal (op (op x y) z) (op x (op y z))))

(defthm op-commutative
(equal (op x y) (op y x))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first expression is a list with the arity description of the functions which are
introduced with the encapsulate principle (called signature). In this case, we indicate
that op is a function with two arguments which returns a unique value. The local
witnesses are defined using defun, but they are declared as local by means of local.
The properties assumed over the encapsulate functions are stated by means of defthm.
The encapsulate can contain definitions and properties declared as local; however, once
the admissibility of the encapsulate has been proved, just the non local definitions and
properties are added to the ACL2 logic.

The functions defined by means of an encapsulate cannot be executed, since its partial
specification can be not enough to deduce the value for every input. However, there
exists a great advantage from the verification point of view; due to the fact that we are
formalizing and verifying a generic result which can be instantiated for concrete cases
later on. This issue will be presented in Subsection 6.1.1.





Chapter 2

A framework for computations in
Algebraic Topology

Traditionally, Symbolic Computation systems, and Kenzo is no exception, have been
oriented to research. This implies in particular, that development efforts in the area of
Computer Algebra systems have been focussed on aspects such as the improvement of
the efficiency or the extension of the applications scope. On the contrary, aspects such
as the interaction with other systems or the development of friendly user interfaces are
pushed into the background (it is worth noting that most of Computer Algebra systems
use a command line as user interface). Things are a bit different in the case of widely
spread commercial systems such as Mathematica or Maple, where some attention is also
payed to connectivity issues or to special purpose user interfaces. But even in these
cases the central focus is on the results of the calculations and not on the interaction
with other kind of (software or human) agents.

The situation is, in any sense, similar in the area of interoperability among Sym-
bolic Computation systems (including here both Computer Algebra systems and Proof
Assistants tools). In this case, the emphasis has been put in the universality of the
middleware (see, for instance, [CH97]). Even if important advances have been achieved,
severe problems have appeared, too, such as difficulties in reusing previous proposals
and the final obstacle of the speculative existence of a definitive mathematical interlin-
gua. The irruption of XML technologies (and, in our context, of MathML [A+08] and
OpenMath [Con04]) has allowed standard knowledge management, but they are located
at the infrastructure level, depending always on higher-level abstraction devices to put
together different systems. Interestingly enough, the initiative SAGE [Ste] producing an
integrated environment seems to have no use for XML standards, intercommunication
being supported by ad-hoc SAGE mechanisms.

To sum up, in the symbolic computation area, we are always looking for more pow-
erful systems (with more computation capacities or with more general expressiveness).
However, it is the case that our systems became so powerful, that we can lose some
interesting kinds of users or interactions. This situation was encountered in the design

39
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and development of TutorMates [GL+09]. TutorMates is aimed at linking an educa-
tional front-end (based on Java) with the Maxima system [Sch09] (a Common Lisp
Computer Algebra system specialized in symbolic operations but that also offers numer-
ical capabilities such as arbitrary-precision arithmetic). The purpose of TutorMates was
educational, so it was clear that many outputs given by Maxima were unsuitable for
final users (students, and teachers, at high school level) depending on the degree and
the topic learned in each TutorMates session. To give just an example, an imaginary
solution to a quadratic equation has meaning only in certain courses. In this way, a
mediated access to Maxima was designed. The central concept is an intermediary layer
that communicates, by means of an extension of MathML, the front-end and Maxima.
This approach is now transferred to the field of Symbolic Computation in Algebraic
Topology, where the Kenzo system provides a complete set of calculation tools, which
can be considered difficult to use by a non-Common Lisp trained user (typically, an
Algebraic Topology student, teacher or researcher).

The most elaborated approach to increase the usability and accessibility of Kenzo
was reported in [APRR05]. There, a remote access to Kenzo was devised, using
CORBA [Gro] technology. An XML extension of MathML played a role there too,
but just to give genericity to the connection (avoiding the definition in the CORBA
Interface Description Language [Gro] of a different specification for each Kenzo class
and datatype). There was no intention of taking profit from the semantics possibilities
of MathML. Being useful, this approach ended in a prototype, and its enhancement and
maintenance were difficult, due both to the low level characteristics of CORBA and to
the pretentious aspiration of providing full access to Kenzo functionalities. We could
classify the work of [APRR05] in the same line as [CH97] or the initiative [IAM], where
the emphasis is put into powerful and generic access to symbolic computation engines.

Now, we have undertaken the task of devising a framework, from now on called
Kenzo framework, which provides a mediated access to the Kenzo system, constraining
the Kenzo functionality, but providing guidance to the user in his navigation on the
system.

The rest of this chapter is organized as follows. A brief overview of the Kenzo
framework architecture is presented in Section 2.1. Section 2.2 is devoted to provide a
detailed description of each one of the Kenzo framework components. Finally, the Kenzo
framework execution flow is presented by means of an example in Section 2.3. Two
ongoing works devoted to increase the computation capabilities of the Kenzo framework
by means of ideas about remote and distributed computations are presented respectively
in Section 2.4 and 2.5.

2.1 Framework architecture

When starting the project of developing a framework for Kenzo, several requirements
were stated. Some of them were simply natural specifications, others were of a more
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problematic nature. Those issues are presented here as challenges to be fulfilled. These
challenges largely determined the design decisions presented in this section. The most
important challenges we faced were:

1. Functionality. The system should provide access to the Kenzo capabilities for
constructing topological spaces and computing (homology and homotopy) groups.

2. Extensibility of Kenzo. The system design should be capable of evolving at the
same time as the Kenzo system.

3. Integration with other systems. In spite of having Kenzo as main computational
kernel, the system should be designed in such a way that it could support different
connections to other symbolic manipulation systems (GAP [GAP] in computa-
tional algebra, for instance, or ACL2 [KM] from the theorem proving side).

4. Interaction with different clients. The system should be designed in such a way
that it could support several ways of interaction (graphical user interfaces, web
services, web applications, Computer Algebra systems, and so on).

5. Efficiency. The framework should be roughly equivalent to Kenzo in time and
space efficiency.

6. Error handling. Our framework should forbid the user some manipulations raising
errors, from both structural and semantical points of view.

7. Representation of mathematical knowledge. The representation of the data of our
framework should be independent of the modules of the framework, that can be
programmed in different programming languages.

8. Communication of the mathematical knowledge. The encoded data should be easily
transferable both between the different modules of the framework and also outside
the framework.

Let us observe that, as it is usual in system design, some decisions aimed to fulfill
a concrete requirement could compromise other ones. The most important trade-off in
our previous list is between requirements 2, 3, 4 (these three requirements are three
different extensibility nuances) and 5. A layered architecture with complex mediators
could produce poorer performance. A careless treatment of intermediary documents
and files could also imply a great memory waste. The error handling (item 6) is closely
related to the functionality included in the system (item 1), since the pure Kenzo system
allows some instructions that are not desirable from the point of view of error managing
(since they produce runtime errors), then, the system should avoid this kind of situations.
Besides, error handling (item 6) could be in a conflict with efficiency, too, because dealing
with semantical information at the external layers of an architecture can slow down the
system as a whole. In addition, it would be very useful if the chosen encoding for the
data, related to requirements 7 and 8, was able to include some knowledge in order to
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Figure 2.1: Architecture of the Kenzo framework based on the Microkernel pattern

help the management of error handling. We have tried to deal with all these constraints
while respecting the requirements guided by already proved methodologies and patterns.

The previous discussion led us to choose the Microkernel architectural pattern [B+96,
B+07] to organize the system and XML to encode the mathematical and systemic knowl-
edge.

The Microkernel pattern gives a global view as a platform, in terminology of [B+96],
which implements a virtual machine with applications running on top of it, namely a
framework (in the same terminology). The Microkernel architectural pattern applies
to software systems that must be able to adapt to changing systems requirements. It
separates a minimal functional core from extended functionality and customer-specific
parts. This pattern defines five kinds of participating components : internal servers,
external servers, adapters, clients and the microkernel.

The microkernel is the main component and includes functionality that enables other
components running in separate processes to communicate with each other. It is also in
charge of maintaining system-wide resources such as files or processes. Core functionality
that cannot be implemented within the microkernel is separated in internal servers. An
external server is a component that uses the microkernel for implementing its own view
of the underlying application domain. The external server receives requests from client
applications using the communication facilities provided by the adapter.

A high level perspective of the architecture of our system, based on this pattern, as
a whole is shown in Figure 2.1.

Let us present a brief overview of the framework components, a more detailed de-
scription of each one of them will be provided in Section 2.2.
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First of all, let us give some flavor about the concept of mediated access in our
framework. It is worth noting that the mediated access is not provided just by one of
the framework components but by the whole system.

In our framework the mediated access refers to the knowledge which guides a user
to interact correctly with the system avoiding errors, that was one of the challenges of
our framework. There are different kinds of knowledge included in our framework, and
they categorize the errors managed in our system as follows:

• Related to the construction of spaces:

– mathematical restrictions:

∗ type restrictions : a space constructor can only be applied over objects
of a concrete type (and, of course, all its subtypes); for instance, the
“classifying space” constructor can only be applied over a space which is
a simplicial group; and,

∗ restrictions of the arguments of space constructors:

· independent argument restrictions : the value of an argument of the
constructor must satisfy some properties which are independent from
the rest of the arguments of the space constructor; for instance, the
“Moore” constructor takes p and n as arguments to construct the
Moore space M(Z/pZ, n), both p and n are restricted to be natural
numbers and p must be higher than 1; those are examples of inde-
pendent argument restrictions;

· functional dependencies : the value of an argument of the space con-
structor depends on the value of another one; for instance, in the
“Moore” constructor the value of n must be higher or equal than
2p− 4; that is a functional dependency.

– Kenzo implementation argument restrictions : some constrains are imposed by
the Kenzo implementation of spaces; for instance, the “Sphere” constructor
takes as argument a natural number that Kenzo constrains to be lower than
15.

• Related to the computation of (homology and homotopy) groups:

– restriction of the computation dimension: in the case of computing Hn(X)
the value of n must be higher or equal than 0; and in the case of computing
πn(X) the value of n must be higher or equal than 1; and,

– reduction degree restrictions : the notion of reduction degree was explained
in Subsection 1.2.6. In the case of computing Hn(X) the reduction degree of
X must be higher or equal than 0; and in the case of computing πn(X) the
reduction degree of X must be higher or equal than 1.

All this knowledge is spread throughout the Kenzo framework in its components.
These components are going to be briefly explained in the following paragraphs.
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As we have said previously, XML is the chosen technology to encode the data of our
framework since it perfectly fulfills requirements 7 and 8, and also let us encode some
mathematical knowledge that will be useful to manage error handling. In particular,
we have defined an XML language called XML-Kenzo. This language is used for data
interchange among the different components of the framework.

The XML-Kenzo specification is employed to represent some of the knowledge in-
cluded in the framework, namely the knowledge which allows us to manage the following
restrictions:

1. type restrictions,

2. independent argument restrictions of the space constructors,

3. implementation restrictions of the space constructors arguments, and

4. restriction of the dimension in computations.

On the contrary, the rest of constraints (functional dependencies of the arguments
of the constructors and reduction degree restrictions) cannot be represented in XML-
Kenzo; so, they have been included in a different way in the framework.

Let us present now the rest of the system components.

Kenzo itself, wrapped with an interface based on XML-Kenzo, is acting as internal
server and is used as the core to perform computations in our framework. It is worth
noting that the functionality available from the internal server is a subset of the Kenzo
one. Namely, the functionality that allows us to construct spaces of regular usage and
to perform computations of groups is accessible through the Internal Server.

Due to the Microkernel pattern organization new computations and deduction en-
gines can be incorporated as internal servers; solving the third requirement, the integra-
tion with other systems.

The main component of this architecture, the microkernel, is responsible for man-
aging all system resources, maintains information about resources and allows access to
them in a coordinated and systematic way. The microkernel acting as intermediary layer
is based on an XML-Kenzo processor, allowing both a link with Kenzo and including the
management of constraints not handled in the XML-Kenzo specification. The function-
ality exposed by the microkernel is related to the Kenzo way of working, providing, on
the one hand, the way of constructing spaces (construction modules) and, on the other
hand, the functionality to perform computations (computation modules). Besides, the
fifth requirement (efficiency) has been solved at this level by programming a memoiza-
tion strategy, a technique also used in Kenzo, see Subsection 1.2.5. This has required to
include an improvement of our own in the Microkernel pattern: an internal memory used
to the optimization tasks. As a result, the waiting time is to a great extent similar to
that of the original Kenzo system. Moreover, as we have already said, the sixth require-
ment (error handling) is partially fulfilled at the microkernel level. To be more concrete,
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the modules of the microkernel are in charge of validating the restrictions that were not
included in the XML-Kenzo specification; that is to say, functional dependencies of the
arguments of the constructors and reduction degree restrictions. In addition, processing
modules provide several enhancements to the Kenzo system, for instance to compute
homotopy groups. The functionality of the processing modules is not exposed by the
microkernel but it is used by both construction and computation modules.

The external server exports the functionality of the microkernel, that is, the mech-
anisms to construct spaces and to compute groups. Moreover, the external server is in
charge of validating the knowledge included in the XML-Kenzo specification. Namely,
the external server is in charge of checking: type restrictions, independent argument
restrictions of the space constructors, implementation restrictions of the space construc-
tors, and restriction of the dimension in computations. Therefore, requests arriving
to the microkernel always satisfy these restrictions; that is to say, they satisfied the
XML-Kenzo specification, this kind of requests are called valid XML-Kenzo requests.

Finally, the adapter exposes the functionality provided by the external server to
clients. However, due to the fact that XML-Kenzo is ad-hoc for our framework is not
sensible to use this language to communicate with the outside. In order to grapple with
this problem, the OpenMath XML standard [Con04] has been employed. Then, the
adapter converts the interface provided by the external server, based on XML-Kenzo,
into a more suitable interface, based on OpenMath, which can be used by different
clients (for instance, graphical user interfaces, web applications or web services) without
knowing the internal representation of the data of our framework, then, the fourth aspect
requested to our framework, the interaction with different clients, is achieved. Besides,
as OpenMath is also an XML language, requirements 7 and 8 are also satisfied at this
level. The process to convert from/to OpenMath requests to/from XML-Kenzo requests
is tackled by a program included in the adapter called Phrasebook [Con04].

The communication between the different components of the system is based on a
message style model, that is, the modules of the framework are communicated in a direct
and synchronous way.

The main complaint to this framework could be the restriction of the full capabilities
of the Kenzo system, since just the main Kenzo functionality is included, however the
interaction with it is easier and enriched.

2.2 Framework components

This section is devoted to present a detailed description of each one of the Kenzo frame-
work components.
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Figure 2.2: Main elements of the XML-Kenzo schema

2.2.1 XML-Kenzo

One of the most important decisions in the development of our framework was the
language employed to represent the mathematical data inside the framework. The rep-
resentation language should be independent of the implementation language used, and
the represented data must be easily interchangeable among the different components
of the framework, both current components and future extensions. These requirements
oriented us towards our solution: using XML technology [B+08]. Once we chose XML
to represent data inside our framework, we should decide whether we extended a math-
ematical XML language, MathML or OpenMath, or if we defined a fresh one. MathML
provides several facilities to represent data in the web but is not suitable to represent
content, see [KSN10] for a survey about this question. OpenMath is very useful in the
communication with the outside of the framework, but, we have to extend it with the
problems associated to this task, since OpenMath is a general purpose standard which
cannot be fully adapted to our needs. So, we opted for defining from scratch an XML
language suited to our requirements. The new XML language was called XML-Kenzo.

It is worth noting that the XML-Kenzo language is employed inside the framework;
on the contrary, to communicate the framework with the outside we use OpenMath since
it is more suitable for that task.

The specification of XML-Kenzo is based on both Kenzo and mathematical conven-
tions and is provided by means of an XML schema definition (XSD), see [E+07]. The
formal specification of XML-Kenzo defines the structure of the objects indicating their
restrictions and providing valid combinations.

There are two types, groups in terminology of XML schema definitions, of elements
in the XML-Kenzo specification based on the usual interaction between a client and a
software system. To be more concrete, the interaction between a client and a software
system consists of the user sending requests to the system and the system returning
results to the client. Therefore, we have defined two types: requests and results, see
Figure 2.2.

Let us focus first on the requests XML-Kenzo group. As we explained in Sub-
section 1.2.2, Kenzo includes functions with two different aims: construct spaces and
perform computations. This situation is reflected in the specification of XML-Kenzo,
where two elements belong to the requests group. Namely, the elements: operation to
represent the computation functions and constructor to represent the different spaces
that can be built, see Figure 2.3.

Now, let us concentrate on the constructor element. When a user has decided to



2.2 Framework components 47

Figure 2.3: requests XML-Kenzo group

Figure 2.4: Types of spaces in XML-Kenzo

construct a space in Kenzo, he should decide which type he wants to build: a simplicial
set, a simplicial group and so on (see all the possible types in Subsection 1.2.1). As
was explained in Section 1.2.2, the Kenzo system provides useful functions to create
interesting objects of regular usage, which can belong to four types: chain complexes,
simplicial sets, simplicial groups and abelian simplicial groups. All these functions of
regular usage are represented in our XML-Kenzo specification and have a unique XML-
Kenzo representation. So, four types are defined in the XML-Kenzo specification: CC

(Chain Complex), SS (Simplicial Set), SG (Simplicial Group) and ASG (Abelian Simplicial
Group). Then the child of the constructor element must be an element of one of these
types, see Figure 2.4. The following elements, gathered by types, represent the spaces
that can be constructed in our framework (the complete list of spaces that can be
constructed and their type can be seen in Figure 2.5):

• The SS type contains the elements that represent most of the constructors of
Kenzo. Some of them construct spaces from scratch such as sphere, moore-space,
build-finite-ss, and so on. Others construct spaces from other ones; for instance,
crts-prdc which represents the Cartesian product.

• The SG type contains the elements whose arguments are simplicial groups; that is
to say, both loop spaces, loop-space, and classifying spaces, classifying-space.

• ASG contains the elements to construct Eilenberg MacLane spaces of type K(Z, n),
k-z, and K(Z/2Z, n), k-z2.

• The CC type contains elements that correspond with the constructors defined at the
algebraic level but not at the simplicial one. The element chain-complex constructs
a simple chain complex such as the unit chain complex or the circle. The rest of
the elements of this type construct spaces from other ones, for instance tnsr-prdc

which represents the tensor product.

As we said previously, XML-Kenzo can be used to represent knowledge and restric-
tions about its elements. We commented in Section 2.1 that there are three kinds of
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Figure 2.5: Constructor groups in XML-Kenzo

restrictions related to the construction of spaces that are dealt with in the XML-Kenzo
specification; namely, type restrictions, independent argument restrictions of the space
constructors and implementation restrictions of the space constructors. Let us present
how we handle these restrictions in the specification of the XML-Kenzo language.

Let us focus first on type restrictions. These constraints are applied over the con-
structors of spaces from other ones. As we explained in Subsection 1.2.1, Kenzo is, in its
pure mode, an untyped system (or rather, a dynamically typed system), inheriting its
power and its weakness from Common Lisp. Thus, for instance, in Kenzo a user could
apply a constructor to an object without satisfying its input specification. For instance,
the method constructing the classifying space of a simplicial group could be called with
an argument which is a simplicial set without a group structure over it. Then, at run-
time, Common Lisp would raise an error informing the user of this restriction. This is
shown in the following fragment of a Kenzo session.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s4 (sphere 4)) z
[K1 Simplicial-Set]
> (classifying-space s4) z
Error: No methods applicable for generic function #<STANDARD-GENERIC-FUNCTION
CLASSIFYING-SPACE> with args ([K1 Simplicial-Set]) of classes (SIMPLICIAL-SET)
[condition type: PROGRAM-ERROR]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With the first command, we construct the sphere of dimension 4, a simplicial set.
Thus, when in the second command we try to construct the classifying space of a sim-
plicial set, the Common Lisp Object System (CLOS ) raises an error.

This kind of error is controlled in our framework thanks to the XML-Kenzo spec-
ification, since the inputs for the operations between spaces can be only selected
among the spaces with suitable characteristics (Figure 2.6 shows the specification of
the classifying-space element in XML-Kenzo, this element only allows as child an ele-
ment either from the SG or the ASG group). This enriches Kenzo with a small (semantical)
type system.
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Figure 2.6: classifying-space specification in XML-Kenzo

Figure 2.7: loop-space specification in XML-Kenzo

It is worth noting that the inheritance relations between Kenzo types, see Sec-
tion 1.2.1, cannot be directly specified using an XML schema, so, we tackle this situation
in the following way. If we have the types A and B, represented in the XML schema
as the groups A and B respectively, where B inherits from A and a function f that can
be applied over the objects of the type A, and of course also over the objects of type
B, then the element of the XML schema that represents the function f has as child an
element that belongs either to the A or the B group, and this must be included in the
schema in an explicit way. For instance, the loop-space Kenzo function is applied over
a simplicial set, but, as can be seen in Figure 1.2 of Subsection 1.2.1, simplicial groups
and abelian simplicial groups are subtypes of simplicial sets, so the loop-space element
of XML-Kenzo has as child an element belonging either to the SS, the SG or the ASG

group. Moreover, it also has a child that represents the dimension of the loop space, as
can be seen in Figure 2.7.

Both second and third kinds of restrictions, that are, independent argument restric-
tions of the space constructors and implementation restrictions of the space constructors,
are also coped with in the XML-Kenzo specification. These restrictions are always ap-
plied over objects constructed from scratch, such as spheres, Moore spaces, Eilenberg
MacLane spaces and so on. The restrictions over the arguments of those functions are
translated into the restrictions over the elements encoding them. For instance, spheres
only have sense if their dimension is a natural number (an independent argument re-
striction). In addition, the function that constructs a sphere in Kenzo has as argument a
natural number n, such that 0 < n < 15; this restriction is included in the XML-Kenzo
specification of the sphere element as is shown in Figure 2.8. This kind of restrictions
can be included in the specification of the XML-Kenzo language without any special
hindrance.

On the contrary, functional dependencies of the arguments cannot be imposed in the
XML-Kenzo specification, since restrictions about the value of an element depending on
the value of other elements cannot be defined in XML schemas.

Once we have presented the way of encoding Kenzo constructors in XML-Kenzo, we
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Figure 2.8: sphere specification in XML-Kenzo

Figure 2.9: operation element in XML-Kenzo

can construct different XML-Kenzo objects such as the space Ω3(S4) which is represented
as the following XML-Kenzo object:

<constructor>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
</constructor>

It is worth noting that the type of the elements (requests, SG and SS for the
constructor, loop-space and sphere elements respectively) is not included in the XML-
Kenzo object since it is implicit to the element (an element defined in an XML schema
only belongs to one type). From now on, we will call construction requests to the XML-
Kenzo objects whose root element is constructor.

Let us focus now on the other element of the requests group: operation. The
operation element represents requests which ask to the system the computation of ho-
mology and homotopy groups. The operation element has as child one element of the
computing group, see Figure 2.9. The computation of homology and homotopy groups
is represented by means of the elements homology and homotopy respectively. Both ele-
ments belong to the computing group, see Figure 2.10. The structure of both homology

and homotopy elements is the same, they have two children, the first one is a space of
one of the groups CC, SS, SG or ASG; and the second one is an element called dim.

As we commented in Section 2.1, we can handle one of the restrictions related to
computations, that is the restriction of the dimension in homology and homotopy com-
putations. This is translated in the XML-Kenzo specification into a constraint of the
value of the dim element of both homology and homotopy elements. Nevertheless, the
other restriction related to computations (the reduction degree restriction of the space)
cannot be managed at this level since its value must be computed from the description
of the space.
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Figure 2.10: computing group of XML-Kenzo

Figure 2.11: Elements of XML-Kenzo results group

Once we have presented the way of encoding Kenzo operations in XML-Kenzo, we
can construct different XML-Kenzo objects such as the operation H5(Ω

3(S4)) which is
represented by the following XML-Kenzo object

<operation>
<homology>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
<dim>5</dim>

</homology>
</operation>

From now on, we will call computation requests to the XML-Kenzo objects whose root
element is operation. We will call valid XML-Kenzo requests to the XML-Kenzo ob-
jects of requests type which satisfy the XML-Kenzo specification. This finishes the
description of the elements of the requests XML-Kenzo group.

Let us present now the results XML-Kenzo group. We have defined four elements
belonging to this group: id, warning, result and HES-result, see Figure 2.11.

In our framework, objects have associated a unique identification number. To com-
municate this identification among the modules of the framework we use the id element
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whose value is a natural number (the unique identification number).

<id> 1 </id>

The warning element is used to represent errors returned by the framework and its
value is a string with the correspondent error in natural language.

<warning> The dimension of the sphere must be a natural number </warning>

The result element is used to return the result of a computation by means of an
undefined number of components whose value is a natural number.

<result>
<component> 2 </component>
<component> 3 </component>

</result>

If the above result element is returned, that means that the result is Z/2Z⊕Z/3Z.

Finally, HES-result provides a result, by means of an undefined number of compo-
nents whose value is a natural number, and an explanation of the reasoning followed to
obtain the result, by means of a string.

<HES-result>
<component>0</component>
<explanation>

The space was a contractible space since it was the cartesian product of
two contractible spaces. The homotopy groups of a contractible space are
always null. Then, the homotopy group of the space in dimension 3 is null.

</explanation>
</HES-result>

To sum up, the XML-Kenzo schema specifies two kind of objects: requests and
results. There are two kinds of requests: to construct spaces and to compute groups.
Moreover, most of the restrictions of the functions devoted to construct spaces and
compute groups are imposed in XML-Kenzo, in this way some knowledge is provided
with the XML-Kenzo specification.

As we will see throughout the next subsections, XML-Kenzo played a key role in the
development of the rest of the framework components.

The complete specification of the XML-Kenzo language can be seen in [Her11].
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Figure 2.12: Internal Server of the Kenzo framework

2.2.2 Internal Server

The internal server is a Common Lisp component that provides access to the Kenzo
functionality through an XML-Kenzo interface. This module is split in three parts (see
Figure 2.12): the full Kenzo system, an XML-Kenzo wrapper for Kenzo, that is a bunch
of Common Lisp files that defines a Kenzo interface based on XML-Kenzo, and also
the transformation from XML-Kenzo objects to their Kenzo encoding and viceversa;
and last but not least, an interface which offers a service to use Kenzo through the
XML-Kenzo wrapper.

We have talked at length about Kenzo, see Section 1.2; so let us focus on both
the interface and the XML-Kenzo wrapper. The interface provides a service called
xml-kenzo-to-kenzo which allows one to access to the functionality exported by the
XML-Kenzo wrapper. The XML-Kenzo wrapper provides access to a subset of the
Kenzo functionality, namely the functionality specified in the XML-Kenzo language by
means of the elements of the requests group. Hence, from this interface we can construct
the topological spaces of regular usage in Kenzo (such as spheres, Moore spaces, loop
spaces and so on), and compute homology and homotopy groups.

The workflow when the xml-kenzo-to-kenzo service is invoked is as follows. If the
request is a construction request, the internal server transforms the XML-Kenzo request
into a Kenzo instruction by means of a function called xml-kenzo-to-kenzo. Afterwards,
the Kenzo instruction is executed in the Kenzo kernel, and then as a result a Kenzo
object is obtained. The result returned by the internal server is the unique identifier of
the Kenzo object, the value of the slot idnm of a Kenzo instance (see Section 1.2.1). This
identification number is returned by means of an id XML-Kenzo object. For instance,
if the internal server receives the request:

<constructor>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
</constructor>
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the instruction (loop-space (sphere 4) 3) is executed in the Kenzo kernel. As a result
an object of the Simplicial Group class is constructed, and the identifier of that object
is returned, in a fresh Kenzo session the result will be:

<id>30</id>

In the case of computation requests, the internal server transforms the XML-Kenzo
request into a Kenzo instruction by means of the xml-kenzo-to-kenzo function. After-
wards, the Kenzo instruction is executed in the Kenzo kernel, and as a result a group
is obtained. The result returned by the internal server is the group codified in a result

XML-Kenzo object. For instance, if the internal server receives the request:

<operation>
<homology>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
<dim>5</dim>

</homology>
</constructor>

the instruction (homology (loop-space (sphere 4) 3) 5) is executed in the Kenzo ker-
nel. As a result, the group Z/2Z is obtained and returned by the internal server using
an XML-Kenzo results object whose root is result.

<result>
<component>2</component>

</result>

The answer returned by the internal server is always an identifier, in the case of a
construction request, or a group, in the case of a computation request. What we want to
highlight is that errors never happen since all the dangerous situations are stopped in a
more external level of the framework (some of them were dealt with in the specification
of XML-Kenzo, others will be handled in the microkernel), as we will see in the following
subsections, and therefore, the requests received by the internal server are always safe.

The main disadvantage of the internal server with respect to Kenzo is the restriction
of the full capabilities of the Kenzo kernel. Let us note that the restriction is only re-
lated to the construction of spaces where, as we explained in Subsection 2.2.1, only the
spaces that can be constructed using the Kenzo ad-hoc functions are available; on the
contrary, the Kenzo capability to perform computations remains untouched. Neverthe-
less, thanks to the combination of the internal server and XML-Kenzo the interaction
between the modules of the framework, that can be programmed in a language different
from Common Lisp, and Kenzo is easier since the communication is performed by means
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of XML-Kenzo objects and the internal server is in charge of converting them from/to
Kenzo instructions.

2.2.3 Microkernel

The microkernel is the main component of the framework, it is devoted to the man-
agement of resources and includes some of the knowledge of the framework (the rest of
knowledge was provided by the XML-Kenzo specification). The microkernel is split in
four constituents (see Figure 2.1): the construction modules, the computation modules,
the processing modules and the internal memory. The interaction with the microkernel
is provided by means of an interface based on XML-Kenzo. This interface only gives
access to the functionality of the construction and computation modules.

2.2.3.1 Internal Memory

The first component of the microkernel that we are going to describe is the internal
memory. The internal memory is a Common Lisp module which stores both the con-
structed spaces and the computed results. That is to say, the internal memory stores
the state of the framework.

The storage of constructed spaces and computed results avoids unnecessary commu-
nications between the microkernel and the internal server. Therefore, the efficiency of the
framework is improved. In this component, for both constructed spaces and computed
results, a memoization strategy has been implemented.

Let us focus first on the spaces constructed in the microkernel.

At this moment, the Kenzo framework just interacts with an internal server that is
the Kenzo system. However, in the future we want to include different internal servers.
This means that objects of very different nature (such as spaces or groups) are going to
coexist in the Kenzo framework and, in particular, in the microkernel.

Taking this question into account, we decided to design a class hierarchy with a main
class; and specialize this class with different subclasses for the objects coming from the
different internal servers.

Therefore, we have defined the main class to represent microkernel objects,
MK-OBJECT, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-OBJECT ()
;; IDentification NuMber
(idnm :type fixnum :initform (incf *number-of-objects*) :reader idnm)
;; ORiGiN
(orgn :type string :initarg :orgn :reader orgn)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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This class has two slots (which are common for all the microkernel objects):

• idnm, an integer being the object identifier for this system. This is generated by
the microkernel in a sequential way, each time a new object is created.

• orgn, a string containing the XML-Kenzo object that is the origin of the space.
This comment is unique and is important, because when a module constructs
a new mk-object instance, it uses the XML-Kenzo string to search in a specific
list, *object-list*, if the object has not been already built. So, one avoids the
duplication of instances of the same object.

The *object-list* list stores the state of the microkernel related to the constructed
objects.

As we have said, we are going to have different specializations of the MK-OBJECT class,
but at this moment we just have one devoted to represent Kenzo spaces in the microker-
nel. Namely, we have defined a subclass of the MK-OBJECT class, the class MK-SPACE-KENZO,
whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-KENZO (MK-OBJECT)
(;; REduction DEgree
(rede :type fixnum :initarg :rede :reader rede)
;; Kenzo IDentification NuMber
(kidnm :type fixnum :initarg :kidnm :reader idnm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This class has two additional slots to the ones of the MK-OBJECT class:

• rede, an integer giving the reduction degree, see Subsection 1.2.6, of the space.

• kidnm, an integer being the object identifier inside the Kenzo system.

To sum up, Kenzo spaces are represented in the microkernel as instances of the
MK-SPACE-KENZO class. In addition, as objects of the microkernel they are stored in the
*object-list* list.

Let us explain now the memoization strategy implemented in the internal memory to
handle computed results. As we have seen in Subsection 1.2.5, computing some groups in
Kenzo can require a substantial amount of time. Kenzo is the kernel of our framework, so
this situation also happens in our framework. Therefore, it seems desirable to store the
computations of groups somewhere once they have been computed, in order to avoid the
re-computation in Kenzo. The microkernel stores the groups associated with a concrete
space in the internal memory when a computation is executed for the first time, and if
this computation is executed again later, the group is simply looked up and returned,
without further execution.



2.2 Framework components 57

This means that the behavior of the functions which compute the groups depends
on whether the asked group for an space has been already computed. Otherwise, the
group must be stored after it has been calculated. These two extra tasks are done by
two pair of functions that are implemented in the computation modules, namely the
testers and the setters. The testers take as arguments the identifier of the object, that is
stored in the idnm slot of the mk-space-kenzo instance, and the dimension n of the group
and return the result or nil according to whether the n-th homology (or homotopy)
group of the space whose identifier is idnm had already been stored. The setters take
as arguments the identifier idnm of the object, the dimension n, and the result result

of computing the n-th homology (or homotopy) group of the object idnm and put the
result into the internal memory, where the result can directly look it up. The main
procedures, implemented in the computing modules, are called the getters, and from the
preceding discussion it is seen that there must really be at least two methods for the
getters. One method is used when the tester returns nil; it is the method which first
does the real computation by means of the Kenzo functions and then executes the setter
with the computed value. A second method is used when the tester does not return nil;
it simply returns the stored value.

Up to now, we have explained the implemented strategy but not the way of storing
the results. This is an important issue for efficiency reasons and has been tackled by
means of efficient data structures, namely hash tables and arrays.

To store computed results, we use two hash tables, one for the computations related
to homology groups and another one for the computations of homotopy groups. The
identification number of each object, slot idnm of the mk-object class, acts as key into
the hash tables. The value associated to each key is an array where the n-th homology
(or homotopy) group of the object associated with the identification number is stored
in the position n.

Then, if we try to compute several times the fifth homology group of the space
Ω3(S4×S4), we can see the profit of using the memoization technique in the microkernel.
In the first computation, the microkernel takes almost 22 minutes, but in a further trial
the result is returned in just a second since it has been stored in the internal memory.

Therefore, thanks to this memoization strategy implemented in the internal memory
the framework efficiency increases.

It is worth noting that the values stored in the hash tables are not kept from one
session to another. The reader can wonder the reason to not reuse computations from a
previous session storing the results in a persistent way. At least two different approaches
can be considered to manage results from other sessions.

• We could keep on using our hash tables to store results, the main improvement
would consist of saving the results stored in the hash tables at the end of the session
and loading the stored results at the beginning of each session. Advantage: we
use hash tables that are efficient data structures. Disadvantage: when the number
of results increase, the time to load all the results in memory and the amount of
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memory used increase, too.

• We could use a database to store in a persistent way the results instead of keeping
the results in hash tables. Advantage: efficient persistence storage of results.
Disadvantage: since we are working with XML data, our database should be an
XML database, and this kind of databases are usually big and the search of results
in these databases is less efficient than the search in hash tables.

Thus, additional research is needed to achieve an efficient storage of results to be
reused in different sessions. Therefore, at this moment we use the approach previously
presented without saving results from one session to another.

The state of the microkernel is obtained gathering both the *object-list* list of
constructed spaces and the two hash tables of computed results.

2.2.3.2 Processing Modules

The processing modules are three Common Lisp modules that are in charge of providing
some enhancements to the construction of spaces and the computation of groups. The
functionality of these modules is not available outside the microkernel but it is used by
both construction and computation modules.

2.2.3.2.1 Reduction degree module The reduction degree module is in charge of
managing the reduction degree of spaces, see Subsection 1.2.6. Kenzo allows the user to
construct spaces whose reduction degree is lower than 0 (as the loop space iterated three
times of the sphere of dimension 2). In these spaces some operations (for instance, the
computation of the set of faces of a simplex) can be achieved without any problems. On
the contrary, theoretical results ensure that their homology groups are not of finite type,
and then they cannot be computed. In pure Kenzo, the user could ask for a homology
group of such space, catching a runtime error, as is shown in the following fragment of
a Kenzo session:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf o2s2 (loop-space (sphere 2) 3)) z
[K18 Simplicial-Group]
> (homology o2s2 1) z
Error: ‘NIL’ is not of the expected type ‘NUMBER’
[condition type: TYPE-ERROR]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The reduction degree module is used to avoid this kind of errors in our framework.
To this aim, the reduction degree module is implemented as a small expert system,
computing, in a symbolic way (that is to say, working with the XML-Kenzo description
of the spaces, and not with the spaces themselves), the reduction degree of the space.
The set of rules that allows the reduction degree module to obtain the reduction degree
of a space was given in Subsection 1.2.6, and the computational price of using this
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small rule-based system is negligible with respect to ordinary computations in Algebraic
Topology.

As we have seen in Subsubsection 2.2.3.1, the reduction degree of a space will be
assigned to the rede slot of the mk-space-kenzo instance in the construction of the
object.

The relevance of the reduction degree, and hence of this module, is due to the com-
putation modules, since when a computation is demanded, the system monitors if the
reduction degree of the space allows the computation of the homology or homotopy
group, or whether a warning must be returned as answer. In this way, the dangerous
requests related to the reduction degree are always stopped at the microkernel and never
arrive to the internal server, avoiding operations which would raise errors.

2.2.3.2.2 Homotopy algorithm module The homotopy algorithm module (from
now on, HAM) is in charge of chaining methods in order to compute some homotopy
groups. In pure Kenzo, there is no final function allowing the user to compute homotopy
groups. Instead, there is a number of complex algorithms, allowing a user to chain them
to get some homotopy groups. The HAM is in charge of chaining the different algorithms
presented in Kenzo to reach the final objective.

Moreover, Kenzo, in its current version, has limited capabilities to compute homo-
topy groups (depending on the homology of Eilenberg MacLane spaces that are only
partially implemented in Kenzo), so the chaining of algorithms cannot be universal.
Thus the homotopy algorithm module processes the call for a homotopy group, making
some requests to the Kenzo kernel (computing some intermediary homology groups, for
instance) before deciding if the computation is possible or not.

Let us present the procedure implemented in HAM. That algorithm and its under-
lying mathematics were presented in [Rea94].

Algorithm 2.1.
.

1. Find the lower dimension 0 < r ≤ n, such that the r-th homology group of X is
not null.

(a) If r does not exist (i.e., Hq(X) = 0 for all 0 < q ≤ n), πn(X) is null (applying
the Hurewicz theorem, see [Whi78]).

(b) If r = n, πn(X) = πr(X) = Hr(X) (applying the Hurewicz theorem,
see [Whi78]).

(c) If r < n,

i. If the r-th homology group is Z or Z/2Z go to step 2.

ii. Otherwise, return a warning XML-Kenzo object informing that the ho-
motopy group is not computable in the current version.
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2. Compute the r-th fundamental cohomology class of X, hr = [χr] ∈ Hr(X, πr),
where πr = πr(X) = Hr(X).

3. Build the fibration over X canonically associated to the above cohomology class:

K(πr, r − 1)
↓

T ≡ X ′ ≡ X(r+1) = X ×τχr K(πr, r − 1)
↓
X

4. Get the total space T = X(r+1) associated to the above twisting operator.

(a) If r + 1 = n, πn(X) = Hn(T ).

(b) If n > r + 1 and Hr+1(T ) = Z or Hr+1(T ) = Z/2Z, increase one unit the
value of r and go to step 2 but using the space T instead of X.

This is the algorithm implemented in HAM.

2.2.3.2.3 Homotopy expert system As we explained in the previous paragraph,
the HAM is able to compute some homotopy groups of some spaces by means of the
algorithm presented in [Rea94]. Nevertheless, there are several homotopy groups that
are not reachable by the Kenzo framework using the HAM (the implementation of the
algorithm is limited to the spaces which first non null homology group is Z or Z/2Z). To
overcome this gap, we undertook the task of developing a homotopy expert system (from
now on, HES) from the extensive literature about this topic; taking profit of theoretical
knowledge contained in theorems. The knowledge (that is, the theorems about homotopy
groups) can be found in different books, for instance, [CM95, Mau96, Hat02].

The HES is a rule-based system [GR05]. Rule-based systems do not represent knowl-
edge in a declarative and static way (as a bunch of things that are true), but they repre-
sent knowledge in terms of a bunch of rules that tell what you can conclude in different
situations. Rule-based systems have been employed in a wide variety of contexts, such
as the discovery of molecular structures [LBFL80], the identification of bacterias which
cause severe infections [BS84] or to configure computer systems [McD82].

The structure of a rule-based expert system, see [GDR05], consists of, and the HES
is no exception, the following components (see Figure 2.13):

• the Working memory (the facts), representing what we know at any time about
the problem we are working at,

• the Knowledge base (the rules), containing the domain specific problem-solving
knowledge,
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Figure 2.13: Structure of a rule-based expert system

• the Inference engine, a general program that activates the knowledge in the knowl-
edge base. This program depending on the facts applies different rules to obtain a
conclusion.

• a Knowledge acquisition module, allowing one to acquire and edit the knowledge
base,

• an Explanation facility module, allowing the user to understand how the expert
system obtains the results.

Let us present each component for the particular case of the HES.

The working memory represents what we know at any time about the problem we
are working at by means of facts. There exist two kinds of facts in the HES: static and
dynamic.

Static facts are properties associated with the spaces. These properties are known at
the moment of the construction of the object. Some examples of this kind of facts are:

Fact 1.
∀n ∈ N : ∆n is a contractible space.

Fact 2. If X = A×B where A and B are contractible spaces, then,

X is a contractible space.

Fact 3.

∀n ∈ N and G group : K(G, n) is an Eilenberg MacLane space of type (G, n)

Fact 4. If X = B(Y ) where Y is an Eilenberg MacLane space of type (G, n), then,

X is an Eilenberg MacLane space of type (G, n+ 1)

At this moment, the static facts determine the spaces that are contractible spaces,
spheres, Eilenberg MacLane spaces and Loop spaces of spheres. The way of implementing
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this issue in the microkernel is by means of four subclasses of the mk-space-kenzo class,
presented in Subsubsection 2.2.3.1; this class hierarchy will be used to determine which
rules can be applied.

To store spaces which represent spheres, we use a new subclass called
MK-SPACE-SPHERE, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-SPHERE (MK-SPACE-KENZO)
(;; DIMension
(dim :type fixnum :initarg :dim :reader dim))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this class has an additional slot, to the ones of the MK-SPACE-KENZO, called dim, which
represents the dimension of the sphere.

To store contractible spaces, we use a new subclass called MK-SPACE-CONTRACTIBLE,
whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-CONTRACTIBLE (MK-SPACE-KENZO) ())
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this class does not have any additional slot to the ones of the MK-SPACE-KENZO class.

To store spaces which represents Eilenberg MacLane spaces, we use a new subclass
called MK-SPACE-K-G, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-K-G (MK-SPACE-KENZO)
(;; ITERation
(iter :type fixnum :initarg :iter :reader iter))
(;; GROUP
(group :type fixnum :initarg :group :reader group))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this class has two additional slots to the ones of MK-SPACE-KENZO: (1) iter, which rep-
resents the number of iterations of the Eilenberg MacLane space, and (2) group, which
represents the group of the Eilenberg MacLane space.

To store spaces which represent loop spaces of spheres, we use a new subclass called
MK-SPACE-LS-SPHERE, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-SPACE-LS-SPHERE (MK-SPACE-KENZO)
(;; ITERation
(iter :type fixnum :initarg :iter :reader iter))
(;; DIMension Sphere
(dims :type fixnum :initarg :dims :reader dims))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this class has two additional slots to the ones of MK-SPACE-KENZO: (1) iter, which repre-
sents the number of iterations of the Loop space, and (2) dims, which represents the di-
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mension of the sphere. When, the Loop Space module constructs a MK-SPACE-LS-SPHERE

instance the value of the iter slot is the number of iterations of the Loop Space and the
value of dims is the value of the dim slot of the MK-SPACE-SPHERE object component of
the Loop Space.

In the future, if we include new static facts which determine other types of spaces,
we only need to define a new subclass of the mk-space-kenzo class for that concrete kind
of spaces.

As we have said, the static facts are properties that are known at the moment of
the construction of the objects. On the contrary, dynamic facts are properties that are
obtained from computations. For instance:

Fact 5.

For n = 4 : πn(S3) has been computed previously and its value is Z/2Z.

Fact 6.

For 0 ≤ n < 4 : Hn(S4) is null.

The storage of dynamic facts was already explained in this memoir, namely in Sub-
subsection 2.2.3.1 where we talked at length about the storage of results in the internal
memory of the microkernel. Then, when a new result is obtained, it is automatically
saved in the internal memory to avoid re-computations. The HES has access to this
internal memory, and therefore to dynamic facts.

Let us present now, the knowledge base of our HES. The rules in the HES represent
possible results to take when specified conditions hold on items of the working memory.
They are sometimes called condition-action rules, since they are IF-THEN rules.

The current knowledge base consists of 23 rules (the complete list can be seen
in [Her11]) which are related to contractible spaces, spheres, Eilenberg MacLane spaces
and Loop spaces of spheres. Let us present here some of them:

Rule 1.
IF X is a contractible space
AND n ≥ 1
THEN πn(X) = 0

Rule 2.
IF X is an Eilenberg MacLane space of type (G, n)
AND n = r
THEN πn(X) = G

Rule 3.
IF X is the sphere S2

AND πn(S3) has been computed previously
THEN πn(X) = πn(S3)
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Both Rules 1 and 2 are applied over static facts; however, the application of Rule 3
involves a dynamic fact, namely the knowledge of a previously computed homotopy
group. Therefore, some rules can only be applied when some computations have been
previously performed.

These rules are used by the inference engine of the HES which uses the forward
chaining method for reasoning [GR05]. This method starts with the available data and
uses inference rules to extract more data until a goal is reached. Let us consider an
example. We want, for instance, to compute π3(∆

4 × ∆5). Then the inference engine
proceeds as follows:

1 ∆4 is a contractible space, Fact 1
2 ∆5 is a contractible space, Fact 1
3 ∆4 ×∆5 is a contractible space, Fact 2 (1,2)
4 3 = n ≥ 1
∴ π3(∆

4 ×∆5) = 0 Rule 1 (3,4)

In the case of having conflicts between some rules, the method which has been used
to solve this problem consists of using the rule with highest priority based on our math-
ematical knowledge. The priority is established by placing the rules in an appropriate
order in the knowledge base. This strategy works properly for small expert systems,
see [BS84], as our HES. This conflict resolution strategy has worked in our system; how-
ever, we are aware of the necessity of a more sophisticated strategy to deal with the
conflicts in the HES when the number of rules increases.

The inference engine has been implemented by means of a very powerful tool of
Common Lisp: the combination of generic functions and methods [Gra96]. When the
class system and the functional organization of Common Lisp are considered, the notions
of generic functions and methods are normally used. A generic function is a functional
object whose behavior will depend on the class of its arguments; a generic function is
defined by a defgeneric statement. The code for a generic function corresponding to
a particular class of its arguments is a method object; each method is defined by a
defmethod statement. We have a generic function:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC homotopy-HES (object n))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which has assigned concrete methods for the different spaces with special characteristics.
Namely, we have four methods for the generic homotopy function, one for each one of the
subclasses of the mk-space-kenzo class, extending their functionality:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD homotopy-HES ((contractible mk-space-contractible) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD homotopy-HES ((sphere mk-space-sphere) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD homotopy-HES ((k-g mk-space-k-g) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD homotopy-HES ((ls-s mk-space-ls-sphere) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each one of these methods uses the concrete rules of the HES for each one of the
spaces with special characteristics to obtain their homotopy groups. As we have said
previously, other subclasses can be defined in the future to represent other kinds of
spaces; then, if we add rules for that kinds of spaces, we only need to define new methods
(one per each new kind of space) to manage the computation of homotopy groups for
them.

The body of those methods is a conditional statement using the Common Lisp cond

instruction. Each one of the cond options represents a rule of the HES. For instance, the
code of the method related to the mk-space-k-g objects is as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defmethod homotopy ((k-g mk-space-k-g) n)
(cond ((equal (iter k-g) n)

(explanation-facility-module k-g n
(format nil "<component>~A</component>" (group k-g))))

((not (equal (iter k-g) n))
(explanation-facility-module k-g n "<component>0</component>"))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each one of the clauses of the conditional statement represents one rule of the HES.
Then, if we want to add new rules to the knowledge base, we only need to include
more clauses at the end of the conditional statement. This is the knowledge acquisition
mechanism of our HES. We are aware of the necessity of including a different knowledge
acquisition mechanism in order to provide a way of adding new rules at runtime and
without modifying the source code. But, at this moment, this elementary organization
has been shown sufficient.

Last but not least, we have an explanation facility module that is a mechanism to
explain the reasoning which the expert system has followed in order to get a conclusion.
This mechanism is provided to the user and is implemented as a generic function.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC explanation-facility-module (space n result))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This generic function takes as argument an object X, a natural number n, and the
value of the πn(X) group. For each one of the subclasses of the mk-space-kenzo class
we have a concrete method which is able to explain the followed reasoning by the HES
to obtain the result. With that information, the explanation-facility-module function
generates a HES-result XML-Kenzo object which is the returned result by the HES.
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Gathering the functionality of the HES and the HAM, our framework is able to com-
pute some homotopy groups. In addition, we can also combine the HES and the HAM
to obtain other homotopy groups as we are going to show in the following paragraph.

2.2.3.2.4 Integration of the HES and the HAM It is worth noting that if we
disable either the HES or the HAM in the microkernel, our framework can keep on
computing homotopy groups with the other one. Then, they can be considered as
independent modules. However, if we enable both modules, the HAM and the HES
cooperate to compute homotopy groups of spaces.

On the one hand, the HAM is used as a last appeal tool in the HES. That is to
say, if none of the rules of the HES can be applied to obtain a homotopy group, the
HES invokes the homotopy algorithm module to check if it is able to obtain some result
applying the algorithm.

On the other hand, the homotopy algorithm module is used to obtain some results
that are used as dynamic facts of the objects. For instance, if we want to compute
πi(S

3) for i = 4, 5, 6 the HES does not have any rules which can help. Then, the HES
invokes the HAM to perform the computations and stores the results in the internal
memory of the microkernel. Subsequently, if we want to compute πi(S

2) for i = 4, 5, 6,
the HES can use Rule 3 and the previously computed homotopy groups of the sphere
S3 to obtain the homotopy groups of the sphere S2; in this way the HES and the HAM
interact. Of course, the microkernel could have also used the HAM to compute πi(S

2)
for i = 4, 5, 6; but the option of using the HES system is better because of the complexity
of the algorithm implemented in HAM.

2.2.3.3 Construction Modules

Construction modules provide the functionality to construct topological spaces in the
microkernel. In particular, they implement the procedures to construct the spaces asso-
ciated with the elements that are children of the constructor element of the XML-Kenzo
specification. Moreover, they are in charge of checking the Kenzo restrictions that were
not included in the XML-Kenzo specification for the constructors of spaces. That is to
say, the functional dependencies over the arguments.

It is worth noting that there are two kinds of functional dependencies over the ar-
guments. On the one hand, if there are at least two arguments and the value of one
of them depends on the value of another one, then, we have a functional dependency
(for instance, in the “Moore” constructor the value of its argument n must be higher
or equal than two times plus four its argument p). On the other hand, if there is just
one argument, but with the singularity of being compound, and the value of one of the
elements of this compound argument depends on the value of another one, then, we also
have a functional dependency (for instance, in the “finite-ss” constructor the value of
its argument is a list of elements which must determine a simplicial set; then, this com-
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Figure 2.14: Construction modules

pound argument is restricted to the values of its components). Both kinds of functional
dependencies are dealt with in the microkernel, namely in the construction modules.

Following the XML-Kenzo specification of the constructor element, we have or-
ganized construction modules in four blocks, one block per each type of constructor
specified in XML-Kenzo (CC, SS, SG and ASG). Besides, each one of these blocks has a
module for each one of the elements of the respective type of constructor, see Figure 2.14.
All these modules are implemented in Common Lisp.

When the microkernel receives a construction request the functionality of the module
associated with the child of the constructor element is invoked. For instance, if the
microkernel receives the request:

<constructor>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
</constructor>

the functionality of the Loop Space module is invoked.

When a construction module is invoked three situations are feasible: (1) a new space
is created in the microkernel, (2) the object was previously built and is simply returned
or (3) a warning is produced.

The procedure to construct the spaces in the construction modules is very similar in
all of them.

1. Check the functional dependencies (this step depends on each particular construc-
tor):

(a) If the object does not fulfill the restrictions a warning XML-Kenzo object is
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returned.

(b) Otherwise, go to step 2.

2. Search in the *object-list* list if the object was built previously:

(a) If the object was built previously, its identification number, in an id XML-
Kenzo object, is returned.

(b) Otherwise, go to step 3.

3. Construct an instance of the mk-space-kenzo class where:

• the value of the rede slot is computed by the reduction degree module; see
paragraph 2.2.3.2.1,

• idnm is automatically generated,

• kidnm is the value obtained from requesting the internal server the construc-
tion of the space, and

• the XML-Kenzo object received (from the external server) as input is assigned
to orgn.

4. Push the object in the *object-list* list of already created spaces.

5. Return the idnm of the object in an id XML-Kenzo object.

The above procedure is followed by most of the construction modules of the micro-
kernel. However some of them do not construct instances of the mk-space-kenzo class
but of some of its subclasses (see Paragraph 2.2.3.2.3) in order to use the additional in-
formation provided by the subclasses in the computation of homotopy groups (see Para-
graph 2.2.3.2.3). However, the values of the slots which come from the mk-space-kenzo

class of those instances are the same explained in the above procedure. To be more
concrete, these construction modules are Sphere, Delta, K-Z, K-Z-2, Cartesian Product,
Suspension, Classifying Space and Loop Space. The procedure implemented in these
modules is different since they are the modules which can produce contractible spaces,
spheres, Eilenberg MacLane spaces and loop spaces of spheres; that is to say, the spaces
whose homotopy groups can be handled in the HES.

The Sphere module constructs instances of the MK-SPACE-SPHERE subclass, where the
value of the dim slot is the dimension of the sphere (this dimension is obtained from the
XML-Kenzo object).

The Delta module constructs instances of the MK-SPACE-CONTRACTIBLE subclass.

Both K-Z and K-Z2 modules construct instances of the MK-SPACE-K-G subclass where
the value of the iter slot is the number of iterations of the Eilenberg MacLane space
(this number is obtained from the XML-Kenzo object) and the value of the group slot
is 1 if is K-Z the working module and 2 if is K-Z2.
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The Cartesian Product module constructs a MK-SPACE-CONTRACTIBLE instance if both
components of the cartesian product are MK-SPACE-CONTRACTIBLE objects; otherwise, it
constructs a MK-SPACE-KENZO instance with the general procedure.

The Suspension module constructs a MK-SPACE-SPHERE instance when the component
of the suspension is a sphere, Sn, the value of the dim slot of the MK-SPACE-SPHERE

instance constructed by the Suspension module is 1 plus n; otherwise, the Suspension

module constructs a MK-SPACE-KENZO instance with the general procedure.

The Classifying Space module constructs a MK-SPACE-K-G instance when the com-
ponent of the Classifying Space is an Eilenberg MacLane space K(G, n), the value of the
iter slot of the MK-SPACE-K-G object constructed by the Classifying Space module is 1
plus n and the value of the group slot is the representation of G (1 in the case of K(Z, n)
and 2 in the case of K(Z/2Z, n)); otherwise, if the component of the Classifying space
is not an Eilenberg MacLane space, then the Classifying Space module constructs a
MK-SPACE-KENZO instance with the general procedure.

Finally, the Loop Space module constructs a MK-SPACE-K-G instance when the com-
ponent of the Loop Space is an Eilenberg MacLane space, K(G, n), the value of the
iter slot of the MK-SPACE-K-G object constructed by the Loop Space module is n mi-
nus the number of iterations of the loop space and the value of the group slot in the
MK-SPACE-K-G object constructed by the Loop Space module is is the representation of
G. When the component of the Loop Space is a sphere Sn, the Loop Space module con-
structs a MK-SPACE-LS-SPHERE instance, where the value of the iter slot is the number
of iterations of the Loop Space and the value of dims is n. Otherwise, the Loop Space

module constructs a MK-SPACE-KENZO instance with the general procedure.

2.2.3.4 Computation Modules

Computation modules provide the functionality to perform computations through the
microkernel. As we have seen in the XML-Kenzo specification, the operation element
only has a child, either the homology or the homotopy element. Hence, the system only
allows the computation of homology and homotopy groups. This situation is reflected
in the computation modules, two Common Lisp modules that compute homology and
homotopy groups respectively.

2.2.3.4.1 Homology module The homology module implements a procedure in
Common Lisp that allows us to compute homology groups through the microkernel.
The procedure not only calls the homology function of the Kenzo system but also wraps
it to enhance the computation of homology groups in the framework, avoiding compu-
tations that would raise errors and optimizing them.

When the microkernel receives a computation request where the child of the
operation element is homology the homology module is invoked. For instance, the re-
quest:
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<operation>
<homology>
<loop-space>

<sphere>4</sphere>
<dim>3</dim>

</loop-space>
<dim>5</dim>

<homology>
</operation>

activates the homology module. The procedure implemented in the homology module
is as follows:

1. Extract the space whose homology wants to be computed.

2. Search in the *object-list* list if the space was built previously:

• If the space was built previously, go to step 3.

• Otherwise, the correspondent construction module builds the space and stores
it in the *object-list* list.

– If the construction module returns a warning then return the warning as
result in a warning XML-Kenzo object.

– Otherwise, go to step 4.

3. Search in the internal memory if the computation was performed previously; see
Subsubsection 2.2.3.1.

• If the computation was stored then the result by means of a result XML-
Kenzo object is returned.

• Otherwise, go to step 4.

4. Monitor the value of the reduction degree of the space, that is stored in the rede

slot.

• If the reduction degree is higher or equal than 0, go to step 5.

• Otherwise, inform with a warning XML-Kenzo object that the system cannot
compute the homology group since the reduction degree of the space is lower
than 0.

5. Ask to the internal server the homology group of the space.

6. Store the result obtained from the internal server in the internal memory; see
Subsubsection 2.2.3.1.

7. Return the result by means of a result XML-Kenzo object.
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The result returned by the homology module when receives the above request is

<result>
<component>3</component>
<component>2</component>
<component>1</component>

</result>

that must be read as Z/3Z⊕ Z/2Z⊕ Z that is the fifth homology group of Ω3S4.

2.2.3.4.2 Homotopy module The homotopy module implements a procedure in
Common Lisp that allows us to compute some homotopy groups through the microkernel
in two different ways depending on the space. The homotopy module uses the HES (see
Paragraph 2.2.3.2.3) if we want to compute homotopy groups of spheres, contractible
spaces, Eilenberg MacLane spaces or loop spaces of spheres; otherwise, the homotopy
module invokes the HAM (see Paragraph 2.2.3.2.2).

When the microkernel receives a computation request where the child of the
operation element is homotopy the homotopy module is invoked. For instance, the
request:

<operation>
<homotopy>
<sphere>3</sphere>
<dim>6</dim>

</homotopy>
</operation>

activates the homotopy module. The procedure implemented in the homotopy module
is as follows.

1. Extract the space whose homotopy wants to be computed.

2. Search in the *object-list* list if the space was built previously.

• If the object was built previously, go to step 3.

• Otherwise, the correspondent construction module builds the space and stores
it in the *object-list* list.

– If the construction module returns a warning then the warning is returned
as result in a warning XML-Kenzo object.

– Otherwise, go to step 4.

3. Search in the internal memory if the computation was performed previously, see
Subsubsection 2.2.3.1.
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• If the computation was stored then the result using a result XML-Kenzo
object is returned.

• Otherwise, go to step 4.

4. Monitor the value of the reduction degree of the space.

• If the reduction degree is higher or equal than 1, go to step 5.

• Otherwise, inform with a warning XML-Kenzo object that the system cannot
compute the homotopy group since the reduction degree of the space is lower
than 1.

5. If the space whose homotopy wants to be computed is an instance of the classes:
mk-space-sphere, mk-space-contractible, mk-space-k-g or mk-space-ls-sphere:

• Invoke the HES; see Paragraph 2.2.3.2.3.

• Otherwise, invoke the HAM; see Paragraph 2.2.3.2.2

6. Store the obtained result in the internal memory; see Subsubsection 2.2.3.1.

7. Return the result using a result XML-Kenzo object if the result was obtained by
the HAM or a HES-result XML-Kenzo object if the result was obtained by the
HES.

The result returned by the homotopy module when receives the above request is

<result>
<component>12</component>

</result>

that must be read as Z/12Z that is the sixth homotopy group of S3.

It is worth noting that the last restriction handled in the framework, that is the
reduction degree restriction, is dealt with in the computation modules; namely, in step
4 of the procedures.

To sum up, computation modules (with the help of processing modules) not only use
the functionality of Kenzo to obtain homology and homotopy groups, but also execute
some test that enhance the original computation capabilities of Kenzo.

2.2.4 External Server

The external server is a Common Lisp component providing access to all services avail-
able in the microkernel interface through an XML-Kenzo interface. The external server
receives XML-Kenzo requests, analyzes them, invokes the microkernel and sends the
results back to the caller.
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The analysis performed in the external server consists in validating the XML-Kenzo
requests against the specification given in the XML-Kenzo language. This means that
constraints imposed in the XML-Kenzo language (type restrictions, independent argu-
ment restrictions of the space constructors, implementation restrictions of the space
constructors, and restriction of the dimension in computations) are checked here.

To validate these constraints an XML validator has been implemented. It takes as
input an XML object, accesses to the XML-Kenzo schema definition and checks that the
XML object is valid against the XML-Kenzo specification. It is worth noting that if we
modify the XML-Kenzo schema definition, for instance adding a new kind of constructor,
the external server evolves without modifying the source code.

As we have seen previously, other restrictions which were not included in the XML-
Kenzo specification are checked at the microkernel level (namely, functional dependencies
of the arguments of the constructors and reduction degree restrictions). Besides, as we
are working with XML objects as data, they must be well-formed XML, but the task of
verifying this aspect is responsibility of the adapter.

2.2.5 Adapter

The adapter is a Common Lisp module that provides access to the services available in
the external server through an OpenMath [Con04] interface.

As we explained in Subsection 2.2.1, the main reason to define the fresh XML-Kenzo
language instead of using the standard OpenMath language was the general purpose
of this standard which makes its adaptation to our context a bit hard. However, the
need of providing a suitable interface, uncoupled of the internal representation used in
the framework, for different clients turns the tables in the most external part of the
framework where we use OpenMath instead of using XML-Kenzo.

The OpenMath standard defines several mathematical objects of general purpose,
such as linear algebra operators or arithmetic functions. However, specific objects, such
as the mathematical structures used in Algebraic Topology, have not been declared; but,
they can be defined following the guidelines given in [Dav00].

In particular, we have extended the OpenMath standard defining the objects specified
in XML-Kenzo. To declare new objects in OpenMath we defined Content Dictionaries.
A Content Dictionary is the declaration of a collection of objects, their names, descrip-
tions, and rules. Namely, we have defined five Content Dictionaries, one for each one of
the groups defined in XML-Kenzo (CC, SS, SG, ASG and Computing). Each one of these
Content Dictionaries contains the declaration of the elements that belong to that group
in XML-Kenzo; see Figures 2.5 and 2.10.

The definition of an object in a Content Dictionary includes its name, its description,
examples of the object and sometimes its formal properties specified using OpenMath
(in which case the equivalent commented property using natural language should also be
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given). For instance, the definition of the sphere element in OpenMath starts as follows:

<CDDefinition>

then the name of the object

<Name>sphere</Name>

the description

<Description>
This symbol is a function with one argument, which should be a natural number
n between 1 and 14. When applied to n it represents the sphere of dimension n.

</Description>

an example (namely S3)

<Example>
<OMOBJ>
<OMA>
<OMS cd="SS" name="sphere"/> <OMI>3</OMI>

</OMA>
</OMOBJ>

</Example>

the commented property in natural language

<CMP>The dimension of the sphere must be a natural number between 1 and 14 </CMP>

the formal property using the OpenMath standard

<FMP>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="set1" name="in"/> <OMV name="n"/> <OMS name="N" cd="setname1"/>

</OMA>
<OMA>
<OMS cd="relation1" name="leq"/> <OMI>1</OMI> <OMV name="n"/>

</OMA>
<OMA>
<OMS cd="relation1" name="leq"/> <OMV name="n"/> <OMI>14</OMI>

</OMA>
</OMA>

</FMP>
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are given and finally the definition is closed.

</CDDefinition>

In this way, all the objects represented in the XML-Kenzo language are specified
in OpenMath. Moreover, another Content Dictionary called Aux to specify the objects
belonging to the results XML-Kenzo group, such as the elements to return warnings
or results, has been defined. The complete definition of the Content Dictionaries can be
seen in [Her11].

At first glance, formal properties could seem a suitable way to represent the restric-
tions imposed in the XML-Kenzo language and this is true for some of them. However
some restrictions (namely, type restrictions) can only be given here by means of the com-
mented properties that are just properties in natural language, and this is not enough
to our purpose.

Therefore, although OpenMath is not strong enough to represent all the mathemat-
ical knowledge that we need in our framework, we can use it in the most external part
of our framework to represent our mathematical objects and exchange them with other
systems, a task that suits perfectly to OpenMath.

Once we have defined the OpenMath objects, we need a software in charge of con-
verting from XML-Kenzo representation to OpenMath representation and viceversa, this
component is called Phrasebook and is programmed as a Common Lisp module of the
adapter.

To sum up, the adapter receives OpenMath requests, checks that the OpenMath
request is well-formed XML by means of a XML package of Common Lisp [Inc05],
converts the OpenMath request into a well-formed XML-Kenzo request, invokes the
external server with the XML-Kenzo request and sends the result received from the
external server back to the caller using the OpenMath format.

2.3 Execution Flow

Once we have presented all the components of our framework, let us illustrate the execu-
tion flow of the system with a detailed scenario: the computation of the sixth homotopy
group of the sphere of dimension 3, π6(S

3), in a fresh session of the Kenzo framework;
that is, neither objects were constructed or computations were performed previously.
The execution flow of this scenario is depicted in Figure 2.15 with a UML-like sequence
diagram.

The OpenMath representation of π6(S
3) is the following one:
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Figure 2.15: Execution flow of the Kenzo framework

<OMOBJ>
<OMA>

<OMS cd="Computing" name="Homotopy"/>
<OMA>

<OMS cd="SS" name="sphere"/>
<OMI>3</OMI>

</OMA>
<OMI>6</OMI>

</OMA>
</OMOBJ>

The adapter receives the previous OpenMath data from a client. This module checks
that the OpenMath instruction is well-formed and the Phrasebook converts the Open-
Math object into the following XML-Kenzo object:

<operation>
<homotopy>

<sphere>3</sphere>
<dim>6</dim>

</homotopy>
</operation>

which is sent to the external server. The external server validates the XML-Kenzo object
against the XML-Kenzo specification, in this case as the root element is operation it
checks that:
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1. The child element of operation is homology or homotopy. X

2. The homotopy element has two children. X

3. The first child of the homotopy element belongs to one of the groups CC, SS, SG or
ASG. X

4. The value of the sphere element is a natural number higher than 0 and lower than
15. X

5. The second child of the homotopy element is the dim element. X

6. The value of the dim element is a natural number. X

All the tests are passed, so, a valid request is sent to the microkernel. In the mi-
crokernel the homotopy module is invoked. When the homotopy module is invoked, the
procedure explained in Paragraph 2.2.3.4.2 is executed. First, the homotopy module
search in *object-list* list of the internal memory if the sphere of dimension 3 was
constructed previously, as this space was not constructed, the sphere module is invoked
to construct it, this module in turn calls the reduction degree module to obtain the
reduction degree of the sphere. Subsequently, once constructed the mk-space-sphere,
as the reduction degree of the space S3 is two, the homotopy module can call the HES.
The HES tries to apply its rules; however, as all the rules which can be applied to
mk-space-sphere instances depend on dynamic facts, it cannot apply any rule (since
we are working with a fresh session, then dynamic facts have not been computed yet).
Therefore, the HES invokes the HAM which performs some intermediary computations
and, in this case as the intermediary tests succeed, calls the internal server to compute
π6(S

3). The result returned by the internal server is:

<result>
<component>12</component>

</result>

This result is stored in the internal memory, to avoid re-computations or to use it
as dynamic fact, by the homotopy module and sent to the adapter through the external
server. Then, the adapter converts the result into its OpenMath representation:

<OMOBJ>
<OMA>

<OMS cd="ringname" name="Zm"/>
<OMI>12</OMI>

</OMA>
</OMOBJ>

and this is the result returned to the client.
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Figure 2.16: Kenzo framework with remote Kenzo computations

2.4 Integration of local and remote Kenzo compu-

tations

As we have said several times throughout this memoir, some Kenzo computations can
be very time and space consuming (requiring, typically several days of CPU time on
powerful dedicated computers). Then, we realized that we could use a dedicated server
to perform those heavy computations instead of overloading the Kenzo framework user’s
computer. This section is an ongoing work, so just some ideas are provided in order to
give a flavor of the way of integrating local and remote Kenzo computations.

As a first step to integrate local and remote Kenzo computations, we can consider
the framework depicted in Figure 2.16 where the computations are not longer performed
locally but in a remote server.

There are two new components in this framework. A powerful and external Kenzo
server and a Kenzo server client.

The external Kenzo server is a dedicated sever which receives XML-Kenzo compu-
tation requests and returns XML-Kenzo results. The Kenzo server client is a program
which is able to invoke the services which the Kenzo sever offers and receive the results
returned by the Kenzo server. It is worth noting that the Kenzo server client can be
seen as a new internal server of the Kenzo framework.

In this new organization we are keeping in our framework the internal sever since
both construction and processing modules use it. On the contrary, the computation
modules are not longer connected with the internal server to perform calculations but
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with the Kenzo server through the Kenzo server client.

Therefore, we have two different ways of performing computations of groups of spaces
in the Kenzo framework. On the one hand, the original way of working, where all the
computations are locally performed by means of the Kenzo internal server. On the
other hand, the new approach presented in this section where all the computations are
performed in an external Kenzo server.

The second mode has obvious drawbacks related to the reliability of Internet connec-
tions, to the overhead of management where several concurrent users are allowed, and
so on. But the original way of working is not fully satisfactory since interesting Kenzo
computations used to be very time and space consuming. Thus a mixed strategy should
be convenient: the computation modules of the microkernel of the Kenzo framework
should decide if a concrete calculation can be done in the local computer or it deserves
to be sent to the Kenzo server. In this case, as it is not sensible to maintain open an
Internet connection for several days waiting for the end of a computation, a subscription
mechanism, allowing the Kenzo framework to disconnect and to be subscribed to the
process of computation in the remote server, should be used.

The difficulties of how to mix local and remote computations have two sources: (1)
the knowledge here is not based on well-known theorems since it is context-dependent
(for instance, it depends on the computational power of a local computer), and so it
should be based on heuristics; and (2) the technical problems to obtain an optimal
performance are complicated, due, in particular, to the necessity of maintaining a shared
state between two different computers.

With respect to the kind of heuristic knowledge to be managed into the intermediary
level, there is some part of it that could be considered obvious: for instance, to ask for a
homology group Hn(X) where the degree n is big, should be considered harder than if n
is small, and then one could wonder about a limit for n before sending the computation
to the remote server. Nevertheless, this simplistic view is to be moderated by some
expert knowledge: it is the case that in some kinds of spaces, difficulties decrease when
the degree increases. The heuristics should consider each operation individually. For
instance, it is true that in the computation of homology groups of iterated loop spaces,
difficulties increase with the degree of iteration. Another measure of complexity is re-
lated to the number of times a computation needs to call the Eilenberg-Zilber algorithm
(see [DRSS98]), where a double exponential complexity bound is reached. Further re-
search is needed to exploit the expert knowledge in the area suitably, in order to devise
a systematic heuristic approach to this problem.

In order to understand the nature of the problem of sharing the Kenzo state between
two computers it is necessary to consider that there are two kinds of state in our context.
Starting from the most simple one, the state of a session can be described by means of
the spaces that have been constructed so far. Then, to encode (and recover) such a
state, a session file containing a sequence of constructors is enough.

Moreover, there exists another kind of state. As we described in Subsection 1.2.1,
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a space in Kenzo consists of a number of methods describing its behavior (explaining,
for instance, how to compute the faces of its elements). Due to the high complexity of
the algorithms involved in Kenzo, a strategy of memoization has been implemented (see
Section 1.2.5). As a consequence, the state of a space evolves after it has been used in
a computation (of a homology group, for instance). Thus, the time needed to compute,
let us say, a homology group, depends on the concrete states of every space involved in
the calculation (in the more explicit case, to re-calculate a homology group on a space
could be negligible in time, even if in the first occasion this was very time consuming).
This notion of state of a space is transmitted to the notion of state of a session. We
could speak of two states of a session: the one sallow evoked before, that is essentially
static and can be recovered by simply re-constructing the spaces; and the other deep
state which is dynamic and depends on the computations performed on the spaces.

To analyze the consequences of this Kenzo organization, we should play with some
scenarios. Imagine during a local session a very time consuming calculation appears;
then we could simply send the sallow state of an object to the remote server, because
even if some intermediary calculations have been stored in local memory, they can be
re-computed in the remote server (finally, if they are cheap enough to be computed on
the local computer, the price of re-computing them in the powerful remote server would
be low). Once the calculation is remotely finished, there is no possibility of sending
back the deep state of the remote session to the local computer because, usually, the
memory used will exhaust the space in the local computer. Thus, it could seem that to
transmit the sallow state would be enough. But, in this picture, we are losing the very
reason why Kenzo uses the memoization (dynamic programming) style. Indeed, if after
obtaining a difficult result (by means of the remote server) we resume the local session
and ask for another related difficult calculation, then the remote server will initialize a
new session from scratch, being obligated to re-calculate every previous difficult result,
perhaps making the continuation of the session impossible. Therefore, in order to take
advantages of all the possibilities Kenzo is offering now on powerful scientific servers, we
are faced with some kind of state sharing among different computers (the local computers
and the server), a problem known as difficult in the field of distributed object-oriented
programming.

The same problem above presented appears in the organization of the Kenzo server.
At this moment, we are working with the Broker architectural pattern, see [B+96, B+07],
in order to find a natural organization of the Kenzo server. In a broker based server, there
would be several Kenzo kernels and a component called broker. The broker component
will be responsible for the distribution of requests arriving to the Kenzo server across the
different Kenzo kernels, and the returning of results. One of the main advantages of using
the Broker pattern is the fact that Kenzo kernels not only can work individually but also
can collaborate to obtain results. However, to achieve the cooperation of different Kenzo
kernels we find the problem of sharing the state among the different kernels presented
in the previous paragraph.

Therefore, more work is necessary to find a plausible solution to integrate local and
remote Kenzo computations.
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2.5 Towards a distributed framework

In the previous section, an ongoing work devoted to increase the computational capabil-
ities of the Kenzo framework through the distribution of computations across local and
remote Kenzo kernels was presented. This section, also related to a work in progress,
presents an alternative to the Kenzo framework which will take advantage of the col-
laborative work of different clients by means of a system located not in user’s computer
but in a shared server. The new framework will be called server framework.

The server framework has some common concerns with the Kenzo framework, since
both frameworks provide a mediated access to the Kenzo system. There are, however,
important differences. The Kenzo framework is installed in the local computer of its
clients. On the contrary, the server framework is located in a remote server, and users of
this system only need a light client able to communicate with the server framework; due
to this fact, we have a collaborative work among different clients of the server framework,
since a client can take advantage of the computations performed by other one. However,
no reward comes without its corresponding price, and several problems, which do not
exist in the Kenzo framework (for instance, the reliability of Internet connections or
the management of concurrency problems), appear in the development of the server
framework.

The most important challenges that we faced in the development of our server frame-
work were:

1. Functionality. The system should provide access to the Kenzo capabilities for
computing (homology and homotopy) groups.

2. Interaction with different clients. The server framework should be designed in such
a way that it could support different kinds of clients (graphical user interfaces, web
applications and so on).

3. Reusability the Kenzo framework components. As far as possible, we want to reuse
the different components implemented in the Kenzo framework, in order to take
advantage of the enhancements included in that framework.

4. Error handling. The server framework should forbid the user some manipulations
raising errors. This question is easily handled due to the reuse of Kenzo framework
components.

5. Decoupling components. In spite of partly reusing the modules implemented for
the Kenzo framework, we are aware that the message passing communication style
of the Kenzo framework is not suitable for a server architecture. Then, a kind of
asynchronous communication among the components must be provided in order
to decouple them.

6. Storage of results. The results must be stored in a persistent way to avoid recal-
culations.
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7. Multithreading. The server framework should be designed in such a way that it
could support the process of several requests at the same time.

8. Management of concurrency problems. The control of concurrency issues is one of
the most important questions when a system can process several requests at the
same time.

9. Subscription mechanism. It is not sensible to keep open an internet connection for
several days waiting for the end of a computation; then, some reactive mechanism
should be implemented, allowing the client to disconnect and to be subscribed in
some way to the process of computation in the remote server.

The previous requirements led us, inspired by the work of [MlBR07], to choose both
the Linda model [Gel85] and the Shared Repository architectural pattern [B+96, B+07]
to reorganize the Kenzo framework components in a server framework. The communi-
cation between the server framework and its clients will be provided by means of web
services [C+07] based on OpenMath. In addition, a mail subscription mechanism will
be implemented to avoid the problem of keeping open a connection during too much
time.

The rest of this section is organized as follows. First of all, Subsection 2.5.1 is
devoted to introduce the Linda model and the Shared Repository pattern. Our server
framework based on the Linda model and the Shared Repository pattern is presented in
Subsection 2.5.2.

2.5.1 The Linda model and the Shared Repository pattern

Our server architecture has been inspired by both the Linda model [Gel85] and the
Shared Repository architectural pattern [B+96, B+07].

The Linda model is based on generative communication, a mechanism for asyn-
chronous communication among processes based on a shared data structure. The asyn-
chronous communication is performed by means of the insertion and extraction of data
over the shared space.

The shared space is called tuple space, since it contains a set of tuples produced
by the different processes. As soon as a tuple is inserted in the tuple space, it has an
independent existence.

Tuples are represented by means of a list of items, the items are split by means
of commas and closed between brackets. Tuples can contain both actual and formal
items. An actual item contains a specific value, like 3 or foo. A formal item acts like a
placeholder (a character “?” denotes a variable which has to be treated as formal).

Example 2.2. Some examples of tuples are:
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Figure 2.17: Framework based on both Linda model and Shared Repository pattern
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In the Linda model, processes access the tuple space using five simple operations:

out: adds a tuple from the process to the tuple space.

in: deletes a tuple from the tuple space and returns it to the process. The process
is blocked if the tuple is not available.

rd: returns a copy of one tuple of the tuple space. The process is blocked if the
tuple is not available.

inp: a non blocking version of the in operation.

rdp: a non blocking version of the rd operation.

By means of the last four operations tuples can be retrieved from a tuple space.
The arguments of these functions are tuple templates, possibly containing formal items
(placeholders or wildcards).

The Shared Repository pattern is based on a very similar idea to the Linda model.
It adds the nuance that a component has no knowledge of both what components have
produced the data it uses, and what components will use its outputs.

Figure 2.17 shows a feasible framework which brings together both Linda model and
the Shared Repository pattern.

An architecture based on the combination of the Linda model and the Shared Reposi-
tory pattern solves two of the challenges that were stated at the beginning of this section.
On the one hand, the communication among the modules of our framework will be per-
formed through the tuple space; in this way, the different components of our system will
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be decoupled. On the other hand, the question of storing results is easily solved using
the Linda model due to the fact that all the computations can be stored as tuples in the
tuple space avoiding re-computations.

2.5.2 A server framework based on the Linda model

A high level perspective of the server framework, based on both the Linda model and
the Shared Repository pattern, as a whole is shown in Figure 2.18.

The rest of this subsection is devoted to present the components of this framework,
as well as some important issues tackled in its development.

2.5.2.1 Components of the server framework

As we said at the beginning of this section, we decided to reuse, as much as possible, the
components implemented in the Kenzo framework in our server framework. This decision
was taken due to the fact that we did not want a powerful Kenzo server which can be used
just by the Kenzo framework to perform long computations (as in the case presented in
Section 2.4), but a server framework which can be employed for different clients taking
advantage of the Kenzo enhancements implemented in the Kenzo framework and the
collaborative work with other clients.

XML keeps on being the chosen technology to encode the data of our framework.
Namely, XML-Kenzo is used for data interchange among the different components of
the framework, and OpenMath is the language employed to communicate the server
framework with the outside world.

The main innovation of the server framework with respect to the Kenzo framework
is the tuple space of the Linda model. In order to use the Linda model in our context,
a running implementation of it must be available. There are different Linda model
implementations for Java [FHA99], C++ [Slu07], and even one for Common Lisp [Bra96].
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Instead of using any of them, we have preferred to develop a fresh Allegro Common Lisp
implementation adapted to our very concrete situation since the Common Lisp version
presented in [Bra96] is out-of-date and the integration of either Java or C++ versions
in our framework could be difficult.

We have developed our implementation of a tuple space holding the following prop-
erties: it must be shared (different modules can access it concurrently), persistent (once
a tuple is stored in the tuple space, it stays in it until a module deletes it) and should
comply with the ACID (Atomicity, Consistency, Isolation and Durability) rules.

Two possibilities were considered when designing our Linda model implementation.
The first one consists of implementing the Linda model from scratch, without using any
kind of external tool (for instance, the tuple space could be installed in computer memory
and we could store the data as lists). This option would be very time consuming since
it must solve well known problems in the domain of concurrent systems. Additionally,
since our data are expressed as XML data, something like XQuery or XPath [E+07]
should be implemented in our case to search tuples inside our system, too.

These problems oriented us towards the second possibility: using already existing
technology. Our previous remarks gave us the clue: XML databases [CRZ03] could be
a good support in our case.

There are two kinds of XML databases: native XML databases and XML enabled
databases . Native XML databases has XML documents as its fundamental unit of
storage; on the contrary, XML enabled databases work with XML objects as data and
use as internal model a tradicional (relational or object oriented) database. We chose
XML enabled databases because we are going to work with XML-Kenzo objects. In XML
enabled databases, each XML object is mapped to a datum of the internal (relational
or object oriented) model of the database giving access to all the features and the
performance that can be found in the corresponding database manager. These databases
include two kind of processes: map XML data to objects or tables, and convert database
elements into XML data.

The chosen database was AllegroCache [Aas05]. AllegroCache is an object oriented
database of Allegro Common Lisp. One of the main advantages of working with Alle-
groCache is that the data are always stored persistently but one can work directly with
objects as if they were in standard memory. Besides it supports a full transactional model
with long and short transactions, meets the classic ACID requirements for a database
and maintains referencial integrity of complex data objects. Persistent classes located
by AllegroCache are just usual CLOS classes, where the metaclass persistent-class is
declared.

In order to complete our Linda model implementation, we still have to deal with
both tuples and the operations to interact with the tuple space. Since we have decided
that tuples rely on XML-Kenzo data but the repository (to be understood as a tuple
space) is based on AllegroCache, it is necessary to convert from XML-Kenzo objects to
instances of persistent classes stored in the database and viceversa. To this aim, we have
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devised a class system represented with UML notation in Figure 2.19.

As we have said previously, the server framework is devoted to perform computations;
then, the requests which arrive to this framework are computation requests. Each com-
putation request is made up of both a topological space and an operation over it, so two
classes, XML-Object (with just one slot whose value is the XML-Kenzo representation of
the space) and operation (with two slots, name and dim, which provide respectively the
name of the operation, homology or homotopy, and the dimension) have been defined to
model the two components of a computation request. The tuple class binds these two
components of a request.

Moreover, in our server framework a tuple can have three different states: (1) the
tuple is pending of being validated, (2) the tuple has been validated, and (3) the system
has obtained the result of the computation request associated with the tuple, and, then,
the tuple has finished its work. Then, a tuple is implemented as an instance of the
pending subclass in the first case, as a valid instance in the second one; and as a
finished instance in the last one. It is worth noting that instances of the finished

class have two additional slots: (1) the correct slot indicates if some problem was found
when processing the tuple by means of a boolean value, and (2) the result slot stores a
warning XML-Kenzo object if some problem was found when processing the tuple or a
result XML-Kenzo object otherwise.

Finally, as our tuple space is an AllegroCache database, the Linda model opera-
tions are implemented in a natural way from the select, insert and delete-instance

functions of AllegroCache. For instance, the inp operation of the Linda model can be
programmed by combining a select operation and a delete-instance one. Thus, we
have built five methods with the following signatures:
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writetuple: tuple→ Boolean,
taketuple: tuple→ tuple,
readtuple: tuple→ tuple,
taketuplep: tuple→ tuple ∨ nil and
readtuplep: tuple→ tuple ∨ nil,

These are, respectively, our versions for out, in, rd, inp and rdp.

This finishes the description of our Linda model implementation. The rest of the
server framework components are three Common Lisp modules based on the constituents
of the Kenzo framework and the interface which allows the communication with the
outside. All the modules are organized in two layers: the business logic layer and the
persistence layer. The persistence layer is in charge of communicating the module with
the tuple space through the operations (writetuple, taketuple and so on) of our Linda
model implementation. The business logic layer always works with XML-Kenzo objects
produced by the persistence layer from the tuples of the tuple space.

Then, our modules are as much independent as possible from the chosen technology
used to implement the Linda model, since the business logic layers always work with
the same representation of objects; then, if we change our implementation of the Linda
model, we only need to change the persistence layers; remaining untouched the business
logic ones.

Let us explain the three modules.

2.5.2.1.1 The I/O module The I/O module business logic layer consists of the
Kenzo framework adapter, presented in Subsection 2.2.5. The persistence layer of this
module allows it to interact with the tuple space by means of the insertion of pending
tuples and the reading of finished tuples. When, a new OpenMath computation request
arrives to the server framework this module is activated and proceeds as follows.

1. Check that the OpenMath request is well formed:

(a) If the request is not well formed a warning OpenMath object is returned.

(b) Otherwise, go to step 2.

2. Transform the OpenMath object into an XML-Kenzo object.

3. The persistence layer searches among the finished tuples of the tuple space if the
result for that request was previously computed:

(a) If the result was stored, the finished tuple which stores the result is read
by the persistence layer and an XML-Kenzo object result is returned to the
business logic layer. Go to step 6.

(b) Otherwise, go to step 4.



88 Chapter 2 A framework for computations in Algebraic Topology

4. The persistence layer constructs a pending tuple from the XML-Kenzo request and
writes it in the tuple space.

5. When the server framework obtains a result for the computation request, the
finished tuple which stores the result for that request is read by the persistence
layer and an XML-Kenzo object result is returned to the business logic layer.

6. Transform the XML-Kenzo result into an OpenMath result.

7. Return the OpenMath result to the client.

2.5.2.1.2 The Processing module The Processing module business logic layer
merges the external server, presented in Subsection 2.2.4, and part of the functional-
ity of the microkernel (namely, the knowledge included in that component to manage
errors), presented in Subsection 2.2.3. This module is in charge of validating the cor-
rectness of requests; namely, all the knowledge included in both the external server and
the microkernel to handle errors is gathered in this module. To be more concrete all the
restrictions managed in the Kenzo framework (that is to say; type restrictions, indepen-
dent argument restrictions of the space constructors, implementation restrictions of the
space constructors, functional dependencies of the arguments of the constructors, reduc-
tion degree restrictions and restriction of the dimension in computations) are handled in
the processing module. Let us note that in spite of only working with computation re-
quests, the server framework also has to check the constraints related to the construction
of spaces in order to avoid errors.

The persistence layer of this module allows it to interact with the tuple space by
means of the insertion of valid and finished tuples and the reading of pending tuples.
When, a pending tuple is written in the tuple space the processing module is activated
and proceeds as follows.

1. The persistence layer takes the pending tuple.

2. The persistence layer transforms the pending tuple into an XML-Kenzo object
which is sent to the business logic layer.

3. The business logic layer checks all the constraints about the XML-Kenzo object:

(a) the business logic layer indicates to the persistence layer to write a valid

tuple in the tuple space if all the constraints are fulfilled.

(b) Otherwise, indicates to the persistence layer to write a finished tuple in the
tuple space with nil as value of the correct slot and the warning produced
as value of the result slot.

4. The persistent layer writes the indicated tuple in the tuple space.
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Figure 2.20: Relations among modules and the tuple space

2.5.2.1.3 The Kenzo module The Kenzo module business logic layer is the internal
server of the Kenzo framework, presented in Subsection 2.2.2. The persistence layer of
this module allows it to interact with the tuple space by means of the insertion of
finished tuples and the reading of valid tuples. When, a valid tuple is written in the
tuple space the Kenzo module is activated and proceeds as follows.

1. The persistence layer takes the valid tuple.

2. The persistence layer transforms the valid tuple into an XML-Kenzo object which
is sent to the business logic layer.

3. The business logic computes the value of the request and sends an XML-Kenzo
result to the persistence layer.

4. The persistence layer constructs a finished tuple from the XML-Kenzo result and
writes it in the tuple space.

At this moment the server framework has only a Kenzo kernel; however, as we said
in Section 2.4, we should use several Kenzo kernels in order to deal with different Kenzo
computations. To this aim, we could use the Broker pattern [B+96, B+07] which will
allow us to distribute different parts of a computation among different Kenzo kernels.
Nevertheless, this task remains as further work.

2.5.2.1.4 Relations among the modules and the tuple space The relations
among the modules and the tuple space are shown in Figure 2.20.

It is worth noting that pending and valid tuples are respectively removed from the
tuple space by the processing module and the Kenzo module; on the contrary, finished
tuples remain in the tuple space to avoid re-computations, achieving the challenge of
storing results.
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2.5.2.1.5 Web Services The previous paragraphs have been devoted to present the
different components of the framework and their relations with the tuple space. Let us
focus now on other innovation with respect to the Kenzo framework: the use of web
services to communicate the server framework with different clients.

In order to offer transparent access to our server computing infrastructure, three web
services have been developed (briefly, a web service is a program, based on XML, which
provides access to an application over the network). These three web services allow the
use of the server framework only knowing the OpenMath format of the computation
requests (no knowledge about Lisp or Kenzo is needed). So, a developer could build
a client (in platforms with support for web services, such as Java, .Net, Lisp and so
on) for our web services only knowing the OpenMath syntax, which is described in
the OpenMath Content Dictionaries, and, of course, the web services technology of the
concrete programming language. We have implemented these web services using the
SOAP 1.1 API for Allegro Common Lisp [Inca]. This API allows us to open the access
to our server on the internet via the SOAP protocol [G+] (a web services protocol). Let
us explain the differences among the three web services.

The first web service makes a request to the server framework and waits until the
result is returned. This web service can be useful in the implementation of a light client
where all the computations are done in the server. However, if the computation asked
to the server framework takes too much time, the connection must be kept open all that
time.

On the contrary, in the second web service, the connection is not maintained, and
therefore it needs not only the OpenMath computation request but also an e-mail address
where the result will be returned. In this case, to send mails, we have chosen to use
Java joins with the JavaMail API [Mic99]. The JavaMail API is a set of abstract APIs
modeling a mail system and providing the required technology. In order to do this, we
need to communicate our framework (developed in Lisp) with a Java application. There
exists different solutions to this problem: we could use the middleware CORBA [Gro],
or use the jLinker package [Incd] provided by Allegro Common Lisp; nevertheless, these
options are too general for our concrete aim. Then, we have used a solution based on
one of the jLinker ideas. jLinker requires two open socket connections between Lisp and
Java, one for calls from Lisp to Java, and another one for the inverse communication. In
our case we only need one socket for communicating Lisp with Java, because our Lisp
system does not require information from our Java system. In Java we have a passive
socket waiting for the creation of a connection by means of an active socket (it is the same
idea presented in Subsubsection 2.5.2.2 to activate the server framework components).
In the Lisp system, whenever a new result is created, the web service creates an active
socket which connects with the passive socket of Java and sends both the e-mail address
of the client and the result of the computation requested. Finally, the Java program
sends an e-mail to the client with the result of the computation asked for the client.
However, this web service is not fully satisfactory, since even if the computation asked
to the server framework only taking a few microseconds, the client always has to check
his e-mail to obtain the result.
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As we have said, neither of the two previous web services is fully satisfactory, since
they implement two extreme interactions: the first one always keeps open the connection
until the result is returned; on the contrary, the second one never does it. Then, to solve
this problem a third web service has been implemented mixing the good properties of
the others. This web service receives an OpenMath computation request and an e-mail
address. When the result is obtained the system checks if the connection with the user is
still open, in that case the web service directly returns the result to the user; otherwise
it sends the result to the e-mail address. Clients of this web service must decide how
much time the connection remains open, an issue which depends on each concrete client.

These web services solve two of the challenges stated at the beginning of this section.
On the one hand, web services and OpenMath are general enough to be used for different
clients. On the other hand, a subscription mechanism is implemented, then, instead of
waiting for the end of a computation, this reactive mechanisms sends an e-mail with the
result to the user if the user connection is not longer available.

2.5.2.2 Communication among modules

Up to now, how the different modules are communicated has not been explained. This is
one of the most important issues, and has been tackled by means of a reactive mechanism,
to be more concrete by means of a publish-subscribe machinery.

This mechanism is based on the existence of both subjects, which can be modified,
and observers subscribed to any possible subjects modification. This design has been im-
plemented following the Publish-Subscriber pattern [B+96, B+07]. This design pattern,
also called Observer, helps to keep synchronized the state of cooperating components,
providing a mechanism for asynchronous communication.

In this pattern, each subject has associated a component which takes the role of
publisher. All the components which depend on changes in the subject are its subscribers
(or observers). The publisher component maintains a registry of currently-subscribed
components. Moreover, subscribers can be interested only in a kind of changes of the
subject, so, this information is also kept by the publisher. Then, whenever the state of
a subject changes, its publisher sends a notification to all the subscribers interested in
that change.

In our context, we only have one subject that is our tuple space (the AllegroCache
database) which has associated a publisher component (a bunch of Common Lisp func-
tions), and the subscribers are the three modules wrapped with a notification mechanism
(several Common Lisp functions) which allow them to receive the notifications from the
publisher.

To store the subscriptions, an AllegroCache database, called from now on subscription
database, is associated with the publisher of the tuple space. This database contains
instances of the subscription class which is defined as follows:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defclass subscription ()
((host :type string :initarg :host :accessor host )
(port :type integer :initarg :port :accessor port )
(type-tuples :type symbol :initarg :type :accessor type :index any))

(:metaclass persistent-class))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This class has three slots:

• host, a string being the host of a subscriber.

• port, an integer being the port of a subscriber.

• type-tuples, a symbol (’pending, ’valid or ’finished) indicating the kind of
tuples which are interesting for the subscriber. In addition this slot is an index
slot. Index slots are the way of filtering and ordering the results of a search in
AllegroCache.

Moreover we have defined this class as persistent by means of the metaclass
persistent-class. This implies that every instance of this class will be permanently
stored (until a module explicitly deletes it) in the database.

The subscription database always contains, at least, three instances: one per each
module of the server framework. To be more concrete, the instance associated with the
I/O module includes its host, port and the interesting tuples for this module, that are
finished tuples:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-instance ’subscription :host "localhost" :port 8001 :type-tuples ’finished)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the instance associated with the processing module includes its host, port and the in-
teresting tuples for this module, that are pending tuples:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-instance ’subscription :host "localhost" :port 8002 :type-tuples ’pending)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and, finally, the instance associated with the Kenzo module includes its host, port and
the interesting tuples for this module, that are valid tuples:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-instance ’subscription :host "localhost" :port 8003 :type-tuples ’valid)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is worth noting that in this case the host of all the modules is the same. That is
to say, currently, all the modules are located in the same computer. However, we could
install each module in a different computer, and devote a dedicated computer for each
one of the modules.
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In the future, if we want to include a new module as subscriber of the tuple space,
we only need to define an instance with its host, port and the interesting tuples. In
this way, whenever an interesting tuple for the module is written in the tuple space, a
notification is sent to the module by the publisher.

Let us explain now the notification mechanism which is based on sockets technology
and is implemented with the Allegro Common Lisp socket package [Incb]. This package
provides all the necessary tools to communicate our modules and the publisher by means
of sockets technology.

Each one of the modules of our server framework has a passive socket in the port
specified in its subscription instance. This passive socket is waiting its activation by
means of the following function:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun observer-<module> ()
(loop
(let ((sock (make-socket :connect :passive :local-port <port>)))
(wait-for-input-available sock)
(close sock) (validate))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where <module> and <port> are replaced with the name of the module and the port
specified in the subscription database for that module. The rest of the function must
be read as follows. We have a loop instruction that repeats always the same process:
(1) creates a passive socket, (2) waits until the passive socket is activated, (3) closes the
socket, and, finally, (4) does the job associated with the module.

Let us stress in the observer-<module> definition the use of the
wait-for-input-available function. This function waits the connection of an
active socket with the passive socket sock. Therefore, the well-known busy-waiting
concurrency problem is solved (a good description of the concurrency issues presented
in this memoir can be consulted in [Sch97]). Busy-waiting happens when a process
repeatedly checks if a condition is true (for instance, the availability of a shared
resource), the problem is that the processor spends all its time waiting for some
condition. A sensible solution to this problem consists of using semaphores which is
the approach followed with the wait-for-input-available function. Note that this
function acts as a binary semaphore, to be precise as a P operation (the P operation
sleeps the process until the resource controlled by the semaphore becomes available).
Then, the module is not repeatedly checking if a new tuple has been written in the
tuple space, but it is slept until someone activates it (this activation is produced when
an interesting tuple for the module is written in the tuple space).

After the description of the implementation of the notification mechanism from the
modules side, let us present now the publisher side. In the publisher we have the following
function definition.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun notify (type-tuple)
(open-network-database "localhost" 8010)
(let ((subscrites

(retrieve-from-index ’subscription ’type-tuple type-tuple :all t)))
(dolist (temp subscrites)
(let ((socket (make-socket :remote-host (host temp) :remote-port (port temp))))
(close socket))))

(close-database))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This function is called when a new tuple is written in the tuple space with the type
of the written tuple, type-tuple, as argument. The workflow followed by this function
when it is activated is as follows: (1) open the subscription database, (2) search all the
modules which are subscribed to the writing of a tuple of type-tuple type in the tuple
space, (3) creates an active socket for each one of the subscribers, and, finally, (4) close
the database. It is worth noting that this function is acting as the V operation in a
binary semaphore (the V operation is the inverse of the P operation: it makes a resource
available). In this way, all the subscribers to the tuples of type-tuple type are activated.

Therefore, the tuple space and the modules are communicated achieving the challenge
of an asynchronous communication among the modules of the framework.

2.5.2.3 An example of complete computation

Once we have described our server architecture, the communication among the modules
and the communication between the server framework and its clients by means of web
services, let us illustrate the execution flow of the server framework with a detailed
scenario: the computation of the sixth homotopy group of the sphere of dimension
3, π6(S

3), in a fresh session of the server framework; that is, computations were not
previously performed. The execution flow of this scenario is depicted in Figure 2.21
with a UML-like sequence diagram.

The server has received the OpenMath request by means of anyone of the three web
services previously presented. The process of the request is the same for all of them,
the only difference is the way of returning the result. The OpenMath representation of
π6(S

3) is the following one:

<OMOBJ>
<OMA>

<OMS cd="Computing" name="Homotopy"/>
<OMA>

<OMS cd="SS" name="sphere"/> <OMI>3</OMI>
</OMA>
<OMI>6</OMI>

</OMA>
</OMOBJ>
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I/O module Processing module Kenzo module tuple space

readtuple (finished tuple)

nil

writetuple(pending tuple)

taketuplep(pending tuple)
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writetuple(valid tuple)

taketuplep(valid tuple)

valid tuple

writetuple(finished tuple)

readtuple (finished tuple)

finished tuple

Client

OpenMath request

OpenMath result

Figure 2.21: Execution flow of the server framework

The I/O module receives the previous OpenMath data from a client through one of
the web services. This module checks that the OpenMath instruction is well-formed and
converts the OpenMath object into the following XML-Kenzo object:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

<operation>
<homotopy>
<sphere>3</sphere>
<dim>6</dim>

</homotopy>
</operation>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the I/O module, which has access to the finished tuples, asks if a
finished tuple with the result of the request exists in the tuple space. To this aim, a
finished template object is created from the XML-Kenzo datum in order to query the
tuple space as follows (the wildcard ’? allows us to define a search template on tuples):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (readtuplep
(make-instance ’finished
:operation (make-instance ’operation :name "homotopy" :dim 6)
:XML_Object (make-instance ’XML_Object :xml-object "<sphere>3</sphere>")
:correct ’? :result ’?)) z

NIL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In this case, NIL is returned, the result is not in the database (as we have said, we are
working in a fresh session, so, no computation has been performed previously). Then
the I/O module writes a pending tuple (corresponding to the request) in the tuple space
(from now on, we will not include the attribute values of the instances if they are not
different from the previous ones):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (writetuple (make-instance ’pending :operation (...) :XML_Object (...))) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Due to the existence of a new pending tuple the processing module is activated, and
it asks for a pending tuple:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (taketuplep (make-instance ’pending :operation ’? :XML_Object ’?)) z
#<PENDING @ #x2143918a>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With (make-instance ’pending :operation ’? :XML Object ’?), the processing
module asks for a general pending tuple. The taketuplep method deletes the element
of the database and creates an XML-Kenzo object used by the processing module to
validate the request. In this case, the request is considered sensible so the processing
module writes a valid tuple in the tuple space:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (writetuple (make-instance ’valid :operation (...) :XML_Object (...))) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, the Kenzo module is activated due to the writing of a new valid tuple
in the tuple space. Then it asks for the new tuple:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (taketuplep (make-instance ’valid :operation ’? :XML_Object ’?)) z
#<VALID @ #x214be502>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and computes the result of the request writing the result as a finished tuple:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (writetuple
(make-instance ’finished :operation (...) :XML_Object (...)

:correct t :result "<component>12</component>")) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then the I/O module is activated and asks again for the result of the request.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (readtuplep
(make-instance ’finished :operation (...) :XML_Object (...)

:correct ’? :result ’?)) z
#<FINISHED-PERSISTENT oid: 5022 @ #x214cff02>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, the result is not deleted from the tuple space because a readtuplep

operation is used. Then, the result can be used again, without recomputing it.

Eventually, the I/O module converts the result into its OpenMath representation

<OMOBJ>
<OMA>

<OMS cd="ringname" name="Zm"/>
<OMI>12</OMI>

</OMA>
</OMOBJ>

and this is the result returned to the client.

2.5.2.4 Concurrency issues

In the previous subsubsection, we have presented an execution scenario where there is
only one request in the system. In general, several requests coexist at the same time in
the server framework; then, some concurrency problems can appear and must be dealt
with. Let us remember that the management of concurrency problems was one of the
challenges that we faced in the development of the server framework.

It is worth noting that most of the typical concurrency problems are solved thanks to
the organization of our framework, based on the Linda model. As the server is based on
this model, if a process wants to modify a tuple, it must extract it, modify it and then
insert it again in the tuple space (remark that the extraction and the insertion operations
are atomic). Therefore different processes keep independent among themselves, avoiding
the occurrence of several problems related to concurrency.

Concurrency appears in two different ways in our server architecture. On the one
hand, different modules can work at the same time; that is to say, while the Kenzo module
is computing a homology group, the processing module can validate the correctness of a
request and the I/O module can receive new requests and write them in the tuple space.
On the other hand, several processes of the same module can work at the same time;
that is to say, the Kenzo module can perform several computations simultaneously.

In the former case (different modules working at the same time), the most important
concurrency features which must be considered in our server framework are:

• Absence of deadlocks. A deadlock happens when two processes are waiting for the
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other to finish, and thus neither ever does. In our server framework this situation
never happens since the execution of each one of the modules is independent from
the other ones.

• Mutual exclusion. Mutual exclusion occurs when some algorithms avoid the simul-
taneous modification of a shared resource. In our server, the shared resource is the
tuple space; however, each server framework component only access to a kind of
tuples. Therefore, in spite of concurrently accessing to the tuple space, the server
framework components access to different kinds of tuples; then, inconsistencies are
avoided and the good property of mutual exclusion is reached.

• Absence of starvation. Starvation describes a situation where a process is unable
to access to shared resources and is unable to make progress. This situation is not
feasible in our server framework, since the modules are only activated when new
resources are included in the tuple space. Moreover, the modules access to the
tuple space by means of non blocking operations; then, if a module asks data to
the tuple space but there is no datum, then the module backs to sleep. Therefore,
our server framework components never starve.

Let us focus now on the latter case (several processes of the same module working
at the same time). Every time that a module is activated a new thread (in charge of
executing the instruction of the correspondent module) is built from the main process.
In order to do this, a multiprocessing package of Common Lisp, which provides all
the server framework modules with the main tools for working in a concurrent way
(management of threads, locks, queues and son on), has been used. In this situation, the
most important concurrency features which must be considered in our server framework
are:

• Absence of deadlocks. Each thread of a module is independent from the rest of
threads of the module. Then, none waits for the others to finish and, then, dead-
locks never happen.

• Absence of starvation. A module launches a thread only when the module has
received some data to process and this thread is killed when if finishes its task.
Therefore, starvation never happens since the thread does not access to the shared
resource to receive the data, because they are created with the data that must
process.

• Absence of race condition problems. Race conditions arise in software systems
when separate threads of execution depend on some shared state. It is worth
noting that if two processes read (readtuplep) the same tuple, two different tuples
will be created when each process writes its result, then, the race condition problem
is avoided.

This short analysis shows that some typical inconsistencies produced by concurrency
problems are avoided in our server framework.



Chapter 3

Extensibility and Usability of the
Kenzo framework

The previous chapter was mainly devoted to present a framework which provides a me-
diated access to the Kenzo system, constraining its functionality, but providing guidance
to the user in his navigation on the system. However, we cannot consider that the Kenzo
framework is enough to fully cover our aims.

On the one hand, we want to be able to increase the capabilities of the system
by means of new Kenzo functionalities or the connection with other systems such as
Computer Algebra systems or Theorem Prover tools. On the other hand, the XML
interface (to be more concrete, the OpenMath interface) is not desirable for a human user;
then, a more suitable way of interacting with the Kenzo framework must be provided.

To cope with the extensibility challenge, we have deployed the Kenzo framework as
a client of a plug-in framework that we have developed. This allows us to add new
functionality to the Kenzo framework without accessing to the original source code.
Moreover, as a client of both Kenzo and plug-in frameworks, an extensible friendly
front-end has been developed. Combining the frameworks and the front-end we are able
to improve the usability and the accessibility of the Kenzo system, increasing the number
of users who can take profit of the Kenzo computation capabilities. The whole system,
that is to say, the merger of the two frameworks and the front-end, is called fKenzo, an
acronym for friendly Kenzo [Her09].

The rest of this chapter is organized as follows. The plug-in framework, which the
Kenzo framework is a client of, is explained in Section 3.1. The main client of the Kenzo
framework, an extensible user interface, is introduced in Section 3.2.
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3.1 A plug-in framework

Architectures providing plug-in support are used for building software systems which
are extensible and customizable to the particular needs of an individual user. Several
interesting plug-in approaches exist. One of the first plug-in platforms was Emacs (“Ed-
itor MACroS”) [Sta81], whose extensions are written in elisp (a Lisp dialect) and can be
added at runtime. The Eclipse platform [Ecl03] is certainly the most prominent represen-
tative of those plug-in platforms and has driven the idea to its extreme: “Everything is a
plug-in”. Plug-ins for Eclipse are written in Java. Other examples are OSGi [OSG03], a
Java-based technology for developing components, Mozilla [Moz], a web browser with a
great amount of extensions, or Gimp [Pec08], a famous image processing software which
allows one the addition of new functionality by means of plug-ins.

Kenzo is also a plug-in system: to add new functionality to the Kenzo system, a
file with the new functions must be included; remaining untouched the Kenzo core. In
general, all the systems implemented in Common Lisp are extensible. Therefore, to
extend the functionality of a Common Lisp program, we, usually, only need to load new
functions by means of Common Lisp files.

One of the most important challenges that we faced in the development of the Kenzo
framework was the management of its extensibility. On the one hand, we wanted that
the Kenzo framework could evolve at the same time as Kenzo. On the other hand, the
framework should be enough flexible to integrate new tools, such as other Computer
Algebra systems and Theorem Provers tools. In addition, we wanted that the original
source code of the Kenzo framework remained untouched when the system was extended.
Therefore, we decided to include a plug-in support in our framework by means of a plug-
in framework developed by us.

The rest of this section is organized as follows. Subsection 3.1.1 is devoted to present
the architecture of the plug-in framework. Explanations about the way of adding new
functionality to the Kenzo framework through the plug-in framework are provided in
Subsection 3.1.2.

3.1.1 Plug-in framework architecture

Extensibility is very important because an application is never really finished. There
are always improvements to include and new features to implement.

With the aim of being able to extend different systems we have developed a plug-
in framework. This framework may have systems of very different nature as clients.
Therefore, the way of extending a client can be different to the way of extending the rest
of them. This issue has been taken into account in the design of the plug-in framework.

The implementation of the plug-in framework has been based on the plug-in pattern
presented in [MMS03]. This pattern distinguishes two main components: the plug-ins
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Figure 3.1: Plug-in framework

and the plug-in manager. Moreover, we have included two improvements of our own, the
plug-in repository and the plug-in registries (each client of the plug-in framework will
have associated a plug-in registry). A high level perspective of the plug-in framework
is depicted in Figure 3.1. Let us explain each one of the constituents of our plug-in
framework.

A plug-in in our system is an OMDoc document which consists of different resources
used to extend a concrete client. Since the clients of the plug-in framework can be very
different, the nature of the resources included in them are different, too. However, as it
is desirable that the format of all the plug-ins (not the format of the resources which
obviously depends on each client) was common for the different clients, we have chosen
OMDoc [Koh06] as the format to encode our plug-ins. OMDoc is an open markup
language for mathematical documents, and the knowledge encapsulate in them. The
OMDoc plug-ins are documents that wrap the necessary resources to extend a concrete
client of the plug-in framework.

Essentially, an OMDoc plug-in is an XML document, that stores the metadata about
the plug-in (authorship, title, and so on) and wraps the resources (by means of references
to other files that, of course, depend on the concrete client) which extend a client of the
plug-in framework.

For instance, let us suppose that we have a client, called client-1, of our plug-in
framework; and we want to extend that client by means of the resources stored in a
file called client-1-resources. Then, the OMDoc plug-in, called new-module-client-1,
will contain, in addition to the metadata about the plug-in, the following XML fragment
(all the OMDoc plug-ins follow the same pattern).

<code id="new-module-client-1">
<data format="client-1"> client-1-resources </data>

</code>

The above XML code must be read as follows. The id argument of the code tag
indicates the name of the new module. Inside this tag the different resources to extend
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client-1 with the new plug-in are referenced by means of the data tag. This tag has as
format attribute the name of the concrete client, in this case client-1, and the value of
the data tag is the reference to the concrete resource. This information is very useful
for the plug-in manager.

When the plug-in framework receives as input an OMDoc plug-in, the plug-in man-
ager is invoked. The plug-in manager is a Common Lisp program that consists of several
modules, one per client of the plug-in framework. As we have said, each one of these
modules is related to a concrete client, and then, is implemented depending on the exten-
sibility needs of each one of them. The plug-in manager, depending on the information
stored in the plug-in (namely the value of the format attribute of the data tag), invokes
the corresponding client module. Subsequently, this module extends the client with the
indicated resources.

The plug-ins and the resources referenced by them are stored in a folder included in
the plug-in framework called the plug-in repository.

Finally, each client of the plug-in framework has associated a file called plug-in reg-
istry. Each one of these files stores a list of the plug-ins that were added to the cor-
responding client. When a new plug-in is included in a client, the information about
that plug-in is stored in its plug-in registry. Moreover, when a client is started its first
task consists in sending the information of the plug-in registry to the plug-in manager
in order to achieve the same state of the last configuration of the client.

If some problem appears during the loading of a plug-in the plug-in framework in-
forms of the error and aborts the loading in order to avoid inconsistencies.

Once we have presented the plug-in framework, let us explain how one of its clients,
that is the Kenzo framework, uses it. Another client of this framework is a customizable
front-end that will be presented in Section 3.2.

3.1.2 The Kenzo framework as client of the plug-in framework

As it was discussed earlier, one of the most important issues tackled in the design of the
Kenzo framework was the deployment of an extensible architecture. A good approach
to solve this question consists in having a component-based architecture as base-system,
and then equipping it with different components. This is the approach followed in the
Kenzo framework. As was explained in the previous chapter, the base-system of the
Kenzo framework is based on the Microkernel architectural pattern, therefore, we have
a component-based architecture. Moreover, to be able to include new improvements
and features, the Kenzo framework has been implemented as a client of the plug-in
framework.

As we explained previously, all the Kenzo framework components are Common Lisp
modules, see Section 2.2, and since Common Lisp programs are designed to be extensible,
we only need to load new functions in each component by means of Common Lisp files.
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This is the same method followed in Kenzo to extend its functionality.

The plug-in manager of the plug-in framework contains a component that is devoted
to load new functionality in the Kenzo framework. This module extends the functionality
of the Kenzo framework components with two different aims. On the one hand, to
provide access to new Kenzo functionality through the Kenzo framework. On the other
hand, to interact with other systems, such as Computer Algebra systems or Theorem
Provers tools, by means of the Kenzo framework. Let us present the integration of new
functionality in the Kenzo framework.

Let us suppose that we have developed a new module for Kenzo that allows us
to construct a kind of spaces that were not included in the Kenzo system, we will see
concrete examples in Chapter 5, and, of course, we want to include the new functionality
in our framework. Then, we need to extend all the components of the framework by
means of the following files:

• a file (let us called it new-constructor.lisp) with the functionality to include the
new constructor developed for the Kenzo system in the Kenzo component of the
internal server,

• a file (let us called it new-constructor-is.lisp) with the functionality to expand
the interface of the internal server to support the access to the new Kenzo func-
tionality,

• a file (let us called it new-constructor-m.lisp) with the functionality for the mi-
crokernel to include a new construction module. This functionality follows the
pattern explained in Subsubsection 2.2.3.3 for constructions modules. Moreover,
this file also expands the microkernel interface to provide access to the functionality
of the new construction module,

• the new specification of the XML-Kenzo language including the new constructor.
As we have explained previously in Subsection 2.2.4, this will extend the capabili-
ties of the external server. The file containing the XML-Kenzo specification is the
XML-Kenzo.xsd file, and

• a file (let us called it new-constructor-a.lisp) with the functionality which in-
creases the adapter functionality to transform from OpenMath requests to XML-
Kenzo requests.

The new-constructor plug-in is an OMDoc document which contains some metadata
about the document and references the different files in the following way.
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<code id="new-constructor">
<data format="Kf/internal-server"> new-constructor.lisp </data>
<data format="Kf/internal-server"> new-constructor-is.lisp </data>
<data format="Kf/microkernel"> new-constructor-m.lisp </data>
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/adapter"> new-constructor-a.lisp </data>

</code>

Each data element has specified in the format attribute one of the Kenzo framework
components (internal server, microkernel, external server and adapter). The value of a
data element is a file which extends the Kenzo framework. The indicated component in
the format attribute of a data element is extended by means of the file indicated with
the value of the data element. For instance in the case of the first data element, the
functionality of the internal server is extended by means of the new-constructor.lisp

file.

The plug-in framework receives as input the new-constructor plug-in. Subsequently,
the Kenzo framework module of the plug-in framework is invoked. This module is
split in four constituents, one per Kenzo framework component. The behavior of the
constituents in charge of the internal server, the microkernel and the adapter consists in
loading the new functionality in the corresponding Kenzo framework component. The
constituent for the external server overwrites the XML-Kenzo specification with the new
one (no additional interaction is needed to extend the functionality of the external server,
since when the XML-Kenzo specification is changed the external server is automatically
upgraded).

Finally, the information of the new plug-in is stored in the plug-in registry of the
Kenzo framework to store the configuration for further uses.

This was related to the inclusion of new Kenzo functionality in the Kenzo framework;
the case of widening the Kenzo framework through the addition of an internal server (a
Computer Algebra system or a Theorem Prover tool) is practically analogous. The main
difference is the file related to the internal server which, instead of adding new Kenzo
functionality to the current internal server, shows how to connect with the new system.
Examples of the addition of new internal servers will be presented in Chapter 4.

The features associated to the Kenzo framework owing to its implementation as a
client of the plug-in framework are listed below.

• Extensibility: the Kenzo framework can be extended by plug-ins. Each new func-
tionality can be realized as an independent plug-in.

• Flexibility: each unnecessary plug-in can be removed and each necessary plug-in
can be loaded at run-time. Therefore the Kenzo framework can be configured in
such a way that it has only the needed functionality.

• Storage of configuration: thanks to the registry associated to the Kenzo framework,
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the configuration of a session is stored for the future.

• Easy to install: the installation of plug-ins is friendly from the plug-in folder.

3.2 Increasing the usability of the Kenzo framework

The design of a client for our framework was one of the most important issues tackled
in our development. The client should not only take advantage of all the enhancements
included in the Kenzo framework but also be designed to increase the usability and
accessibility of the Kenzo system. In this context, the program designers in Symbolic
Computation always meet the same decision problem: two possible organizations1.

1. Provide a package of procedures in the programming language L, allowing a user
of this language to load this package in the standard L-environment, and to use
the various functions and procedures provided in this package. The interaction
with the procedures is by means of a command line interface.

2. Provide a graphical user interface (GUI) with the usual buttons, menus and other
widgets to give to an inexperienced user a direct access to the most simple desired
calculations, without having to learn the language L.

The main advantage of the former alternative is that the total freedom given by
the language L remains available; however, the technicalities of the language L remain
present as well. Moreover, the prompt of a command line interface does not usually pro-
vide adequate information to the user about the correct command syntax. Besides, since
the user has to memorise the syntax and options of each command, it often takes consid-
erable investment in time and effort to become proficient with the program. Therefore,
command line interfaces may not be appealing to new or casual users of a software sys-
tem. The vast majority of Computer Algebra systems fall in this category, including
GAP, CoCoA, Macaulay, and Kenzo. On the contrary, graphical interfaces (the second
alternative) are easier to use, since instead of relying on commands, the GUI commu-
nicates with the user through objects such as menus, dialog boxes and so on. These
objects are a means to provide a more intuitive user interface, and supply more informa-
tion than a simple prompt. However, no reward comes without its corresponding price
and GUIs can slow down expert users.

Since the final users of our framework are Algebraic Topology students, teachers
or researchers that usually do not have a background in Common Lisp, we opted for
implementing a user-friendly front-end allowing a topologist to use the Kenzo program
guiding his interaction by means of the Kenzo framework, without being disconcerted
by the Lisp technicalities which are unavoidable when using the Kenzo system. This
GUI is communicated with the Kenzo framework through the OpenMath interface of the

1These are, of course, two extreme positions: many other possibilities can be explored between them.
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adapter and can be customized by means of the plug-in framework. The whole system,
that is to say the two frameworks and the GUI, is called fKenzo, an acronym for friendly
Kenzo [Her09]. We have talked at length about the Kenzo framework in Chapter 2 and
also about the plug-in framework in Section 3.1, so, let us present now the GUI of the
fKenzo system.

The fKenzo GUI was implemented with the IDE of Allegro Common Lisp [Incc].
Various features have been implemented in this GUI. They improve the interaction with
the Kenzo system from the user point of view. The main features of the fKenzo GUI
are listed below.

1. Easy to install : the installation process is based on a typical Windows installation.

2. No external dependencies : the fKenzo GUI does not need any additional installa-
tion to work.

3. Functionality : the fKenzo GUI allows the user to construct topological spaces of
regular usage and compute homology and (some) homotopy groups of these spaces.

4. Error handling : this GUI is a client of the Kenzo framework; and all the enhance-
ments included in the framework are inherited by the GUI. In this way, the user
is guided in his interaction with the system and some errors are avoided.

5. Consistent metaphors : an advanced user of Kenzo feels comfortable with the
fKenzo GUI; in particular, the typical two steps process (first constructing an
space, then computing groups associated to it) is explicitly and graphically cap-
tured in the GUI.

6. Interaction styles : the user can interact with the GUI by means of the mouse and
also using keyboard shortcuts.

7. Mathematical rendering : the fKenzo GUI shows results using standard mathemat-
ical notation.

8. Storage of sessions : session files include the spaces constructed during a session,
and can be saved and loaded in the future. Moreover, these session files can be
exported, used to communicate them to other users and rendered in browsers.

9. Storage of results : result files storing the results obtained during a session, as in
the case of session files, can be saved, exported, used to communicate them to
other users and rendered in browsers.

10. Customizable: the fKenzo GUI can be configured to the needs of its users.

11. Extensibility : the fKenzo GUI can evolve with the Kenzo framework using the
plug-in framework.

The rest of this section is devoted to present the GUI of the fKenzo program, trying
to cover both the user (Subsections 3.2.1 and 3.2.2) and the developer (Subsections 3.2.3
and 3.2.4) perspectives.
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Figure 3.2: Initial screen of fKenzo

3.2.1 fKenzo GUI: a customizable user interface for the Kenzo
framework

To use fKenzo, one can go to [Her09] and download the installer. After the installation
process, the user can click on the fKenzo icon, accessing to an “empty” interface, which
is shown in Figure 3.2.

Then, the first task of the user consists in loading some functionality in the fKenzo
GUI through the different modules included in the distribution of fKenzo. From the user
point of view, a module is a file which loads functionality in the fKenzo GUI.

The main toolbar of the fKenzo GUI is organized into two menus: File and Help.
The File menu has the following options: Add Module, Delete Module, and Exit. The
aim of the Add Module option consists in loading the functionality of a module. The
user can configure the interface by means of five modules: Chain Complexes, Simplicial
Sets, Simplicial Groups, Abelian Simplicial Groups and Computing. Each one of these
modules corresponds with one of the XML-Kenzo groups explained in Subsection 2.2.1.
In addition, some other experimental modules can be installed, such as a possibility
of interfacing the GAP Computer Algebra system or the ACL2 Theorem Proving tool;
these modules will be presented in Chapter 4.

When one of the “construction modules” (Chain Complexes, Simplicial Sets, Simpli-
cial Groups or Abelian Simplicial Groups) is loaded, a new menu appears in the toolbar
allowing the user to construct the spaces specified in the XML-Kenzo schema for that
type, see Figure 2.5 of Subsection 2.2.1. Moreover, two new options called Save Session
and Load Session are added to the File menu. When saving a session a file is produced
containing the spaces which have been built in that session. These session files are saved
using the OpenMath format and can be rendered in different browsers. These session
files can be loaded, from the Load Session option, and allow the user to resume a saved
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session.

When the Computing module is loaded, a new menu appears in the toolbar allowing
the user to compute homology and homotopy groups of the constructed spaces. Besides,
a new option called Save Computing appears in the File menu. This option works in
a similar way to Save Session but instead of saving the spaces built during the current
session, it saves the computations also using the OpenMath format. However, these
results cannot be reloaded into the fKenzo GUI, since they cannot be re-used in further
computations. It is worth noting that computations depend on the state of the system,
and this state cannot be exported, so we cannot re-use computations performed in
a different session. When the user exits fKenzo, its configuration is saved for future
sessions.

The visual aspect of the fKenzo panel is as follows. The “Main” tab contains, at its
left side, a list of the spaces constructed in the current session, identified by its type (CC
= Chain Complex, SS = Simplicial Set, SG = Simplicial Group, AG = Abelian simplicial
Group) and its internal identification number (the idnm slot of the mk-object instance
of the microkernel). When selecting one of the spaces in this list, its standard notation
appears at the bottom part of the right side. At the upper part, there are two tabs
“Session” (containing a textual description of the constructions made, see an example
of session in Figure 3.3) and “Computing” (containing the homology and homotopy
groups computed in the session; see an example in Figure 3.4). In both “Session” and
“Computing” tabs the results are rendered using again standard mathematical notation.

In the fKenzo GUI, focus concentrates on the object (space) of interest, as in Kenzo.
The central panel takes up most of the place in the interface, because it is the most
growing part of it (in particular, with respect to computing results). It is separated by
means of tabs not only because on the division between spaces and computed results
(the system moves from one to the other dynamically, putting the focus on the last user
action), but also due to the extensibility of fKenzo. To be more precise, our system is
capable of evolving to integrate with other systems (computational algebra systems or
theorem proving tools), so playing with tabs in the central panel allows us to produce a
user sensation of indefinite space and separation of concerns. Examples of the integration
of a Computer Algebra system and a Theorem Prover tool in fKenzo will be presented
in Chapter 4.

3.2.2 fKenzo in action

To illustrate the performance of the fKenzo program, let us consider a hypothetical
scenario where a graduate course is devoted to fibrations, in particular introducing the
functors loop space Ω and classifying space B. In the simplicial framework, [May67]
is a good reference for these subjects. In this framework, if X is a connected space,
its loop space ΩX is a simplicial group, the structural group of a universal fibration
ΩX ↪→ PX → X. Conversely, if G is a simplicial group, the classifying space BG is
the base space also of a universal fibration G ↪→ EG → BG. The obvious symmetry
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Figure 3.3: Example of session in fKenzo

between both situations naturally leads to the question: in an appropriate context, are
the functors Ω and B inverse of each other?

For the composition BΩ, let us compare for example the first homology groups of S2

with the homology groups of BΩS2, and the homology groups of ΩS2 and ΩBΩS2.

Since we are planning to work with simplicial sets and simplicial groups, we
can load the necessary functionality using File → Add Module, and then choosing
Simplicial-Groups.omdoc. The interface changes including now a new menu called Sim-
plicial Sets and another one called Simplicial Groups. When selecting Simplicial Sets
→ sphere, fKenzo asks for a natural number, as we saw in the definition of XML-Kenzo,
limited to 14. Then (see Figure 3.3) the space denoted by SS 1 appears in the left side
of the screen; when selecting it, the mathematical notation of the space appears in the
bottom part of the right side of the panel. The history of the constructed spaces is
shown in the “Session” tab.

If we try to construct a classifying space from the Simplicial Group menu, fKenzo
informs us that it needs a simplicial group (thus likely an error is avoided). We can then
construct the space ΩS2. Since ΩS2 is the only simplicial group in this session, when
using Simplicial Groups → classifying space, ΩS2 is the only available space appearing
in the list which fKenzo shows. Finally, we can construct the space ΩBΩS2.

When loading the Computing.omdoc file, the menu Computing, where we can select
“homology”, becomes available. In this manner we can compute the homology groups
of the spaces as can be seen in Figure 3.4.

These results give some plausibility to the relations BΩ = id and ΩB = id.

The reader could wonder why the simpler case of S1 has not been considered. Using
again fKenzo this time a warning is produced; yet the result BΩS1 ∼ S1 is true. But
the Eilenberg-Moore spectral sequence cannot be used in this case to compute H∗ΩS

1,
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Figure 3.4: Example of computations in fKenzo

Figure 3.5: Reduction degree error in fKenzo

because S1 is not simply connected, and fKenzo checks this point (see Figure 3.5).
The symmetry comparison between S1 and ΩBS1 fails too, for another reason: the
“standard” S1 is a topological group, but the standard simplicial representation of S1

cannot be endowed with a structure of simplicial group. This situation is reflected in
the construction of classifying spaces in fKenzo since the sphere S1 does not appear in
the list which fKenzo shows.

This is a good opportunity to introduce the Eilenberg MacLane space K(Z, 1), the
“minimal” Kan model of the circle S1, a simplicial group. In order to work with Eilenberg
MacLane spaces in fKenzo, the Abelian Simplicial Group module should also be loaded,
in this way the space K(Z, 1) can be built, as can be seen in Figure 3.3. The fKenzo
comparison between the first homology groups of K(Z, 1) and ΩBK(Z, 1) does give the
expected result.

We think this illustrates how fKenzo can be used as a research tool, precisely a
specialized computer tool, for Algebraic Topology.

Up to now, we have presented the user point of view. In the following subsections,
some explanations on the development of the fKenzo GUI are given.
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3.2.3 Customization of the fKenzo GUI

The most important challenge that we have faced in the development of the fKenzo GUI
was the deployment of an extensible and modular user interface. Modularity has two
aims in fKenzo. One of them is related to the separation of concerns in the user interface.
The second one allows us to design a dynamically extensible GUI, where modules are
plugged in.

3.2.3.1 Declarative programming of User Interfaces

In all the graphical user interfaces exist a separation of concerns, hence if we want to
extend a GUI we need to extend it at all its levels. With respect to this aspect, our
inspiration comes from [HK09], where a proposal for declarative programming of user
interfaces was presented. In [HK09], the authors distinguished three constituents in any
user interface: structure, functionality and layout.

Structure: Each user interface (UI ) has a specific hierarchical structure which typically
consists of basic elements (like text input fields or selection boxes) and composed
elements (like dialogs).

Functionality: When a user interacts with a UI, some events are produced and the UI
must respond to them. The event handlers are functions associated with events of
some widget and that are called whenever such event occurs (for instance clicking
over a button).

Layout: The elements of the structure are put in a layout to achieve a visually appealing
appearance of the UI. In some approaches layout and structural information were
mixed, however in order to obtain clearer and reusable implementations these
issues should be distinguished.

The approach presented in [HK09] used the Curry language [Han06] to declare all
the ingredients. Instead of doing a similar work, but using the Common Lisp language
(recall that our GUI is implemented in Common Lisp) to all the ingredients, we have
preferred to employ different technologies devoted to each one of the constituents. Let
us present each one of these ingredients in our context using a concrete example, that
is the window used to construct a sphere in the fKenzo GUI, see Figure 3.6.

The structure of our GUI is provided by XUL [H+00]. XUL, XML User Interface,
is Mozilla’s XML-based user interface language which lets us build feature rich cross-
platform applications defining the structure of all the elements of a UI. Then, a XUL
description must be provided in order to define the structure of the elements of our
GUI. The main reason to encode the structure of our GUI by means of XUL is the
reusability of this language. The XUL code can be used in order to build forms in
different environments for different applications without designing new interfaces.



112 Chapter 3 Extensibility and Usability of the Kenzo framework

Figure 3.6: Sphere dialog

Let us examine the structure of the window of Figure 3.6. That window is called
“sphere” and gathers in a groupbox the following elements: the text “Build a Sphere of
dimension:”, a textbox to introduce a natural number between 1 and 14, and a row that
contains both “Create” and “Cancel” buttons. Moreover, each button has associated an
event when its state is changed, namely when the button is clicked. We can specify that
structure in the following XUL code:

<window name="sphere">
<groupbox>

<label value="Build a Sphere of dimension:"/>
<textbox id="n" type="number" min="1" max="14"/>
<hbox>
<button label="Create" name="create" event="on-change"/>
<button label="Cancel" name="cancel" event="on-change"/>

</hbox>
</groupbox>
</window>

As we have said previously, we can use the above XUL code in different clients.
For instance, the previous XUL is presented in a Mozilla browser [Moz] as shown in
Figure 3.7.

As can be thought, providing the XUL description of an element of a GUI can be a
tedious task due to the XML nature of XUL. To make this task easier, an interpreter
which is able to convert from the Allegro Common Lisp IDE forms to their XUL repre-
sentation, and viceversa, has been developed. This is a more comfortable way of working
because we define the forms in the Allegro IDE using a graphical interface, and then,
the interpreter automatically generates the XUL code.

The functionality of the elements of our GUI, that is the set of event handlers, has
been programmed in Common Lisp keeping the following convention in order to define
the names of the event handlers functions:
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Figure 3.7: Sphere form in Firefox browser

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun <window-name>-<element-name>-<event> (params)
;; event handler code)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where <window-name>, <element-name> and <event> must be replaced with the name of
the dialog, the name of the element and the event, respectively. For instance, the event
associated with the “Create” button of the sphere dialog, see Figure 3.6, is codified as
follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun sphere-create-on-change (params)
;; event handler code)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, the layout of the elements of our GUI, that is the visual appearance of the
GUI, can be configured by means of a stylesheet [K+07]. For instance, if we define the
following (fragment of a) stylesheet:

<xsl:template name="window">
<xsl:param name="color">blue</xsl:param>

</xsl:template>

<xsl:template name="groupbox">
<xsl:param name="color">orange</xsl:param>

</xsl:template>

<xsl:template name="label">
<xsl:param name="background-color">yellow</xsl:param>
<xsl:param name="font-color">red</xsl:param>

</xsl:template>



114 Chapter 3 Extensibility and Usability of the Kenzo framework

Figure 3.8: Sphere dialog with a stylesheet

the sphere dialog would have the aspect shown in Figure 3.8. That is to say, the stylesheet
is used to modify the visual attributes of the elements of the GUI. If we do not provide
a stylesheet the default values of the visual aspect attributes are used.

In this way, all the graphical constituents of the interface can be defined.

The next subsubsection is devoted to present how the information related to the
different constituents is stored in our modules.

3.2.3.2 fKenzo GUI modules

A fKenzo GUI module is an OMDoc document that references at least two resources: a
file that contains the structure of the graphical elements of the module and another one
containing the functionality of those elements. In addition, a fKenzo GUI module can
reference a file with the layout. Besides, a fKenzo GUI module provides some metadata
(authorship, title and so on). The following conventions have been followed in the four
fKenzo GUI construction modules and also in the computation one.

A fKenzo GUI module follows the schema presented for the rest of plug-ins
of the plug-in framework, see Subsection 3.1.1. For instance, in the case of the
Simplicial Groups module:

<code id="Simplicial Groups">
<data format="fKenzo/GUI/structure"> simplicial-groups-structure </data>
<data format="fKenzo/GUI/functionality"> simplicial-groups-functionality </data>
</code>

The first reference corresponds to the structure of the graphical constituents of that
module. This document is called “<Module>-structure” where “<Module>” is the
name of the correspondent module. This file is an OMDoc document. To introduce XUL
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code in these documents we have used an OMDoc feature called OpenMath foreign objects
(the <OMForeign> tag) which allows us to introduce non-OpenMath XML in OMDoc
files. For instance, the module of Simplicial Groups includes a new menu with two menu
items: one to construct Loop spaces (which has associated the shortcut “Ctrl+L” and
the event show-loop-space) and another one to Classifying spaces (which has associated
the shortcut “Ctrl+Y” and the event show-classifying). In this case the structure of the
new menu is stored in the document simplicial-groups-structure with the following
XUL code.

<OMForeign>
<toolbarbutton type="menu" label="Simplicial Groups">
<menupopup>
<menuitem label="Loop Space" acceltext="Ctrl" accesskey="L"

command="show-loop-space"/>
<menuitem label="Classifying Space" acceltext="Ctrl" accesskey="Y"

command="show-classifying"/>
</menupopup>

</toolbarbutton>
</OMForeign>

The functionality related to a concrete module is encoded in an OMDoc document
called “<Module>-functionality” where “<Module>” is the name of the corresponding
module. To this aim, we use an OMDoc feature which allows us to introduce code (in our
case Common Lisp functions) in OMDoc files by means of the code tag. For instance,
the functionality of the event called show-loop-space associated to the Loop Space menu
item of the Simplicial Groups menu is encoded in the simplicial-groups-functionality

document as follows.

<code id="show-loop-space">
<metadata>

<description> The event associated to the Loop Space menuitem </description>
</metadata>
<data format="application/fKenzo">

<![CDATA[ (defun show-loop-space ()
;; code ) ]]>

</data>
</code>

Finally, the resource related to the layout is optional, and in particular the fKenzo
GUI modules use the default layout, so they never reference any layout file. Anyway,
if we want to provide a different appearance for the graphical elements of a module we
can define an OMDoc document where we encode the stylesheet, which customizes the
visual aspect of the elements of the module, using the same feature employed in the case
of structure documents, that is the <OMForeign> tag.

The organization presented here allows us to deal with the design of a dynamically
extensible GUI, where modules are plugged in. Our front-end becomes extensible thanks
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Figure 3.9: Plug-in framework and fKenzo GUI

to the plug-in framework since each user interface unit is encoded in a unique OMDoc
file, with its inner modular organization: structure, functionality and (optionally) layout.

3.2.3.3 fKenzo GUI as client of the plug-in framework

To tackle the extensibility question in our user interface, the fKenzo GUI has been
designed not only as a client of the Kenzo framework, but also as a client of the plug-in
framework presented in Section 3.1. In this way, the fKenzo GUI can be extended in an
easy way by means of modules, described in the previous subsubsection. In this context,
instead of using the term plug-in we prefer the term module which is more appropriate
(an application which is extended by means of modules does not have any functionality,
apart from the one which allows us to load modules, if we have not added any module,
as the fKenzo GUI; on the contrary, an application which is extended by means of plug-
ins can work without adding them, as the Kenzo framework). The relations among the
fKenzo GUI, the Kenzo framework, and the plug-in framework are depicted in Figure 3.9.

The plug-in manager (see Subsection 3.1.1) of the plug-in framework contains a
module in charge of extending the fKenzo GUI. This module extends the GUI providing
access to a concrete part of the functionality of the Kenzo framework by means of the
five modules explained for the fKenzo GUI (the four construction modules and the
computing one).

In particular, the plug-in manager of the plug-in framework includes a module in
charge of processing the modules related to the fKenzo GUI. This module is split in
two constituents. The first one is an interpreter in charge of converting from XUL code
to Common Lisp code the different graphical components. In addition if a layout file
is specified, then the layout properties are applied to the graphical components. The
second one associates the functionality of the event handlers to the elements defined in
the structure document.
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Then, it is enough to produce an OMDoc file with the suitable components, and
then it can be interpreted and added in our GUI. It is exactly what happened when
in Subsection 3.2.2 we described the way of working with fKenzo: using File → Add
Module with the Simplicial-Groups.omdoc module sends this module to the plug-in
framework. Subsequently, the plug-in manager invokes the fKenzo module (one of the
subcomponents of the plug-in manager) that extends the user interface.

The implementation of the fKenzo GUI as a client of the plug-in framework shows
the feasibility and usefulness of this framework.

The fKenzo GUI features partly owing to the implementation of the user interface
as a client of the plug-in framework are listed below.

• Modularity: the GUI is organized in different modules, each one devoted to a
concrete concern.

• Extensibility: the GUI can be extended by the modules. Each new functionality
can be realized as an independent module.

• Flexibility: each unnecessary module can be removed and each necessary module
can be loaded at run-time. Therefore the GUI can be configured in such a way
that it has only the needed functionality.

• Easy to install: the installation of modules is friendly (only select a file with the
option Add Module) from the plug-in folder.

• Internet based update: the GUI supports an update mechanism from the Help

menu. This allows the GUI to download new modules or updates.

• Storage of configuration: the GUI configuration is automatically saved for further
sessions.

3.2.3.4 Extending the Kenzo framework from the fKenzo GUI

The previous subsubsections have been devoted to explain how the fKenzo GUI can be
customized by means of the plug-in framework. Moreover, the plug-in framework can
also be employed to increase the functionality of the Kenzo framework as we presented in
Subsubsection 3.1.2. Besides, in the same way that we wanted that the Kenzo framework
could evolve at the same time as Kenzo, we also hope that the fKenzo GUI will be able
to evolve at the same time that the Kenzo framework.

Up to now, the fKenzo modules that we have presented (the four construction mod-
ules and the computation one) to customize the fKenzo GUI do not suppose any im-
provement in the Kenzo framework. However, it is worth noting that the modules for
the GUI not only can extend the GUI but also the Kenzo framework.
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Figure 3.10: Plug-in framework, fKenzo GUI and Kenzo framework

Let us retake the example presented in Subsubsection 3.1.2 where a plug-in called
new-constructor was defined to increase the functionality of the Kenzo framework by
means of a new constructor. Now, following the guidelines of Subsubsection 3.2.3.2,
we can define three files (structure, functionality and layout) to customize the GUI to
interact with the new constructor. Finally, we define a fKenzo GUI module which not
only references the three files (structure, functionality and layout) to customize the GUI
but also the plug-in which adds new functionality to the Kenzo framework.

<code id="new-constructor">
<data format="fKenzo/GUI/structure"> new-constructor-structure </data>
<data format="fKenzo/GUI/functionality"> new-constructor-functionality </data>
<data format="fKenzo/GUI/layout"> new-constructor-layout </data>
<data format="fKenzo/GUI/Kf"> new-constructor-plug-in </data>
</code>

When the user selects this new module from the Add Module option, the plug-in
framework will extend both the fKenzo GUI and the Kenzo framework. In Subsubsec-
tion 3.2.3.3, we explained that the plug-in framework includes a module in charge of
processing the modules related to the fKenzo GUI. We said that this module is split in
two constituents but we have included a new constituent devoted to invoke the Kenzo
framework module of the plug-in framework for the cases explained in this subsubsec-
tion. This last constituent is only invoked if the fKenzo GUI module references a Kenzo
framework plug-in, in that case the Kenzo framework module of the plug-in manager is
also called.

In addition, the fKenzo GUI plug-in registry and the Kenzo framework plug-in reg-
istry must be coherent in order to avoid inconsistencies in the whole system.

A high level perspective of the interaction between the two frameworks and the GUI
can be seen in Figure 3.10.

This extensibility principle makes very easy to us the incorporation of experimental
features to the system, without interfering with the already running modules, as we will
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see in Chapters 4 and 5.

3.2.4 Interaction design

In the previous subsection we have explained the design decisions that we took to develop
an extensible and modular interface, probably the most important feature of the fKenzo
GUI from the developer perspective. However, other decisions were taken on the fKenzo
user interface design.

3.2.4.1 Task model

The first idea guiding the construction of a user interface must be the objectives of the
interaction. In fKenzo there is only one higher-level objective: to compute groups of
spaces. This main objective is later on broken in several subobjectives, trying to emulate
the way of thinking of a typical Kenzo user. Once this first objective analysis is done,
the next step is to design a task model. That is to say, a hierarchical planning of the
main actions the user should undertake to get his objectives. This is a previous step
before devising the navigation of the user, which will give the concrete guidelines needed
to implement the interface.

In our case, the two main actions of the system are: (1) computing groups, and (2)
constructing spaces. Note that the second task is necessary to carry out the first one.
In turn, the task of constructing spaces can be separated into: (a) constructing new
fresh spaces and (b) loading spaces from a previous session. Thus, the notion of session
comes on the scene. With respect to the construction of fresh spaces, once the user has
decided to go for it, he should decide which type of space he wants to build: simplicial
set, simplicial group, and so on. Note that the construction of a space of a type can
involve the construction of other space of whether its same type or a different type. This
third layer of tasks gives us the module organization of the interface, while computing
produces a separated module.

The task design is organized hierarchically by diagrammatic means. See in Fig-
ure 3.11 a first decomposition layer depicted by means of a package diagram [Gro09].
Each task (each frame) is linked to auxiliary tasks (giving a horizontal dependency
structure). Then, each frame is described in more detail (vertical structure) by making
explicit its subtasks graph.

Task modeling provides us with both the high level modular structure and the dif-
ferent steps needed to reach a user subobjective. The concrete actions a user should
perform to accomplish the tasks are devised in the control and navigation models.
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Figure 3.11: Hierarchical decomposition of the “Construct Fresh Space” user task

3.2.4.2 Control and navigation model

The design of the interaction between a user and a computer program involves well-
known challenges (use of convenient metaphors, consistency of the control through
the whole application, and so on). In order to avoid some frequent drawbacks we
have followed the guidelines of the Noesis method (see [DZ07] for the general theory,
and [CMDZ06] for the design of reactive systems). In particular, our development has
been supported by the Noesis models for control and navigation in user interfaces. These
graph-supported models enable an exhaustive traversal study of the interfaces, allowing
the analyst to detect errors, disconnected areas, lack of uniformity, and so on, before the
programming phase. Figure 3.12 shows the control and navigation submodel describing
the construction of a loop space ΩnX. Different kinds of interactions are graphically
represented in Figure 3.12 by different icons. For instance, selecting from a list is de-
picted with a form icon; directly writing an input is depicted with a pen, and so on.
These pictures help the programmer to get a quick overall view of the different controls
to be implemented.

Let us observe that this diagrammatic control model is abstract, in the sense that
nothing is said about the concrete way the transitions should be translated into the user
interface. In fact, in the fKenzo GUI this model is implemented in two different manners:
one by means of the “menu & mouse” style, and the other one through control-keys. The
second style has been included thinking of advanced users, who want to use shortcuts
to access the facilities of the interface. The adaptation to different kinds of users is one
of the principles for design usability in [Nie94], and has been considered, as the rest of
principles, in our development.
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Figure 3.12: Control graph for the construction of ΩnX

3.2.4.3 Challenges in the design of the fKenzo GUI

User interface design is a central issue for the usability of a software system. Ideally, the
design of a user interface should be done following certain rules, such as those listed in
guidelines documents, see for instance [KBN04]. However these guidelines have hundreds
of rules, then instead of strictly following those rules the design of a user interface abides
by heuristics rules based on common sense. A small set of heuristic principles more suited
as the basis for practical design of user interfaces was given in [Nie94]. We have used
the nine principles given in [Nie94] for guiding the design decisions of the fKenzo GUI.

1. Visibility of system status. the fKenzo GUI should always keep users informed
about what is going on. As we have said previously, the fKenzo GUI can be used
to construct spaces and compute groups. In the case of the spaces constructed
in the fKenzo GUI this first principle is achieved, since the fKenzo GUI shows a
list with the spaces constructed in the current session to the user. Related to the
computation of groups, some calculations in Algebraic Topology may need several
hours, then to dealt with the visibility of the fKenzo status, a message informs the
user of this situation when a computation is performed. Besides, the fKenzo GUI
allows the user to interrupt the current computation and keep on working with his
session.

2. Match between system and the real world. the fKenzo GUI should show results
using well-known Algebraic Topology mathematical notation. This second aspect
has been solved by means of combining OpenMath and stylesheets. When selecting
one of the spaces of the left list of the main fKenzo GUI window, its standard nota-
tion appears at the bottom part of the right side of the fKenzo GUI. A stylesheet
has been defined using XSLT [K+07]. This stylesheet is in charge of rendering
using mathematical notation the object represented with an OpenMath instruc-
tion. In both “Session” and “Computing” tabs the results are also rendered using
mathematical notation thanks to the same stylesheet .
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3. Consistency and standards. A user of Kenzo feels comfortable with the fKenzo
GUI; in particular, the typical two steps process (first constructing an space, then
computing groups associated to it) is explicitly and graphically captured. Then,
the fKenzo GUI is consistent with respect to Kenzo. It is worthwhile noting
that this is the most influential requirement with respect to the visual aspect of
our interface. In addition to the menu bar, there are three main parts in the
screen: a left part, with a listing of the objects already constructed in the current
session, a right panel with several tabs, and a bottom part with the standard
mathematical representation of the object selected. Thus, focus concentrates on
the object (space) of interest, as in Common Lisp/Kenzo. The central panel takes
up most of the place in the interface, because it is the most growing part of it. It
is separated by means of tabs not only because on the division among spaces and
computing results (the system moves dynamically from one to the other), but also
due to the capability of integrating other systems, playing with tabs in the central
panel allows us to produce a user sensation of indefinite space and separation of
concerns.

4. Error prevention. The fKenzo GUI should forbid the user the manipulations rais-
ing errors. The most important design decision related to this point is the use of the
GUI as client of the Kenzo framework. In this way, all the enhancements included
in the framework are inherited by the GUI forbidding the user some manipulations
raising errors and guiding his interaction with the system.

5. Recognition rather than recall. The fKenzo GUI should minimize the user’s mem-
ory load. This design principle is fulfilled thanks to the combination of stylesheets
and OpenMath that are used to inform the user about the selected space. More-
over, this principle was important for the design of the dialogs used to construct
spaces from other spaces and compute groups. For example, if a space is selected
in the screen of the fKenzo GUI the dialogs used to construct spaces from other
spaces and compute groups take that space by default as input, then the user does
not need to select the space in the dialog.

6. Flexibility and efficiency of use. The fKenzo GUI should provide shortcuts that
speed up the interaction for the expert user and also suit the needs of each user. To
handle this question, the interaction with the GUI is implemented in two different
manners: one by means of the “menu & mouse” style, and the other one through
control-keys used as accelerators. Moreover, thanks to the organization of the
system by means of modules, a user can load the functionality that he needs.

7. Minimalist design. The fKenzo GUI should not contain irrelevant information; to
that aim, the dialogs showed to the user only contain the key information.

8. Good error messages. the fKenzo GUI should indicate precisely the problems.
Thanks to the use of the GUI as client of the Kenzo framework, the warnings
obtained from the framework are used in the GUI. These warnings express in
plain language the problem, and constructively suggest a solution.
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9. Help and documentation. The fKenzo GUI should include a good documenta-
tion. Even though the fKenzo GUI can be used without documentation, help and
documentation are provided in the Help menu. This help is always available, is
focused on the user’s tasks, lists concrete steps to be carried out, and contains both
information about the use of the fKenzo GUI and the underlying mathematical
theory.

In summary, design principles have been followed in the fKenzo GUI obtaining in
this way a usable interface for the Kenzo system through the Kenzo framework.





Chapter 4

Interoperability for Algebraic
Topology

When working in Mathematics, a researcher or student uses different sources of informa-
tion to solve a problem. Typically, he can consult some papers or textbooks, make some
computations with a Computer Algebra system, check the results against some known
tables or, more rarely, try some conjectures with a Proof Assistant tool. That is to say,
mathematical knowledge is dispersed among several sources.

Our aim consists of mechanizing, in some particular cases, the management of these
multiple-sources information systems by means of fKenzo. Since it would be too preten-
tious to try to fully solve this problem, we work in a very concrete context. Thematically,
we restrict ourselves to (a subset of) Algebraic Topology. With respect to the sources,
in order to have a representation wide enough, we have chosen two Computer Algebra
systems (Kenzo and GAP), and a Theorem Prover (ACL2).

This aim has some common concerns with the well known SAGE project [Ste] and the
Software Composability Science project [F+08], since all of us are trying to join several
mathematical software packages. There are, however, important differences. SAGE is an
integrated system in which users interact with the SAGE front-end and the Computer
Algebra systems are used as back-end servers. The representation of mathematical
objects in SAGE is based on an internal representation. On the other hand, the Science
project provides a framework that allows services to be both provided and consumed by
any Computer Algebra system. The Science project uses OpenMath as representation
for mathematical objects.

Our approach combines some of the characteristics of both SAGE and Science
projects but also has some significant differences. As in the SAGE initiative, we provide
a common front-end to use the different systems that are integrated in the Kenzo frame-
work as internal servers; however, the SAGE front-end is a command line interface, with
the problems that this approach presents for a non expert user (we discussed this ques-
tion in Section 3.2); whereas, in our case we provide a friendly graphical user interface,
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the fKenzo GUI. Moreover, when a user wants to invoke a system from SAGE, he must
do it explicitly; on the contrary our front-end hides the details about the system em-
ployed at each moment. To communicate the mathematical objects between our system
and other ones we use both OpenMath, as in the Science project, and our XML-Kenzo
language. In addition, we use some of the programs developed by the Science initiative
in our development.

It is worth noting that we do not only want to integrate Computer Algebra systems
in our framework (as in the case of SAGE and Science projects), but also Theorem
Prover tools.

In addition, our final aim has consisted not only in having several Computer Algebra
systems and Theorem Prover tools, and use them individually by means of a common
GUI, but also in making them work in a coordinate and collaborative way to obtain new
tools and results not reachable if we use severally each system.

In general, the integration of Computer Algebra systems and systems for mechanized
reasoning tries to overcome their weak points: efficiency in the case of Theorem Provers
and consistency in the case of Computer Algebra systems. There are several possibilities
to interface Computer Algebra and Theorem Prover systems, let us cite only three of
them: (1) use a Computer Algebra system as a hint engine for a Theorem Prover, (2)
use a Computer Algebra system as a proof engine for a Theorem Prover, and (3) prove
in the Theorem Prover the correctness of Computer Algebra algorithms.

Both first and second cases involve a certain degree of trust of the prover to the
Computer Algebra system; several experiments have been performed in these lines, see
for instance the interaction between HOL and Maple [HT98] or the communication
between Coq and GAP [KKL]. The last track (prove in the Theorem Prover the cor-
rectness of Computer Algebra algorithms) allows us to build more reliable and accurate
components for a Computer Algebra system, for instance Buchberger’s algorithm for
computing Gröbner basis (one of the most important algorithms in Computer Algebra)
has been formalized in [MPRR10] using the ACL2 theorem prover. In the work presented
in this memoir, we have focussed on the third aspect.

The rest of this chapter is mainly organized in two parts devoted to present how the
GAP Computer Algebra system and the ACL2 Theorem Prover were integrated in our
system as new internal servers.

First of all, the integration and composability of the GAP Computer Algebra system
in fKenzo is presented. Namely, first things first, to achieve the composability of GAP
in our framework we need first its integration; then, Section 4.1 presents the integration
of GAP. How Kenzo and GAP work in a coordinate and collaborative way is explained
in Section 4.2.

In the second part, some explanations about how ACL2 is integrated in fKenzo are
given. The integration of ACL2 in the system is shown in Section 4.3. The coordinate
way of working of Kenzo, GAP and ACL2 is presented in Section 4.4.
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Finally, Section 4.5 is devoted to present a methodology to integrate different systems
as internal servers in our system.

4.1 Integration of the GAP Computer Algebra sys-

tem

The second Computer Algebra system that we have integrated in our framework (the
first one was Kenzo) is GAP [GAP] with its HAP package [Ell09]. This decision was
taken inspired by the work presented in [RER09] where Kenzo and GAP (and, namely, its
HAP package) have been communicated to create new tools. From now on, GAP/HAP
refers to the GAP Computer Algebra system where its HAP package has been loaded.

In this first stage of the integration of GAP/HAP in our system, we have provided
support for the construction of cyclic groups and the computation of their homology
groups.

The rest of this section is organized as follows. Subsection 4.1.1 introduces the basic
background about group homology; in Subsection 4.1.2 the GAP Computer Algebra
system and its HAP package are presented; Subsection 4.1.3 explains how our framework
is extended to include the GAP/HAP functionality. Moreover, an enhancement of the
framework to deal with the properties of their objects is presented in Subsection 4.1.4.
Finally the way of broadening the fKenzo GUI to include the GAP/HAP Computer
Algebra system is detailed in Subsection 4.1.5.

4.1.1 Mathematical preliminaries

The following definitions and important results about homology of groups can be found
in [Bro82].

Definition 4.1. Let G be a group and ZG be the integral group ring of G (see [Bro82]).
A resolution F∗ for a group G is an acyclic chain complex of ZG-modules

. . .→ F2
d2−→ F1

d1−→ F0
ε−→ F−1 = Z→ 0

where F−1 = Z is considered a ZG-module with the trivial action and Fi = 0 for i < −1.
The map ε : F0 → F−1 = Z is called the augmentation. If Fi is free for all i ≥ 0, then
F∗ is said to be a free resolution.

Given a free resolution F∗, one can consider the chain complex of Z-modules (that is
to say, abelian groups) C∗ = (Cn, dCn)n∈N defined by

Cn = (Z⊗ZG F∗)n, n ≥ 0
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(where Z ≡ C∗(Z, 0) is the chain complex with only one non-null ZG-module in dimen-
sion 0) with differential maps dCn : Cn → Cn−1 induced by dn : Fn → Fn−1.

Although the chain complex of ZG-modules F∗ is acyclic, C∗ = Z ⊗ZG F∗ is, in
general, not exact and its homology groups are thus not null. An important result in
homology of groups claims that the homology groups are independent from the chosen
resolution for G.

Theorem 4.2. Let G be a group and F∗, F
′
∗ be two free resolutions of G. Then

Hn(Z⊗ZG F∗) ∼= Hn(Z⊗ZG F
′
∗), for all n ∈ N.

This theorem leads to the following definition.

Definition 4.3. Given a group G, the homology groups Hn(G) are defined as

Hn(G) = Hn(Z⊗ZG F∗)

where F∗ is any free resolution for G.

The problem now consists of determining a free resolution F∗ for G. For some
particular cases, small resolutions can be directly constructed. For instance, let G be
the cyclic group of order m with generator t. The resolution F∗ for G

. . .
t−1−−→ ZG N−→ ZG t−1−−→ Z→ 0,

where N denotes the norm element 1 + t+ . . .+ tm−1 of ZG, produces the chain complex
of abelian groups

. . .
0−→ Z m−→ Z 0−→ Z→ 0

and therefore

Hi(G) =


Z if i = 0
Z/mZ if i is odd, i > 0
0 if i is even, i > 0

In general is not easy to obtain a resolution for a group G. As we will see in Subsec-
tion 4.1.2, the GAP package HAP has been designed as a tool for constructing resolutions
for a wide variety of groups.

4.1.2 GAP and HAP

GAP [GAP] is a Computer Algebra system, well-known for its contributions, in partic-
ular, in the area of Computational Group Theory.

HAP [Ell09] is a homological algebra library (developed by Graham Ellis) for use
with GAP still under development. The initial focus of this package is on computations
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related to cohomology groups. A range of finite and infinite groups are handled, with
particular emphasis on integral coefficients. It also contains some functions for the
integral (co)homology of: Lie rings, Leibniz rings, cat-1-groups an digital topological
spaces.

Let us see an example of the use of the GAP/HAP system. To construct the cyclic
group of dimension 5 in the GAP system we proceed in the following way:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> c5:=CyclicGroup(5); z
<pc group of size 5 with 1 generators>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A GAP display must be read as follows. The initial gap> is the prompt of GAP.
The user types out a gap statement, here c5:=CyclicGroup(5); and the maltese cross
z (in fact not visible on the user screen) marks in this text the end of the GAP state-
ment. The Return key then asks GAP to evaluate the GAP statement. Here the
cyclic group C5 is constructed by the GAP CyclicGroup function (functions in GAP
are case sensitive), taking account of the argument 5, and this cyclic group is assigned
to the symbol c5 for later use. Also evaluating a GAP statement returns an object,
the result of the evaluation, in this case the cyclic group of dimension 5, displayed as
<pc group of size 5 with 1 generators>.

From GAP we can obtain properties of the group; for instance, if we want to know
if our group is abelian we proceed as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> IsAbelian(c5); z
true
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore, the cyclic group C5 is an abelian group. It is worth noting that this kind
of properties (for instance, being abelian, cyclic, solvable and so on) are assigned to the
group based on the mathematical definition of the group when it is constructed, this
means that GAP does not perform any computation to know if the group satisfies a
property but just checks if the object has associated it.

The homology groups of C5 are computable by means of the HAP GroupHomology

function (this function has as input two arguments, a group G and an integer n, and
the output is Hn(G)) in the following way:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> GroupHomology(c5,0); z
[0]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result must be interpreted as stating H0(C5) = Z. We can compute several
homology groups if we introduce the instructions in a loop; for instance, to compute
Hn(C5) with 0 ≤ n ≤ 6:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> for i in [0..6] do Print(GroupHomology(c5,i), " "); od; z
[ 0 ] [ 5 ] [ ] [ 5 ] [ ] [ 5 ] [ ]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, the above result must be interpreted as H0(C5) = Z, H1(C5) =
Z/5Z, H2(C5) = 0, H3(C5) = Z/5Z, H4(C5) = 0, H5(C5) = Z/5Z and H6(C5) = 0 (the
expected results as we have seen in the previous subsection).

As we have just seen, HAP can be used to make basic calculations in the homology
of finite and infinite groups with the command GroupHomology. This command performs
two steps to compute the homology groups of a group G: (1) construct a free resolution
F∗ of G and (2) compute the homology from Z ⊗ZG F∗ using a version of the Smith
Normal Form algorithm [Veb31].

4.1.3 Integration of GAP/HAP

As we claimed in Section 2.1 one of the challenges of the fKenzo system was the in-
tegration of different tools as new internal servers. This is the first example of this
integration.

We present here the integration of some of the functionality of the GAP/HAP system
in fKenzo, namely the functionality devoted to construct cyclic groups, obtain group
properties and compute group homology. The procedure followed here to integrate
that functionality (a simple example) is general enough to be applied in the integration
of other more interesting GAP/HAP cases without any special hindrance. We have
developed a plug-in following the guidelines given in Subsubsection 3.1.2. This new
plug-in references the following resources:

<code id="gap">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> gap-invoker.lisp </data>
<data format="Kf/microkernel"> gap-cyclic-m.lisp </data>
<data format="Kf/microkernel"> gap-homology-m.lisp </data>
<data format="Kf/adapter"> gap-a.lisp </data>

</code>

These resources deserve a detailed explanation that is provided in the following sub-
subsections.

4.1.3.1 Extending the XML-Kenzo schema

We want to introduce new functionality in our framework which allows us to construct
cyclic groups, compute their homology groups and obtain some of their properties by
means of GAP/HAP. Therefore, we have extended the XML-Kenzo specification to
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Figure 4.1: cyclic element in XML-Kenzo

Figure 4.2: constructor and homology elements

represent the requests and results related to GAP/HAP. In the XML-Kenzo specification,
we have defined a new element: cyclic, which has one child of natural number type (see
Figure 4.1) and belongs to a new type called A (the type of GAP abelian groups).

Moreover, the group A has been included as a possible child of both constructor

and homology elements, see Figure 4.2. Therefore, the two following requests are valid
XML-Kenzo objects which can be processed.

<constructor>
<cyclic>5</cyclic>

</constructor>

<operation>
<homology>
<cyclic>7</cyclic>
<dim>3</dim>

</homology>
</operation>

This means that we can request the construction of cyclic groups and the computation
of their homology groups in our system.

In addition, a result type element called gap-id which is used to return information
about the properties of GAP groups has been defined. In particular this element has as
value a natural number and has 9 attributes which represent respectively 9 properties (if
the group is abelian, cyclic, elementary abelian, nilpotent, perfect, solvable, polycyclic,
supersolvable and monomial) of the group by means of boolean values: true if the group
satisfies the property and false otherwise (see Figure 4.3).

As we explained in Subsection 3.1.2, the external server evolves when the
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Figure 4.3: gap-id element in XML-Kenzo

XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is upgraded with
these new elements, the external server can validate requests such as the above ones.

4.1.3.2 A new internal server: GAP/HAP

Up to now, the Kenzo system was the unique computing kernel of the framework. Now,
let us integrate the GAP/HAP system to construct groups and perform group homology
computations.

GAP/HAP could be integrated locally as Kenzo was, but the installation of
GAP/HAP is not so easy, and will need some interaction of the final user. Since, this
option seems to us too uncomfortable, we devised the following organization based on
the use of a GAP/HAP remote server.

4.1.3.2.1 A remote server: GAP/HAP + SCSCP Our framework is con-
nected with a GAP/HAP server. The connection with this GAP/HAP server is avail-
able by means of SCSCP - the Symbolic Computation Software Composability Proto-
col [FHK+09]. SCSCP is a remote procedure call framework for computational algebra
systems in which both data and protocol instructions are encoded in the OpenMath
language [Con04]. This protocol has been successfully used to communicate several
Computer Algebra systems as can be seen in [F+08]. GAP has a package, called SC-
SCP [KL09], which implements this protocol. This package has two main components:
a server and a client; we are interested in the server part. The server component can
be configured to supply the GAP procedures that can be invoked from different clients
(which can be a GAP client with the SCSCP package, one of the SCSCP clients devel-
oped for Computer Algebra systems or in general a program with both socket support
to invoke the GAP services and knowledge about the encoding of SCSCP OpenMath
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requests). In particular, our GAP/HAP server provides procedures to construct cyclic
groups, to get some properties of the cyclic groups and to compute homology groups of
cyclic groups.

The GAP/HAP server is available thanks to the SCSCP protocol without any addi-
tional development from our side; however, it has been necessary to deploy a client, that
will be integrated in our framework. This client, from now on called gap-invoker, has
been implemented as a Common Lisp program and has the functionality included in the
gap-invoker.lisp file. This program has two parts: a Phrasebook and a socket client.
The former component is able to transform from the XML-Kenzo representation to the
SCSCP OpenMath one and viceversa. It is worth noting that the Phrasebook included
in this component is not the same Phrasebook implemented previously in the adapter
(see Subsection 2.2.5), since the OpenMath requests that are sent/received to/from the
GAP/HAP server are wrapped with additional information about the location of the
server and necessary information for the SCSCP package. An example of this kind of
requests is as follows:

<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call"/>
<OMA>

<OMS cd="scscp_transient_1" name="Homology"/>
<OMA> <OMS cd="group1" name="cyclic"/> <OMI>5</OMI> </OMA>
<OMI>5</OMI>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>
<?scscp end ?>

This request has the following parts: the beginning of a SCSCP request
(<?scscp start ?>), the location of the server (in this case located in the server
esus.unirioja.es in the port 7500):

<OMATP>
<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>

the invocation of the GAP/HAP service by means of:



134 Chapter 4 Interoperability for Algebraic Topology

<OMS cd="scscp1" name="procedure_call"/>
<OMA>
<OMS cd="scscp_transient_1" name="Homology"/>

In this case the procedure associated with Homology is the GroupHomology HAP com-
mand; the arguments of the procedure Homology, in this case the cyclic group and the
dimension:

<OMA>
<OMS cd="group1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
<OMI>5</OMI>

and, finally, the end of the SCSCP request (<?scscp end ?>).

The socket client component of the gap-invoker is a bunch of functions in charge of
sending requests and receiving results to/from the GAP/HAP server by means of sockets
technology.

4.1.3.3 Cyclic groups construction module of the microkernel

The gap-cyclic-m.lisp file contains the Common Lisp functions which allow the plug-
in framework to extend the microkernel in order to include a new module, called
cyclic-groups.

When the microkernel receives a construction request where the child of the
constructor element is cyclic, the cyclic-groups module of the microkernel is acti-
vated. For instance, if the microkernel receives the request:

<constructor>
<cyclic>5</cyclic>

</constructor>

the cyclic-groups module is triggered.

When the cyclic-groups module is activated two situations are feasible: (1) a new
object is created in the microkernel or (2) the object was previously built and its identi-
fication is simply returned. In the former case, this module constructs an object which
represents a cyclic group. It is worth noting that no warnings are produced by the
cyclic-groups module since all the restrictions (namely, this constructor only has as-
sociated the constraint of the type of its argument, which must be a natural number)
about this constructor are handled in the XML-Kenzo specification, and, therefore, they
are validated in the external server.
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In Subsection 2.2.3, we have presented a representation for microkernel objects
(MK-OBJECT class), which was specialized for Kenzo spaces (MK-SPACE-KENZO class). Now,
we need a different specialization for cyclic groups constructed in the microkernel. In-
stead of defining a specialization just for cyclic groups we have decided to define a general
representation for GAP groups, since in the future we could be interested in including
support for the construction of other GAP groups. In the same line, in the future we
could be interested in including not only groups, but also other GAP objects. As we
said in Subsection 2.2.3 to include these new objects (which come from a different inter-
nal server) we specialized the MK-OBJECT class by means of a subclass, that is the class
MK-GAP, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-GAP (MK-OBJECT) () )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In turn, we specialize this class to represent GAP groups.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS MK-GROUP-GAP (MK-GAP)
;; Is Abelian
(ia :type boolean :initarg :ia :reader ia)
;; Is Cyclic
(ic :type boolean :initarg :ic :reader ic)
;; Is Elementary Abelian
(iea :type boolean :initarg :iea :reader iea)
;; Is Nilpotent Group
(ing :type boolean :initarg :ing :reader ing)
;; Is Perfect Group
(ipg :type boolean :initarg :ipg :reader ipg)
;; Is Solvable Group
(isg :type boolean :initarg :isg :reader isg)
;; Is PolyCyclic Group
(ipcg :type boolean :initarg :ipcg :reader ipcg)
;; Is SuperSolvable Group
(issg :type boolean :initarg :issg :reader issg)
;; Is Monomial Group
(img :type boolean :initarg :img :reader img)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This class has nine slots in addition to the idnm and orgn slots of the MK-OBJECT class:

1. ia, a boolean, indicates if the group is abelian.

2. ic, a boolean, indicates if the group is cyclic.

3. iea, a boolean, indicates if the group is elementary abelian.

4. ing, a boolean, indicates if the group is nilpotent.

5. ipg, a boolean, indicates if the group is perfect.

6. isg, a boolean, indicates if the group is solvable.
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7. ipcg, a boolean, indicates if the group is polycyclic.

8. issg, a boolean, indicates if the group is supersolvable.

9. img, a boolean, indicates if the group is monomial.

All the information included in the previous nine slots is obtained from GAP/HAP.

The procedure to construct cyclic group instances in the cyclic-groups module is
very similar to the procedure followed in the construction of spaces presented in Subsub-
section 2.2.3.3. However, in this case, this module does not need to check any additional
restriction, since all the restrictions are imposed in the XML-Kenzo specification; there-
fore, all the requests that come from the external server related to cyclic group objects
are always safe. The procedure to construct a cyclic group is as follows.

1. Search in the *object-list* list if the object was built previously.

(a) If the object was built previously, return its identification number and the
properties about the group in a gap-id XML-Kenzo object.

(b) Otherwise, go to step 2.

2. Construct an instance of the MK-GROUP-GAP class where:

• idnm is automatically generated (remember that idnm is the object identifier
in the microkernel).

• the XML-Kenzo object received as input is assigned to orgn.

• the information of the rest of the slots is obtained invoking the GAP/HAP
internal server.

3. Push the object in the *object-list* list of already created objects.

4. Return its identification number and the properties about the group in a gap-id

XML-Kenzo object.

In this way, cyclic groups are constructed in the microkernel. It is worth noting that
in spite of being constructed by different internal servers, all the objects are stored in
the *object-list* list in the internal memory.

4.1.3.4 Enhancing the homology computation module

The gap-homology-m.lisp file contains the Common Lisp functions which allow the plug-
in framework to extend the homology module of the microkernel in order to include the
functionality to compute the homology groups of cyclic groups.

In Paragraph 2.2.3.4.1 the homology module of the microkernel was explained. The
homology module implements a procedure in Common Lisp that allows us to compute
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homology groups through the microkernel. We have implemented that procedure in
such a way that we do not need to overwrite the code of the procedure to allow the
microkernel to deal with several internal servers.

Namely, we have used a very powerful tool of Common Lisp: the combination of
generic functions and methods [Gra96]. When the class system and the functional orga-
nization of Common Lisp are considered, the notions of generic functions and methods
are normally used. A generic function is a functional object whose behavior will depend
on the class of its arguments; a generic function is defined by a defgeneric statement.
The code for a generic function corresponding to a particular class of its arguments is a
method object; each method is defined by a defmethod statement. This technique was
used in the implementation of the class system of Kenzo [Ser01] and also in the homology
computation module of the microkernel.

In particular, we have defined a generic function which corresponds with Step 5 of
the procedure explained in Paragraph 2.2.3.4.1:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC compute-homology (mk-object n))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This generic function can have several methods to adapt the generic function to
specific cases. In particular, up to now, it had associated just the method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD compute-homology ((space mk-space-kenzo) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This method invokes the Kenzo internal server from an mk-space-kenzo.

Now, we have defined a new class of objects; and in this case the system does not
use Kenzo as kernel to compute the homology groups, but the GAP/HAP server. Then,
the gap-homology-m.lisp file defines the method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD compute-homology ((group mk-group-gap) n) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which allows us to compute homology groups using the GAP/HAP server through the
gap-invoker.

It is also worth noting that the instances of the class mk-group-gap do not have a rede

slot which is used in the procedure explained in Paragraph 2.2.3.4.1 to check whether
Kenzo could compute the homology groups or not. The way of managing this situation
is based on the same idea: use generic functions and methods. Namely, we have defined
the generic function which corresponds with the Step 4 of the procedure explained in
Paragraph 2.2.3.4.1:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC check-constraints (mk-object))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In the case of dealing with mk-space-kenzo instances we have the method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD check-constraints ((space mk-space-kenzo))
(if (>= (rede space) 0) t nil))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On the contrary, the method implemented for the case of mk-group-gap instances is
the following simple method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD check-constraints ((group mk-group-gap)) t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this way, the homology module of the microkernel allows us to use GAP/HAP to
perform computations. To sum up, homology groups of spaces are computed with Kenzo
and group homology is computed with GAP. In general, we can use different methods
to compute the homology groups of different classes of objects without modifying the
main procedure.

4.1.3.5 Increasing the functionality of the adapter

Cyclic groups are objects already defined in the OpenMath language, namely in the
groupname1 Content Dictionary. This Content Dictionary is added to the list of Content
Dictionaries which can be processed in the adapter. Moreover, we have defined a gap-id

object, in the Aux Content Dictionary, to return the identification and the information
related to a group.

In addition, we have extend the Phrasebook by means of new parsers which are able
to convert from XML-Kenzo objects related to GAP/HAP to OpenMath objects and
viceversa. For instance, the XML-Kenzo request:

<constructor>
<cyclic>5</cyclic>

</constructor>

is generated by the adapter when the following OpenMath request is received:

<OMOBJ>
<OMA>
<OMS cd="groupname1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
</OMOBJ>

Therefore, the gap-a.lisp file contains the new parsers and a list with both
groupname1 and Auxiliar Content Dictionaries in order to raise the functionality of
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Figure 4.4: Execution flow of a GAP/HAP computation

the adapter to be able to convert from the new OpenMath requests, devoted to GAP
operations, to XML-Kenzo requests.

4.1.3.6 Execution flow

To provide a better understanding of the integration of the GAP/HAP system in our
framework, let us present an execution scenario where a client asks our framework for
computing H5(C5) in a fresh session, that is, neither objects were constructed or com-
putations were previously performed. The execution flow of this scenario is depicted in
Figure 4.4 with a UML-like sequence diagram.

The OpenMath representation of the request H5(C5) is the following one:

<OMOBJ>
<OMA>

<OMS cd="Computing" name="Homology"/>
<OMA>

<OMS cd="groupname1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
<OMI>5</OMI>

</OMA>
</OMOBJ>

The adapter receives the previous OpenMath request from a client. This module
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checks that the OpenMath instruction is well-formed and the Phrasebook converts the
OpenMath object into the following XML-Kenzo object:

<operation>
<homology>

<cyclic>5</cyclic>
<dim>5</dim>

</homology>
</operation>

which is sent to the external server. The external server validates the XML-Kenzo object
against the XML-Kenzo specification, in this case as the root element is operation, then
it checks that:

1. The child element of operation is homology or homotopy. X

2. The homology element has two children. X

3. The first child of the homology element belongs to one of the groups A, CC, SS, SG
or ASG. X

4. The value of the cyclic element is a natural number. X

5. The second child of the homology element is the dim element. X

6. The value of the dim element is a natural number. X

All the tests are passed, so, we have a valid request that is sent to the microkernel.
In the microkernel the homology module is triggered. When the homology module is
activated, the procedure explained in Paragraph 2.2.3.4.1 with the extension explained in
Subsubsection 4.1.3.4 is executed. First, the homology module searches in *object-list*

list if the cyclic group of dimension 5 was constructed previously; as this object was not
constructed, the cyclic module is invoked to construct it, this module in turn invokes
the GAP/HAP server through the gap-invoker to construct a mk-group-gap instance.
This instance is stored in the *object-list* list to avoid the duplication of elements.

Subsequently, once the object is constructed, the homology module sends the XML-
Kenzo request to the gap-invoker in order to send a request to the GAP/HAP server
to compute the group homology. The request sent to the GAP/HAP server by the
gap-invoker is:
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<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call"/>
<OMA>

<OMS cd="scscp_transient_1" name="Homology"/>
<OMA> <OMS cd="group1" name="cyclic"/> <OMI>5</OMI> </OMA>
<OMI>5</OMI>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>
<?scscp end ?>

It is worth noting that the above OpenMath request is a bit different from the original
one received by the adapter. Namely, it includes SCSCP information.

When the GAP/HAP server receives the above request, it executes the following
instruction:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> GroupHomology(CyclicGroup(5),5); z
[5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result returned by the GAP/HAP server is:

<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name ="call_id"/>
<OMSTR> esus.unirioja.es:7500 </OMSTR>

</OMATP>
<OMA><OMS cd="scscp1" name ="procedure_completed"/>

<OMA><OMS cd="list1" name ="list"/><OMI>5</OMI></OMA>
</OMA>
</OMATTR>

</OMOBJ>
<?scscp end ?>

This result is converted by the gap-invoker into the following XML-Kenzo result.



142 Chapter 4 Interoperability for Algebraic Topology

<result>
<component>5</component>

</result>

This result is stored in the internal memory to avoid re-computations by the homology

module and is sent to the adapter through the external server. Then, the adapter
converts the result into its OpenMath representation:

<OMOBJ>
<OMA>

<OMS cd="ringname" name="Zm"/>
<OMI>5</OMI>

</OMA>
</OMOBJ>

and this is the result returned to the client. It is worth noting that the OpenMath
representation of the result returned by the GAP/HAP server is different from the
representation of the result returned by the adapter. This is due to the fact that the
GAP/HAP server uses the SCSCP representation; but we consider that is better to
keep a consistent representation for all the results returned by our framework for the
computation of homology groups.

4.1.4 Properties of objects

As we have explained in the previous subsection, when a (cyclic) group is constructed in
our framework not only its identification number is returned but also some properties of
that group. This additional information can be helpful, in a client, for instance to allow
a student to know some properties of the object.

Then, we realized that in the same way that some properties are associated with
groups, we can do the same with spaces. However, there is an important difference,
group properties are obtained from the GAP/HAP server, whereas the space properties
will be obtained from the knowledge included in the microkernel and not from Kenzo. To
include, this improvement in our system, the following small plug-in has been developed.

<code id="spaces-properties">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/microkernel"> properties-mk.lisp </data>
<data format="Kf/adapter"> properties-a.lisp </data>

</code>

These resources deserve a detailed explanation that is provided in the following para-
graphs.
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Figure 4.5: id element in XML-Kenzo

First of all, we want to modify the id XML-Kenzo object to not only store an
identification number but also properties about the object which has associated the
identifier. Therefore, we have extended the XML-Kenzo specification (XML-Kenzo.xsd
file) to admit the new definition of id which includes an attribute called properties, see
Figure 4.5.

The properties-mk.lisp file modifies the behavior of the following construction mod-
ules: Sphere, Delta, K-Z, K-Z2, Cartesian Product, Suspension, Classifying Space and
Loop Space. That is to say, the modules which are used by the HES, because they
provide additional information which can be interesting for a user. Then, the id XML-
Kenzo objects returned by these modules not only contain the identifiers but also some
properties. For instance, when the Cartesian Product module is activated and both
components of the Cartesian product are contractible spaces, the returned object is:

<id properties="The space is contractible because is the cartesian product of two
contractible spaces"> 1 </id>

It is worth noting that the rest of the modules of the microkernel return id XML-
Kenzo objects whose properties attribute is empty.

Finally, the properties-a.lisp file includes a new parser in the Phrasebook to be
able to handle the new specification of id XML-Kenzo objects.

4.1.5 Integration of GAP/HAP in the fKenzo GUI

Throughout this section, a plug-in that allows us to include in our system the function-
ality related to GAP/HAP has been presented. Now, the necessary resources to extend
the fKenzo GUI to provide support for the new functionality are explained.

In this case we have defined a fresh fKenzo module to enhance the GUI with
support for the GAP/HAP system. The new OMDoc module references three
files: gap-structure (that defines the structure of the graphical constituents),
gap-functionality (which provides the functionality related to the graphical con-
stituents) and the plug-in introduced in the previous subsection.

We have defined three graphical elements, using the XUL specification language, in
the gap-structure file:
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Figure 4.6: Cyclic window

• A menu called GAP which contains one option: Cyclic Group.

• A window called Cyclic (see Figure 4.6). It is worth noting that it is not neces-
sary to specify this window from scratch since it has the same structure that, for
instance, the Sphere window of the Simplicial Set module. So, we use a generic
specification with the concrete values of the new window. In general, when we
define a new window, we do it by means of an instance of a generic specification.

The functionality stored in the gap-functionality document related to these compo-
nents works as follows. A function acting as event handler is associated with the Cyclic
Group menu option; this function shows the Cyclic window (see Figure 4.6). From the
Cyclic window, the user must introduce the dimension of the cyclic group that must be a
natural number. Once the user has introduced the dimension n of the cyclic group, when
he presses the Create button of the Cyclic window, an OpenMath request is generated
and sent to the framework.

Then, the cyclic group Cn is built and its identification number in a gap-id OpenMath
object is returned. Eventually fKenzo adds to the constructed objects list (situated in
the left side of the main tab of the fKenzo GUI) the new group. To identify the (Abelian)
groups in fKenzo we use the letter A and its identification number.

Finally, if the Computing fKenzo module is loaded (or has been previously loaded)
the user can ask fKenzo to compute the homology groups of a group using the Homology
option of the Computing menu, the results are shown, as usual, in the Computing tab.
Figure 4.7 shows the computation of the homology groups of C5.

It is worth noting that from the user point of view the computation of homology
groups of both spaces and groups has no differences, since he proceeds in both cases in
the same way. Therefore the system used in each moment is transparent to the user,
providing access to different software systems in an easy and comfortable way.

In addition to the graphical elements presented about GAP/HAP, a new constituent
has been added to the GUI to handle properties. Namely, a new tab called Description
is included in the central panel. This new graphical element is included whenever a
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Figure 4.7: Homology groups of C5

construction module or the GAP/HAP module is loaded in fKenzo. The functionality
associated with this new element is as follows.

As we explained in Subsection 3.2.1 when an object is selected from the list of con-
structed spaces, its standard notation appears at the bottom part of the right side of the
fKenzo GUI. This behavior is kept but, in addition, if some additional information is
accessible when an object is constructed, then, this information is shown in the Descrip-
tion tab. For instance, when the cyclic group of dimension 5 is selected, the Description
tab shows the properties about the group included in the gap-id OpenMath object re-
turned, see Figure 4.8. The same happens when an id OpenMath object contains some
properties of the object.

The next subsubsection is devoted to present how objects are handled in the fKenzo
GUI.

4.1.5.1 Management of the objects in the fKenzo GUI

Let us present how the objects are managed in the fKenzo GUI.

The representation of objects in the fKenzo GUI has been inspired by the representa-
tion of objects in Kenzo. An object of the fKenzo GUI is implemented as an instance of
a CLOS class (let us remember that the fKenzo GUI is implemented in Common Lisp),
the class FKENZO-OBJECT, whose definition is:
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Figure 4.8: Description tab for GAP groups

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS FKENZO-OBJECT ()
;; IDentification NuMber
(idnm :type fixnum :initarg :idnm :reader idnm)
;; ORiGiN
(orgn :type string :initarg :orgn :reader orgn))
;; PROPertieS
(props :type string :initarg :props :reader props)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This class has three slots:

1. idnm, an integer, identifier for the object in fKenzo. This is the value assigned
when a space is constructed.

2. orgn, a string containing the OpenMath object that is the origin of the object.

3. props, a string containing the properties obtained in the construction of the object
or the empty string if no property was returned.

The objects are stored in a list called *FKENZO-OBJECTS* which is used to generate
the shown list to the user in the left side of the fKenzo GUI.

Moreover, there is a function, called fK, which allows us to get information about
the n-th fKenzo GUI object. The fK function takes as argument a natural number n
and returns the n-th fKenzo GUI object.

The functionality of the event handler of the list of the left side, when an object is
selected from it, works as follows. From the selected object, for instance “SS 3”, extracts



4.1 Integration of the GAP Computer Algebra system 147

its identification number, in this case 3, and obtains the FKENZO-OBJECT by means of the
fK function. Subsequently, it invokes a Common Lisp method [Gra96] associated with
that FKENZO-OBJECT which shows the mathematical notation of the object in the bottom
part of the right side of the fKenzo GUI. Moreover, if the value of the props slot is
not empty, then, the system moves dynamically from the current selected tab to the
Description tab showing the properties of the object.

It is worth noting that the approach followed to store the properties of an object,
just using a string, is likely too simple, and several improvements can be consider, for
instance, replace the props string with an association with different classes. However,
that remains as further work.

Moreover, due to the fact that objects of very different nature can exists in fKenzo,
we have specialized the FKENZO-OBJECT with two different subclasses. On the one hand,
we have defined a new subclass of the FKENZO-OBJECT class; to store a name given by the
user to identify the object. Namely, the new class, FKENZO-OBJECT-NAME, whose definition
is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS FKENZO-OBJECT-NAME (FKENZO-OBJECT)
;; NAME
(name :type string :initarg :name :reader name)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is a subclass of the FKENZO-OBJECT class with just one additional slot, name,
which provides a name for the object. The FKENZO-OBJECT-NAME instances will be useful
to store objects which do not have a concrete mathematical representation but which
include a name to identify them in fKenzo, for instance a simplicial set build from a list
of its elements.

On the other hand, we have defined a new subclass of the FKENZO-OBJECT class;
to store the path of a file associated with the object. Namely, the new class,
FKENZO-OBJECT-FILE, whose definition is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS FKENZO-OBJECT-FILE (FKENZO-OBJECT)
;; FILE
(file :type string :initarg :file :reader idnm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This is a subclass of the FKENZO-OBJECT class with just one additional slot, file,
which provides the path of a file associated with the object. In turn this class can be
specialized depending on the type of the file which is associated with the object.

4.1.5.2 Behavior of the objects in the fKenzo GUI

It is worth noting that in spite of belonging to different classes, all the instances con-
structed in fKenzo are stored in the *FKENZO-OBJECTS* list, which is used to show the
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list objects in the left side of the fKenzo GUI. However, when we select an object in the
left list of the GUI, the behavior of the interface depends on the class associated with
the selected object. To deal with this question we have used the Strategy pattern [GJ94]
which is implemented in Common Lisp by means of generic functions and methods.

In particular, we have defined the generic function to show information in the fKenzo
GUI about the selected object:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFGENERIC show-object (object))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This generic function have several methods to adapt it to specific cases. The main
method is associated with the FKENZO-OBJECT class:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD show-object ((object FKENZO-OBJECT))
(show-mathematical-notation (orgn object))
(if (props object) (show-description (props object))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This method shows the mathematical representation of object in the bottom part of
the right side of the fKenzo GUI by means of the show-mathematical-notation function
which takes as argument the orgn slot of the FKENZO-OBJECT instance. Moreover, if some
additional information is stored in the props slot of the object, then, this information is
shown in the Description tab.

When the object associated with the selection of the left list of the GUI belongs to
the class FKENZO-OBJECT-NAME, the behavior of the GUI is different since we have defined
this new method:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD show-object ((object FKENZO-OBJECT-NAME))
(show-name (name object))
(if (props object) (show-description (props object))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which instead of showing the mathematical representation of the object shows the name
given by the user. In addition, each specialization of the FKENZO-OBJECT-FILE will have
a concrete method to specify its behavior. In this way, the behavior of the left list of
the GUI is modified without touching the main code.

We foresee the definition of new specializations in the future, but we think that
approach presented here is general enough to be extrapolated to other cases.

4.2 Interoperability between Kenzo and GAP/HAP

As we said at the beginning of this chapter, the integration of several tools in fKenzo
was a means and not the end. The final goal of integrating different tools, as internal
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servers, in the framework (and in fKenzo, too) consists in achieving a composability
between them to produce results not reachable if the tools worked in an isolated way.

The first case study is the integration of the two Computer Algebra systems included
in our system (Kenzo and GAP/HAP). To achieve the goal of the composability of Kenzo
and GAP/HAP we have been inspired by the work presented in [RER09]. In that work,
Kenzo and GAP/HAP were manually communicated by means of OpenMath objects
in order to compute homology of groups of Eilenberg MacLane spaces of type K(π, 1).
In addition, this integration allowed the authors to develop new tools to compute more
algebraic invariants, such as homology groups of K(π, n)’s, certain 2-types and central
extensions, as can be seen in [Rom10].

However, the approach followed in that paper to connect Kenzo and GAP/HAP had
some drawbacks that will be explained in the next subsection. Then, we have undertaken
the task of improving the cooperation between these systems thanks to our framework.

The interoperability between Kenzo and GAP/HAP is translated into the feasibility
of constructing Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic group,
thanks to the combination of Kenzo and GAP/HAP; and subsequently use these spaces
as any other space of the system (that means, use them for constructing other spaces
and computing their homology and homotopy groups).

The rest of this section is organized as follows. Subsection 4.2.1 is devoted to provide
an overview of the method to integrate Kenzo and GAP/HAP used in [RER09]; in addi-
tion, the necessary mathematical background is also explained there. The composability
of Kenzo and GAP/HAP in our framework is explained in Subsection 4.2.2. Finally, the
improvements added to the fKenzo GUI are presented in Subsection 4.2.3.

4.2.1 Mathematical preliminaries

In Subsection 4.1.1, we explained that is enough to determine a free resolution F∗ of a
group G to compute its homology groups. One approach consists in considering the bar
resolution B∗ = Bar∗(G) (explained, for instance, in [Mac63] and which can be always
constructed) whose associated chain complex Z ⊗ZG B∗ can be viewed as the chain
complex of the Eilenberg MacLane space K(G, 1). The homology groups of K(G, 1) are
those of the group G and this space has a big structural richness. But it has a serious
drawback: its size. If n > 1, then K(G, 1)n = Gn. In particular, if G = Z, the space
K(G, 1) is infinite. This fact is an important obstacle to use K(G, 1) as a means for
computing the homology groups of G.

However, the Effective Homology technique (see Subsection 1.1.3) and the Kenzo
program could have a role in the computation of the homology of a group G, since, as
we have seen in Section 1.2.2, Kenzo implements Eilenberg MacLane spaces K(G, n) for
every n but only for G = Z and G = Z/2Z. To our end, we need the Eilenberg MacLane
space K(G, 1), for other groups G. The size of this space makes it difficult to calculate
the groups in a direct way, but it is possible to operate with this simplicial set making use



150 Chapter 4 Interoperability for Algebraic Topology

of the effective homology technique: if we construct the effective homology of K(G, 1)
then we would be able to compute the homology groups of K(G, 1), which are those of
G. Furthermore, it should be possible to extend many group theoretic constructions to
effective homology constructions of Eilenberg MacLane spaces. We thus introduce the
following definition.

Definition 4.4. A group G is a group with effective homology if K(G, 1) is a simplicial
set with effective homology.

The problem is, given a group G, how can we determine the effective homology of
K(G, 1)? If the group G is finite, the simplicial set K(G, 1) is effective too, so that
it has trivially effective homology. However, the enormous size of this space makes it
difficult to obtain real calculations, and therefore we will try to obtain an equivalence
C∗(K(G, 1))⇐⇐⇒⇒E∗ where E∗ is an effective and (much) smaller chain complex than
the initial chain complex.

In [RER09] the algorithm that computes this equivalence from a resolution of G was
explained. Here, we just state the algorithm.

Algorithm 4.5 ([RER09]).
Input: a group G and a free resolution F∗ of finite type.
Output: the effective homology of K(G, 1), that is, an equivalence C∗(K(G, 1))⇐⇐⇒⇒E∗
where E∗ is an effective chain complex.

This algorithm was implemented, by the authors of [RER09], in Common Lisp en-
hancing the Kenzo system. The free resolution of the group G is obtained from the
GAP/HAP system. Particulary to the case where G is a cyclic group, the process to
construct the space K(G, 1), in Kenzo, can be summed up as follows:

1. Load the necessary packages and files in GAP and Kenzo,

2. build the cyclic group G in GAP,

3. build a resolution of the cyclic group G using the HAP package,

4. export from GAP the resolution into a file using the OpenMath format,

5. import the resolution to Kenzo,

6. build the cyclic group G in Kenzo (thanks to a new Kenzo module developed
in [RER09]),

7. assign the resolution to the corresponding cyclic group G in Kenzo,

8. build the space K(G, 1) where G is the cyclic group in Kenzo.
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This approach has some drawbacks. First of all, the user must install several pro-
grams and packages: GAP, its HAP package, the OpenMath package for GAP [SC09],
an extension for this OpenMath package developed in [RER09], the Kenzo system and
the new module developed in [RER09]. In addition, of course, the user must know
how to mix all the ingredients in order to obtain the desired result. Moreover, some of
the steps could be performed automatically by a computer program; for instance, the
importation/exportation of the resolution from GAP to Kenzo.

Therefore, we undertook the task of integrating this composability of systems in
fKenzo but overcoming the drawbacks and hiding to the final user the composability
details.

4.2.2 Composability of Kenzo and GAP/HAP

We have modified the plug-in used to integrate GAP in our framework to include the
functionality related to the construction of Eilenberg MacLane spaces of type K(G, 1),
where G is a cyclic group. The resources included in that plug-in are:

<code id="gap">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> gap-kenzo.lisp </data>
<data format="Kf/internal-server"> gap-invoker.lisp </data>
<data format="Kf/microkernel"> gap-cyclic-m.lisp </data>
<data format="Kf/microkernel"> gap-homology-m.lisp </data>
<data format="Kf/microkernel"> gap-k-g-1-m.lisp </data>
<data format="Kf/microkernel"> homotopy-extension-m.lisp </data>
<data format="Kf/adapter"> gap-a.lisp </data>

</code>

It is worth noting that some new resources have been included to the orig-
inal GAP plug-in (in particular the files gap-kenzo.lisp, gap-k-g-1-m.lisp and
homotopy-extension-m.lisp), others have been modified to allow the integration of the
new tools (XML-Kenzo.xsd, gap-invoker.lisp and gap-a.lisp) and other files remain
untouched.

The modification of the resources and the new resources are going to be explained
in the following subsubsections.

4.2.2.1 New elements of the XML-Kenzo schema

We want to introduce a new kind of objects in our system (Eilenberg MacLane spaces
of type K(G, 1) where G is a group); then, it is necessary to provide a representation
for those objects in our framework. Therefore, we have extended the XML-Kenzo speci-
fication to admit the new objects related to Eilenberg MacLane spaces of type K(G, 1),
where G is a group. In the specification, we have defined a new element: k-g-1, which
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Figure 4.9: k-g-1 element in XML-Kenzo

has one child, that is, an element, of the group A (the type of the GAP abelian groups in
our specification, at this moment this group just has the cyclic element but we foresee
the inclusion of new groups), see Figure 4.9. In addition, the element k-g-1 belongs to
the ASG group (the type of Abelian Simplicial Groups); and therefore, this element can
be used as any other element of the ASG group, that is to say, we can construct requests
to compute its homology and homotopy groups and use it for constructing other spaces.

Therefore, the following request is a valid XML-Kenzo object.

<constructor>
<k-g-1>
<cyclic>5</cyclic>

</k-g-1>
</constructor>

As we explained in Subsection 3.1.2, the external server evolves when the
XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified the
external server can validate requests such as the above one.

4.2.2.2 Enhancements of Kenzo internal server and GAP/HAP server

The Kenzo internal server, the GAP/HAP server and the gap-invoker have been modified
in order to integrate the composability of Kenzo and GAP/HAP.

The GAP/HAP server presented in Subsubsection 4.1.3.2.1 supplied services to con-
struct cyclic groups, to obtain properties of them and to compute their homology groups
using the GAP Computer Algebra system and its HAP package. Now, we have included
a new service which allows the construction of a resolution of a (cyclic) group using
the HAP package. Then, a client can invoke this new service. For instance, when the
GAP/HAP server receives the following request:
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<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call"/>
<OMA>
<OMS cd="scscp_transient_1" name="Resolution"/>
<OMA> <OMS cd="group1" name="cyclic"/> <OMI>5</OMI> </OMA>

</OMA>
</OMA>

</OMATTR>
</OMOBJ>
<?scscp end ?>

which asks the construction of a resolution for the cyclic group of dimension 5, the GAP
server executes the instruction:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> ResolutionFiniteGroup(CyclicGroup(5)); z
Resolution in characteristic 0 for <pc group of size 5 with 1 generators>
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the GAP server transforms the result to its OpenMath format.

<OMOBJ>
<OMA>
<OMS cd="resolutions" name="resolution"/>
<!-- GROUP -->
<OMA>
<OMS cd="group1" name="cyclic_group"/>
<OMI>5</OMI>
</OMA>
<!-- More than 1000 lines skipped -->
...

</OMOBJ>

The OpenMath format of resolutions was explained in [RER09].

The gap-invoker (presented in Subsubsection 4.1.3.2.1), which was able to invoke
the GAP/HAP server in order to construct cyclic groups, obtain their properties and
compute their homology groups has been upgraded in the gap-invoker.lisp file in order
to be able to request resolutions to the GAP/HAP server. When this program invokes the
GAP/HAP server asking for a resolution of a group, the result returned by this program
is the resolution obtained from the GAP/HAP server keeping its OpenMath format.
We decided to keep resolutions with their OpenMath format instead of transforming
them to an XML-Kenzo representation. The main reason was due to the fact that
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we have re-used the programs implemented in [RER09] which work with resolutions
based on the OpenMath format. Therefore, we considered that converting from an
OpenMath resolution to an XML-Kenzo resolution and subsequently performing the
inverse transformation to obtain the original OpenMath resolution was unnecessary.
Besides, the idea of using XML-Kenzo to check the correctness of the resolutions against
some rules (as we have done with the rest of the objects of the system) was rejected
because we completely trust in the resolutions returned by the gap-invoker. This means
(if connection problems with the GAP/HAP server do not appear in which case the
system manages the situation) that the returned resolutions are always safe since they
are not manually produced, but automatically generated by a program following the
rules which ensure their correctness.

Finally, the functionality of the Kenzo kernel is increased by means of the
gap-kenzo.lisp file which loads in the Kenzo system the functionality implemented
in [RER09] to construct Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic
group. The functionality implemented in [RER09] includes the functions to construct
cyclic groups, to transform an OpenMath resolution into a Common Lisp functional
object and, eventually, to construct Eilenberg MacLane spaces of type K(G, 1) in the
Kenzo system.

Besides, the functionality of the Kenzo internal server is increased allowing the in-
vocation of the service which allows the construction of new Eilenberg MacLane spaces.
Namely, this service takes as argument an XML-Kenzo object which represents the
Eilenberg MacLane space of a group G and an OpenMath resolution of G obtained
from GAP. When this new service is activated, it extracts the cyclic group encoded
in the XML-Kenzo object and constructs a Kenzo object which represents that cyclic
group. Subsequently, the OpenMath resolution is codified as a Common Lisp functional
object and assigned to the cyclic group. Afterwards, the space K(G, 1), where G is
the cyclic group previously constructed in Kenzo, is built. As a result, an instance of
the Abelian-Simplicial-Group Kenzo class is obtained and its identification number is
returned as a result, in an id XML-Kenzo object, by the Kenzo internal server.

4.2.2.3 Increasing the functionality of the microkernel

The gap-k-g-1-m.lisp file contains the Common Lisp functions which allow the plug-
in framework to extend the microkernel in order to include a new construction module,
called k-g-1, to construct Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic
group.

When the microkernel receives a construction request where the child of the
constructor element is k-g-1, the k-g-1 module of the microkernel is activated. For
instance, if the microkernel receives the request:
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<constructor>
<k-g-1>
<cyclic>5</cyclic>

</k-g-1>
</constructor>

the k-g-1 module is activated.

When the k-g-1 module is activated two situations are feasible: (1) a new space is
created in the microkernel or (2) the object was previously built and its identification
number is simply returned.

The procedure to construct Eilenberg MacLane spaces of type K(G, 1), where G is
a cyclic group, in the k-g-1 module is very similar to the procedure followed in the
construction of spaces presented in Subsubsection 2.2.3.3. However, in this case, some
additional steps are needed.

1. Search in the *object-list* list if the object was built previously.

(a) If the object was built previously its identification number, in an id XML-
Kenzo object, is returned.

(b) Otherwise, go to step 2.

2. Extract the XML-Kenzo object which represents the cyclic group of the k-g-1

XML-Kenzo object.

3. Activate the gap-invoker to obtain a resolution associated with the XML-Kenzo
object which represents the cyclic group obtained in the previous step.

4. Invoke the service of the Kenzo internal server which allow the construction of
Eilenberg MacLane space of a group G with the k-g-1 XML-Kenzo object and the
resolution obtained in the previous step as arguments.

5. Construct an instance of the mk-space-k-g class (see Subsubsection 2.2.3.1) where:

• the value of the slot rede is 0,

• idnm is automatically generated,

• kidnm is the value returned by the Kenzo internal server in the previous step,

• the XML-Kenzo object received as input is assigned to orgn,

• the value of the slot iter is 1, and

• the value of the slot group is the dimension of the cyclic group.

6. Push the object in the *object-list* list of already created spaces.

7. Return the idnm of the object in an id XML-Kenzo object.
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In this way, Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic group,
are constructed in the microkernel. It is worth noting that the above procedure does not
need to check any extra constraint for these spaces, since the restriction (namely, the
constraint is the correct type of the argument of this constructor) about these Eilenberg
MacLane spaces is validated in the external server thanks to the XML-Kenzo specifica-
tion.

As we have explained previously, Eilenberg MacLane spaces play a key role in the
computation of homotopy groups of spaces in our system (see Paragraph 2.2.3.2.2).
Then, the homotopy-extension-m.lisp file extends the procedure implemented in the
HAM (see Paragraph 2.2.3.2.2). The procedure implemented in that module only allowed
the computation of homotopy groups if the first non null homology group of the space
was Z or Z/2Z; using the new functions implemented in [RER09] and included in the
Kenzo internal server, we can compute homotopy groups of spaces whose first non null
homology group is a cyclic group using the algorithm implemented in the HAM and the
new functionality related to Eilenberg MacLane spaces.

4.2.2.4 Increasing the functionality of the adapter

Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic group, have been defined
in the ASG OpenMath Content Dictionary. Then, we have upgraded the functionality of
gap-a.lisp (which was presented in Subsubsection 4.1.3.5) to raise the functionality of
the adapter in order to be able to convert from the new OpenMath requests, devoted
to the construction of Eilenberg MacLane spaces of type K(G, 1), where G is a cyclic
group, to XML-Kenzo requests. Namely, we have extend the Phrasebook by means of a
new parser in charge of that task, then, the following XML-Kenzo request:

<constructor>
<k-g-1>
<cyclic>5</cyclic>

</k-g-1>
</constructor>

is generated by the adapter when the following OpenMath request is received:

<OMOBJ>
<OMA>
<OMS cd="ASG" name="k-g-1"/>
<OMA>
<OMS cd="groupname1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
</OMA>

</OMOBJ>
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Figure 4.10: Workflow of the computation of π1(K(C5, 1))

4.2.2.5 Execution flow

To provide a better understanding of the composability of Kenzo and GAP/HAP, let
us present an execution scenario where a client wants to compute π1(K(C5, 1)) in a
fresh session, that is to say, neither objects were constructed nor computations were
performed previously. The execution flow of this scenario is depicted in Figure 4.10 with
a UML-like sequence diagram.

The OpenMath representation of the request to compute π1(K(C5, 1)) is the following
one:

<OMOBJ>
<OMA>

<OMS cd="Computing" name="Homotopy"/>
<OMA>

<OMS cd="ASG" name="k-g-1"/>
<OMA> <OMS cd="groupname1" name="cyclic"/> <OMI>5</OMI> </OMA>

</OMA>
<OMI>1</OMI>

</OMA>
</OMOBJ>

The adapter receives the previous OpenMath request from a client. This module
checks that the OpenMath instruction is well-formed and the Phrasebook converts the
OpenMath object into the following XML-Kenzo object:
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<operation>
<homotopy>

<k-g-1> <cyclic>5</cyclic> </k-g-1>
<dim>1</dim>

</homotopy>
</operation>

which is sent to the external server. The external server validates the XML-Kenzo object
against the XML-Kenzo specification. In this case as the root element is operation it
checks that:

1. The child element of operation is homology or homotopy. X

2. The homotopy element has two children. X

3. The first child of the homotopy element belongs to one of the groups CC, SS, SG or
ASG. X

4. The k-g-1 element has one child which belongs to the group A. X

5. The value of the cyclic element of the k-g-1 element is a natural number. X

6. The second child of the homotopy element is the dim element. X

7. The value of the dim element is a natural number. X

All the tests are passed, so, we have a valid request that is sent to the microkernel.
In the microkernel the homotopy module is activated. When the homotopy module is ac-
tivated, the procedure explained in Paragraph 2.2.3.4.2 is executed. First, the homotopy

module searches in *object-list* if the space K(C5, 1) was constructed previously; as
this space was not constructed, the k-g-1 module is invoked to construct it. When the
k-g-1 module is activated, the procedure explained in Subsubsection 4.2.2.3 is executed.

The gap-invoker is activated with the aim of obtaining a resolution from GAP/HAP
of the cyclic group C5 represented with the following XML-Kenzo object.

<constructor>
<cyclic>5</cyclic>

</constructor>

From the previous XML-Kenzo object, the gap-invoker constructs the following re-
quest, which is sent to the GAP/HAP server.
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<?scscp start ?>
<OMOBJ>

<OMATTR>
<OMATP>

<OMS cd="scscp1" name="call_id"/>
<OMSTR>esus.unirioja.es:7500</OMSTR>

</OMATP>
<OMA>

<OMS cd="scscp1" name="procedure_call"/>
<OMA>

<OMS cd="scscp_transient_1" name="Resolution"/>
<OMA>

<OMS cd="group1" name="cyclic"/>
<OMI>5</OMI>

</OMA>
</OMA>

</OMA>
</OMATTR>

</OMOBJ>
<?scscp end ?>

When the GAP/HAP server receives the above request the following instruction is
executed in the GAP/HAP server:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gap> ResolutionFiniteGroup(CyclicGroup(5)); z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result returned by the GAP/HAP server to the gap-invoker (once we have re-
moved the SCSCP wrapper) is:

<OMOBJ>
<OMA>
<OMS cd="resolutions" name="resolution"/>
<!-- GROUP -->
<OMA>
<OMS cd="group1" name="cyclic_group"/>
<OMI>5</OMI>
</OMA>
<!--More than 1000 lines skipped-->
...

</OMOBJ>

This resolution is used by the k-g-1 module to invoke the Kenzo internal server and
construct both in the Kenzo kernel and in the microkernel the space K(C5, 1). The
identifier of the new object is returned to the homotopy module.

Afterwards, a mk-space-k-g is built in the microkernel as was explained in Subsub-
section 4.2.2.3. Subsequently, once the space is constructed in the microkernel, as we
are working with a mk-space-k-g, the HES is activated to compute the homotopy group
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of the space. The HES uses its rules and returns the result:

<result-HES>
<component>5</component>
<explanation>

The space was the Eilenberg MacLane space K(C5, 1). The homotopy groups
of an Eilenberg MacLane space K(G,m) are: πm(K(G,m)) = G and
πr(K(G,m)) = 0 if m 6= r.

</explanation>
</result-HES>

This result is stored in the internal memory to avoid re-computations by the homotopy

module and sent to the adapter through the external server. Then, the adapter converts
the result into its OpenMath representation:

<OMOBJ>
<OMA>

<OMS cd="computing" name="result-HES"/>
<OMI>5</OMI>
<OMSTR>
The space was the Eilenberg MacLane space K(C5, 1). The homotopy groups
of an Eilenberg MacLane space K(G,m) are: πm(K(G,m)) = G and
πr(K(G,m)) = 0 if m 6= r.

</OMSTR>
</OMA>

</OMOBJ>

and this is the result returned to the client.

4.2.3 Composability of Kenzo and GAP/HAP in the fKenzo
GUI

This subsection is devoted to present the necessary resources to extend the fKenzo GUI
to provide support for the new functionality presented in the previous subsection.

In this case we have modified the GAP fKenzo module, presented in Subsection 4.1.5,
to enhance the GUI with support for Eilenberg MacLane spaces of type K(G, 1). Now,
the GAP/HAP module references three files: gap-structure (that defines the structure
of the graphical constituents), gap-functionality (which provides the functionality re-
lated to the graphical constituents) and the plug-in introduced in the previous subsection
(this plug-in is an extension of the presented in Subsection 4.1.3).

We have defined additional graphical elements for the GAP module, using the XUL
specification language, in the gap-structure file:

• A menu option called K-G-1 into the menu Abelian Simplicial Groups.
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Figure 4.11: K-G-1 window

• A window called K-G-1 (see Figure 4.11). As we have explained previously, we do
not specify from scratch this window, but we use a generic specification with the
desired structure whose attributes take the concrete values of the new window.

In addition to the functionality explained in Subsection 4.1.5, the gap-functionality

document includes the functionality related to these new components. Namely, a func-
tion acting as event handler is associated with the K-G-1 menu option; this function
shows the K-G-1 window (see Figure 4.11) if a group was constructed previously in the
session; otherwise, it shows a message which indicates that a group must be constructed
before using this menu option.

From the K-G-1 window, the user must select a group from a list with the Add button.
Once the user has selected a group G, when he presses the Build button of the K-G-1

window, an OpenMath request is generated and sent it to our framework. The Eilenberg
MacLane space K(G, 1) and its identification number is returned. Eventually, fKenzo
adds to the list of constructed objects (situated in the left side of the main tab of the
fKenzo GUI) the new object.

Then, a fKenzo user can use an Eilenberg MacLane space of type K(G, 1) with
G a cyclic group as any other space. In particular, he can employ them to construct
other spaces (for instance the classifying space of these Eilenberg MacLane spaces, see
Figure 4.12) or to compute its homology and homotopy groups, see Figures 4.12 and 4.13.

It is worth noting that from the user point of view he can construct and use the space
K(G, 1) as any other space, so he does not know that internally the process to construct
this kind of spaces involves the composability of two Computer Algebra systems. There-
fore, we are providing an interoperability tool to the user without disconcerting him by
the technicalities needed to perform this composability.

In particular, the procedure that the user must follow to achieve the same behavior
presented in [RER09] is:

1. Load the GAP fKenzo module,

2. build the cyclic group G,
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Figure 4.12: Homology groups of K(C5, 1) and B(K(C5, 1))

Figure 4.13: Explanation facility window for homotopy groups of K(C5, 1)
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3. build the space K(G, 1).

As can be seen, this is a much simpler approach than the one presented in [RER09]
from the user point of view. However, no reward comes without its corresponding price
and some of the constructions developed in [RER09, Rom10] cannot be made available
in fKenzo (for instance 2-types, since their construction involves a study of its internal
structure and a knowledge of the definition of Lisp functions, and such a meticulous
study is difficult to integrate in a GUI, at least in an easy and usable way, that is,
without giving access to the internal Common Lisp code).

4.3 Integration of the ACL2 Theorem Prover

As we claimed in Section 2.1 one of the challenges of our system was the integration of
different kinds of tools; in particular, we were not only interested in integrating tools
which allow us to perform computations (such as Computer Algebra systems) but also
to certify results (by means of Theorem Proving tools).

To this aim, as a first step, we have taken advantage of the semantical possibilities
of OpenMath. Concretely, we have added, in our Content Dictionaries, the properties
which the mathematical structures must satisfy. This opens the chance of interfacing
OpenMath with different theorem provers. A similar approach (in the sense that it
involved both OpenMath and a Theorem Prover), using the proof checkers Lego and
Coq, was proposed by Caprotti and Cohen in [CC99]. The approach followed in that
paper consisted in checking whether OpenMath expressions were well-typed with Lego
and Coq Theorem Provers or not. Our approach is a bit different, on the one hand,
we have used the ACL2 theorem prover instead of Coq and, on the other hand, we
want to define mathematical structures in Content Dictionaries; then, an interpreter
will transform those Content Dictionaries into ACL2 encapsulates (see Subsection 1.3.2)
which can be used later on in ACL2. The importance of this case study comes from
the fact that we are giving the first steps to store mathematical theories developed in
Theorem Provers in OpenMath/OMDoc documents, increasing the portability of those
theories to different theorem provers.

The rest of this section is organized as follows. Subsection 4.3.1 is devoted to present
how axiomatic information is added to our Content Dictionaries. The transformation
from Content Dictionaries to ACL2 encapsulates is explained in Subsection 4.3.2. The
integration of ACL2 in our framework and in the fKenzo GUI are presented respectively
in subsections 4.3.3 and 4.3.4.

4.3.1 Adding axiomatic information to Content Dictionaries

Up to now, we have defined four Content Dictionaries (see Subsection 2.2.5) related to
the different kind of objects that can be built in our system (Chain Complexes, Simplicial
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Sets, Simplicial Groups and Abelian Simplicial Groups). These Content Dictionaries,
which are www-available at [Her11], defined several objects (such as spheres, loop spaces
and so on) which instantiate a mathematical structure. However, they did not formally
define the mathematical structure. To deal with this question we have proceeded as
follows.

The Kenzo mathematical structures (see Figure 1.2 of Subsection 1.2.1) are alge-
braic structures which properties are axiomatically given and which have associated a
signature with the arities of the functions which define an object of that structure. For
each one of the Kenzo mathematical structures we have defined an OpenMath Content
Dictionary (or extended the ones already defined) to include the formal definition of
these mathematical structures.

To this aim we have based on the Small Type System formalism, see [Dav99] for de-
tails, which has been designed to give semi-formal signatures to OpenMath symbols. By
using this mechanism we have included signatures in the OpenMath objects definition.
In addition, we have specified their properties in two different ways (by means of <FMP>
and <CMP> tags) and we have associated an instance example with them.

We are going to focus on the SS Content Dictionary which defines the notion of
simplicial sets introduced in Definition 1.17; the rest of Content Dictionaries are based
on the same ideas.

To define the simplicial set structure, we must provide the disjoint sets {Kq}q≥0 and
both face and degeneracy operators. The sets {Kq}q≥0 can be seen as a graded set;
so, it is possible to consider its characteristic function which, from an element x and a
degree g, determines if the element x belongs to the set Kg. To be precise, an invariant
function can be used in order to encode the characteristic function of the graded set
{Kq}q≥0.

Based on the previous way of representation, the following signature, let us called it
SS, has been defined for simplicial sets.

inv : u nat -> bool
face : u nat nat -> u
deg : u nat nat -> u

where inv, face and deg represent the characteristic function of the underlying set and
the face and degeneracy operators respectively, and u denotes the Universe, of Lisp
objects in this case.

The SS signature can be codified using the OpenMath Signature element as follows:
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<Signature name="simplicial-set">
<OMOBJ xmlns="http://www.openmath.org/OpenMath">

<OMA>
<OMS name="mapsto" cd="sts"/>
<OMA id="inv">

<OMS cd="sts" name="mapsto"/>
<OMV name="Element"/>
<OMV name="PositiveInteger"/>
<OMS cd="setname2" name="boolean"/>

</OMA>
<OMA id="face">

<OMS cd="sts" name="mapsto"/>
<OMV name="Element"/>
<OMV name="PositiveInteger"/>
<OMV name="PositiveInteger"/>
<OMV name="Element"/>

</OMA>
<OMA id="degeneracy">

<OMS cd="sts" name="mapsto"/>
<OMV name="Element"/>
<OMV name="PositiveInteger"/>
<OMV name="PositiveInteger"/>
<OMV name="Element"/>

</OMA>
<OMV name="Simplicial-Set"/>

</OMA>
</OMOBJ>

</Signature>

The above OpenMath Signature must be read as follows. Each application OMA inside
the main mapsto of the simplicial-set signature represents each one of the functions
of the SS signature. The value of the id of the application tag (<OMA id=" ">) is the
name of the function. The mapsto symbol, inside of the application tag, is applied to n
variables and/or symbols, the first n− 1 will be the inputs and the last one the output
of the function. The “type” of the inputs and outputs is also included. In this way, we
can provide the signature of each Kenzo mathematical structure.

The formal mathematical properties of the simplicial sets are given in the <FMP>

tags of the simplicial set definition. In this case <FMP> elements state the properties of
invariance of face and degeneracy operators and the relations between them (the five
properties included in the definition of simplicial sets). All of them have also been
included in natural language by using <CMP> elements. For instance, the face operator
invariance (x ∈ Kq ⇒ ∂ix ∈ Kq−1) is represented as follows:
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<CMP> Face operator invariance: x \in K^q => \partial_i x \in K^{q-1} </CMP>
<FMP>
<OMA>
<OMS cd="logic1" name="implies"/>
<OMA> <OMS name="inv"/> <OMV name="x"/> <OMV name="q"/> </OMA>
<OMA>
<OMS name="inv"/>
<OMA> <OMS name="face"/> <OMV name="x"/> <OMV name="i"/> <OMV name="q"/> </OMA>
<OMA> <OMS cd="arith1" name="minus"/> <OMV name="q"/> <OMI>1</OMI> </OMA>

</OMA>
</OMA>
</FMP>

Finally, an example of a concrete simplicial set has been included. Namely, the sim-
plicial set with one element belonging to each set Kq and with each face and degeneracy
operation of degree q returning the element of degree q − 1 and q + 1 respectively has
been considered.

<Example>
...
<OMBIND>

<OMS name="face"/>
<OMBVAR>

<OMV name="x"/> <OMV name="i"/> <OMV name="q"/>
</OMBVAR>
<OMS cd="list" name="nil"/>

</OMBIND>
....

</Example>

In this way, all the Kenzo mathematical structures can be defined by means of
OpenMath Content Dictionaries.

4.3.2 From Content Dictionaries to ACL2 encapsulates

Content Dictionaries, defined in the way presented in the previous subsection, open the
chance of interfacing OpenMath with theorem provers; namely, in our case, with the
ACL2 Theorem Prover (presented in Section 1.3). The main reason to choose ACL2 was
the fact that, as Kenzo, it is a Common Lisp program, then, we can use ACL2 to verify
real Kenzo code, as we will see from the next chapter.

It is worth noting that our Content Dictionaries include all the necessary information
to generate ACL2 encapsulates. Let us remember that ACL2 supports the constrained
introduction of new function symbols by means of the encapsulate notion, a detailed
description of this ACL2 functionality was presented in Subsection 1.3.2. Briefly, an
encapsulate allows the introduction of function symbols in ACL2, without a completely
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specification of them, but just assuming some properties which define them partially.
An ACL2 encapsulate consists of a set of function signatures, a set of properties of these
functions and a “witness” for each one of the functions, where a witness is an existing
function that can be proved to have the required properties (witnesses are provided to
avoid the introduction of inconsistencies in ACL2).

From each Content Dictionary specified as the one presented in the previous subsub-
section, an ACL2 encapsulate can be generated. From now on, we are going to explain
the transformation from one of our Content Dictionaries (in particular the SS Content
Dictionary) to an ACL2 encapsulate.

First of all, the OpenMath signatures must be transformed to ACL2 signatures. Each
application OMA inside the main mapsto of the simplicial set signature is translated into a
function of the encapsulate in the following way. The value of the id of the application
tag (<OMA id=" ">) will be the name of the function, the mapsto symbol inside the
application tag is converted to => in ACL2. The mapsto symbol is applied to n variables
and/or symbols, the first n−1 will be the inputs and the last one the output. Note that
ACL2 is a system without explicit typing, so, although the “type” of the objects has
been included in the Content Dictionary they will be translated into asterisks in ACL2.
Adding the necessary brackets, the following ACL2 signature is obtained.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

((inv * *) => *))
(((face * * *) => *)
((degeneracy * * *) => *)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The following step consists of transforming the mathematical properties, specified in
the Content Dictionary, into ACL2 lemmas. In order to do this, we proceed as follows.
First of all, the <CMP> tags will be translated into ACL2 comments, expressed with “;”.
To each <FMP> tag, a new lemma, defthm in ACL2 syntax, with the name prop-n where
n is a variable that indicates the number of the property, must be defined. The implies,
and, eq and minus OpenMath symbols are translated respectively into the implies, and,
equal and “-” ACL2 functions (these are some examples of the equivalences established
between OpenMath symbols and ACL2 functions). For instance, the following ACL2
lemma about the face operator invariance is obtained from the respective property in
the Content Dictionary.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

; Face operator invariance
(defthm prop-1 (implies (inv x q) (inv (face x i q) (- q 1))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

And, finally, from the <Example> tags, the witnesses are obtained. Each example in a
Content Dictionary will be a local definition in an ACL2 encapsulate. The OMBIND symbol
indicates the beginning of the definition, defun in ACL2, its first argument is a symbol
which indicates the name of the function, the second one is an OMBVAR element which
specifies the name of the parameters and the third one is the body of the function.
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If some of the arguments of the function does not appear in its body, they will be
ignored to obtain a correct ACL2 function, as we show in the translation of the previous
subsubsection.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(local (defun face (x i q) (declare (ignore x i q)) nil))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore, we have an interpreter which is able to construct ACL2 encapsulates from
some concrete Content Dictionaries. This interpreter is a Common Lisp program which
takes as input an OMDoc file specified in the way presented in Subsubsection 4.3.1 and
constructs an ACL2 encapsulate. All the generated encapsulates can be evaluated in
ACL2.

In the same way that we have developed an interpreter which generates ACL2 en-
capsulates from Content Dictionaries, we can also implement other interpreters which
supply suitable code for other Theorem Provers such as Isabelle or Coq.

4.3.3 Integration of ACL2

To integrate the ACL2 Theorem Prover in our framework we have developed a plug-in
following the guidelines given in Subsubsection 3.1.2. This new plug-in will allow us
to verify ACL2 scripts (an ACL2 script is a file of ACL2 forms, such as definitions or
theorems, which is processed in a sequential way) obtaining as result a file with the ACL2
output obtained from the evaluation of the script in ACL2. Moreover, we have included
the interpreter presented in the previous subsection as a module of the microkernel
to generate ACL2 encapsulates from Content Dictionaries. This plug-in references the
following resources:

<code id="ACL2">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> ACL2-is.lisp </data>
<data format="Kf/microkernel"> ACL2-m.lisp </data>
<data format="Kf/microkernel"> CD-to-ACL2.lisp </data>
<data format="Kf/adapter"> ACL2-a.lisp </data>

</code>

These resources deserve a detailed explanation that is provided in the following sub-
subsections.

4.3.3.1 Extending the XML-Kenzo schema

As we have just explained, the new plug-in will allow us to execute ACL2 scripts and
store the output produced by ACL2 in a file. Then, we need to represent the way
of providing the path of both the ACL2 script and the ACL2 output. Therefore, we



4.3 Integration of the ACL2 Theorem Prover 169

Figure 4.14: acl2-script XML-Kenzo specification

Figure 4.15: acl2-output XML-Kenzo specification

have extended the XML-Kenzo specification (XML-Kenzo.xsd file) to this aim. In this
specification, we have defined two new elements: a new element of the requests group
called acl2-script (see Figure 4.14), whose value is a string which indicates the path
of the ACL2 script, and a new element of the results group called acl2-ouput (see
Figure 4.15) whose value is a string which indicates the path of an ACL2 output file.

Moreover, we want to introduce new functionality in our system which allows us to
generate an ACL2 encapsulate from a Content Dictionary. Therefore, we have extended
the XML-Kenzo specification to admit this new functionality. In the XML-Kenzo spec-
ification, we have defined a new element of the requests group called CD-to-ACL2 (see
Figure 4.16), whose value is a string which indicates the path of an OMDoc document;
and a new element of the results group called ACL2-encapsulate (see Figure 4.17) whose
value is a string, namely an ACL2 encapsulate.

As we explained in Subsubsection 3.1.2 the external server evolves when the
XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified the
external server is able to receive XML-Kenzo objects such as:

<acl2-script> acl2-script-path </acl2-script>

<OMDoc-to-ACL2> OMDoc-path-file </OMDoc-to-ACL2>

4.3.3.2 A new internal server: ACL2

To integrate the ACL2 Theorem Prover, we have followed the same methodology ex-
plained in the Kenzo case (see Subsection 2.2.2): we have ACL2 wrapped with an

Figure 4.16: CD-to-ACL2 XML-Kenzo specification
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Figure 4.17: acl2-encapsulate XML-Kenzo specification

XML-Kenzo interface and the communication between the microkernel and ACL2 is
performed by means of XML-Kenzo requests through an external interface which offers
the available services of our ACL2 internal server (at this moment the only available
service allow the execution of ACL2 scripts). As in the case of the GAP/HAP system
we must install ACL2 (the ACL2 installer can be downloaded from [KM]).

The ACL2-is.lisp provides all the necessary functionality to integrate the ACL2
internal server; that is to say, ACL2, the wrapper and the interface. The ACL2 inter-
face provides just one service called execute-acl2-script. The function associated with
this service, also called execute-acl2-script, takes as input an acl2-script XML-
Kenzo object. From the file indicated in the acl2-script XML-Kenzo object, the
execute-acl2-script function extracts the ACL2 code and executes it in ACL2. The
execute-acl2-script function returns the path of a file where the output generated by
ACL2, when executing the script, is stored. This path is returned in an acl2-output

XML-Kenzo object.

4.3.3.3 New modules of the microkernel

The ACL2-m.lisp file defines a new module for the microkernel called ACL2. The proce-
dure implemented in this module is just in charge of checking that the path indicated
by the acl2-script XML-Kenzo object exists in which case the module invokes the
ACL2 internal server; if the path does not exist this module informs the user about this
situation by means of a warning XML-Kenzo object. Moreover, this file enhances the
interface of the microkernel in order to be able to invoke the ACL2 module.

This new module can be considered neither a computation module nor a construction
module. This module belongs to a new category of modules related to theorem proving
tools called verification modules.

Moreover, the CD-to-ACL2.lisp defines a new verification module for the microkernel
called CD-to-ACL2. The procedure implemented in this module is the interpreter which
transforms an OMDoc document indicated in an OMDoc-to-ACL2 XML-Kenzo object to
an ACL2 encapsulate. In addition, this file enhances the interface of the microkernel in
order to be able to invoke the new module.

4.3.3.4 Increasing the functionality of the adapter

Finally, we have extended the Aux Content Dictionary by means of the definition of four
new objects: acl2-script, acl2-ouput, CD-to-ACL2 and ACL2-encapsulate. Therefore,
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the ACL2-a.lisp file contains the functions to raise the functionality of the adapter to
be able to convert from these new OpenMath objects, devoted to indicate the path of
a file, to XML-Kenzo requests. Namely, we have extend the Phrasebook by means of a
new parser in charge of this task. For instance, the XML-Kenzo request:

<acl2-script> acl2-script-path </acl2-script>

is generated by the adapter when the following OpenMath request is received:

<OMOBJ>
<OMA>

<OMS cd="Aux" name="acl2-script"/>
<OMSTR> acl2-script-path </OMSTR>

</OMA>
</OMOBJ>

4.3.4 Integration of ACL2 in the fKenzo GUI

This subsection is devoted to present the necessary resources to extend the fKenzo GUI
to provide access to the new functionality presented in the previous subsection.

In this case we have defined a fresh fKenzo module to enhance the GUI with support
for the ACL2 system. The new module references three files: acl2-structure (that
defines the structure of the graphical constituents), acl2-functionality (which provides
the functionality related to the graphical constituents) and the last plug-in introduced.

We have defined three graphical elements, using the XUL specification language, in
the acl2-structure file:

• A new tab called ACL2 which is included in the main panel (see Figure 4.18).

• A menu called ACL2 which contains two options: CD to ACL2 and CD to ACL2 in

file.

• A window called CD-to-ACL2 (see Figure 4.19).

The new tab page contains two areas and one button: the left area will be used to
display ACL2 instructions, the button will send the instructions of the left side to ACL2,
and finally, the right area will show the ACL2 result obtained from the evaluation of the
instructions of the left area. A fKenzo user can manually write ACL2 definitions and
theorems in the left area and then execute them, but the idea is that the ACL2 scripts
are going to be automatically generated by the system and displayed in the left area of
the ACL2 tab.
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Figure 4.18: The ACL2 tab with an example

Figure 4.19: The CD-to-ACL2 window



4.3 Integration of the ACL2 Theorem Prover 173

Figure 4.20: The ACL2 tab with the simplicial sets encapsulate

The functionality stored in the acl2-functionality includes the new graphical con-
stituents. On the one hand, the event handler associated with the send-to-acl2 button
is defined in this file. This event handler obtains the ACL2 instructions which have
been written in the left side of the ACL2 tab, afterwards it stores them in a temporal
file, subsequently an acl2-script OpenMath request is created with the path of the
temporal file and sent to the framework. The returned result is shown in the right side
of the ACL2 tab.

On the other hand, the event handlers associated with the CD to ACL2 and CD to

ACL2 in file menu options are also included in the acl2-functionality file. The former
event handler shows the CD-to-ACL2 window (see Figure 4.19) which allows the user to
choose a Content Dictionary with the description of one of the Kenzo mathematical
structures. Once the user has selected a Content Dictionary; the system generates an
ACL2 encapsulate which is displayed in the left part of the ACL2 tab (see Figure 4.20).
Then, the user only has to use the functionality associated with the send-to-acl2 button
and the ACL2 output produced when the encapsulate is executed in ACL2 is shown in
the right side of the ACL2 tab (see Figure 4.20). The latter event handler, the one
associated with the CD to ACL2 in file menu option, instead of writing the encapsulate
generated in the left part of the ACL2 tab, generates a file with the encapsulate and asks
a path to the user to save the file.

As can be noticed, our interface to interact with ACL2 is a plain text editor
which is obviously less usable than typical ACL2 interfaces (Emacs [Sta81] or ACL2
sedan [DMMV07]). It is worth noting that our goal was not the creation of an ACL2
interface which could compete with regular ACL2 editors. The idea is that the ACL2
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scripts are automatically generated by the system and written in the left area of the
ACL2 tab (as we have seen for the case of the encapsulates generated from Content
Dictionaries) and the user only has to press the send-to-acl2 button, without typing
any additional ACL2 command, to obtain certificates.

4.4 Interoperability between Kenzo, GAP/HAP

and ACL2

As we have said several times throughout this chapter, we are interested not only in
integrating several tools in our framework and use them individually, but also in making
them work together.

The integration of Kenzo and GAP to construct the effective homology version of
Eilenberg MacLane spaces of type K(G, n) where G is a cyclic group was presented
in Section 4.2. Now, we want to prove the correctness of those programs by means of
the ACL2 Theorem Prover. The importance of this verification lies in the fact that
Eilenberg MacLane spaces of type K(G, n) where G is a cyclic group are instrumental
in the computation of homotopy groups.

We have integrated the already available tools in fKenzo to prove the correctness
of some Kenzo programs. In particular, we want to verify the correctness of Kenzo
statement like the following one using the ACL2 Theorem Prover.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (cyclicgroup 5) z
[K1 Abelian-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This means that we want to prove in ACL2 that the returned object by the
cyclicgroup Kenzo function really satisfies the axioms of an abelian group. This is
important, for instance, to ensure the following function,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (DEFMETHOD K-G-1 ((group AB-GROUP)) ...) z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which constructs the Eilenberg MacLane space of its argument, is really applied over
a meaningful input (that is to say, an actual abelian group). Let us recall that the
construction of the effective homology of that kind of Eilenberg MacLane spaces in-
volves the use of GAP/HAP to obtain a resolution (see Algorithm 4.5). To sum up,
we use Kenzo to construct Eilenberg MacLane spaces of cyclic groups; in addition by
means of GAP/HAP we are able to construct the effective homology of these Eilenberg
MacLane spaces; and, ACL2 increases the reliability of the construction of these Eilen-
berg MacLane spaces verifying the correctness of their input argument. Then, these
three systems are combined producing a powerful and reliable tool.
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The rest of this section is organized as follows. Subsection 4.4.1 explains the imple-
mentation of cyclic groups in the Kenzo system. Subsection 4.4.2 deals with the proof
in ACL2 of the correctness of the implementation of cyclic groups introduced in Sub-
section 4.4.1. The integration of Kenzo, GAP/HAP and ACL2 in our framework and in
the fKenzo GUI is presented in Subsections 4.4.3 and 4.4.4 respectively.

4.4.1 Implementation of cyclic groups in Kenzo

The abelian group structure is a mathematical structure which was not included in
the original version of Kenzo; but it was included in the development of [RER09] to
construct Eilenberg MacLane spaces of abelian groups. This structure was defined,
following the same schema that the one used to define mathematical structures in Kenzo
(see Subsection 1.2.1), using the two following Common Lisp class definitions:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS GROUP ()
((elements :type group-basis :initarg :elements :reader elements)
(cmpr :type cmprf :initarg :cmpr :reader cmpr1)
(mult :type function :initarg :mult :reader mult1)
(inv :type function :initarg :inv :reader inv1)
(nullel :type gnrt :initarg :nullel :reader nullel)
(idnm :type fixnum :initform (incf *idnm-counter*) :reader idnm)
(orgn :type list :initarg :orgn :reader orgn)
(resolution :type reduction :initarg :resolution :reader resolution)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS AB-GROUP (GROUP) ())
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is worth noting that the AB-GROUP class, which represents abelian groups, is a
subclass, without any additional slot, of the GROUP class. The relevant slots (relevant
in the sense of being important for our verification process) of this class are elements,
a list of the elements of the group; mult, the function defining the binary operation of
two elements of the group; inv, the function defining the inverse of the elements of the
group and nullel, which is the null element of the group.

The cyclicgroup function constructs instances of the AB-GROUP. In particular, it
takes as argument a natural number n and constructs an instance of the AB-GROUP which
represents the cyclic group Cn. The concrete definition of the cyclicgroup function is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun cyclicgroup (n)
(build-ab-group
:elements (<a-b> 0 (1- n))
:mult #’(lambda (g1 g2) (mod (+ g1 g2) n))
:inv #’(lambda (g) (mod (- n g) n))
:nullel 0
:orgn ‘(Cyclic-group of order ,n)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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This piece of code must be read as follows. From a natural number n the cyclicgroup

function constructs an AB-GROUP instance where the slot elements has as value the ordered
list of natural numbers from 0 to n−1 (generated from the <a-b> function), the slot mult
is a functional slot which from two elements g1 and g2 returns the value of (g1 + g2)
mod n, the slot inv is a functional slot which from an element g returns the value of
(n− g) mod n and 0 is the null element stored in the slot nullel. Finally, the orgn slot
is a comment which provides the “origin” of the object.

The rest of the slots of the AB-GROUP instance are either automatically generated, in
the case of idnm, or a value is assigned after the construction of the object using a GAP
resolution, in the case of the resolution slot.

4.4.2 The proof in ACL2 about cyclic groups

A group is a mathematical structure which can be defined by means of four functions
based on the following signature, called GRP:

invariant : u -> bool
mult : g g -> g
inv : g -> g
nullel : -> g

The four functions of this signature are: the invariant unary operation (which rep-
resents if an element belongs to the group, that is, the characteristic function of the
underlying set), the mult binary operation (the product), the inv unary operation (the
inverse) and the nullel constant operation (the null element). As concrete axiomatiza-
tion of a group we have chosen that of [Lip81].

Therefore, if we want to prove in ACL2 that four concrete functions, with the correct
arities given by the GRP signature, determine an (abelian) group, we need to prove that
these functions satisfy the properties of (abelian) groups.

Then, for instance if we want to verify in ACL2 that the Kenzo implementation of
the cyclic group C5 is an abelian group we must proceed as follows. First of all, we need
to define the four functions which determine the group (we add the suffix cn, where n is
the dimension of the group, to the function names):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun invariant-c5 (g) (member g (<0-n> 5))

(defun mult-c5 (g1 g2) (mod (+ g1 g2) 5))

(defun inv-c5 (g) (mod (- 5 g) 5))

(defun nullel-c5 () 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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It is worth noting that the definitions of mult-c5, inv-c5 and nullel-c5 are exactly
the same as the ones used in the cyclicgroup function for the slots mult, inv and
nullel of the AB-GROUP instance in the case of n = 5. The invariant-c5 function is the
characteristic function of the group and is directly obtained from the elements slot of the
AB-GROUP instance; the transformation from this slot to our function can be considered
safe (we have replaced the <a-b> function with the <0-n> function which constructs the
ordered list of natural numbers from 0 to n−1; that is, the <0-n> function with argument
n has the same behavior that the <a-b> function with arguments 0 and n). Then, if we
prove that these functions (which have the correct arities specified in the GRP signature)
determine an abelian group (that is, they satisfy the axioms of abelian groups) we can
claim that the object constructed in the Kenzo system determines an abelian group.
Then, we need to prove theorems in ACL2 such as the following one:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm abelian-c5
(implies (and (invariant-c5 a) (invariant-c5 b))

(equal (mult-c5 a b) (mult-c5 b a))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The ACL2 Theorem Prover is able to generate a proof of this kind of theorems with-
out any external help. Therefore, we have a proof of the correctness of the cyclicgroup

Kenzo function in the case of n = 5; and we could proceed in the same way for every
concrete case of n. Then, we can say that the cyclicgroup Kenzo function taking as
input the value 5 produces an abelian group. However, it would be more interesting to
have a proof saying that for every natural number n the cyclicgroup Kenzo function
produces an abelian group.

The GRP signature represents a group. In order to handle different groups, in [LPR99]
an operation between signatures, called ()imp operation was introduced. From a signature
for an algebraic structure, a new signature for a family of the above algebraic structures
can be defined. In our case, the signature GRPimp is defined as follows:

imp-invariant : impGRP g -> bool
imp-mult : impGRP g g -> g
imp-inv : impGRP g -> g
imp-nullel : impGRP -> g

where the new sort impGRP is the sort for groups. This signature, really signatures
()imp, is the one really used in the Computer Algebra systems because it allows the
manipulation of algebraic structures as data.

Therefore, if we want to prove in ACL2 that four concrete functions, with the correct
arities given by the GRPimp signature, determine an (abelian) group, we need to prove that
these functions satisfy the axioms of (abelian) groups for every element of the impGRP
sort.

In particular, we have the following four definitions for the case of cyclic groups
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defined in Kenzo:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun imp-invariant (n g) (member g (<0-n> n))

(defun imp-mult (n g1 g2) (mod (+ g1 g2) n))

(defun imp-inv (n g) (mod (- n g) n))

(defun imp-nullel (n) (declare (ignore n)) 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which can be considered as the definitions used by the Kenzo systems for the construction
of objects which represent cyclic groups. Then, if we prove that these functions determine
an abelian group (that is, they satisfy the properties of abelian groups) for every natural
number, we can claim that every object constructed in the Kenzo system with the
cyclicgroup function, taking as argument a natural number, determines an abelian
group. Then, we need to prove theorems such as the following one:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm imp-abelian
(implies (and (natp n) (imp-invariant n a) (imp-invariant n b))

(equal (imp-mult n a b) (imp-mult n b a))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The ACL2 Theorem Prover is able again to generate a proof of those theorems
without any external help if we load in ACL2 an arithmetic library. Therefore, we have
a proof of the correctness of the cyclicgroup Kenzo function for every natural number.
That is to say, for every natural number n the cyclicgroup Kenzo function constructs
an abelian group.

4.4.3 Composability of Kenzo, GAP/HAP and ACL2

In the previous subsubsection we have presented the ACL2 code to verify that the
implementation of cyclic groups in the Kenzo system really constructs abelian groups.
We have included a new verification module in the microkernel to generate the ACL2
functions and theorems necessary to certify that a concrete group of the Kenzo system is
really an (abelian) group. That is to say, given a group G, our framework will generate
the four functions (invariant, mult, inv and nullel) which define the group and the
theorems which ensure that those four functions determine a group.

We have developed a new plug-in which allows us to integrate a code generator of
the functions and theorems explained in the previous subsection.
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Figure 4.21: generate-code XML-Kenzo specification

Figure 4.22: code XML-Kenzo specification

<code id="certificate">
<data format="Kf"> GAP </data>
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/microkernel"> code-generator.lisp </data>
<data format="Kf/adapter"> certificate-a.lisp </data>

</code>

It is worth noting that this plug-in needs the GAP plug-in presented in Subsec-
tion 4.2.2 to work; then the GAP plug-in is referenced from the certificate plug-in.
Let us explain now the rest of resources.

We want to introduce new functionality in our system which allows us to obtain the
necessary ACL2 functions and theorems to verify that a concrete group of the Kenzo
system is really an (abelian) group. Therefore, we have extended the XML-Kenzo specifi-
cation to admit this new functionality. In the XML-Kenzo specification, we have defined
a new element of the requests group called generate-code (see Figure 4.21), whose value
is an element of the A group, and a new element of the results group called code (see
Figure 4.22), whose value is a string, namely the functions and theorems associated with
a concrete group.

As we explained in Subsection 2.2.4 the external server evolves when the
XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified the
external server is able to receive XML-Kenzo objects such as:

<generate-code> <cyclic> 5 </cyclic> </generate-code>

The code-generator.lisp defines a new module for the microkernel called
code-generator. The procedure implemented in this module is a Common Lisp pro-
gram which generates the functions and theorems associated with the group indicated
in the generate-code XML-Kenzo object which invokes this module. Moreover, this file
enhances the interface of the microkernel in order to be able to invoke the new module.

Finally, we have extended the Aux Content Dictionary by means of the definition
of two new objects: generate-code and code. Therefore, the certificate-a.lisp file
contains the functions to raise the functionality of the adapter to be able to convert
from these new OpenMath objects to XML-Kenzo objects. For instance, the above
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XML-Kenzo request is generated by the adapter when the following OpenMath request
is received.

<OMOBJ>
<OMA>

<OMS cd="Aux" name="generate-code"/>
<OMA> <OMS cd="group1" name="cyclic"/> <OMI>5</OMI> </OMA>

</OMA>
</OMOBJ>

It is worth noting that the generation of certificable code is only available for cyclic
groups; but we are willing to try the certification of all the objects that can be constructed
in our system.

4.4.4 Composability of Kenzo, GAP/HAP and ACL2 in the
fKenzo GUI

The composability of Kenzo, GAP/HAP and ACL2 in fKenzo to provide certificates of
the correctness of the implementation of Kenzo cyclic groups does not involve a great
development, since most of the ingredients were available from the modules related to
GAP/HAP and ACL2.

The new module which provides the tools to compose Kenzo, GAP/HAP and ACL2
in fKenzo is called GAP-Kenzo-ACL2. This module references the GAP/HAP (Sub-
section 4.2.3) and ACL2 (Subsection 4.3.4) modules and also three additional files:
gap-kenzo-acl2-structure (that defines the structure of the new graphical constituents),
gap-kenzo-acl2-functionality (which provides the functionality related to the graphi-
cal constituents), and the plug-in explained in the previous subsection.

When this new module is loaded in fKenzo, the graphical elements of the GAP/HAP
and ACL2 modules and their functionality are loaded in the system. Besides, two new
graphical elements have been defined, using the XUL specification language, in the
gap-kenzo-acl2-structure file:

• A menu called certificates which contains one option called: certificate.

• A window called certificate (see Figure 4.23).

The functionality stored in the gap-kenzo-acl2-functionality document related to
these components works as follows. A function acting as event handler is associated
with the certificate menu option; this function shows the certificate window (see
Figure 4.23) if a cyclic group was constructed previously in the session, otherwise the
system informs the user about the need of constructing a group.
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Figure 4.23: certificate window

Figure 4.24: Verification of the correctness of the cyclic group C5

When, the user selects a cyclic group with the Add button and subsequently presses
the Build button the system invokes our framework with a generate-code OpenMath
object which has as argument the cyclic group. From the request, a code object with
the definition of the four functions which determine the group (that is the functions
invariant, mult, inv and nullel described in Subsection 4.4.2 with the corresponding
suffix) and the ACL2 theorems which state that these functions satisfy the abelian group
properties are generated. The fKenzo GUI extracts the code and writes it in the left
side of the ACL2 tab as can be seen in Figure 4.24.

Finally, if the user sends the script to ACL2 with the button send-to-acl2, a proof
trial is automatically generated and finally the proof of the correctness of the implemen-
tation of the cyclic group is obtained in the right side of the ACL2 tab (see Figure 4.24).

It is worth noting that in this case ACL2 obtains a proof without the help of the
user, a situation that does not usually happens. More interesting interactions between
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Kenzo and ACL2 will be explained in the next chapters.

This is a simple example of the integration of Kenzo, GAP/HAP and ACL2 where
each system has a concrete aim. If we gather the composability of systems presented
in this subsection with the one presented in Section 4.2 we can claim that Kenzo,
GAP/HAP and ACL2 work together to provide a powerful and reliable tool thanks
to the fKenzo system.

4.5 Methodology to integrate a new internal server

in our system

Throughout this chapter we have presented how to integrate both GAP/HAP (see Sec-
tion 4.1) and ACL2 (see Section 4.3) in our system. The reader can notice that the same
process is followed in both cases, so we can extrapolate a methodology to integrate any
Computer Algebra system or Theorem Prover tool in our system.

Let us suppose that we are interested in integrating some functionality of a system
called CAS-or-TP, it does not really matters if it is a Computer Algebra system or a
Theorem Prover since the way of integrating them is analogous.

First of all, we must include the CAS-or-TP system as a new internal server of our
framework. To that aim, we define a new plug-in which references, at least, the following
resources.

<code id="CAS-or-TP">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> cas-or-tp-is.lisp </data>
<data format="Kf/microkernel"> cas-or-tp-m.lisp </data>
<data format="Kf/adapter"> cas-or-tp-a.lisp </data>

</code>

We want to introduce some functionality in our framework which allows us to interact
with some of the procedures of the CAS-or-TP system. Therefore, we must extend the
XML-Kenzo specification to represent the requests and results related to the CAS-or-TP
system. Then, we define in the XML-Kenzo specification the necessary new elements.

Subsequently, we include the CAS-or-TP system as a new internal server following
the same method explained in both the Kenzo (see Subsection 2.2.2) and ACL2 (see
Subsubsection 4.3.3.2) cases. To be more concrete, we have the CAS-or-TP system
wrapped with an XML-Kenzo interface and the communication between the microkernel
and the CAS-or-TP system is performed by means of XML-Kenzo requests through an
external interface which offers the available services of our CAS-or-TP internal server.
This component is included in the file cas-or-tp-is.lisp.

The cas-or-tp-m.lisp file defines new modules for the microkernel related to the
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CAS-or-TP system. The procedures implemented in these modules depend on the func-
tionality which is provided by the CAS-or-TP internal server. If several new modules
are included in the microkernel, it is better to devote a concrete file per each one of
them.

Finally, the cas-or-tp-a.lisp file contains the functions (new parsers) to raise the
functionality of the adapter to be able to convert from OpenMath objects, devoted to
ask requests and return results related to the CAS-or-TP internal server, to XML-Kenzo
requests.

In addition, if we want to be able to interact with the new functionality by
means of the fKenzo GUI, we must define a new module which references three
files: cas-or-tp-structure (that defines the structure of the graphical constituents),
cas-or-tp-functionality (which provides the functionality related to the new graphi-
cal constituents) and the plug-in introduced previously.

In this way, different tools can be integrated in our system as new internal servers.
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New certified Kenzo modules

At this moment the Kenzo system keeps on growing. Several researchers are developing
new functionalities for it; for instance, spectral sequences [RRS06], resolutions [RER09],
Koszul complexes [RS06] and so on.

An important point, that was already introduced in the previous chapter (see Sec-
tion 4.4), in the development of new Kenzo modules is the verification of their cor-
rectness. The Kenzo system is a research tool that has got some relevant results not
confirmed nor refuted by neither theoretical or computational means. Then, the question
of Kenzo reliability (beyond testing) naturally arises.

In this chapter three new Kenzo modules (developed by us), their integration in the
fKenzo system and some remarks about their verification in the ACL2 theorem prover
are presented. Section 5.1 is devoted to describe our development related to simplicial
complexes, a basic notion in Algebraic Topology which can be used to study digital
images. Namely, we can associate a simplicial complex with a digital image and then
study properties of the image by means of topological invariants (such as homology
groups) of the associated simplicial complex. The framework to study digital images by
means of simplicial complexes is explained in Section 5.2. Finally, explanations about
the construction of the effective homology of the pushout of simplicial sets with effective
homology are given in Section 5.3.

5.1 Simplicial complexes

The most elementary method to settle a connection between common “topology” and
Algebraic Topology is based on the usage of simplicial complexes. The notion of topo-
logical space is too “abstract” in order to transfer it to machine universe. Simplicial
complexes provide a purely combinatorial description of topological spaces which admit
a triangulation. The computability of properties, such as homology groups, from a finite
simplicial complex associated with a topological space is well-known and, for instance in

185
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the case of homology groups the algorithm uses simple linear algebra [Veb31]. Then, an
algebraic topologist can identify a compact triangulable topological space with a finite
simplicial complex, making computations easier.

Simplicial complexes are not included in the current www-available version of Kenzo.
We have undertaken the task of deploying a new certified Kenzo module to work with
them. In addition, we have also enhanced the fKenzo system to deal with simplicial
complexes.

The rest of this section is organized as follows. Subsection 5.1.1 introduces the
basic background about simplicial complexes and some algorithms about them; in Sub-
section 5.1.2 the new Kenzo module about simplicial complexes is presented; Subsec-
tion 5.1.3 explains how our framework is extended to include the functionality about
simplicial complexes; moreover, the way of widening the fKenzo GUI to include simpli-
cial complexes is detailed in Subsection 5.1.4. Finally, some aspects of the verification
of the simplicial complexes programs are presented in Subsection 5.1.5.

5.1.1 Mathematical concepts

We briefly provide in this subsection the minimal mathematical background about sim-
plicial complexes. We mainly focus on definitions. Many good textbooks are available
for both these definitions and results about them, for instance [Mau96].

Let us start with the basic terminology. Let V be an ordered set, called the vertex
set. An (ordered abstract) simplex over V is any ordered finite subset of V . An (ordered
abstract) n-simplex over V is a simplex over V whose cardinality is equal to n+1. Given
a simplex α over V , we call faces of α to all the subsets of α.

Definition 5.1. An (ordered abstract) simplicial complex over V is a set of simplexes
K over V such that it is closed by taking faces (subsets); that is to say:

∀α ∈ K, if β ⊆ α⇒ β ∈ K.

Let K be a simplicial complex. Then the set Sn(K) of n-simplexes of K is the set
made of the simplexes of cardinality n+ 1 of K.

Example 5.2. Let us consider V = (0, 1, 2, 3, 4, 5, 6).

The small simplicial complex drawn in Figure 5.1 is mathematically defined as the
object:

K =


∅, (0), (1), (2), (3), (4), (5), (6),
(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (5, 6),
(0, 1, 2), (4, 5, 6)

 .

Note that, because the vertex set is ordered the list of vertices of a simplex is also
ordered, which allows us to use a sequence notation (. . .) and not a subset notation
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Figure 5.1: Butterfly simplicial complex

{. . .} for a simplex and also for the vertex set V . It is also worth noting that simplicial
complexes can be infinite. For instance if V = N and the simplicial complex K is
{(n)}n∈N ∪ {(n − 1, n)}n≥1, the simplicial complex obtained can be seen as an infinite
bunch of segments.

Definition 5.3. A facet of a simplicial complex K over V is a maximal simplex with
respect to the subset relation, ⊆, among the simplexes of K.

Example 5.4. The facets of the small simplicial complex depicted in Figure 5.1 are:
{(0, 3), (1, 3), (2, 3), (3, 4), (0, 1, 2), (4, 5, 6)}

Let us note that a finite simplicial complex can be generated from its facets taking
the set union of the power set of each one of their facets. In general, we have the following
definition.

Definition 5.5. Let S be a finite sequence of simplexes, then the set union of the power
set of each one of the elements of S is, trivially, a simplicial complex called the simplicial
complex associated with S.

It is worth noting that the same simplicial complex can be generated from two
different sequences of simplexes; in addition, the minimal sequence of simplexes which
generates a finite simplicial complex is the sequence of its facets.

Then, the following algorithm can be defined.

Algorithm 5.6.
Input: a sequence of simplexes S.
Output: the associated simplicial complex with S.

Example 5.7. Let us show the way of generating the simplicial complex depicted in
Figure 5.1 from its facets. Table 5.1 shows the faces of facets of the butterfly simplicial
complex. If we perform the set union of all the faces, the desired simplicial complex is
obtained.

In Subsection 1.1.2, we have defined the notion of simplicial set, a notion more com-
plex than the notion of simplicial complex. Nevertheless, many common constructions
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facet faces
(1, 3) {∅, (1), (3), (1, 3)}
(3, 4) {∅, (3), (4), (3, 4)}
(0, 3) {∅, (0), (3), (0, 3)}
(2, 3) {∅, (2), (3), (2, 3)}

(0, 1, 2) {∅, (0), (1), (2), (0, 1), (0, 2), (1, 2), (0, 1, 2)}
(4, 5, 6) {∅, (4), (5), (6), (4, 5), (5, 6), (4, 6), (4, 5, 6)}

Table 5.1: Faces of the facets of the Butterfly simplicial complex

in topology are difficult to make explicit in the framework of simplicial complexes. It
soon became clear around 1950 that the notion of simplicial set is much better.

There exists a link between these two notions which will allow us to compute homol-
ogy groups of a simplicial complex by means of a simplicial set.

Definition 5.8. Let SC be an (ordered abstract) simplicial complex over V . Then
the simplicial set K(SC) canonically associated with SC is defined as follows. The set
Kn(SC) is Sn(SC), that is, the set made of the simplexes of cardinality n+ 1 of SC. In
addition, let (v0, . . . , vq) be a q-simplex, then the face and degeneracy operators of the
simplicial set K(SC) are defined as follows:

∂qi ((v0, . . . , vi, . . . , vq)) = (v0, . . . , vi−1, vi+1, . . . , vq),
ηqi ((v0, . . . , vi, . . . , vq)) = (v0, . . . , vi, vi, . . . , vq).

That is, the face operator ∂qi removes the vertex in the position i of a q-simplex, and
the degeneracy operator ηqi duplicates the vertex in the position i of a q-simplex.

The proof of the fact that K(SC) is a simplicial set is quite easy.

Then, the above definition provides us the following algorithm.

Algorithm 5.9.
Input: a finite simplicial complex SC.
Output: the simplicial set K(SC) canonically associated with SC.

Definition 5.10. Given a simplicial complex SC, the n-homology group of SC, Hn(SC),
is the n-homology group of the simplicial set K(SC):

Hn(SC) = Hn(K(SC)).

5.1.2 Simplicial complexes in Kenzo

In the current www-available version of Kenzo, the notion of simplicial complex is not
included. Then, we have developed a new Common Lisp module to enhance the Kenzo
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system with this notion. Our programs (with about 150 lines) implement Algorithms 5.6
and 5.9.

The following lines are devoted to explain the essential part of these programs, de-
scribing the functions with the same format as in the Kenzo documentation [DRSS98].

First of all, let us note that the vertex set V in our programs is N; besides, we
represent an n-simplex as a strictly ordered list of n+ 1 natural numbers that represent
the vertices of the simplex. For instance, the 2-simplex with vertices 0, 1 and 3 is
represented as the list (0 1 3). Moreover, a finite simplicial complex is represented, in
our system, by means of a list of simplexes.

Our first program implements Algorithm 5.6, that is, the functions which generate a
simplicial complex from a sequence of simplexes. The description of the main function
in charge of this task is shown here:

simplicial-complex-generator ls [Function]

From a list of simplexes, ls, this function generates the associated simplicial com-
plex, that is to say, another list of simplexes.

The second program implements Algorithm 5.9. It generates the simplicial set canon-
ically associated with a simplicial complex as an instance of the Simplicial-Set Kenzo
class (see Subsection 1.2.1). The main function is:

ss-from-sc simplicial-complex [Function]

Build an instance of the Simplicial-Set Kenzo class which represents the simpli-
cial set canonically associated with a simplicial complex, simplicial-complex, see
Definition 5.8, using some auxiliar functions which are necessary to define simpli-
cial sets in Kenzo.

To provide a better understanding of the new tools, an elementary example of their
use is presented now. Let us consider the (minimal) triangulation of the torus presented
in Figure 5.2.

The facets of the torus of Figure 5.2 are all the triangles (2-simplexes) depicted in
that figure. Therefore, in our program the facets of the torus are assigned to the variable
torus-facets as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf torus-facets ’((0 1 3) (0 1 5) (0 2 4) (0 2 6) (0 3 6) (0 4 5)
(1 2 5) (1 2 6) (1 3 4) (1 4 6) (2 3 4) (2 3 5)
(3 5 6) (4 5 6))))) z

((0 1 3) (0 1 5) (0 2 4) (0 2 6) (0 3 6) (0 4 5) (1 2 5) (1 2 6) (1 3 4) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From these facets, we can construct the torus simplicial complex S1 × S1 with our
program:
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Figure 5.2: Torus triangulation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf torus (simplicial-complex-generator torus-facets)) z
((0 1 3) (0 1) (0) (1) (1 3) (3) (0 1 5) (0 5) (5) (0 2 4) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Once we have constructed this simplicial complex, we can build the simplicial set
canonically associated with the torus simplicial complex by means of the instruction:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf torus-ss (ss-from-sc torus)) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, we can determine its homology groups thanks to the Kenzo kernel.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology torus-ss 0 3) z
Homology in dimension 0:
Component Z
Homology in dimension 1:
Component Z
Component Z
Homology in dimension 2:
Component Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The result must be interpreted as stating H0(torus) = Z, H1(torus) = Z ⊕ Z and
H2(torus) = Z.

5.1.3 Integration of simplicial complexes

From the beginning of the development of our framework we strove for a system which
could evolve with Kenzo. Therefore, to enhance our system with the functionality related
to simplicial complexes we have developed a plug-in following the guidelines given in
Subsubsection 3.1.2.

This new plug-in will allow us to construct from a sequence of simplexes S the sim-
plicial set canonically associated with the simplicial complex defined from S (applying
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Figure 5.3: ss-from-sc-facets constructor in XML-Kenzo

Algorithms 5.6 and 5.9). The plug-in employed to include the functionality about sim-
plicial complexes references the following resources:

<code id="simplicial-complexes">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> simplicial-complexes.lisp </data>
<data format="Kf/microkernel"> simplicial-complexes-m.lisp </data>
<data format="Kf/adapter"> simplicial-complexes-a.lisp </data>

</code>

As we claimed in Subsubsection 3.1.2, if we want to include new functionality related
to Kenzo in our framework, all its components must be broadening. Let us explain each
one of the referenced resources.

First of all, as we want to introduce a new kind of objects in our system (the simplicial
sets associated with simplicial complexes generated from a sequence of simplexes), it is
necessary to provide a representation for that kind of objects in our framework. There-
fore, we have extended the XML-Kenzo specification (XML-Kenzo.xsd file) to admit the
new objects related to simplicial complexes. In this specification, we have defined both
the simple type called simplex which represents a list of natural numbers and the type
called simplicial-complex which represents a sequence of simplex elements; and a new
element: ss-from-sc-facets (see Figure 5.3), whose value is an element whose type is
simplicial-complex. The ss-from-sc-facets element is defined as an element of the SS

type; so, it can be used as any other element of this group.

As we have explained in Subsection 5.1.2 a simplex is implemented in our programs
as an ordered list of natural numbers; however, in the XML-Kenzo specification we can
only constrain the value of the simplex type to be a list of natural numbers. Therefore,
the programs included in the microkernel will be in charge of checking the restriction
of being ordered; here, we have an example of a functional dependency of a compound
argument. As we explained in Subsubsection 3.1.2 the external server evolves when
the XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified to
include the new elements, the external server is able to check the restrictions against the
XML-Kenzo specification of requests such as:
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<constructor>
<ss-from-sc-facets>

<simplex>0 1 2</simplex>
<simplex>3 4 5</simplex>

</ss-from-sc-facets>
</constructor>

The simplicial-complexes.lisp file includes the functionality explained in Subsec-
tion 5.1.2 to extend the Kenzo system. Moreover, this file adds code that enhances
the xml-kenzo-to-kenzo function of the internal server to process the construction of
objects from the ss-from-sc-facets XML-Kenzo construction requests. For instance,
if the internal server receives the above request, the following instruction is executed in
the Kenzo kernel.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ss-from-sc (simplicial-complex-generator ’((0 1 2) (3 4 5))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As a result an object of the Simplicial-Set Kenzo class is constructed, and the identifier
of that object is returned using an id XML-Kenzo object.

The simplicial-complexes-m.lisp file defines a new construction module for the
microkernel called simplicial-complex. The procedure implemented in this module fol-
lows the guidelines explained in Subsubsection 2.2.3.3. In this case, the procedure imple-
mented in this module checks that the values of simplex elements of a ss-from-sc-facets

request are ordered lists since this constraint cannot be imposed in the XML-Kenzo
specification (remember that functional dependencies cannot be defined in the XML-
Kenzo specification), and therefore is not checked in the external server. Moreover,
this file enhances the interface of the microkernel in order to be able to invoke the new
simplicial-complex module.

Finally, we have extended the SS Content Dictionary by means of the definition of a
new object: ss-from-sc-facets. Therefore, the simplicial-complexes-a.lisp file raises
the functionality of the adapter, which is now able to convert from the new OpenMath
objects, devoted to simplicial complexes, to XML-Kenzo requests. Namely, we have
extended the Phrasebook by means of a new parser in charge of this task. Then, for
instance, the XML-Kenzo request presented previously is generated by the adapter when
the following OpenMath request is received:
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<OMOBJ>
<OMA>

<OMS cd="SS" name="ss-from-sc-facets"/>
<OMA>
<OMS name="simplex"/>
<OMI>0</OMI><OMI>1</OMI><OMI>2</OMI>

</OMA>
<OMA>
<OMS name="simplex"/>
<OMI>3</OMI><OMI>4</OMI><OMI>5</OMI>

</OMA>
</OMA>

</OMOBJ>

5.1.4 Integration of simplicial complexes in the fKenzo GUI

The current subsection is devoted to present the necessary resources to extend the fKenzo
GUI in order to handle simplicial complexes.

As we presented in Section 3.2 one of the modules which customizes fKenzo is the
Simplicial Set module. This module contains the elements that represent simplicial
set constructors of Kenzo: options to construct spaces from scratch (spheres, Moore
spaces, finite simplicial sets, and so on) and from other spaces (for instance, cartesian
products). We have enhanced this module by means of a new constructor related to
simplicial complexes.

The original Simplicial Set module referenced two files: simplicial-sets-structure

(which defined the structure of the graphical constituents of the module) and
simplicial-sets-functionality (which provided the functionality related to the graph-
ical constituents). Both files have been upgraded in order to tackle the use of simplicial
complexes in the fKenzo GUI. Moreover, the new Simplicial Set module also references
the plug-in described in the previous subsection. In this way, when the Simplicial Set
module is loaded, the whole fKenzo system is ready to allow the construction of simplicial
sets coming from simplicial complexes.

We have defined three new graphical elements, using the XUL specification language,
in the simplicial-sets-structure file:

• A new menu option called Load Simplicial Complex included in the Simplicial

Sets menu.

• A window called Load Simplicial Complex (see Figure 5.4).

• A window called SS-from-SC-name (see Figure 5.5).

The functionality stored in the simplicial-sets-functionality document related
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Figure 5.4: Load Simplicial Complex window

to these components works as follows. A function acting as event handler is associ-
ated with the Load Simplicial Complex menu option; this function shows the window
Load Simplicial Complex (see Figure 5.4) which allows the user to choose a file which
contains a list of simplexes. It is worth noting that the user does not introduce each one
of the simplexes of the sequence manually: he selects a file with that information (a file
which can be either generated by a computer program or build manually with a text
editor). Currently, a folder, called Simplicial-Complexes Examples, with several exam-
ples of simplicial complexes defined from their a sequence of simplexes is included in the
distribution of fKenzo. At this moment it contains 39 examples such as the torus, the
projective space or the duncehat (several of those examples were extracted from [Hac01]
keeping its original format, which is the one used in our system).

Once the user has selected a file, the system processes the file to construct an
ss-from-sc-facets OpenMath request with the sequence of simplexes obtained from
the file. Subsequently, the framework constructs the simplicial set associated with the
simplicial complex defined from the sequence of simplexes and returns its identification
number (an id XML-Kenzo object). Afterwards, the system asks a name for the new
simplicial set by means of the window SS-from-SC-name (see Figure 5.5); if the name
given by the user is correct (was not used previously), the system stores it, otherwise
it indicates that the name was previously used and asks again a name. Eventually,
when the user has given a valid name, the system builds a new FKENZO-OBJECT-NAME

instance (see Subsubsection 4.1.5.1) and, also, adds the new object to the list of con-
structed spaces (located at the left side of the main tab of the fKenzo GUI). Figure 5.6
shows the control and navigation submodel (with the Noesis notation) describing the
construction of the simplicial set canonically associated with a simplicial complex from
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Figure 5.5: fKenzo asking a name for a simplicial set coming from a simplicial complex

Is the object returned an id?

[Yes]

Select a Simplicial Complex file

[No]

Show the new space

Error: Invalid File

Construction in the framework

Introduce a name

Is a valid name?

[Yes]

[No]

Figure 5.6: Construction of a simplicial set from a simplicial complex in fKenzo

the Load Simplicial Complex menu option.

5.1.4.1 Execution flow of the fKenzo GUI for simplicial complexes

In order to clarify the execution flow followed by fKenzo, let us retake the example
presented in Subsection 5.1.2, that is, the computation of the first homology groups
of the torus. When the Simplicial Set module is loaded in fKenzo, the option Load
Simplicial Complex is available in the Simplicial Sets menu. From this option, the user
can select the file which contains the facets of the torus; this file is called torus.dat and
is located at the folder Simplicial-Complexes Examples, see Figure 5.4. An extract of
the data stored in that file is:
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#
0 1 3
0 1 5
...

which corresponds with the facets of the triangulation of the torus of Figure 5.2. From
that file, fKenzo constructs the following OpenMath request:

<OMOBJ>
<OMA>

<OMS cd="SS" name="ss-from-sc-facets"/>
<OMA>
<OMS cd="SS" name="simplex"/>
<OMI>0</OMI><OMI>1</OMI><OMI>3</OMI>

</OMA>
<OMA>
<OMS cd="SS" name="simplex"/>
<OMI>0</OMI><OMI>1</OMI><OMI>5</OMI>

</OMA>
...

</OMA>
</OMOBJ>

which is sent to the framework. From this request, the simplicial set associated with
the torus simplicial complex is built and its identification number is returned. Then,
fKenzo asks the user a name for the object (in this case the given name is “torus”).
Subsequently, the new object is added to the list of constructed spaces which is shown
in the left side of the fKenzo GUI. When, the user selects this object, the name that the
user provided previously is shown (see Figure 5.7).

Finally, the user can ask fKenzo to compute the homology groups of the torus using
the homology option of the Computing menu, the results are shown, as usual, in the
Computing tab, see Figure 5.7.

5.1.5 Formalization of Simplicial Complexes in ACL2

As we said at the beginning of this chapter, we are interested not only in developing
new tools for the Kenzo system but also in verifying the correctness of these new tools.
This subsection is devoted to present the certification of the correctness of our imple-
mentation of Algorithm 5.6. The certification of the correctness of the implementation
of Algorithm 5.9 belongs to a more general case (the certification of the implementation
of Kenzo simplicial sets) and we will cope with it in the next chapter.
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Figure 5.7: Homology groups of the torus

5.1.5.1 Main definitions and properties

As we have just said, we want to formalize in ACL2 the correctness of the
simplicial-complex-generator function; that is to say, our implementation of Algo-
rithm 5.6. Since both Kenzo and ACL2 are Common Lisp programs we can verify the
correctness of the simplicial-complex-generator function in ACL2.

First of all, let us present the definition of the simplicial-complex-generator func-
tion. This program can be decomposed in three steps. First of all, we have defined the
powerset function which generates the powerset of a simplex.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun map-cons (x s)
(if (endp s)

nil
(cons (cons x (car s)) (map-cons x (cdr s)))))

(defun powerset (l)
(if (endp l)

(list nil)
(append (powerset (cdr l)) (map-cons (car l) (powerset (cdr l))))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, we have defined the simplicial-complex-generator-aux function
which builds a list gathering the powerset of every simplex of a sequence of simplexes
ls.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun simplicial-complex-generator-aux (ls)
(if (endp ls)

nil
(append (powerset (car ls)) (simplicial-complex-generator-aux (cdr ls)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eventually, we have implemented the simplicial-complex-generator func-
tion which removes the duplicates elements (thanks to the ACL2 function
remove-duplicates-equal) of the list generated by simplicial-complex-generator-aux,
getting the looking for simplicial complex.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun simplicial-complex-generator (ls)
(remove-duplicates-equal (simplicial-complex-generator-aux ls)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This design follows simple recursive schemas, which are suitable for the induction
heuristics of the ACL2 theorem prover.

From now on, we define the necessary functions to prove the correctness of our
program. First of all, we need some auxiliary functions which define the necessary
concepts to prove our theorems. These definitions are based on both Algorithm 5.6 and
Definition 5.1. Namely, we need to define the notions of simplex, list of simplexes, set of
simplexes, face and member in ACL2.

As we said in Subsection 5.1.2, a simplex in our programs is a strictly ordered list of
natural numbers. The simplex-p function is a predicate that given a list list returns t

if the list represents a simplex and nil otherwise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun simplex-p (list)
(if (endp list)

(equal list nil)
(if (endp (cdr list))

(and (equal (cdr list) nil) (natp (car list)))
(and (natp (car list)) (natp (cadr list)) (< (car list) (cadr list))

(simplex-p (cdr list))))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From this notion of simplex, we can easily define the notion of list of simplexes by
means of the list-of-simplex-p predicate which returns t if its argument is a list of
simplexes and nil otherwise:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun list-of-simplexes-p (ls)
(if (endp ls)

(equal ls nil)
(and (simplex-p (car ls)) (list-of-simplexes-p (cdr ls)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A set of simplexes is a list of simplexes without duplicate elements. This is modeled
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with the set-of-simplexes-p predicate (a test function, called without-duplicates-p,
that checks if a list does not have duplicate elements has been defined as auxiliar func-
tion).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun set-of-simplexes-p (ls)
(and (list-of-simplexes-p ls) (without-duplicates-p ls)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, to define the relations “be a face of” (between two simplexes) and “be in”
(between a simplex and a set of simplexes or between a simplex and a list of simplexes) we
have used two already defined ACL2 functions that are subsetp-equal and member-equal

respectively.

Therefore, we have the framework to prove the correctness of our programs. The
following theorems state the basic properties that the simplicial-complex-generator

function must satisfy. First of all, we prove that simplicial-complex-generator con-
structs a simplicial complex. Therefore, we need to prove the following two ACL2
lemmas.

ACL2 Lemma 5.11. Let ls be a list of simplexes, then (simplicial-complex-generator
ls) builds a set of simplexes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm simplicial-complex-generator-constructs-simplicial-complex-1
(implies (list-of-simplexes-p ls)

(set-of-simplexes-p (simplicial-complex-generator ls))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACL2 Lemma 5.12. Let x be a simplex and ls be a list of simplexes, if x be-
longs to (simplicial-complex-generator ls) and y is a face of x, then y belongs to
(simplicial-complex-generator ls).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm simplicial-complex-generator-constructs-simplicial-complex-2
(implies (and (simplex-p s1)

(simplex-p s2)
(list-of-simplexes-p ls)
(member-equal s1 (simplicial-complex-generator ls))
(subsetp-equal s2 s1))

(member-equal s2 (simplicial-complex-generator ls))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Once we have proved these two theorems we can claim that the
simplicial-complex-generator function constructs an abstract simplicial complex
when a list of simplexes is provided as argument.

In addition, we need to prove that the simplicial complex constructed by the
simplicial-complex-generator function is the one that we are looking for. This means
that we need to prove the following lemma.
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ACL2 Lemma 5.13. Let ls be a list of simplexes and let s be an element of the
simplicial complex constructed with the simplicial-complex-generator function taking
as argument ls; then, s is a face of some of the simplexes of ls.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm simplicial-complex-generator-correctness
(implies (and (list-of-simplexes-p ls)

(member-equal s (simplicial-complex-generator ls))
(face-of-some-p s ls)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The proof of the above lemmas, in spite of involving some auxiliary results, can be
proved without any special hindrance due to the fact that, as we said previously, our
programs follow simple inductive schemas that are suitable for the ACL2 heuristics.
Then, we have the following theorem.

ACL2 Theorem 5.14. Let ls be a list of simplexes, then
(simplicial-complex-generator ls) constructs the simplicial complex associated
with ls.

The interested reader can consult the complete development in [Her11].

5.1.5.2 Two equivalent programs

The implementation of the simplicial-complex-generator function is suitable for the
induction heuristics of the ACL2 theorem prover. However, it is an inefficient design,
so, it can produce undesirable situations. For instance, if we try to build a simplicial
complex from a list of 11613 simplexes, an error message will be shown:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (simplicial-complex-generator ...) z
Error: Stack overflow (signal 1000)
[condition type: SYNCHRONOUS-OPERATING-SYSTEM-SIGNAL]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This kind of error occurs when too much memory is used on the data structure that
stores information about the active computer program.

In order to overcome this drawback, an efficient algorithm called
optimized-simplicial-complex-generator has been implemented. This new pro-
gram relies on the memoization technique. Let us remember that memoization is used
primarily to speed up computer programs. A memoized function “remembers” the
results corresponding to some set of specific inputs. Subsequent calls with remembered
inputs return the remembered result rather than recalculating it.

However, the optimized-simplicial-complex-generator program can not be imple-
mented in ACL2 (remember that ACL2 is an applicative subset of Common Lisp). In
order to deal with this pitfall we have based on the work presented in [ALR07], where
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the authors coped with a similar problem, but related to already implemented Kenzo
code fragments.

Let us enumerate the characteristics of our situation:

• simplicial-complex-generator program is

– specially designed to be proved;

– programmed in ACL2 (and, of course, Common Lisp);

– not efficient;

– tested;

– proved in ACL2.

• optimized-simplicial-complex-generator program is

– specially designed to be efficient;

– written in Common Lisp;

– efficient;

– tested;

– unproved.

In our approach, simplicial-complex-generator is supposed to be equivalent to
optimized-simplicial-complex-generator. But we do not pretend to prove this equiv-
alence: this option would lead us to a form of ill-founded recursion. Our aim should be
to use the highly reliable simplicial-complex-generator to perform automated testing
of the efficient optimized-simplicial-complex-generator.

The following toy program will illustrate this idea:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun automated-testing ()
(let ((cases (generate-test-cases 100000)))
(dolist (case cases)
(if (not (equal-as-sc (simplicial-complex-generator case)

(optimized-simplicial-complex-generator case)))
(report-on-failure case)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With this intensive testing, it is hoped that simplicial-complex-generator accu-
rately models optimized-simplicial-complex-generator, and then our strategy could
be safely applied.

A really interesting work, in the same line, was presented [G+08], where a method to
permit the user of a mathematical logic to write elegant logical definitions while allowing
sound and efficient execution was described. Those features afford dual applications: on
the one hand, formal proof; on the other hand, execution. In particular, they allow the
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user to install, in a logically sound way, alternative executable counterparts for logically-
defined functions. These alternatives are often much more efficient than the logically
equivalent terms they replace. Unfortunately, in order to use the tool presented in [G+08]
both programs must be developed in ACL2, which is not our case.

5.2 Applications of simplicial complexes: Digital

Images

Algebraic Topology is a complex and abstract mathematical subject; however, some of
its techniques can be applied to different contexts such as coding theory [Woo89], data
analysis [Her03], robotics [Mac03] or digital image analysis [GDMRSP05, GDR05] (in
this last case, in particular in the study of medical images [SGF03]).

Here, we are going to focus on the application of Algebraic Topology to the study of
binary digital images. In the Algebraic Topology framework, binary digital images can
be studied using simplicial complexes. This section is devoted to present a technique
based on simplicial complexes to study binary digital images. In particular, we study
monochromatic (black and white) digital images by means of the algorithms related to
simplicial complexes explained in Subsection 5.1.1 and new algorithms explained later.

Explanations about how we use simplicial complexes to study digital images are
given in the rest of this section. Subsection 5.2.1 presents the technique and the algo-
rithms that we apply to analyze digital images by means of simplicial complexes. The
algorithms presented in Subsection 5.2.1 are implemented as an enhancement of the sim-
plicial complex Kenzo module (presented in Subsection 5.1.2) in Subsection 5.2.2 for the
cases of 2D and 3D digital images. The way of widening our framework and the fKenzo
GUI to include digital images is explained in Subsection 5.2.3 and 5.2.4 respectively.
Finally, some remarks about the formalization of our algorithms for digital images are
provided in Subsection 5.2.5.

5.2.1 The framework to study digital images

Let n be any positive integer. An n-xel q in an Euclidean n-space, Rn, is a closed unit
n-dimensional (hyper)cube q ⊂ Rn whose 2n vertices have natural coordinates (more
precisely, an n-xel in Rn is a cartesian product like [i1, i1+1]×[i2, i2+1]×. . .×[in, in+1]).
In this memoir, a pixel is a 2-xel in R2. We define an n-dimensional binary image or
nD-image, to be a finite set of n-xels in Rn.

An nD-image I can, of course, be represented by a finite n-dimensional array of 1’s
and 0’s in which each 1 represents an n-xel in D and each 0 represents an n-xel that
is not in D. Let us focus on the study of nD-images by means of simplicial complexes.
Firstly, we present the study for the cases of 2D-images and eventually the general case.
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As we have just said, a 2D-image D can be represented by a finite 2-dimensional
array of 1’s and 0’s in which each 1 represents a pixel in D and each 0 represents a pixel
that is not in D (in a monochromatic 2D-image D, black pixels are represented by 1’s,
on the contrary white pixels are represented by 0’s).

Let D be a 2D-image codified as a 2-dimensional array of 1’s and 0’s. We want to
associate a simplicial complex with D. It is worth noting that the most natural and
efficient approach to study digital images by topological means consists in using cubical
complexes, see [KMM04]. However we have preferred to analyse digital images through
simplicial complexes, because we can reuse the certified simplicial complex Kenzo module
presented in Section 5.1.

From a digital image, there are several ways of constructing a simplicial complex
(see [ADFQ03]). The approach that we have followed here consists in obtaining from
D the facets of one of its associated simplicial complexes. Subsequently, applying Al-
gorithm 5.6 (the algorithm which constructs a simplicial complex from a sequence of
simplexes), we obtain a simplicial complex associated with D.

The process that we have followed to obtain the facets from a 2D-image D is as
follows. Let V = (N,N) be the vertex set, that is, a vertex, in this case, is a pair of
natural numbers. Let p = (a, b) be the coordinates of a pixel in D (that is, the position
of the pixel in the 2-dimensional array associated with D). From p we can obtain two
2-simplexes that are two facets of the simplicial complex associated with D. Namely,
from p = (a, b) we obtain the following facets: the triangles ((a, b), (a+1, b), (a+1, b+1))
and ((a, b), (a, b + 1), (a + 1, b + 1)). If we repeat the process for the coordinates of all
the pixels in D, we obtain the facets of a simplicial complex associated with D, that will
be denoted by K2D(D).

Therefore, we can define the following algorithm.

Algorithm 5.15.
Input: a 2D-image D represented by means of a 2-dimensional array of 1’s and 0’s.
Output: the facets of K2D(D), a simplicial complex associated with D.

Example 5.16. Consider the 2D-image depicted in the left side of Figure 5.8. This
image can be codified by means of the 2-dimensional array: ((1, 0), (0, 1)), then, the
coordinates of the black pixels are (0, 0) and (1, 1). Therefore, applying Algorithm 5.15
we obtain the facets of K2D(D):

(((0, 0), (0, 1), (1, 1)), ((0, 0), (1, 0), (1, 1)), ((1, 1), (1, 2), (2, 2)), ((1, 1), (2, 1), (2, 2))).

Once we have the simplicial complex associated with the digital image, we can com-
pute the homology groups of the image from the simplicial complex. As we said pre-
viously, several simplicial complexes can be associated with a digital image, but all of
them are homeomorphic (see [ADFQ03]); then, we can define the homology groups of a
2D-image as follows:
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Figure 5.8: On the left, a digital image; on the right, its simplicial complex representation

Definition 5.17. Given a 2D-image D, the n-homology group of D, Hn(D) is the n-
homology group of the simplicial complex K2D(D):

Hn(D) = Hn(K2D(D)).

Subsequently, we can interpret properties about the digital image from its homology
groups. 2D-images are embedded in R2 then its homology groups vanish for dimensions
greater than 2 and they are torsion-free from dimensions 0 to dimension 1; that is, their
homology groups are either null or a direct sum of Z components in dimensions 0 and
1. The number of Z components of the homology groups of dimension 0 and 1 measures
respectively the number of connected components and the number of holes of the image.

The method presented here for 2D-images can be generalized to nD-images with
n ≥ 2. An nD-image can be represented by a finite n-dimensional array of 1’s and 0’s in
which each 1 represents an n-xel in D and each 0 represents an n-xel that is not in D.

Let D be an nD-image, from the coordinates of each n-xel in D (its position in the
n-dimensional array associated with D), we can obtain a triangulation by means of n-
simplexes, see [OS03], which are facets of a simplicial complex associated with D. If we
repeat the process for the coordinates of all the n-xels in D, we obtain the facets of a
simplicial complex associated with D. Then, applying Algorithm 5.6, we can obtain the
simplicial complex associated with D. Therefore, the two following algorithms can be
defined.

Algorithm 5.18.
Input: the coordinates of an n-xel.
Output: a triangulation of the n-xel by means of n-simplexes.

Algorithm 5.19.
Input: an nD-image D represented by means of a n-dimensional array of 1’s and 0’s.
Output: the facets of KnD(D), a simplicial complex associated with D.

It is worth noting that these two last algorithms are not implemented for the general
case, just for 2D-images and 3D-images.
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5.2.2 Enhancing the simplicial complex Kenzo module

Algorithms 5.18 and 5.19 explained in Subsection 5.2.1 have been implemented for the
cases n = 2, 3 as an enhancement for the simplicial complex Kenzo module explained in
Subsection 5.1.2. The set of programs that we have developed (with about 600 lines)
allows the construction of the facets of the simplicial complexes K2D(D1) and K3D(D2)
from a 2D-image, D1, and a 3D-image, D2. Moreover, thanks to the simplicial complex
module and the Kenzo kernel, we can construct the simplicial complex defined by the
list of facets, the simplicial set associated with that simplicial complex, and, finally,
compute the homology groups of the simplicial set obtaining properties of the original
image.

The rest of this subsection is devoted to present the essential part of the programs
which implement algorithms 5.18 and 5.19 for the cases n = 2, 3, describing the functions
with the same format as in the Kenzo documentation [DRSS98]. Moreover, we will see
some examples of the use of these programs.

We have written several functions that allow us to cope with 2D-images and 3D-
images; but most of them are auxiliary functions; so we just describe the main ones:

generate-facets-image-2d 2da [Function]

This function takes as argument the 2-dimensional array (a 2-dimensional array
is represented by means of a list of lists) of 1’s and 0’s, 2da, which determines a
2D-image and returns the list of facets of the simplicial complex K2D associated
with the 2D-image (Algorithm 5.15). The facets are returned as a list of simplexes
over V = (N,N).

generate-facets-image-3d 3da [Function]

This function takes as argument the 3-dimensional array (a 3-dimensional array is
represented by means of a list of lists of lists) of 1’s and 0’s, 3da, which determines
a 3D-image and returns the list of facets of the simplicial complex K3D associated
with the 3D-image (Algorithm 5.19 case n = 3). The facets are returned as a list
of simplexes over V = (N,N,N).

transform-lolol-to-lol lolol [Function]

This function transforms a list of simplexes, lolol, over V = (N,N) or
V = (N,N,N) to a list of simplexes over V = N. This function is neces-
sary because the programs related to simplicial complexes presented in Subsec-
tion 5.1.2 work with simplexes over V = N and the two above functions re-
turn list of simplexes over V = (N,N) and V = (N,N,N) respectively. Then,
we need a transformation between the format of the output of the functions
generate-facets-image-2d and generate-facets-image-3d to the format of the in-
put of the simplicial-complex-generator function (defined in Subsection 5.1.2).
The transform-lolol-to-lol function assigns a unique natural number to each



206 Chapter 5 New certified Kenzo modules

0 1 2 3 4

0

1

2

3

4

Figure 5.9: Small 2D-image

vertex over V = (N,N) or V = (N,N,N) of the list lolol (this function is a bi-
jection from N × N to N and also from N × N × N to N). The natural numbers
are assigned based on the lexicographical order of the lists of simplexes lolol. For
instance, from the list of simplexes (((0, 0), (0, 1), (1, 1)), ((0, 0), (1, 0), (1, 1))) over
V = (N,N) (where we have the following ordination of the simplexes based on
the lexicographical order: (0, 0) < (0, 1) < (1, 0) < (1, 1)) we obtain the list of
simplexes ((0, 1, 3), (0, 2, 3)) over V = N.

To provide a better understanding of the new tools, some examples of their use are
presented. Let us consider the 2D-image depicted in Figure 5.9. This image can be
represented by the following 2-dimensional array (a list of lists) which is assigned to the
variable small-2d-image:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf small-2d-image ’((0 1 0 0 1) (1 0 1 0 0) (0 1 0 1 0) (0 0 1 0 1) (0 0 0 1 0)))

z
((0 1 0 0 1) (1 0 1 0 0) (0 1 0 1 0) (0 0 1 0 1) (0 0 0 1 0))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the 2-dimensional array of the image we can generate the list of facets over
V = (N,N) of K2D(small-2d-image):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf facets-image (generate-facets-image-2d small-2d-image)) z
(((1 0) (2 0) (2 1)) ((1 0) (1 1) (2 1)) ((4 0) (5 0) (5 1)) ((4 0) (4 1) (5 1))
((0 1) (1 1) (1 2)) ((0 1) (0 2) (1 2)) ((2 1) (3 1) (3 2)) ((2 1) (2 2) (3 2))
((1 2) (2 2) (2 3)) ((1 2) (1 3) (2 3)) ...)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, we can transform these facets to the suitable format for the
simplicial-complex-generator function:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf facets-image-nat (transform-lolol-to-lol facets-image)) z
((0 3 4) (0 1 4) (2 6 7) (2 3 7) (4 8 9) (4 5 9) (7 11 12) (7 8 12) (9 13 14)
(9 10 14) ...)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, from these facets we can construct the associated simplicial complex:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf image-2d-sc (simplicial-complex-generator facets-image-nat)) z
((0 3 4) (3 4) (0 4) (0 3) (4) (3) (0) (0 1 4) (1 4) (0 1) ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the simplicial set canonically associated with the simplicial complex
image-2d-sc can be built:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf image-2d-ss (ss-from-sc image-2d-sc)) z
[K1 Simplicial Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We obtain as result a Simplicial-Set object. Then, we can ask for its homology
groups.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology image-2d-ss 0 2) z
Homology in dimension 0:
Component Z
Component Z
Homology in dimension 1:
Component Z
Component Z
Component Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The results must be interpreted as stating that the image of Figure 5.9 has 2 con-
nected components and 3 holes.

Analogously we can consider an example of a 3D-image, namely, the one depicted in
Figure 5.10. This image can be represented by the following 3-dimensional array (a list
of lists of lists) which is assigned to the variable small-3d-image:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf small-3d-image ’(((0 1 1 1) (0 1 0 1) (0 1 1 1) (0 0 0 0))
((0 1 1 1) (0 1 0 1) (0 1 1 1) (0 0 0 0))
((0 1 1 1) (0 1 0 1) (0 1 1 1) (0 0 0 0))
((0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0))) z

(((0 1 1 1) (0 1 0 1) (0 1 1 1) (0 0 0 0)) ((0 1 1 1) (0 1 0 1) (0 1 1 1) (0 0 0 0))
((0 1 1 1) (0 1 0 1) (0 1 1 1) (0 0 0 0)) ((0 0 0 0) (0 0 0 0) (0 0 0 0) (0 0 0 0))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the 3-dimensional array of an image we can generate the list of facets over
V = (N,N,N) of K3D(small-3d-image):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf facets-image-3d (generate-facets-image-3d small-3d-image)) z
(((1 0 0) (2 0 0) (2 0 1) (2 1 1)) ((1 0 0) (2 0 0) (2 1 0) (2 1 1))
((1 0 0) (1 0 1) (2 0 1) (2 1 1)) ((1 0 0) (1 0 1) (1 1 1) (2 1 1))
((1 0 0) (1 1 0) (2 1 0) (2 1 1)) ((1 0 0) (1 1 0) (1 1 1) (2 1 1))
((2 0 0) (3 0 0) (3 0 1) (3 1 1)) ((2 0 0) (3 0 0) (3 1 0) (3 1 1))
((2 0 0) (2 0 1) (3 0 1) (3 1 1)) ((2 0 0) (2 0 1) (2 1 1) (3 1 1)) ...)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 5.10: 3D cube with a tunnel

Now, we can transform these facets to the suitable format for the
simplicial-complex-generator function:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf facets-image-3d-nat (transform-lolol-to-lol facets-image-3d)) z
((0 16 17 21) (0 16 20 21) (0 1 17 21) (0 1 5 21) (0 4 20 21) (0 4 5 21) (16 32 33 37)
(16 32 36 37) (16 17 33 37) (16 17 21 37) ...)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, from these facets we can construct the associated simplicial complex:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf image-3d-sc (simplicial-complex-generator facets-image-3d-nat)) z
((0 16 17 21) (16 17 21) (0 17 21) (0 16 21) (0 16 17) (17 21) (16 21) (16 17)
(0 21) ...)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the simplicial set canonically associated with the simplicial complex
image-3d-sc can be built:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf image-3d-ss (ss-from-sc image-3d-sc)) z
[K10 Simplicial Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We obtain as result a Simplicial-Set object. Then, we can ask for its homology
groups.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology image-3d-ss 0 3) z
Homology in dimension 0:
Component Z
Homology in dimension 1:
Component Z
Homology in dimension 2:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The results must be interpreted as stating that the image of Figure 5.10 has 1 con-
nected component, 1 tunnel and 0 cavities.

Up to now, we have presented the programs that, from the 2-dimensional array
associated with a 2D-image or the 3-dimensional array associated with a 3D-image,
obtain the facets of a simplicial complex associated with them. However, few common
2D-image formats (such as “jpeg”, “bmp”, “png”, “pbm” and so on) or 3D-image formats
(such as “byu”, “jvx”, “obj ” and so on) encode images as 2-dimensional or 3-dimensional
arrays respectively.

Namely, in the case of 2D-images, the only format which codifies a image as a 2
dimensional array is pbm. Then, we have implemented, as a Common Lisp program, an
interpreter which converts from an image in the pbm format to the 2-dimensional array
in the format of our programs (that is to say, a list of lists).

The pbm images that our program can process are codified in the following way:

• The two characters “P1” which indicate that we work with plain pbm files (there
are other kinds of pbm files; but we only deal with the simpler one).

• The width (w) in pixels of the image and the height (h) in pixels of the image,
formatted as ASCII characters in decimal.

• A raster of h rows, in order from top to bottom. Each row has w bits. Each bit
represents a pixel: 1 is black, 0 is white. The order of the pixels is left to right.

For instance, the image depicted in Figure 5.9 is codified in a pbm file as follows.

P1
5 5
01001
10100
01010
00101
00010

The above code must be read as follows. We have a plain pbm file which has a raster
of five rows and five columns of pixels. The pixels of the coordinates (0, 1), (1, 0), (1, 2),
(2, 1), (2, 3), (3, 2), (3, 4), (4, 0) and (4, 3) are black and the rest of pixels are white.
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From a pbm file we can easily obtain the 2-dimensional array of the image in the
suitable format for our programs. Then, we have the following function.

pbm-to-loc-path pbm-path [Function]

This function takes as argument a pbm image stored in the path pbm-path, and
returns the 2-dimensional array of the image as a list of lists of 1’s and 0’s.

To provide a better understanding of this new function, an example of its use is
presented. Let us consider a pbm file called simple.pbm that codifies the image depicted
in Figure 5.9 as was presented previously.

From that file, we can obtain the 2-dimensional array of the image in the desirable
format for our program as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf small-2d-image (pbm-to-loc-path "simple.pbm")) z
((0 1 0 0 1) (1 0 1 0 0) (0 1 0 1 0) (0 0 1 0 1) (0 0 0 1 0))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, we can proceed as in the previous examples. Then, to process 2D-images
codified in different image formats with our programs, we only need to transform the
original codification to the pbm format (a task that can be performed with different
tools, for instance GIMP [Pec08] allows us to convert an image stored in, practically,
any format to the pbm one).

To sum up, an interpreter for 2D-images stored in “pbm” format has been developed.
However, in the case of 3D-images, we have not found any 3D-image format which
codifies a 3D-image by means of a 3-dimensional array; and, at this moment, we have
not developed an interpreter which converts from 3D-image formats to the suitable input
format of our programs; that is, the 3-dimensional array associated with an image. This
task remains as further work.

Nevertheless, we have developed and interpreter which converts from a 3-dimensional
array, codified as a list of lists of lists, to the “obj ” 3D format [Tec] in order to be able
to show our images in usual 3D-image renders. The information stored in the files which
use this format consists of the position of the tetrahedrons of the image; since it works
with tetrahedrons instead of working with voxels. Then, we have developed a Common
Lisp program which from the 3-dimensional array of a 3D-image returns the 3D-image
codified in this format. So, if we save the generated data in an “obj ” file, we can visualize
the image in a 3D viewer.

3da-to-obj 3da [Function]

This function takes as argument a 3-dimensional array, codified as a list of lists of
lists, of a 3D-image, and returns the image codified in the “obj ” format.
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For instance, if we invoke the 3da-to-obj function with the 3-dimensional array
declared in small-3d-image as argument; the content of the file which allows us to show
the image of Figure 5.10 is generated.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (3da-to-obj small-3d-image) z
v 0 1 1
v 0 0 1
v 1 0 1
...
f 1 2 3 4
f 8 7 6 5
...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To sum up, we have enhanced the Kenzo system with a new module which allows us
to study monochromatic 2D-images and 3D-images.

5.2.3 Digital images in our framework

We have enhanced our framework with the functionality related to digital images by
means of a new plug-in. This plug-in will allow us to construct the simplicial set canon-
ically associated with a simplicial complex defined by means of a list of facets extracted
from the 2-dimensional array of a 2D-image (applying algorithms 5.19 (case n = 2), 5.6
and 5.9) and also the simplicial set canonically associated with a simplicial complex de-
fined by means of a list of facets extracted from the 3-dimensional array of a 3D-image
(applying algorithms 5.19 (case n = 3), 5.6 and 5.9).

This plug-in, which includes the functionality about digital images in our framework,
references the following resources which are used by the plug-in framework to extend
the functionality of all the components.

<code id="digital-images">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> simplicial-complexes.lisp </data>
<data format="Kf/internal-server"> digital-images.lisp </data>
<data format="Kf/microkernel"> digital-images-m.lisp </data>
<data format="Kf/adapter"> digital-images-a.lisp </data>

</code>

Let us explain each one of the referenced resources. As we have said previously, the
XML-Kenzo.xsd file specifies the XML-Kenzo language. We want to introduce two new
kind of objects in our system (the simplicial sets associated with simplicial complexes
generated from the sequence of facets of 2D-images and 3D-images); then, it is necessary
to provide a representation for those objects in our framework.

In the XML-Kenzo specification, we have defined two new simple types: array-2d,
which represents a 2-dimensional array of 1’s and 0’s that will be used to provide the
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Figure 5.11: Digital images elements in XML-Kenzo

2-dimensional array of a 2D-image, and array-3d, which represents a 3-dimensional
array of 1’s and 0’s that will be used to provide the 3-dimensional array of a 3D-image.
In addition, two new elements have been defined: digital-image-2d, whose value is
an element of the type array-2d; and, digital-image-3d, whose value is an element
of the type array-3d (see Figure 5.11). Both digital-image-2d and digital-image-3d

elements are defined as elements of the SS type because they are used to represent the
simplicial sets associated with the simplicial complexes defined from 2D-images and 3D-
images. Due to the fact that they are defined as elements of the SS type they can be
used as any other element of this type.

When upgrading the XML-Kenzo.xsd the external server evolves and is able to check
the constraints against the XML-Kenzo specification of requests related to digital images
such as:

<constructor>
<digital-image-2d>

<array-2d>
<line> 1 0 </line>
<line> 0 1 </line>

</array-2d>
</digital-image-2d>

</constructor>

The simplicial-complexes.lisp file includes the Kenzo functionality about simpli-
cial complexes presented in Subsection 5.1.2, since if we want to use the functionality
about digital images in Kenzo, it is necessary to load the functionality about simplicial
complexes.

The digital-images.lisp file includes the functionality explained in Subsection 5.2.2
to extend the Kenzo system. Moreover, this file includes the functionality that enhances
the xml-kenzo-to-kenzo function of the internal server to process requests devoted to the
construction of objects from the elements digital-image-2d and digital-image-3d. For
instance, if the internal server receives the above XML-Kenzo request. The instruction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(ss-from-sc (simplicial-complex-generator (transform-lolol-to-lol
(generate-facets-image-2d ’((1 0) (0 1)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is executed in the Kenzo kernel. As a result an object of the Simplicial-Set Kenzo
class is constructed, and the identifier of that object is returned.
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The digital-images-m.lisp file defines two new construction modules for the mi-
crokernel called digital-images-2d and digital-images-3d. Each one of these modules
implements a procedure following the guidelines explained in Subsubsection 2.2.3.3 to
construct respectively the simplicial sets associated with 2D-images and 3D-images in
the microkernel. Neither of the new modules have to check if the XML-Kenzo requests
related to digital images are correct, since all the restrictions about these requests are
controlled in the external server thanks to the XML-Kenzo specification (this is due to
the fact that we only have the restriction of being an array of 1’s and 0’s, and this is an
independent argument restriction).

Finally, we have extended the SS Content Dictionary by means of the defini-
tion of two new objects: digital-images-2d and digital-images-3d. Therefore, the
digital-images-a.lisp file contains the necessary functions to raise the functionality of
the adapter to be able to convert from the new OpenMath requests, devoted to digital
images, to XML-Kenzo requests. Namely, we have extended the Phrasebook by means
of a new parser in charge of this task. Then, for instance, the previous XML-Kenzo
request is generated by the Adapter when the following OpenMath request is received.

<OMOBJ>
<OMA>

<OMS cd="SS" name="digital-image-2d"/>
<OMA>
<OMS name="array-2d"/>
<OMA> <OMS name="line"/> <OMI>1</OMI><OMI>0</OMI> </OMA>
<OMA> <OMS name="line"/> <OMI>0</OMI><OMI>1</OMI> </OMA>

</OMA>
</OMA>

</OMOBJ>

5.2.4 Digital images in the fKenzo GUI

This subsection is devoted to present the necessary resources to extend the fKenzo GUI
to support the interaction with digital images. We have defined a fresh fKenzo module
to enhance the GUI with support for digital images. The new OMDoc module refer-
ences three files: digital-images-structure (that defines the structure of the graphical
constituents), digital-images-functionality (which provides the functionality related
to the graphical constituents) and the plug-in introduced in the previous subsection.

We have defined six graphical elements, using the XUL specification language, in the
digital-images-structure file:

• A menu called Digital Images which contains two options: Load Digital Image 2D

and Load Digital Image 3D.

• A selection window called select-2D-image.
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• A selection window called select-3D-image.

• A window called show-2D-image with an image viewer as sole component.

• A window called show-3D-image with a browser as sole component.

• A window called SS-from-DI-name.

The functionality stored in the digital-images-functionality document related to
these components works as follows. A function acting as event handler is associated
with the Load Digital Image 2D menu option; this function shows the select-2D-image

window which allows the user to choose an image from a pbm file. Currently, a folder,
called Digital Images Examples, with several examples of pbm files is included in the
distribution of fKenzo.

Once the user has selected a pbm image, the system checks if the file is a pbm file
which can be processed in our system; otherwise it informs the user with a warning mes-
sage. Subsequently, if the file is valid, it invokes our framework with a digital-image-2d

OpenMath request with the information obtained from the selected file through the
pbm-to-loc-path function, which is also included in the digital-images-functionality

document. Subsequently, the simplicial set associated with the simplicial complex de-
fined from the list of simplexes obtained from the 2-dimensional array of the image is
constructed and an identification number is returned. Afterwards, the system asks a
name for the new simplicial set by means of the window SS-from-DI-name; if the name
given by the user is correct (was not used previously), the system stores it, otherwise
it indicates that the name was previously used and asks again a name. Eventually, if
the result returned by the was an identification number; the system adds to the list of
constructed spaces (situated in the left side of the main tab of fKenzo) the new object.

Moreover, the digital-images-functionality file increases the behavior of the event
handler associated with the left list of the fKenzo GUI. As we explained in Subsec-
tion 3.2.1 when a space is selected from the list of constructed spaces, its standard
notation appears at the bottom part of the right side of the fKenzo GUI. However, if
the space selected is a simplicial set constructed from a digital image, the information
that appears at the bottom part of the right side of the fKenzo GUI is the name given
by the user. In addition, the pbm file is used to show the image associated with the
simplicial set in the window show-2D-image. To show the images in the show-2D-image

window, we use a graphical component which allows us to show 2D-images.

The case of 3D-images is analogous. In this case, examples of 3D digital images
are included in the folder Digital Images Examples 3D ; these images are stored in files
with extension “3d”, it is our own format to store the 3-dimensional array of an image.
Moreover, in this case the image viewer of 3D-images shows the 3D-image in a browser
component by means of the JavaView applet [P+02]. To be able to show the 3D-images,
we use the loc-to-obj function (explained in Subsection 5.2.2) which is included in the
digital-images-functionality file, and which transforms the 3-dimensional array of an
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image to its “obj ” codification (an image format which can be rendered by the JavaView
applet).

5.2.4.1 New objects in the fKenzo GUI

As we have just said the behavior of the event handler associated with the left list of the
fKenzo GUI has been modified. In Subsubsection 4.1.5.1 the management of objects in
the fKenzo GUI and the functionality associated with the left list of the fKenzo GUI were
explained. To handle the new behavior presented for objects associated with 2D-images
and 3D-images we have included the following definitions.

As we commented in Subsubsection 4.1.5.1 we have two subclasses of the
FKENZO-OBJECT class, FKENZO-OBJECT-NAME and FKENZO-OBJECT-FILE. Now, we have spe-
cialized the FKENZO-OBJECT-FILE to represent objects associated with 2D-images and 3D-
images. Moreover, the new classes are also an specialization of the FKENZO-OBJECT-NAME

class. Namely, we have defined the following two classes:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS FKENZO-OBJECT-IMAGE-2D (FKENZO-OBJECT-NAME FKENZO-OBJECT-FILE))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFCLASS FKENZO-OBJECT-IMAGE-3D (FKENZO-OBJECT-NAME FKENZO-OBJECT-FILE))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Both FKENZO-OBJECT-IMAGE-2D and FKENZO-OBJECT-IMAGE-3D are subclasses of both
the FKENZO-OBJECT-NAME and FKENZO-OBJECT-FILE classes without adding any additional
slot. An instance of the FKENZO-OBJECT-IMAGE-2D class is constructed for simplicial sets
associated with 2D-images, the name slot is given by the user and the file slot is the
path of the 2D-image. Analogously for the FKENZO-OBJECT-IMAGE-3D.

As we wanted a different behavior for the event handler, associated with the left list
of the fKenzo GUI for the new objects, to the one presented before, we need some new
concrete methods. In particular, we have defined the following two methods:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD show-object ((object FKENZO-OBJECT-IMAGE-2D))
(show-image-2d (file object))
(call-next-method))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFMETHOD show-object ((object FKENZO-OBJECT-IMAGE-3D))
(show-image-3d (file object))
(call-next-method))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The method associated with the objects of the FKENZO-OBJECT-IMAGE-2D class shows
the window with the 2D-image stored in the path indicated by the file slot; subse-
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Figure 5.12: Window to load a 2D-image

quently, it calls the method associated with the FKENZO-OBJECT-NAME class; and therefore
the fKenzo GUI shows the name of the object at the bottom part of the right side of the
fKenzo GUI. Analogously for the objects of the FKENZO-OBJECT-IMAGE-3D but showing
the 3D-image stored in the path indicated by the file slot after the conversion to the
obj format.

The call-next-method function of these methods allow them to refer to a less specific
method, namely the one associated with the FKENZO-OBJECT-NAME class. This means that
if we have selected an object in the left list of the fKenzo GUI that corresponds with a
FKENZO-OBJECT-IMAGE-2D or a FKENZO-OBJECT-IMAGE-3D object, the GUI shows the name
of the object at the bottom part of the right side of the fKenzo GUI.

In this way, the behavior of the left list of the GUI is enhanced without touching the
main code.

5.2.4.2 Execution flow of the fKenzo GUI for digital images

In order to clarify the execution flow followed by fKenzo, let us present two examples.
When the Digital Images module is loaded in fKenzo, a new menu called Digital Images,
with two options; Load Digital Image 2D and Load Digital Image 3D, becomes avail-
able. From the option Load Digital Image 2D, the user can select a pbm image from
the folder Digital Images Examples with the select-2D-image window, see Figure 5.12.
For instance, the 8893.pbm file is the image of a small cat.

From the 8893.pbm file and using the pbm-to-loc function, fKenzo constructs the
OpenMath request which is sent to our framework. From this request the simplicial
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Figure 5.13: fKenzo asking a name for a simplicial set coming from a digital image

Figure 5.14: Homology groups of the small cat

set associated with the simplicial complex defined from the facets obtained from the
coordinates of black pixels of the image is built, and the identification number of the
constructed object is returned. Then, fKenzo asks the user a name for the object by
means of the window SS-from-DI-name (see Figure 5.13), in this case the name given is
“cat”. Subsequently, the new object is added to the list of constructed spaces shown in
the left side of the fKenzo GUI. When the user selects this object, both the name that
the user provided previously and the image are shown (see Figure 5.14).

Finally, the user can ask fKenzo to compute the homology groups of the image,
and the results are shown, as usual, in the Computing tab. Figure 5.14 shows the
computation of the homology groups of the small cat which has 4 connected components
and 5 holes. These properties are interpreted from the homology groups of the image.

Analogously for the Load Digital Image 3D option. Figure 5.15 shows the compu-
tation of homology groups of the letters “MAP” in 3D; this image has 3 connected
components, 2 tunnels and 0 cavities. As in the case of 2D-images, these properties are
interpreted from the homology groups of the image.
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Figure 5.15: Homology groups of the letters MAP in 3D

5.2.5 Formalization of Digital Images in ACL2

As we already claim, the verification of programs is an important issue, but specially in
the case of the programs for digital images. If we want to use our programs in real life
problems (for instance, in the study of medical images), we must be completely sure that
the results produced by our programs are correct. Therefore, the formal verification of
our programs with a Theorem Prover (in our case, ACL2) is significant.

This subsection is devoted to present the certification of the correctness of Algo-
rithm 5.15 which from a 2D-image constructs a list of simplexes (which represents the
facets of the simplicial complex associated with the 2D-image). The task of verifying the
correctness of Algorithm 5.19 for the case n = 3 is analogous; then, in spite of having
both developments, we just focus on the verification of the correctness of Algorithm 5.15.

5.2.5.1 Main definitions and properties

As we just said, we want to formalize in ACL2 the correctness of Algorithm 5.15; namely,
our implementation of that algorithm by means of the generate-facets-image-2d func-
tion. Since both Kenzo and ACL2 are Common Lisp programs we can verify the cor-
rectness of that Kenzo function in ACL2.

From now on, we define the necessary functions to establish the correctness of our
program. First of all, we need some auxiliary functions which define the necessary
concepts to prove our theorems. These definitions are based on both Algorithm 5.15
and the notions for digital images. Namely, we need to define the notion of 2D-image.

As we said in Subsection 5.2.2, a 2D-image D is represented by means of a finite
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2-dimensional array (that is a list of lists) of 1’s and 0’s where each 1 represents a
pixel in D and each 0 represents a pixel that is not in D. The 2d-imagep function is a
function that checks if its argument is a list of lists of 1’s and 0’s. This function uses
the list-0-1-p function that checks if its argument is a list of 1’s and 0’s.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun list-0-1-p (list)
(if (endp list)

(equal list nil)
(if (endp (cdr list))

(and (equal (cdr list) nil)
(or (equal (car list) 0) (equal (car list) 1)))

(and (or (equal (car list) 0) (equal (car list) 1))
(list-0-1-p (cdr list))))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun 2d-imagep (list)
(if (endp list)

(equal list nil)
(and (list-0-1-p (car list)) (2d-imagep (cdr list)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, we define the generate-facets-image-2d function and all its auxiliary
functions in ACL2. It is worth noting that the definition of these functions is exactly
the same used in the definition of Kenzo functions (see Subsection 5.2.2). Let us show
in detail these definitions.

First of all, we define the list-up-i-j and list-down-i-j functions which are used to
generate from a pair of natural numbers (i, j) the simplexes ((i, j), (i+1, j), (i+1, j+1))
and ((i, j), (i, j + 1), (i+ 1, j + 1)) respectively.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun list-up-i-j (i j)
(list (list i j) (list (1+ i) j) (list (1+ i) (1+ j))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun list-down-i-j (i j)
(list (list i j) (list i (1+ j)) (list (1+ i) (1+ j))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From the above two functions, we can define a function, called generate-facets-i-j

which from the pair (i, j) generates the pair of simplexes (((i, j), (i + 1, j), (i + 1, j +
1)), ((i, j), (i, j + 1), (i+ 1, j + 1)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun generate-facets-i-j (i j)
(list (list-up-i-j i j) (list-down-i-j i j)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, we can define the generate-facets-image-2d function which generates the
simplexes of a list of lists of 0’s and 1’s lol.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun generate-facets-image-2d (lol)
(generate-facets-image-aux lol 0))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The above function calls the more general function generate-facets-image-aux

which takes two arguments: a list of lists of 0’s and 1’s lol and a natural number j.
The function generate-facets-image-aux must be understood as the procedure which
generates the simplexes of the list of lists of 0’s and 1’s lol which is the sublist located
from position j of another list of lists of 0’s and 1’s, let us called it lol-main.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun generate-facets-image-aux (lol j)
(if (endp lol)

nil
(append (generate-facets-list (car lol) 0 j)

(generate-facets-image-aux (cdr lol) (1+ j)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For each one of the lists of 0’s and 1’s of lol and the position of that list in
lol-main, the above function invokes the function generate-facets-list. The func-
tion generate-facets-list must be understood as the procedure which generates the
simplexes of the list of 0’s and 1’s list which is the sublist located from position i of
the list of position j of lol-main.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun generate-facets-list (list i j)
(if (endp list)

nil
(if (equal (car list) 1)

(append (generate-facets-i-j i j) (generate-facets-list (cdr list) (1+ i) j))
(generate-facets-list (cdr list) (1+ i) j))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Once we have defined our programs in ACL2 we can prove theorems about them.
To be more concrete, we have proved both the correctness a the completeness of our
program generate-facets-image-2d.

First of all we state the ACL2 theorem which ensures the completeness of
generate-facets-image-2d.

ACL2 Theorem 5.20. Let image be a 2D-image represented by means of a 2 dimen-
sional array, then, ∀i, j ∈ N such that the value of the image in position (i, j) of the array
is 1, then, the simplexes ((i, j), (i+1, j), (i+1, j+1)) and ((i, j), (i, j+1), (i+1, j+1)) are
in the list generated by the generate-facets-image-2d function taking as input image.

To state this theorem in ACL2, we need the ACL2 functions: (natp n), which is a test
function returning t if n is a natural number and nil otherwise; (nth i ls), which re-
turns the value of position i (a natural number) of the list ls; and, (member-equal x ls),
which returns t if x is equal to some of the elements of ls (a list).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm generate-facets-image-2d-completeness
(implies (and (2d-imagep image)

(natp i)
(natp j)
(equal (nth i (nth j image)) 1))

(and (member-equal (list-up-i-j i j) (generate-facets-image-2d image))
(member-equal (list-down-i-j i j) (generate-facets-image-2d image)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Once we have proved the completeness of our program, we must prove its correctness.
This task is handled by means of the following lemmas.

ACL2 Theorem 5.21. Let image be a 2D-image represented by means of a
2 dimensional array and simplex be an element of the output generated by
generate-facets-image-2d taking as input image. Then if simplex is of the form
((i, j), (i + 1, j), (i + 1, j + 1)) with i and j natural numbers, then the element
((i, j), (i, j+1), (i+1, j+1)) is also in the output generated by generate-facets-image-2d

taking as input image.

To state this theorem in ACL2 we need some auxiliary functions. Namely,
member-list-up, which returns t if its input is a list of the form ((i, j), (i + 1, j), (i +
1, j + 1)) and nil otherwise; and list-down, which from a list of the form ((i, j), (i +
1, j), (i+ 1, j + 1)) returns the list ((i, j), (i, j + 1), (i+ 1, j + 1)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm generate-facets-image-correctness-1
(implies (and (2d-imagep image)

(member-equal simplex (generate-facets-image-2d image))
(member-list-up simplex))

(member-equal (list-down simplex) (generate-facets-image-2d image))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACL2 Theorem 5.22. Let image be a 2D-image represented by means of a
2 dimensional array and simplex be an element of the output generated by
generate-facets-image-2d taking as input image. Then if simplex is of the form
((i, j), (i, j + 1), (i + 1, j + 1)) with i and j natural numbers, then the element
((i, j), (i+1, j), (i+1, j+1)) is also in the output generated by generate-facets-image-2d

taking as input image.

To state this theorem in ACL2 we need some auxiliary functions. Namely,
member-list-down, which returns t if its input is a list of the form ((i, j), (i, j +
1), (i + 1, j + 1)) and nil otherwise; and list-up, which from a list of the form
((i, j), (i, j + 1), (i+ 1, j + 1)) returns the list ((i, j), (i+ 1, j), (i+ 1, j + 1)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm generate-facets-image-correctness-2
(implies (and (2d-imagep image)

(member-equal simplex (generate-facets-image-2d image))
(member-list-down simplex))

(member-equal (list-up simplex) (generate-facets-image-2d image))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ACL2 Theorem 5.23. Let image be a 2D-image represented by means of a
2 dimensional array and simplex be an element of the output generated by
generate-facets-image-2d taking as input image of the form ((i, j), (i+1, j), (i+1, j+1))
or ((i, j), (i, j + 1), (i + 1, j + 1)) with i and j natural numbers. Then, the element of
position (i, j) of image is 1.

To state this theorem in ACL2 we use some ACL2 functions which have not been
used previously: caar which returns the first element of the first element of a list and
cadar which returns the second element of the first element of a list.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm generate-facets-image-correctness-3
(implies (and (2d-imagep image)

(member-equal simplex (generate-facets-image-2d image)))
(equal (nth (caar simplex) (nth (cadar simplex) image)) 1)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us present some remarks about the proof of these theorems which state both the
completeness and the correctness of the generate-facets-image-2d program.

First of all, it is worthwhile noting that the implementation of the
generate-facets-image-2d function, and its auxiliar ones, follows simple recursive
schemas, that are suitable for the induction heuristics of the ACL2 theorem prover.

Let us present now with some details two auxiliary lemmas needed in our devel-
opment of the proof of the main theorems. As we have seen in the definition of
generate-facets-image-aux, this function invokes the generate-facets-list function
with arguments (car list), 0 and j. Therefore, it is sensible to think that in the proof
of our theorems we are going to need some auxiliary lemmas such as:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(thm (implies (and (list-0-1 x) (natp j)
(member-equal simplex (generate-facets-list x 0 j)))

(equal (nth (caar simplex) x) 1))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

that is to say, a lemma which involves a call to (generate-facets-list x 0 j). However,
ACL2 has some problems to find a proof of theorems such as the previous one, since it
does not find a good inductive schema for reasoning. On the contrary, for ACL2 is much
easier to find a proof of theorems such as:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(thm (implies (and (list-0-1 x) (natp i) (natp j)
(member-equal simplex (generate-facets-list x i j)))

(equal (nth (- (caar simplex) i) x) 1))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

that is to say, lemmas that are generalizations of the previous ones.

Taking this question into account in the development of our proofs, the certification
of the completeness and correctness theorems can be done without any special trouble.
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In this way, we have proved the completeness and correctness of our implementation
of Algorithm 5.15 by means of the program generate-facets-image-2d.

In the case of 3D-digital images the development is very similar. The interested
reader can consult the complete development in [Her11].

5.3 An algorithm building the pushout of simplicial

sets

Many of the usual constructions in Topology are nothing but homotopy pullbacks or
homotopy pushouts [Mat76]. Loop spaces, suspensions, mapping cones, wedges or joins,
for instance, involve such constructions. In these cases, when the spaces are not of finite
type the computation of their homology groups can be considered as a challenging task.
A way of dealing with this kind of spaces consists of using the effective homology method
explained in Subsection 1.1.3.

In this section we use the effective homology method to design algorithms building
the pushout associated with two simplicial morphisms f : X → Y and g : X → Z, where
X, Y and Z are simplicial sets with effective homology. In addition the integration of
this new tool in fKenzo is presented.

The rest of this section is organized as follows. Subsection 5.3.1 introduces the math-
ematical background about the pushout and some additional concepts about effective
homology. The way of constructing the effective homology of the pushout is presented
in Subsection 5.3.2. Some examples of the use of the implementation of those algorithms
as a new Kenzo module are provided in Subsection 5.3.3. Subsection 5.3.4 deals with
the extension of the framework to include the functionality about the pushout; and the
way of widening the fKenzo GUI to include the pushout is detailed in Subsection 5.3.5.
Finally, some remarks about the formalization of the developed algorithms are presented
in Subsubsection 5.3.6.

5.3.1 Preliminaries

To explain the effective homology of the pushout is necessary to introduce the notion
of pushout and also some additional notions about effective homology which were not
presented in Subsection 1.1.3.

5.3.1.1 Pushout notions

First of all, let us introduce the notion of pushout. The following definitions can be
found, for instance, in [Mat76, Doe98].
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Definition 5.24. Consider two morphisms f : X → Y , g : X → Z in a category C. A
pushout of (f, g) is a triple (P, f ′, g′) where

1. P is an object of C,

2. f ′ : Y → P , g′ : Z → P are morphism of C such that f ◦ g′ = g ◦ f ′,

and for every other triple (Q, f ′′, g′′) where

1. Q is an object of C,

2. f ′′ : Y → Q, g′′ : Z → Q are morphism of C such that f ◦ g′′ = g ◦ f ′′,

there exists a unique morphism p : P → Q such that f ′′ = p ◦ f ′ and g′′ = p ◦ g′ (see the
following diagram).

X
f //

g
��

Y

f ′

��
f ′′

��

Z
g′ //

g′′

))

P
p

&&
Q

Definition 5.25. Let f, g : X → Y be two morphisms between topological spaces, then
a morphism H : X × I → Y , where I is the unit interval [0, 1], is a homotopy between
f and g, denoted by H : f ∼ g, if H(x, 0) = f(x) and H(x, 1) = g(x).

Definition 5.26. A homotopy commutative diagram:

X
f //

g
��

Y

f ′

��
Z

g′ // P

equipped with H : f ′◦f ∼ g′◦g, is called a homotopy pushout when for any commutative
diagram

X
f //

g

��

Y

f ′′

��
Z

g′′ // Q

equipped with G : f ′′ ◦ f ∼ g′′ ◦ g, the following properties hold:
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1. there exists a map p : P → Q and homotopies K : f ′′ ∼ p ◦ f ′ and L : p ◦ g′ ∼ g′′

such that the whole diagram

X
f //

g
��

Y

f ′

��
f ′′

��

Z
g′ //

g′′

))

P
p

&&
Q

with all maps and homotopies above is homotopy commutative,

2. if there exists another map p′ : P → Q and homotopies K ′ : f ′′ ∼ p′ ◦ f ′ and
L′ : p′ ◦ g′ ∼ g′′ such that the diagram

X
f //

g
��

Y

f ′

��
f ′′

��

Z
g′ //

g′′

))

P
p′

&&
Q

is homotopy commutative, then there exists a homotopy M : p ∼ p′ such that the
whole diagram with all maps and homotopies above is homotopy commutative.

From now on, with an abuse of notation, we will call (homotopy) pushout of (f, g)
to the object P .

There is a “standard” construction of the homotopy pushout of any two maps
f : X → Y , g : X → Z as:

P(f,g)
∼= (Y q (X × I)q Z)/ ∼

where I is the unit interval [0, 1] and the equivalence relation ∼ is defined as follows: for
every x ∈ X, (x× 0) is identified to f(x) ∈ Y and (x× 1) is identified to g(x) ∈ Z.

5.3.1.2 Effective homology preliminaries for the pushout

Let us present now some effective homology concepts which are akin to the definition of
the effective homology of the pushout. A complete study of the definitions and results
presented here can be found in [RS06].

Theorem 5.27 (Direct Sum Equivalence Theorem). Let C∗ and D∗ be two chain com-
plexes with effective homology. Then the direct sum C∗ ⊕ D∗ is a chain complex with
effective homology.
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The cone constructor is an important construction in Homological Algebra, we
present here the definition and the most elementary properties of this construction.

Definition 5.28. Let C∗ and D∗ be two chain complexes and φ : D∗ → C∗ be a chain
complex morphism. Then the cone of φ denoted by Cone(φ) is the chain complex
Cone(φ) = A∗ defined as follows. First An := Cn+1 ⊕Dn; and the boundary operator is
given by the following matrix:

dA∗ :=

[
dC∗ φ
0 −dD∗

]

In the previous definition, if both C∗ and D∗ are chain complexes with effective
homology, then, the following theorems ensure that we can construct an equivalence
between Cone(φ) and an effective chain complex, therefore, Cone(φ) is also a chain
complex with effective homology.

Theorem 5.29 (Cone Reduction Theorem [RS06]). Let ρ = (f, g, h) : C∗⇒⇒D∗ and
ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ be two reductions and φ : C ′∗ → C∗ a chain complex morphism.
Then these data define a canonical reduction:

ρ′′ : Cone(φ)⇒⇒Cone(fφg′)

An extension of the Cone Reduction Theorem is the following result.

Theorem 5.30 (Cone Equivalence Theorem [RS06]). Let φ : C ′∗,EH → C∗,EH be a
chain complex morphism between two chain complexes with effective homology. Then
Cone(φ) is a chain complex with effective homology.

Definition 5.31. An effective short exact sequence of chain complexes is a diagram:

0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo

where i and j are chain complexes morphisms, ρ (retraction) and σ (section) are graded
module morphisms satisfying:

• ρi = idC∗ ;

• iρ+ σj = idB∗ ;

• jσ = idA∗ .

It is an exact sequence in both directions, but to the left it is an exact sequence of
chain complexes, and to the right it is only an exact sequence of graded modules.

The following theorem (see [RS06]) states that given an effective short exact sequence,
if two of the chain complexes of the short exact sequence are chain complexes with
effective homology, then, we can construct the effective homology of the third one.
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Theorem 5.32 (SES Theorems). Let

0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo

be an effective short exact sequence of chain complexes. Then three general algorithms
are available:

SES1 : (B∗,EH , C∗,EH) 7→ A∗,EH
SES2 : (A∗,EH , C∗,EH) 7→ B∗,EH
SES3 : (A∗,EH , B∗,EH) 7→ C∗,EH

producing the effective homology of one chain complex when the effective homology of
both others is given.

The following two lemmas are used in the proof of the above theorem and will be
important in the development of the effective homology of a pushout.

Lemma 5.33. Let

0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo

be an effective short exact sequence of chain complexes. Then the effective exact se-
quence produces a reduction Cone(i)⇒⇒A∗.

To state the second lemma we need an auxiliary definition.

Definition 5.34. Let C∗ = (Cn, dCn)n∈Z be a chain complex. The suspension functor

applied to C∗ is the chain complex C
[1]
∗ = (Mn, dn)n∈Z such that, Mn = Cn−1 and

dn = −dCn−1 , ∀n ∈ Z.

Moreover, we can define the effective homology version of the suspension functor.

Theorem 5.35 (Suspension Functor Equivalence Theorem). Let C∗ be a chain complex

with effective homology. Then C
[1]
∗ is a chain complex with effective homology.

Now, we can provide the second lemma associated with Theorem 5.32.

Lemma 5.36. Let

0 A∗
0oo

σ // B∗
j

oo
ρ // C∗
i

oo 0oo

be an effective short exact sequence of chain complexes. Then the effective exact se-
quence generates a connection chain complex morphism χ : A∗ → C

[1]
∗ . Besides, B∗ is

canonically isomorphic to Cone(χ).

Once these concepts have been introduced, we can undertake our goal of defining the
effective homology of a pushout.
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5.3.2 Effective Homology of the Pushout

5.3.2.1 Main algorithms

The definitions related to the pushout given in Subsubsection 5.3.1.1 come from standard
topology, from now on we switch to the simplicial framework where we can formulate
the following algorithm.

Algorithm 5.37.
Input: two simplicial morphisms f : X → Y and g : X → Z where X, Y and Z are
simplicial sets.
Output: the simplicial set P(f,g).

The above algorithm is based on the standard pushout construction presented in
Subsubsection 5.3.1.1, in particular given f : X → Y and g : X → Z simplicial mor-
phisms, then we define P(f,g) as the simplicial set (Y q(X×∆1)qZ)/ ∼, where ∆1 is the
unit interval [0, 1] in the simplicial framework: the simplicial set ∆1 has two 0-simplexes
(0), (1) and the non-degenerate 1-simplex (0, 1); and ∼ is the equivalence relation such
that for every x ∈ X, (x × (0)) is identified to f(x) ∈ Y and (x × (1)) is identified to
g(x) ∈ Z.

Now, if X, Y and Z are simplicial sets with effective homology, then P(f,g) is also an
object with effective homology; in particular we can formulate the following algorithm.

Algorithm 5.38.
Input: two morphisms f : X → Y and g : X → Z where X, Y and Z are simplicial sets
with effective homology.
Output: the effective homology of P(f,g).

The construction of the effective homology of P(f,g) involves several steps. In a
nutshell, the construction of the effective homology of P(f,g) is based on applying the case
SES2 of Theorem 5.32 to a short exact sequence which is produced by the description
of C∗P (the chain complex coming from P(f,g)):

0 M∗oo
σ // C∗P
j

oo
ρ // C∗Y ⊕ C∗Z
i

oo 0oo

where M∗ is the chain complex associated with the simplicial set X × ∆1 but with
the simplexes of X × (0) and X × (1) cancelled (that is to say, the simplexes like
(x, (0)) ∈ X × (0), (x, (1)) ∈ X × (1) and their degeneracies are removed from X ×∆1),
the morphisms σ and i are inclusions and the morphisms j and ρ are projections.

To apply the case SES2 of Theorem 5.32 to the above short exact sequence, the
effective homology of M∗ and C∗X ⊕ C∗Y must be available. Then, the main steps to
construct the effective homology of the pushout P(f,g) are the following ones.
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Step 1. From f : X → Y and g : X → Z simplicial morphisms, P(f,g) and its
associated chain complex C∗P are constructed.

Step 2. The effective homology of M∗ is constructed.

Step 3. The effective homology of C∗X ⊕ C∗Y is constructed.

Step 4. Eventually, from C∗P , the effective homology of M∗, the effective homology
of C∗X ⊕ C∗Y and applying case SES2 of Theorem 5.32 to the above short exact
sequence, the effective homology of the pushout P(f,g) is constructed.

A complete description of the algorithm will be provided in Subsubsection 5.3.2.3.

5.3.2.2 Auxiliar algorithms

Several sub-algorithms have been required in the process to define Algorithm 5.38, in
particular, we have needed the following ones.

Algorithm 5.39 (Definition 1.26).
Input: two simplicial sets X and Y .
Output: the simplicial set X × Y .

Algorithm 5.40 (Eilenberg-Zilber Theorem, see [May67]).
Input: two simplicial sets X and Y with effective homology.
Output: the effective homology of X × Y .

Algorithm 5.41 (Definition 1.8).
Input: two simplicial sets X and Y .
Output: the direct sum chain complex C∗X ⊕ C∗Y where C∗X and C∗Y are the chain
complexes associated with X and Y respectively.

Algorithm 5.42 (Theorem 5.27).
Input: two simplicial sets X and Y with effective homology.
Output: the effective homology of C∗X ⊕ C∗Y .

Algorithm 5.43 (Definition 5.28).
Input: a morphism i between two chain complexes A∗ and B∗.
Output: the chain complex Cone(i).

Algorithm 5.44 (Theorem 5.30).
Input: a morphism i between two chain complexes A∗ and B∗ with effective homology.
Output: the effective homology of Cone(i).

Algorithm 5.45.
Input: a simplicial set X.
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Output: the chain complex coming from X ×∆1 but with the simplexes of X × (0) and
X × (1) cancelled.

Algorithm 5.46.
Input: a simplicial set X with effective homology.
Output: the effective homology of the simplicial set X × ∆1 but with the simplexes of
X × (0) and X × (1) cancelled.

Algorithm 5.47 (Definition 5.34).
Input: a chain complex A∗.
Output: the chain complex A

[1]
∗ .

Algorithm 5.48 (Theorem 5.35).
Input: a chain complex A∗ with effective homology.
Output: the effective homology of A

[1]
∗ .

Algorithm 5.49 (Lemma 5.33).
Input: A,B and C simplicial sets with effective homology, i, j, σ and ρ morphism

which determine the short exact sequence 0 C∗A
0oo

σ // C∗B
j

oo
ρ // C∗C
i

oo 0oo where

C∗A,C∗B and C∗C are the chain complex canonically associated with A,B and C re-
spectively.
Output: the reduction Cone(i)⇒⇒C∗A.

Algorithm 5.50 (Proposition 1.40).
Input: a reduction B∗⇒⇒A∗ and the effective homology of B∗.
Output: the effective homology of A∗.

Some of these algorithms are already implemented in Kenzo (namely, algo-
rithms 5.39, 5.40 and 5.50). On the contrary, it has been necessary to implement the
rest of them.

5.3.2.3 A complete description of the algorithm

In this subsubsection, we are going to present a detailed description of the 4 main steps to
construct the effective homology of the pushout of two simplicial morphisms f : X → Y
and g : X → Z where X, Y and Z are simplicial sets with effective homology.

As we said previously, the construction of the effective homology of P(f,g) is based on
applying the case SES2 of Theorem 5.32 to the short exact sequence which is produced
by the description of C∗P (the chain complex associated with P(f,g)):

0 M∗oo
σ // C∗P
j

oo
ρ // C∗Y ⊕ C∗Z
i

oo 0oo
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where M∗ is the chain complex associated with the simplicial set X ×∆1 but with the
simplexes of X × (0) and X × (1) cancelled, the morphisms σ and i are inclusions and
the morphisms j and ρ are projections. To apply the case SES2 of Theorem 5.32, the
effective homology of M∗ and C∗X ⊕ C∗Y must be available. Then, the main steps to
construct the effective homology of the pushout are as follows.

Step 1. From f : X → Y and g : X → Z simplicial morphisms, P(f,g) and its
associated chain complex C∗P are constructed.

To this aim, we simply apply Algorithm 5.37.

Step 2. We construct the effective homology of the simplicial set X ×∆1 but with
the simplexes of X × (0) and X × (1) cancelled.

The construction of the effective homology of this simplicial set is a bit tricky and
needs several sub-steps that are now explained.

1. We construct the chain complex associated with X×∆1 but with the simplexes of
X×(0) and X×(1) cancelled, that will be denoted by M∗, applying Algorithm 5.45.

Briefly, the construction of the effective homology of M∗ is obtained from the
application of the case SES1 of Theorem 5.32 to the short exact sequence produced
by the description of the chain complex M∗:

0 M∗oo
σ2 // C∗(X ×∆1)
j2

oo
ρ2 // C∗(X × (0))⊕ C∗(X × (1))
i2

oo 0oo

where the morphisms σ2 and i2 are inclusions and the morphisms j2 and ρ2 are
projections. To apply the case SES1 of Theorem 5.32, the effective homology of
C∗(X ×∆1) and C∗(X × (0))⊕ C∗(X × (1)) must be provided.

2. We build the effective homology of C∗(X ×∆1).

Since both X and ∆1 are simplicial sets with effective homology (∆1 is an effec-
tive object, then it has trivially effective homology), we can construct, applying
Algorithm 5.40, the effective homology of C∗(X ×∆1).

3. We construct the effective homology of C∗(X × (0))⊕ C∗(X × (1)).

Since both X×(0) and X×(1) are simplicial sets with effective homology (applying
Algorithm 5.40 since X, (0) and (1) are simplicial sets with effective homology), we
can construct, applying Algorithm 5.42, the effective homology of C∗(X × (0)) ⊕
C∗(X × (1)).

4. We construct the effective homology of Cone(i2).

Since i2 is a chain complex morphism between two objects with effective homol-
ogy, C∗(X × ∆1) and C∗(X × (0)) ⊕ C∗(X × (1)), we can construct, applying
Algorithm 5.44, the effective homology of Cone(i2).
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5. The reduction M∗⇐⇐Cone(i2) is constructed applying Algorithm 5.49.

6. The effective homology of M∗ is constructed.

Since Cone(i2) is a chain complex with effective homology and we have the re-
duction M∗⇐⇐Cone(i2), we can construct, applying Algorithms 5.50, the effective
homology of M∗.

Therefore, we have constructed the effective homology of the simplicial set X ×∆1

but with the simplexes of X × (0) and X × (1) cancelled. The above process produces
Algorithm 5.46.

Step 3. We construct the effective homology of C∗X ⊕ C∗Y .

Since both Y and Z are simplicial sets with effective homology we can construct,
applying Algorithm 5.42, the effective homology of C∗Y ⊕ C∗Z.

Step 4. The effective homology of the pushout P(f,g) is constructed.

Let us present how we proceed to complete this construction.

1. We define the following short exact sequence:

0 M∗oo
σ // C∗P
j

oo
ρ // C∗Y ⊕ C∗Z
i

oo 0oo .

where the morphisms σ and i are inclusions and the morphisms j and ρ are pro-
jections.

2. We construct the effective homology of (C∗Y ⊕ C∗Z)[1].

Since C∗Y ⊕ C∗Z is a chain complex with effective homology, applying Algo-
rithm 5.48, we can construct the effective homology of (C∗Y ⊕ C∗Z)[1].

3. We define the morphism shift : C∗Y ⊕C∗Z → (C∗Y ⊕C∗Z)[1] which assigns every
element of dimension n of C∗Y ⊕ C∗Z to the same element in dimension n + 1 of
(C∗Y ⊕ C∗Z)[1].

4. We define the chain complex morphism χ : M∗ → (C∗Y ⊕C∗Z)[1] as the composi-
tion χ = shift ◦ ρ ◦ dC∗P ◦ σ.

5. We construct the effective homology of Cone(χ).

Since χ is a chain complex morphism between two chain complexes with effective
homology, M∗ and (C∗Y ⊕C∗Z)[1], we can construct, applying Algorithm 5.44, the
effective homology of Cone(χ).

6. Finally, applying Lemma 5.36, C∗P is isomorphic to Cone(χ), therefore, the effec-
tive homology of C∗P is obtained.
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In this way, the effective homology of the pushout of two simplicial morphisms f :
X → Y and g : X → Z where X, Y and Z are simplicial sets with effective homology is
obtained. Therefore, we can state the following theorem.

Theorem 5.51. Let f : X → Y and g : X → Z be two simplicial morphisms where
X, Y and Z are simplicial sets with effective homology. Then P(f,g) is a simplicial set
with effective homology.

The proof of this theorem is the above construction which produces Algorithm 5.38.

5.3.2.3.1 By-product algorithms Once we have Algorithm 5.38, it can be used
in several interesting cases. For instance, as we commented at the beginning of this
section, many of the usual constructions in Topology can be built from the pushout. Let
us consider two particular cases: the wedge and the join of simplicial sets with effective
homology.

Definition 5.52. Given X and Y 1-reduced spaces with base points x0 ∈ X and y0 ∈ Y ,
then the wedge X∨Y is the quotient of the disjoint union XqY obtained by identifying
x0 and y0 to a single point.

Consider the pushout diagram

X
i1 //

i2
��

Y

��
Z // P

where X is the one-point simplicial set and Y, Z are 1-reduced simplicial sets and i1, i2
are morphism from X to the base point of Y and Z respectively. Then, P(i1,i2) is the
wedge Y ∨ Z.

Algorithm 5.53.
Input: two 1-reduced simplicial sets X and Y with effective homology.
Output: the effective homology of X ∨ Y .

Definition 5.54. Given X and Y spaces, one can define the space of all lines segments
joining points in X to points in Y . This is the join X ./ Y , the quotient space of
X × Y × I/ ∼, under the identifications (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1).
Thus we are collapsing the subspace X × Y × (0) to X and X × Y × (1) to Y .

Consider the pushout diagram

X × Y pX //

pY
��

X

��
Y // P

where pX and pY are the projections. Then, P(pX ,pY ) is the join X ./ Y .
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Algorithm 5.55.
Input: two simplicial sets X and Y with effective homology.
Output: the effective homology of X ./ Y .

5.3.2.3.2 Implementation The algorithms explained throughout this subsection
have been implemented as a new module for the Kenzo system. The set of programs we
have developed (with about 1600 lines) allows the computation of the pushout of two
simplicial morphisms f : X → Y and g : X → Z, and the construction of its version
with effective homology when the effective homologies of X, Y and Z are available.

In the development of the new module for Kenzo that allows one to construct the
pushout associated with two simplicial morphisms, the first step has consisted in imple-
menting the algorithms presented in Subsubsection 5.3.2.2 which were not available in
Kenzo (to be more concrete, algorithms 5.37, 5.41, 5.42, 5.43, 5.44, 5.45, 5.46, 5.47, 5.48
and 5.49). Subsequently, applying the construction previously explained, we have im-
plemented Algorithm 5.38, that is to say, a program that allows us to construct the
effective homology of the pushout. Eventually, we have used that program in order to
implement algorithms 5.53 and 5.55.

Among the bunch of implemented functions, we highlight the following ones.

pushout f g [Function]

Build a simplicial set with effective homology, namely the pushout of the simplicial
morphisms f : X → Y and g : X → Z where X, Y and Z are simplicial sets with
effective homology.

wedge smst1 smst2 [Function]

Build a simplicial set with effective homology, namely the wedge of smst1 and
smst2, that are two simplicial sets with effective homology.

join smst1 smst2 [Function]

Build a simplicial set with effective homology, namely the join of smst1 and smst2,
that are two simplicial sets with effective homology.

Several examples are provided in the following subsection to provide a better under-
standing of the new tools.

5.3.3 Examples

In this subsection we present four examples of application of the programs we have
developed to build the pushout of two simplicial morphisms. In the first case, we consider
the particular case of the wedge of Eilenberg MacLane spaces (K(Z, 2)∨K(Z, 2)). As a
second example, we will show the join of two spheres. A sophisticated example giving a
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geometrical construction of P 2(C) is presented, too. Finally, a way of computing some
homotopy groups of the suspension of the classifying space of the group SL2(Z) is given.

We consider a fresh Kenzo session, where our pushout Kenzo module has been loaded.

Wedge of K(Z, 2) and K(Z, 2)

Let us present here an example of the use of the wedge of spaces. In this case we want
to compute the first six homology groups of the wedge of K(Z, 2) and K(Z, 2). First of
all, we build the Eilenberg-MacLane space K(Z, 2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf bkz (k-z 2)) z
[K13 Abelian-Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We construct the wedge of K(Z, 2) and K(Z, 2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf bkzwbkz (wedge bkz bkz)) z
[K41 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, homology groups can be computed as usual.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology bkzwbkz 0 6) z
Homology in dimension 0 :
Component Z
Homology in dimension 1 :

Homology in dimension 2 :
Component Z
Component Z
Homology in dimension 3 :

Homology in dimension 4 :
Component Z
Component Z
Homology in dimension 5 :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Join of S2 and S3

Let us present here an example of the use of the join of spaces. In this case we want to
compute the first seven homology groups of the join of the spheres S2 and S3. Let us
note that the join of the spheres Sn and Sm is the sphere Sn+m+1; so, in our case the
only non null homology groups should be 0 and 6. We construct the spheres S2 and S3.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s2 (sphere 2)) z
[K331 Simplicial-Set]
> (setf s3 (sphere 3)) z
[K336 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We construct the join S2 ./ S3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf s2js3 (join s2 s3)) z
[K353 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lastly, homology groups can be computed getting the expected result.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology s2js3 0 7) z
Homology in dimension 0 :
Component Z
Homology in dimension 1 :

Homology in dimension 2 :

Homology in dimension 3 :

Homology in dimension 4 :

Homology in dimension 5 :

Homology in dimension 6 :
Component Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P 2(C)

This example which gives a geometrical construction of P 2(C) [Ser10] was suggested by
Francis Sergeraert. Take S2 and construct the first stage of the Whitehead tower. We
access to the current definition of the sphere of dimension 2 stored in the variable s2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> s2 z
[K331 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We build the fundamental cohomology class.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf ch2 (chml-clss s2 2)) z
[K547 Cohomology-Class on K331 of degree 2]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We construct the fibration over the sphere canonically associated with the above coho-
mology class.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf f2 (z-whitehead s2 ch2)) z
[K548 Fibration K331 -> K1]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, the total space from the fibration is generated.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf x3 (fibration-total f2)) z
[K554 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then x3 has the homotopy type of the 3-sphere S3. More precisely x3= s2×f2K(Z, 1)
with f2 an appropriate twisting function producing S3 as a total space. It is easy to
deduce a projection f : X3→ S2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf f (build-smmr ; the function to construct a simplicial morphism
:sorc x3 ; the source simplicial set
:trgt s2 ; the target simplicial set
:degr 0 ; the degree of the morphism
:sintr #’(lambda (dmns gmsm) ; the map

(declare (ignore dmns))
(absm (dgop1 gmsm) (gmsm1 gmsm)))

:orgn ‘(proj ,x3 ,s2))) z
[K559 Simplicial-Morphism K554 -> K331]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taking the pushout of this f and the map g : X3→ ∗ (where ∗ is the simplicial set with
just one vertex),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf unipunctual (build-finite-ss ’(x))) z
[K25 Simplicial-Set]
>(setf g (build-smmr ; the function to construct a simplicial morphism

:sorc x3 ; the source simplicial set
:trgt unipunctual ; the target simplicial set
:degr 0 ; the degree of the morphism
:sintr #’(lambda (dmns gmsm) ; the map

(if (and (equal dmns 0)
(equal gmsm (bsgn x3)))

’x
nil))

:orgn ‘(proj ,x3 ,unipunctual))) z
[K560 Simplicial-Morphism K554 -> K25]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

then the pushout is P 2(C).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf p (pushout f g)) z
[K566 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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It can be checked that our programs obtain the right homology groups that are
(Z, 0,Z, 0,Z, 0, 0, . . .):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology p 0 7) z
Homology in dimension 0 :
Component Z
Homology in dimension 1 :

Homology in dimension 2 :
Component Z
Homology in dimension 3 :

Homology in dimension 4 :
Component Z
Homology in dimension 5 :

Homology in dimension 6 :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SL2(Z)

This example allows us to compute some homotopy groups of the suspension of SL2(Z)
(the group of 2 × 2 matrices with determinant 1 over Z, with the group operations of
ordinary matrix multiplication and matrix inversion), the interest in computing homo-
topy groups of this kind of spaces can be seen in [MW10]. In [Ser80], it was explained
that SL2(Z) is isomorphic to the amalgamated sum Z4 ∗Z2 Z6. Then, this is a pushout
in the category of groups, and, in this case, applying the functor K(−, 1) we obtain also
a pushout (see [Bro82]):

K(Z2, 1)
i1 //

i2
��

K(Z4, 1)

��
K(Z6, 1) // P

Then, we can compute the homology groups of SL2(Z) thanks to the programs devel-
oped to construct the pushout of simplicial sets and the programs presented in [RER09]
which allow us to construct K(G, 1) for G a cyclic group (in this case K(Z2, 1), K(Z4, 1)
and K(Z6, 1)). Namely, we proceed as follows. First of all, we construct the spaces
K(Z2, 1), K(Z4, 1) and K(Z6, 1).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf kz2 (k-zp-1 2)) z
[K2 Abelian-Simplicial-Group]
> (setf kz4 (k-zp-1 4)) z
[K15 Abelian-Simplicial-Group]
> (setf kz6 (k-zp-1 6)) z
[K28 Abelian-Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, we define the two simplicial morphisms f and g by means of a function
called kzps-incl which represents the inclusion between K(Zn, 1) and K(Zm, 1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun kzps-incl (n m)
(declare (number n m))
(let ((i (/ m n)))
(build-smmr ; the function to construct a simplicial morphism
:sorc (k-zp-1 n) ; the source simplicial set
:trgt (k-zp-1 m) ; the target simplicial set
:degr 0 ; the degree of the simplicial morphism
:sintr #’(lambda (dmns gmsm) ; the map

(absm 0 (make-list dmns :initial-element i)))
:orgn ‘(inclusion between (k-g-1 ,n) and (k-g-1 ,m)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf kz2-kz4 (kzps-incl 2 4)) z
[K40 Simplicial-Morphism K2 -> K15]
> (setf kz2-kz6 (kzps-incl 2 6)) z
[K41 Simplicial-Morphism K2 -> K28]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eventually, we construct the pushout of kz2-kz4 and kz2-kz6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf p (pushout kz2-kz4 kz2-kz6)) z
[K52 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Due to the fact that the abelianization map SL2(Z) → Z/12Z induces an isomor-
phism on integral homology, see [Knu], then, the homology groups of SL2(Z) are the
same that the ones of K(Z/12Z, 1). It can be checked that our programs obtain the
right homology groups that are (Z,Z/12Z, 0,Z/12Z, 0,Z/12Z, . . .):



240 Chapter 5 New certified Kenzo modules

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology p 0 7) z
Homology in dimension 0 :
Component Z
Homology in dimension 1 :
Component Z/12Z
Homology in dimension 2 :

Homology in dimension 3 :
Component Z/12Z
Homology in dimension 4 :

Homology in dimension 5 :
Component Z/12Z
Homology in dimension 6 :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore, we have been able to compute the homology groups of SL2(Z). Now,
we apply the suspension constructor to the pushout, see Definition 1.28. Subsequently,
we can compute, using the Kenzo system, some homotopy groups of the suspension of
SL2(Z) thanks to the algorithm explained in [Rea94] and using the programs developed
in [RER09]. Namely, the first homotopy groups of the suspension of SL2(Z), denoted by
Σ(SL2(Z)) are π2(Σ(SL2(Z))) = Z/12Z, π3(Σ(SL2(Z))) = Z/12Z and π4(Σ(SL2(Z))) =
Z/12Z⊕ Z/2Z. The file with the procedure to compute these homotopy groups can be
seen in [Her11].

5.3.4 Integration of the pushout in our framework

In the last two examples of the previous subsection, the definition of simplicial morphisms
for the construction of the pushout has been shown. Namely, to define a simplicial
morphism an instance of the class SIMPLICIAL-MRPH (which is a subclass of the MORPHISM

class) is necessary.

The relevant slots of a SIMPLICIAL-MRPH instance are sorc, the source object of type
SIMPLICIAL-SET; trgt, the target object of type SIMPLICIAL-SET; degr, the degree of
the morphism; sintr, the internal lisp function defining the effective mapping between
simplicial sets; and orgn, used to keep a record of information about the object.

The definition of the Lisp function installed in the sintr slot is the main hindrance
in order to integrate the whole functionality of the pushout in fKenzo. The definition of
this lisp function is ad-hoc in most of the cases (although in some particular cases, such
as the wedge or the join, can be defined in general) and involves a study of the internal
structure of the source and target simplicial sets and a knowledge of the definition of
Lisp functions, and such a meticulous study is difficult to integrate in our framework,
at least in an easy and usable way (i.e. without giving access to the internal Common
Lisp code).
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Nevertheless, some of the functionality developed in the new module can be inte-
grated in fKenzo, namely the functionality related to construct the wedge and the join
of simplicial sets, since it does not involve, at least in an explicit way, the construction
of simplicial morphisms and we can use them like other Kenzo constructors such as
cartesian or tensor products. This subsection is devoted to explain the necessary steps
to incorporate both the wedge and join functionality to the Kenzo framework.

To enhance the framework with the functionality related to wedge and join construc-
tions, we have developed a plug-in following the guidelines given in Subsubsection 3.1.2.

This new plug-in will allow us to construct the wedge and the join of simplicial sets
and use them as any other object of the framework. The plug-in used to include the
functionality about these constructors references the following resources:

<code id="pushout">
<data format="Kf/external-server"> XML-Kenzo.xsd </data>
<data format="Kf/internal-server"> pushout-list.lisp </data>
<data format="Kf/microkernel"> pushout-m.lisp </data>
<data format="Kf/adapter"> pushout-a.lisp </data>

</code>

As we claimed in Subsubsection 3.1.2, if we want to include new functionality in the
Kenzo internal server and make it available outside the framework, all the components
must be broadening. Let us explain each one of the referenced resources.

We want to introduce two new kinds of objects in our system (the wedge and the join
of simplicial sets), then, it is necessary to provide a representation for that objects in our
system. To that aim, we have defined two new elements: wedge and join. Both elements
are defined as elements of the SS type, so, they can be used as any other element of this
group, and have two children of some of the types SS, SG or ASG (see Figure 5.16).

As we explained in Subsection 3.1.2 the external server evolves when the
XML-Kenzo.xsd file is upgraded. Then, when the XML-Kenzo.xsd file is modified to include
the join and the wedge elements, the external server is able to check the correctness of
requests such as:

<constructor>
<join>
<wedge>
<sphere>3</sphere>
<sphere>4</sphere>

</wedge>
<k-z>2</k-z>

</join>
</constructor>

The pushout-list.lisp file includes the functionality defined in Subsection 5.3.2 to
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Figure 5.16: join and wedge elements in XML-Kenzo

extend the Kenzo system. Moreover, this file includes the functionality that enhances
the xml-kenzo-to-kenzo function of the internal server to process the construction of
objects from the join and wedge elements. For instance, if the internal server receives
the above request. The instruction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(join (wedge (sphere 3) (sphere 4)) (k-z 2))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is executed in the Kenzo kernel. As a result an object of the Simplicial-Set Kenzo
class is constructed, and the identifier of that object is returned.

The pushout-m.lisp file defines two new construction modules for the microkernel
called join and wedge. The procedures implemented in this module follows the guidelines
explained in Subsubsection 2.2.3.3. In this case neither of the modules checks any
property to construct objects when they are activated since the requests coming from
the external server related to wedge and join are always safe; that is, all the requests
related to wedge and join constructions that can produce errors are stopped in the
external server and never arrive to the microkernel (since the constraints related to these
constructors are type restrictions which are handled in the XML-Kenzo specification).

Finally, we have extended the SS Content Dictionary by means of the definition of two
new objects: join and wedge. Therefore, the pushout-a.lisp file contains the necessary
functions to raise the functionality of the adapter to be able to convert from these
new OpenMath objects, devoted to the wedge and the join, to XML-Kenzo requests.
Namely, we have extended the Phrasebook by means of a new parser in charge of this
task. Then, for instance, the previous XML-Kenzo request is generated by the adapter
when the following OpenMath request is received.
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<OMOBJ>
<OMA>

<OMS cd="SS" name="join"/>
<OMA>
<OMS cd="SS" name="wedge"/>
<OMA> <OMS cd="SS" name="sphere"/> <OMI>3</OMI> </OMA>
<OMA> <OMS cd="SS" name="sphere"/> <OMI>4</OMI> </OMA>

</OMA>
<OMA> <OMS cd="ASG" name="k-z"/> <OMI>2</OMI> </OMA>

</OMA>
</OMOBJ>

5.3.5 Integration of the pushout in the fKenzo GUI

In this subsection we are going to present the necessary resources to extend the fKenzo
GUI with the functionality about wedge and join constructors. As we presented in Sec-
tion 3.2 one of the modules which customizes fKenzo is the Simplicial Set module. This
module contains the elements that represent the simplicial set constructors of Kenzo:
options to construct spaces from scratch (spheres, Moore spaces, finite simplicial sets,
simplicial sets coming from simplicial complexes and so on) and from other spaces (for
instance, cartesian products). We have enhanced this module by means of the necessary
ingredients to construct joins and wedges of simplicial sets.

In Section 3.2 a Simplicial Set module with two files, simplicial-sets-structure

(which defined the structure of the graphical constituents) and
simplicial-sets-functionality (which provided the functionality related to the
graphical constituents), was presented.

In Subsection 5.1.4, the original Simplicial Set module was improved to include
the functionality about simplicial complexes. In particular, we modified the files
simplicial-sets-structure and simplicial-sets-functionality referenced by the
original module and we also included a reference to the plug-in about simplicial com-
plexes.

Now, we have extended this module to include the functionality about the wedge
and the join of simplicial sets. Namely, it also references the plug-in presented
in the previous subsection and, in addition, both simplicial-sets-structure and
simplicial-sets-functionality documents have been upgraded in order to allow the
use of wedge and join constructors in the fKenzo GUI.

We have defined four new graphical elements, using the XUL specification language,
in the simplicial-sets-structure file:

• A new menu option called Join included in the Simplicial Sets menu.

• A new menu option called Wedge included in the Simplicial Sets menu.
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Figure 5.17: Wedge window

• A window called Join (very similar to the window defined to construct the cartesian
product of two simplicial sets).

• A window called Wedge as above.

The functionality stored in the simplicial-sets-functionality document related
to these components works as follows. The functionality is analogous for wedge and
join options; so let us explain just the wedge one. A function acting as event handler
is associated with the Wedge menu option; this function shows the Wedge window (see
Figure 5.17) if at least a simplicial set, a simplicial group or an abelian simplicial group
was built previously in fKenzo; otherwise, it informs the user that at least one object of
one of those types must be constructed before using the Wedge option.

From the Wedge window, the user must select two objects from the two Add buttons;
the lists of objects shown by the Add buttons only contain the objects of types simplicial
set, simplicial group and abelian simplicial group.

Once the user has selected two objects X1 and X2, when it presses the create button
of the Wedge window, an OpenMath request is generated. Subsequently, our framework
is invoked with the OpenMath request. The wedge of X1 and X2 is constructed and
its identification number is returned. Eventually, fKenzo adds to the list of constructed
spaces (situated in the left side of the main tab of the fKenzo GUI) the new simplicial
set. Figure 5.18 shows the control and navigation submodel (with the Noesis notation)
describing the construction of the wedge of two simplicial sets from the Wedge menu
option.

Moreover, we have also modified the stylesheet used to present in the fKenzo GUI the
spaces constructed, using their mathematical notation (see Subsubsection 3.2.4.3). This
stylesheet is modified in the folder of the fKenzo distribution to present with standard
notation both wedge and join spaces.

Let us present an example, for instance if we have constructed the spaces S3 and
M(Z/2Z, 4) in a fKenzo session, we can build the space S3 ∨M(Z/2Z, 4) and subse-
quently the space (S3 ∨M(Z/2Z, 4)) ./ (S3 ∨M(Z/2Z, 4)) from Wedge and Join menus
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Select Object X2 from a list of simplicial sets

Show the new space

Select Object X1 from a list of simplicial sets

Construction in the Kenzo framework

Has been previously constructed a 
simplicial object

[No]
Error: Construct Simplicial Object

[Yes]

Figure 5.18: Control graph for the construction of the wedge of two simplicial sets

respectively. Finally, the user can ask fKenzo to compute the homology groups of these
spaces using the homology option of the Computing menu. The results are shown, as
usual, in the Computing tab, see Figure 5.19.

5.3.6 Formalization of the pushout in ACL2

In the same way that we certified our programs for the case of simplicial complexes and
digital images, we are interested in verifying the correctness of the implementation of
the algorithms which construct the pushout of simplicial sets in ACL2. This task is an
ongoing work, and at this moment just some of the algorithms are verified. To be more
concrete, the implementation of Algorithms 5.41 (direct sum), 5.43 (cone), 5.47 (suspen-
sion functor) and the algorithms associated with SES1 and SES3 cases of Theorem 5.32
have been formalized in ACL2.

The verification of the correctness of those algorithms and also the rest of algorithms
presented is part of a wider project which tries to verify the implementation of algorithms
which construct new spaces by applying topological constructions. This formalization
will be presented in Section 6.2 of the following chapter.

In that section, a methodology to prove the correctness of the construction of new
spaces by applying topological constructions is presented. This methodology copes with
the higher-order nature of those constructors by means of the simulation of high order
logic by means of ACL2 encapsulates.

Therefore, we postpone the presentation of the formalization of the implementation
of algorithms of this section to Section 6.2.
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Figure 5.19: Homology groups of S3 ∨ M(Z/2Z, 4) and (S3 ∨ M(Z/2Z, 4)) ./ (S3 ∨
M(Z/2Z, 4))



Chapter 6

Integration of Computation and
Deduction

As we have commented previously, Kenzo has been capable of computing some unknown
homology groups. This implies that increasing user’s trust in the system is relevant. To
this aim, a wide project to apply formal methods in the study of Kenzo was launched
several years ago.

One feature of Kenzo is its use of higher order functional programming to handle
spaces of infinite dimension. Thus, the first attempts to apply theorem proving assis-
tants in the analysis of Kenzo were oriented towards higher order logic tools. Concretely,
the Isabelle/HOL proof assistant was used to verify in [ABR08] a very important algo-
rithm in Homological Algebra: the Basic Perturbation Lemma (Theorem 6.4.2.1). In
the same line, we can find the work of [DR11] where the Effective Homology of the
Bicomplexes (another important result in Homological Algebra) was formalized in Coq.
Let us note, however, that these formalizations were related to algorithms and not to
the real programs implemented in Kenzo. The problem of extracting programs from the
Isabelle/HOL proofs has been dealt with in [ABR10], but even there the programs are
generated in ML, far from Kenzo.

When talking about theorem proving and Kenzo, it is easy to think about ACL2.
ACL2 is, at the same time, a programming language, a logic for specifying and proving
properties of the programs defined in the language and a theorem prover supporting
mechanized reasoning in the logic. The ACL2 programming language is an extension of
an applicative subset of Common Lisp, and the logic is first-order, in which formulas do
not have quantifiers and all the variables in them are implicitly universally quantified.

Since both Kenzo and ACL2 are Common Lisp programs, we can undertake the task
of verifying real Kenzo code in ACL2. For instance, ACL2 has been successfully used
to study some critical fragments of Kenzo in [MMRRR09] (where the programs to deal
with degeneracies in Kenzo were proved correct by means of ACL2). This chapter is
devoted to present the formalization of other Kenzo fragments in ACL2.

247
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Let us recall a simplified way of understanding the user interaction with the Kenzo
system, explained in Subsection 1.2.2. As a first step, the user constructs some initial
spaces (mainly, under the form of simplicial sets) by means of some built-in Kenzo
functions; then, in a second step, he constructs new spaces by applying topological
constructions (as Cartesian products, loop spaces, and so on); as a third, and final, step,
the user asks Kenzo for computing the homology groups of the spaces.

It is worth noting that the first step, the construction of initial spaces (that is,
spaces which does not involve other spaces), can be modeled in a first order logic. On
the contrary, steps 2 and 3 need higher order functional programming. Thus, at first
glace, we could think that we can only use ACL2 to verify the construction of initial
spaces; staying the formalization of steps 2 and 3 beyond the scope of ACL2. However,
we will see that this is not true, since we have some means to simulate higher order logic
in ACL2.

The rest of this chapter is organized as follows. Some necessary concepts about ACL2
will be introduced in Section 6.1. Section 6.2 is devoted to present the formalization
(and verification) of the initial Kenzo simplicial set constructors; this corresponds with
the first step of Kenzo user’s interaction. Section 6.3 is devoted to present a way of mod-
eling mathematical structures in ACL2. That modeling is the foundation to develop an
ACL2 infrastructure to formalize and verify the construction of Kenzo spaces from other
ones applying topological constructors (that is to say, the second step of Kenzo user’s
interaction) which is explained in Section 6.4. The formalization of the computation of
homology groups of spaces remains as further work.

6.1 ACL2 concepts

In this section some interesting features of ACL2 are presented. On the one hand, a
way of simulating higher order logic in ACL2 is presented in Subsections 6.1.1 and 6.1.2.
On the other hand, a way of increasing the efficiency of ACL2 programs is explained in
Subsection 6.1.3.

6.1.1 Functional Instantiation

In this subsection, an introduction to functional instantiation in ACL2 is given. The
functional instantiation rule is the way of using higher order results in the ACL2 logic.
A more detailed description of this rule can be found in [KMM00b, KMM00a, BGKM91,
KM01]. This rule will be used in this chapter.

As we have said, the functional instantiation rule is the way of using higher order
results in the ACL2 logic. A typical higher order result has the following form: “For
all function f which verifies the property P , then f also satisfies the property Q”. To
formalize this result in ACL2 we use an encapsulate, in which we assume the existence
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of a function f which satisfies the property P described by means of the formula P. Sub-
sequently, once that the encapsulate has been admitted, the formula Q which describes
the property Q is proved. This higher order result ensures that any other function g,
which satisfies the property P, fulfills the property Q, too.

The ACL2 system does not use the functional instantiation rule in an automatic
way, but it is applied only if the user indicates it with an appropriate hint (hints,
see [KMM00b, KM], are advices to guide ACL2 proofs). Let us retake the example pre-
sented in Subsection 1.3.2 where the following encapsulate, which assumes the existence
of an associative and commutative binary function, has been admitted.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
; the signature
(((op * *) => *))

; the witness
(local (defun op (a b) (+ a b)))

; the axioms
(defthm op-associative (equal (op (op x y) z) (op x (op y z))))

(defthm op-commutative (equal (op x y) (op y x))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

After admitting the above encapsulate, we can prove in ACL2 the following property.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm associativity-commutativity
(equal (op y (op x z)) (op x (op y z))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, we can verify the same property for every associative and commutative binary
function. For example, if we consider the binary function op2:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun op2 (x y) (* x y))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which is both associative and commutative, as is proved with the following two theorems:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm op2-associative
(equal (op2 (op2 x y) z) (op2 x (op2 y z))))

(defthm op2-commutative
(equal (op2 x y) (op2 y x))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

then, we can obtain the desired property.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm associativity-commutativity-op2
(equal (op2 y (op2 x z)) (op2 x (op2 y z)))
:hints (("Goal" :by (:functional-instance associativity-commutativity ((op op2))))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The expression which appears from the second line of the above theorem is the hint.
In this case, it is a functional instantiation hint (:functional-instance), in which we
reuse the property described by means of associativity-commutativity replacing the
op symbol function with op2.

This means that once we have proved a result for the encapsulate functions, we do
not need to prove over and over again the same result for concrete functions which satisfy
the properties stated in the encapsulate but we just instantiate the general result. In
this way, higher order results can be expressed in ACL2.

6.1.2 ACL2 Generic Theories

As we have seen in the previous subsection, we can prove results about functions just
assuming some properties which define the functions partially in ACL2. These results
are general in the sense that they are true for every set of functions which fulfill the
assumed properties, and can be reused by means of the functional instantiation process.
However, the process of functional instantiation can be tedious when we are dealing with
a great amount of theorems, or we need to define new functions from the ones which
we have assumed some properties. To overcome this situation a generic instantiation
tool was developed by Mart́ın-Mateos et al. [MMAHRR02]. This tool will be intensively
used in this chapter.

A theory in ACL2 is a list of events (definitions and theorems) admitted by the
system. A generic theory is a theory which depends on the existence of a set of functions
which are partially specified by means of some assumed properties using the encapsulate
principle; those functions will be called generic functions.

For instance, in the example presented in Subsection 1.3.2 we have accepted the exis-
tence of a binary function op which verifies both the associativity and the commutativity
property using the encapsulate principle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
; the signature
(((op * *) => *))

; the witness
(local (defun op (a b) (+ a b)))

; the axioms
(defthm op-associative (equal (op (op x y) z) (op x (op y z))))

(defthm op-commutative (equal (op x y) (op y x))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In this case the unique generic function is the op function. Once this encapsulate has
been admitted, we can establish a set of events (definitions and theorems) depending on
the generic function and their assumed properties. For instance:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun op-op (a b c)
(op a (op b c)))

(defthm op-op-property
(equal (op-op a b c) (op-op c b a)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, the events op-op and op-op-property constitute a generic theory for the
op function.

The main feature of generic theories is that they are used to formalize higher order
results in ACL2. To use these higher order results, we must provide concrete versions
of the generic functions. Moreover, we must prove that the concrete versions have the
same properties that the ones which specify the generic functions. Subsequently, we
can construct concrete versions of the events provided by the generic theory, replacing
the occurrences of the generic functions with the concrete ones. To prove the concrete
versions of the theorems which are provided by the generic theory, we use the functional
instantiation rule where the generic functions are replaced with the concrete ones.

For instance, the function op2 presented in the previous subsection:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun op2 (x y) (* x y))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

satisfies the properties demanded to the op function.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm op2-associative
(equal (op2 (op2 x y) z) (op2 x (op2 y z))))

(defthm op2-commutative
(equal (op2 x y) (op2 y x))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Therefore, we can construct a concrete version of the function, op-op, provided by
the generic theory just replacing the occurrences of the op function with the op2 one:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun op-op-2 (a b c)
(op2 a (op2 b c)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now we can use the functional instantiation rule to obtain the concrete version of
the theorem op-op-property.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm op-op-property-2
(equal (op-op-2 a b c) (op-op-2 c b a)))
:hints (("Goal" :by (:functional-instance op-op-property

((op-op op-op-2))))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The set of concrete versions of the events provided by the generic theory is called
instance of the generic theory, and the process which obtains them, generic instantiation.

Let us explain now, how the generic instantiation tool of Mart́ın-Mateos et al. is
used to make the generic instantiation process easier.

To automatize the generic instantiation process using the generic instantiation tool,
we proceed as follows. First of all, we assume the existence of some generic functions
which verify some properties using the encapsulate principle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
; Signatures
((f1 ...)
...
(fn ...))

; Witnesses
(local (defun f1 (...) ...))
...
(local (defun fn (...) ...))
; Axioms
(defthm axiom-1 ...)
...
(defthm axiom-m ...))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the events which depend on the generic functions and their properties
are stated, obtaining a generic theory about the generic functions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

; The following functions are defined from the generic functions f1,..., fn.
(defun g1 (...) ...)
...
(defun gk (...) ...)
; The statement of the following theorems can involve both the f1,..., fn
; and the g1,..., gk functions. Moreover, they are proved thanks to the assumed
; properties about the f1,..., fn functions, that is to say, axiom-1,..., axiom-m.
(defthm theorem-1 ...)
...
(defthm theorem-s ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eventually, we define a constant called *<theory>* where we store the events of the
generic theory in the same order admitted in ACL2.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defconst *<theory>*
’((defun g1 (...) ...)
...
(defun gk (...) ...)
(defthm theorem-1 ...)
...
(defthm theorem-s ...)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For each generic theory a different constant must be used. In this case, <theory> repre-
sents the sole name which denominates the theory.

It is worth noting that not all the events which depend on the properties of the
generic functions appear in the generic theory. This is due to the fact that in ACL2,
we usually develop auxiliary definitions and lemmas which help in the proof of the main
results.

Once we have defined the constant with the sequence of events to instantiate, to
perform the functional instantiation process, we need a set of concrete functions which
replace the generic functions that define the theory. These functions, and their relation
with the generic ones, are provided by means of an association list.

To instantiate a definition or a theorem in the generic theory, we replace all the
occurrences of the generic functions with the concrete ones, according to the relation
given by the association list. Moreover, it is necessary to choose new names for the
obtained instances. In addition, in the case of theorems, a hint to prove the concrete
version of the theorem, as a functional instance of the generic theorem, is provided.

This process is performed by means of the generic instantiation tool macro
definstance-*<theory>* (where <theory> is the name of the desired generic theory),
whose arguments are the initial association list, which relates the generic functions to
the concrete ones, and a string which is used as suffix to build the new names of the
instantiated events, namely the suffix is appended to the generic names.

Let us present a simple example in order to clarify the use of this tool. Let us retake
the example presented previously in this subsection. We have admitted the existence of
an associative and commutative binary function called op using the encapsulate princi-
ple. Moreover, we have defined a generic theory, let us call it *small-theory*, which
consists of the events op-op and op-op-property (the auxiliary lemmas that were nec-
essary to prove op-op-property are not part of the generic theory). Then, we assign to
the constant *small-theory* the list of events which constitute the generic theory and
the make-generic-theory macro is evaluated with this constant as argument.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defconst *small-theory*
’((defun op-op (a b c) ...)
(defthm op-op-property ...)))

(make-generic-theory *small-theory*)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Now the definstance-*small-theory* macro is available and can be used to instanti-
ate the generic theory. For instance with the function op2, which satisfies the properties
assumed for the function op, and the string "-2", which will be used as suffix to build the
new names of the events op-op and op-op-property, we instantiate the generic theory
as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(definstance-*small-theory*
((op op2)) "-2")

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When the above macro is evaluated the following events are automatically defined
in ACL2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> :pe op-op-2 z
14:x(DEFINSTANCE-*SMALL-THEORY* (#) "-2")

\
>L (DEFUN OP-OP-2 (A B C)

(OP2 A (OP2 B C)))

> :pe op-op-property-2 z
14:x(DEFINSTANCE-*SMALL-THEORY* (#) "-2")

\
> (DEFTHM

OP-OP-PROPERTY-2
(EQUAL (OP-OP-2 A B C) (OP-OP-2 C B A))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this way the effort associated with the generic instantiation process is dramatically
reduced thanks to the generic instantiation tool.

6.1.3 Semantic attachment in ACL2

In this subsection, a tool to prove that efficient programs are correct in ACL2 is de-
scribed. The idea consists of providing two definitions of a Common Lisp program: an
elegant definition that is suitable for reasoning in ACL2, and an efficient definition for
evaluation. The bridge between the logical specifications and efficient execution meth-
ods, is called “semantic attachment” of the executable code to the logical specification.
The term “semantic attachment” was coined for the mechanism in the FOL theorem
prover by which the user could attach programs to logical theories, see [Wey80]. Let us
present here, this mechanism for ACL2, the interested reader can consult [G+08] where
several examples and a detailed description of this tool can be found. This tool will be
used in Subsubsection 6.2.4.2.

First of all, we need to introduce the concept of guards in ACL2. A successful ACL2
definition adds a new axiom to the ACL2 logic and defines (and generally compiles) the



6.1 ACL2 concepts 255

new function symbol in the host Common Lisp. The function is called the Common Lisp
counterpart of the logical definition. Due to the fact that ACL2 is built on Common Lisp,
it can use the Common Lisp counterpart to compute the value of that function instead of
deriving that value by repeated reductions using instantiation of the definitional axioms.
For instance, if a user evaluates the form (factorial 5) (where factorial is a function
which computes the factorial of a natural number), ACL2 can use the Common Lisp
counterpart of factorial to compute 120 instead of deriving that value by repeated
reductions using instantiation of the definitional axioms.

However, all that glitters is not gold since Common Lisp functions are usually partial
(that is to say, they are not defined for all possible inputs) but ACL2 functions must be
total; then, we cannot always use the Common Lisp counterpart to compute the value of
a function. For instance, the function endp is defined in Common Lisp to return t if its
argument is the empty list, nil if its argument is a cons pair (a cons pair is just a pair
of two objects), and is not defined otherwise. Then, (endp 2) is undefined in Common
Lisp; and usually causes an error.

The Common Lisp standard introduces the notion of intended domain; that is the
set of inputs for which a function is defined. For instance, the intended domain for
endp consists of the cons pairs and the empty list. This notion is formalized in ACL2
with the idea of guards. The guard of a function symbol is an expression that checks
if the arguments are in the intended domain. Then, ACL2 can invoke the Common
Lisp counterpart of a function only if the arguments have been guaranteed to satisfy the
guard of that function. For example, we could define the factorial function as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun factorial1 (n)
(declare (xargs :guard (natp n)))
(if (zp n)

1
(* n (factorial1 (- n 1)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where (natp n) is defined to recognize natural numbers, which are integers higher or
equal than 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun natp (x)
(and (integerp x) (<= 0 x)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACL2 provides a mechanism, called guard verification, of proving that the guards
on the input of a function ensure that all the guards in the body of the function are
satisfied.

Then, for instance, when the ACL2 theorem prover encounters (factorial1 5) it
checks that the guard for factorial1 is satisfied, i.e, (natp 5). Since this is true and
the guards for factorial1 have been verified, we know that all evaluation will stay in the
intended domain. So, ACL2 is free to invoke the Common Lisp definition of factorial1
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to compute the answer 120.

On the contrary, if ACL2 encounters a call to factorial with a cons pair as input,
(factorial1 ’(1 . 2)), the guard check fails and ACL2 cannot invoke the Common
Lisp counterpart. The value of the term is computed by other means, for example,
application of the axioms during a proof, or an alternative “safe” Common Lisp function
that performs appropriate run-time guard-checking and type-checking at the cost of
some efficiency. ACL2 defines such a function in Common Lisp, this function is called
executable counterpart.

In general, ACL2 evaluation always calls the executable counterpart to evaluate a
function call. But if the guard of the function has been verified and the call’s argument
satisfy the function guard, then the executable counterpart will invoke the more efficient
Common Lisp counterpart to do the evaluation.

Let us suppose now that we have verified the guards of factorial1 and we want to
apply the factorial1 function to a “big” natural number (numbers higher than 1500 are
good candidates). The guard check would succeed and the Common Lisp counterpart
would be invoked to compute the value. But since factorial1 is defined recursively, we
are likely to get a stack overflow error. In spite of being factorial1 an elegant (and
suitable for reasoning) definition of the factorial function, a tail recursive function, as
the following one, will be more suitable for the purpose of efficient execution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun factorial-aux (n a)
(declare (xargs :guard (and (natp n) (natp a))))
(if (zp n)

a
(factorial-aux (- n 1) (* a n))))

(defun factorial2 (n)
(declare (xargs :guard (natp n)))
(factorial-aux n 1))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One of the advantages of ACL2 is that models permit both execution and formal
analysis. However, if we define factorial for analysis, we may make it impossible to
execute on examples of interesting scale; on the contrary, if we define it for executing,
we complicate formal proofs. An approach to deal with both ways consists of using the
mbe and defexec ACL2 constructs, which make it possible to write:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defexec factorial (n)
(declare (xargs :guard (natp n)))
(mbe :logic (factorial1 n)

:exec (factorial2 n)))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In addition to normal termination and guard verifications, the mbe (must be equal)
macro asks a proof obligation that the Common Lisp (:exec) counterpart will return
the same answer as the logical (:logic) definition. In this way, when the theorem prover
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is reasoning about factorial it uses the factorial1 definition. But, when applications
satisfying the guards arise, the tail-recursive factorial2 function is executed.

This is one of the uses of defexec and mbe. A more detailed description of the
applications of defexec and mbe can be found in [G+08]. On the one hand, they can
be used to keep a natural and logically elegant definition of a function for reasoning in
the logic, while attaching a more efficient definition for execution. On the other hand,
they also can be used to preserve the use of the natural definition for execution purposes
when the natural definition of a function is efficient, but needs to be modified in order to
facilitate logical reasoning. We are interested in the latter case; and to be more concrete,
in the way of dealing with the implementation of processes which may not terminate.

Let us suppose that we have a process implemented by a Common Lisp function
(f x1 ... xn); and in some situations (depending on the value of the inputs x1, . . .,
xn) the process implemented by this function may not terminate. Therefore, as we
commented at Subsection 1.3.1, this process cannot be directly defined as a function in
ACL2.

Consequently, in order to get the function admitted in the ACL2 logic we must
explicitly introduce in its logical definition a condition that ensures its termination. In
this case, the function which implements such condition will be called good-input-p.
Having defined the good-input-p function, we may now define the f function by means
of defexec, as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defexec f (x1 ... xn)
(declare (xargs :guard (good-input-p x1 ... xn)))
(mbe :logic (if (good-input-p x1 ... xn)

; body of the function f
...

nil)
:exec ; body of the function f

...))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is worth noting that the logical definition of the function includes the condition
(good-input-p x), needed to be accepted by the ACL2 principle of definition. This
test function can be computationally expensive and it would have to be evaluated in
every recursive call of the f function, making the logical definition impractical for ex-
ecution. The use of mbe guarantees that once the guards are verified, the :exec body,
without the expensive test, can be safely used for execution when the function is called
on arguments satisfying its guards. Improving in this way the efficiency of the programs.
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6.2 Proving with ACL2 the correctness of simplicial

sets in the Kenzo system

As we have remarked at the beginning of this chapter, a simplified view of Kenzo user’s
way of working can be understood in three steps: (1) construction of initial spaces
(mainly, under the form of simplicial sets) by means of some built-in Kenzo functions;
(2) building of new spaces by applying topological constructions, and, (3) computation
of the homology groups of the spaces. In this section, we are going to focus on verifying,
using the ACL2 Theorem Prover, the construction of initial spaces under the form of
simplicial sets, that is to say, the first step of the usual Kenzo user’s interaction.

In particular, we want to verify the correctness of Kenzo statements like the following
one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (sphere 3) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This means that we want to prove in ACL2 that the returned objects by Kenzo
functions which construct initial simplicial sets (such as spheres, Moore spaces, standard
simplicial sets and so on) really satisfy the axioms of simplicial sets.

The methodological approach to tackle these proofs has been imported
from [MMRRR09]. EAT [RSS90] was the predecessor of Kenzo. The EAT system is
also based on Sergeraert’s ideas, but its Common Lisp implementation was closer to the
mathematical theory. This means a poorer performance (since in Kenzo the algorithms
have been optimized), but also that the ACL2 verification of EAT programs is easier.
Thus, the main idea is to prove first in ACL2 the correctness of EAT programs, and
then, by a domain transformation, to translate the proofs to Kenzo programs. To this
aim, an intermediary model, based on binary numbers, is employed (this was introduced
in [MMRRR09], too).

The organization of this section is as follows. Subsection 6.2.1 is devoted to recall
some mathematical preliminaries related to simplicial sets and present their concrete
materialization using the EAT, Kenzo and binary representations. Subsection 6.2.2
presents the certification of the Kenzo spheres; firstly studying the case of the sphere
S3 and subsequently tackling the general case. The proofs presented in Subsection 6.2.2
were done from scratch for the family of Kenzo spheres; however, in Subsection 6.2.3
a generic simplicial set theory is provided to make the proof of the fact that families
of Kenzo initial simplicial sets are really families of simplicial sets easier. Finally, the
practicability of the generic simplicial set theory is tested by means of three different
families of Kenzo simplicial sets (spheres, standard simplicial sets and simplicial sets
associated with simplicial complexes) in Subsection 6.2.4,

The interested reader can consult the complete development in [Her11].
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6.2.1 Simplicial Sets representations

In this subsection, we present some remarks about simplicial sets which are necessary
to understand the rest of this part of the memoir. Moreover, we explain how simplicial
sets are encoded using EAT, Kenzo and binary representations and their distance to the
ACL2 code that we use in our proofs.

6.2.1.1 The mathematical representation

The most important notion, in this part of the memoir, is the notion of simplicial sets
presented in Definition 1.17.

Let us remember that, a simplicial set K, is a union K =
⋃
q≥0

Kq, where the Kq are

disjoints sets, together with functions:

∂qi : Kq → Kq−1, q > 0, i = 0, . . . , q,
ηqi : Kq → Kq+1, q ≥ 0, i = 0, . . . , q,

subject to the 5 relations:

(1) ∂q−1i ∂qj = ∂q−1j−1∂
q
i if i < j,

(2) ηq+1
i ηqj = ηq+1

j ηqi−1 if i > j,

(3) ∂q+1
i ηqj = ηq−1j−1∂

q
i if i < j,

(4) ∂q+1
i ηqi = identity = ∂q+1

i+1 η
q
i ,

(5) ∂q+1
i ηqj = ηq−1j ∂qi−1 if i > j + 1,

The functions ∂qi and ηqi are called face and degeneracy maps, respectively.

The elements of Kq are called q-simplexes. A q-simplex x is degenerate if x = ηq−1i y
for some simplex y, and for some degeneracy map ηq−1i ; otherwise x is non degenerate.
Non degenerate simplexes are called geometric simplexes, to stress that only these sim-
plexes really have a geometrical meaning; the degenerate simplexes can be understood
as formal artifacts introduced for technical (combinatorial) reasons.

The essential result stated in Proposition 1.20, which was modeled and proved by
means of the ACL2 theorem prover in [ALRRR07], allows us to encode all the elements
(simplexes) of any simplicial set in a generic way, by means of a structure called abstract
simplex. More concretely, an abstract simplex is a pair (dgop gmsm) consisting of a
sequence of degeneracy maps dgop (which will be called a degeneracy operator) and a
geometric simplex gmsm. The indexes in a degeneracy operator dgop must be in strictly
decreasing order. For instance, if σ is a non degenerate simplex, and σ′ is the degenerate
simplex η1η2σ, the corresponding abstract simplexes are respectively (∅ σ) and (η3η1 σ),
as η1η2 = η3η1, due to equality (2) in Definition 1.17.

Of course, the nature of geometric simplexes depends on the concrete simplicial set
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we are dealing with, but the notion of abstract simplex allows us a generic handling of
all the elements in our proofs.

Equation (2) in Definition 1.17 allows one to apply a degeneracy map ηi over a
degeneracy operator dgop to obtain a new degeneracy operator. Let us consider, for
example, η4 and the degeneracy operator η5η4η1; then η4η5η4η1 = η6η4η4η1 = η6η5η4η1.
We will use the notation ηi ◦dgop for the resulting degeneracy operator; in our example:
η4 ◦ (η5η4η1) = η6η5η4η1.

We can also try to apply a face map ∂i over a degeneracy operator dgop. But now,
there are two cases, according to whether the indexes i or i − 1 appear in dgop. If
they do not appear, then there is a face that survives in the process (for instance:
∂4η5η2η0 = η4∂4η2η0 = η4η2∂3η0 = η4η2η0∂2). Otherwise, the cancelation equation (4)
from Definition 1.17 applies and the result of the process is simply another degeneracy
operator (example: ∂4η5η3η0 = η4∂4η3η0 = η4η0). We will denote by ∂i ◦dgop the output
degeneracy operator (in our examples: ∂4 ◦ (η5η2η0) = η4η2η0 and ∂4 ◦ (η5η3η0) = η4η0).

With these notational conventions, the behavior of face and degeneracy maps over
abstract simplexes is characterized as follows:

Formula 6.1.

ηqi (dgop gmsm) := (ηi ◦ dgop gmsm)

∂qi (dgop gmsm) :=

{
(∂i ◦ dgop gmsm) if ηi ∈ dgop ∨ ηi−1 ∈ dgop

(∂i ◦ dgop ∂rkgmsm) otherwise;

where

• r = q − {number of degeneracies in dgop} and

• k = i− {number of degeneracies in dgop with index lower than i}1.

Note that the degeneracy map expressed in terms of abstract simplexes only affects
the degeneracy operator of the abstract simplex; therefore degeneracy maps can be
implemented independently from the simplicial set. On the contrary, face maps depend
on the simplicial set because, when ηi /∈ dgop and ηi−1 /∈ dgop, the application of a face
map ∂i arrives until the geometric simplex, and, this, of course, requires some knowledge
from the concrete simplicial set where the computation is carried out.

Furthermore, it is necessary to characterize the pattern of the admissible abstract
simplexes for a given simplicial set, since it will allow us to determine over what elements
the proofs will be carried out. The following property gives such a characterization
(which emerge from the previous comments).

1In fact, we are still abusing the notation here, since the face of a geometric simplex is an abstract
simplex and, sometimes, a degenerate one; this implies that to get a correct representation of (∂i ◦
dgop ∂rkgmsm) as an abstract simplex (dgop′ gmsm′) we should compose the degeneracy operator
∂i ◦ dgop with that coming from ∂rkgmsm.
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Proposition 6.2. Let K be a simplicial set, absm = (dgop gmsm) be a pair where dgop
is a degeneracy operator and gmsm is a geometric simplex of K and l be the length of
the sequence of degeneracies dgop. Then, absm is an abstract simplex of K in dimension
q if and only if the following properties are satisfied:

1. l ≤ q;

2. gmsm ∈ Kr, where r = q − l;

3. the index of the first degeneracy in dgop is lower than q.

Each concrete representation for degeneracy operators defines a different model to
encode elements of simplicial sets. In the following three subsubsections we will explain
the EAT, Kenzo and binary representations respectively.

6.2.1.2 The EAT representation

The data structures of the EAT system are organized in two layers: the first layer is
composed of algebraic data structures (chain complexes, simplicial sets, and so on) and
the second one of standard data structures (lists, trees, and so on) which are representing
elements of data from the first layer. This subsubsection is devoted to present the EAT
representation of both simplicial sets (which belong to the first layer) and abstract
simplexes (which belong to the second layer and are the elements of simplicial sets).

An abstract simplex, absm, is represented internally in EAT by a Lisp object:
(dgop gmsm) where dgop is a strictly decreasing integer list (a degeneracy list) which
represents a sequence of degeneracy maps, and gmsm is a geometric simplex (whose type
is left unspecified). For example, if we retake the examples introduced in the previous
subsubsection, (∅ σ) and (η3η1 σ), the corresponding EAT objects are respectively
(nil σ) and ((3 1) σ), where nil stands for the empty list in Lisp.

Mathematical structures are represented in EAT as records with several components
of functional nature. Then, a simplicial set, smst, is represented internally in the EAT
system by means of an instance of the ss record. In the EAT organization, a simplicial
set is made of 6 slots, but there is just one of them which is relevant for reasoning: the
gdl slot. This slot contains a lisp function computing any face of any geometric simplex
of the simplicial set smst. The function has three arguments: a face index, a simplex
dimension and a geometric simplex.

It is worth noting that EAT does not include the definition of the face map over
abstract simplexes. Because, as we have seen in Formula 6.1, this map can be defined
in a general way and be specialized for every simplicial set only knowing the face of any
geometric simplex of the simplicial set. So, this is the approach followed in EAT where
the function ADL implements the procedure given in Formula 6.1 for encoding the face
map.
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The ADL function has four arguments: a simplicial set ss, a face index i, a simplex
dimension q and an abstract simplex absm = (dgop gmsm). The implementation of
this function, which follows Formula 6.1, is the following one. First of all, it invokes
the function cmp-d-ls which takes the face index i and the degeneracy list dgop of the
abstract simplex absm as input, and returns two outputs:

• a new degeneracy list dgop2, obtained by systematically applying equations (3),
(4) and (5) of Definition 1.17 to dgop, starting with ∂i, and,

• an index i2 which survives in the previous process, or the symbol nil in the case
where the equation (4) in Definition 1.17 is applied and the face map is cancelled.

For instance, with the inputs 4 and (5 2 0) the results of cmp-d-ls are (4 2 0) and
2 (recall the process: ∂4η5η2η0 = η4∂4η2η0 = η4η2∂3η0 = η4η2η0∂2). With the inputs 4
and (5 3 0), the outputs are (4 0) and nil (since ∂4η5η3η0 = η4∂4η3η0 = η4η0).

Subsequently, if the second output returned by cmp-d-ls is nil, then the result
returned by ADL is (dgop2 gmsm). Otherwise, the gdl function associated with the sim-
plicial set ss is invoked with arguments i2, q−{length dgop} and gmsm to obtain a result
like (dgop3 gmsm2), and, then, the result returned by ADL is ((dgop2◦dgop3) gmsm2).

In this way the face map over abstract simplexes is encoded in EAT. Now, let us focus
on the definition of the degeneracy map over abstract simplexes. EAT does not provide
a function like ADL for encoding the degeneracy map over abstract simplexes because it
is not relevant for computing. However, it includes all the necessary functions to define
a function, let us call it ANL, which implements the procedure given in Formula 6.1 for
encoding the degeneracy map.

In the implementation of the ANL function, the function cmp-ls-ls, which performs
the composition of two degeneracy lists, will be instrumental. The ANL function can
be defined as follows. It has four arguments: a simplicial set ss, a degeneracy index
i, a simplex dimension q and an abstract simplex absm = (dgop gmsm). The imple-
mentation of this function, which follows Formula 6.1, is the following one. First of all,
it invokes the function cmp-ls-ls which takes a list which consists of the degeneracy
index i, and the degeneracy list dgop of the abstract simplex absm as arguments, and
returns a new degeneracy list dgop2, obtained by systematically applying equation (2)
of Definition 1.17 to dgop, starting with ηi.

Then, the ANL function returns as output (dgop2 gmsm). In this way the degeneracy
map over abstract simplexes can be encoded in EAT. It is worth noting that the ANL

function represents the degeneracy map over abstract simplexes for every simplicial set
of EAT because this operation is independent of the chosen simplicial set, as we have
seen in Formula 6.1.

Finally, we must focus on the invariant function. The invariant function was included
as a test function in the first versions of EAT; this was a natural approach to reflect the
functional coding introduced by Sergeraert in [Ser90]. However, Sergeraert realized that,
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from the operational point of view, the invariant function is useless in the computational
environment of EAT. It can be useful to test that the elements belong to the structure,
but if we suppose that both the programs and their inputs are correct; then, applying
successively the invariant test is, obviously, an unnecessary waste. Due to the fact that
EAT is a computational tool, the invariant functions were removed from the programs.
However, in our context (focussed on verifying) the invariant functions are instrumental
to prove the correctness of our programs; so, they must also be defined.

Then, we can implement an invariant function, which is a predicate indicating when
a Lisp pair is an abstract simplex of a simplicial set ss in EAT. To this aim, we proceed
as in the definition of the face map. First of all, we define an auxiliar function, called
inv-gmsm, which is ad-hoc for each simplicial set ss. The inv-gmsm test function takes
as input a geometric simplex gmsm and a dimension q, and returns t if gmsm is a
geometric simplex in dimension q of the simplicial set, and nil otherwise.

Finally, as in the case of the face map over abstract simplexes, we have a general in-
variant function called INV. The INV function has three arguments: a inv-gmsm function,
a simplex dimension q and an abstract simplex absm = (dgop gmsm). The invariant
function INV translates the conditions from Proposition 6.2 for the concrete simplicial
set where l is equal to the length of the dgop list:

1. l ≤ q;

2. gmsm is an element of ss in dimension r, where r = q − l;

3. the first element of dgop is lower than q.

In this way, the face, degeneracy and invariant functions are encoded using the EAT
representation.

As mentioned previously, we want to focus on the simplicial sets of the Kenzo system.
The EAT model has been used as a simplified formal model to reduce the gap between
the mathematical structures and their Kenzo representations.

Before explaining the Kenzo representation for simplicial sets and abstract simplexes,
let us present in the following paragraph the differences between EAT code and the actual
ACL2 code that we use in our proofs.

6.2.1.2.1 The EAT model in ACL2 Since the ACL2 programming language is a
subset of Common Lisp, the definition of the EAT functions in ACL2, is quite direct.
However, due to the nature of ACL2 (applicative, free of side effects and so on), there
are some things that have to be defined in a different (but equivalent) way.

First of all, it is worth noting that the functions ADL, ANL and INV can be seen as
functions which take as input other functions. This cannot be modeled in ACL2. Then
to overcome this pitfall, we define concrete versions of the functions ADL, ANL and INV for



264 Chapter 6 Integration of Computation and Deduction

(defun cmp-d-ls-dgop (d ls)

(do ((p ls (cdr p))

(rsl

empty-list (let ((j (car p)))

(cons (cond ((< d j) (1- j))

(t (decf d) j))

rsl))))

((endp p) (nreverse rsl))

(when (<= 0 (- d (car p)) 1)

(return (nreconc rsl (rest p)))))

(defun cmp-d-ls-dgop-do (d p rsl)

(cond ((endp p) (reverse rsl))

((< d (car p))

(cmp-d-ls-dgop-do d (cdr p)

(cons (1- (car p)) rsl)))

((and (<= 0 (- d (car p)))

(<= (- d (car p)) 1))

(append (reverse rsl) (rest p)))

(t (cmp-d-ls-dgop-do (1- d)

(cdr p) (cons (car p) rsl)))))

(defun cmp-d-ls-dgop (d ls)

(cmp-d-ls-dgop-do d ls nil))

Figure 6.1: cmp-d-ls-dgop definition in EAT and in ACL2

each simplicial set. This is a well-known form of defunctionalization [Rey98] and can be
considered as a safe transformation.

In addition, we must deal with multivalued functions. As we have commented previ-
ously, the cmp-d-ls EAT function returns two values (a degeneracy list and an index);
that is to say, it is a multivalued function. This situation happens in several EAT
functions and is handled by means of the values Common Lisp function.

ACL2 does not support the values function. However, two different options are
feasible to deal with multivalued functions in ACL2: (1) split the multivalued function
in so many functions as values are returned in the multivalued function; or (2) use the
mv ACL2 macro. In our case we opted for the former one.

Therefore, we have translated the EAT function cmp-d-ls into two ACL2 functions
called cmp-d-ls-dgop and cmp-d-ls-indx.

The last difference between EAT and ACL2 code is related to iterative functions.
The only way to iterate in ACL2 is by means of recursion, then we must define re-
cursive versions of the functions cmp-d-ls-dgop, cmp-d-ls-indx and cmp-ls-ls which
are defined using an internal loop. The recursive version of cmp-ls-ls was presented
in [MMRRR09], so, let us concentrate on the recursive version of cmp-d-ls-dgop (the
case of cmp-d-ls-indx is analogous).

The left side in Figure 6.1 contains the real EAT code for the cmp-d-ls-dgop function.
That definition receives as inputs a natural number d and a decreasing integer list ls (to
be interpreted as a degeneracy operator) and returns a decreasing integer list (encoding
a degeneracy operator).

The right box of Figure 6.1 contains our ACL2 recursive version of cmp-d-ls-dgop.
First of all, we have used an auxiliary recursive definition implementing the internal loop,
trying to be as faithful as possible with the original version. Also, since destructive
updates are not allowed in ACL2, we consider the local variable rsl as extra input
parameter. Finally, since ACL2 functions have to be total, we have to define a result
just in case the inputs were not of the intended type.

The transformations between EAT code and ACL2 code are instances of well-known
generic transformations and, therefore, can be considered safe. Therefore, we are working
with code as close as possible to the actual EAT one.
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Let us present now the Kenzo representation for both abstract simplexes and sim-
plicial sets.

6.2.1.3 The Kenzo representation

Both EAT and Kenzo systems are based on the same Sergeraert’s ideas, but the per-
formance of the EAT system is much poorer than that of Kenzo. One of the reasons
why Kenzo performs better than EAT is because of a smart encoding of degeneracy
operators. Since generating and composing degeneracy lists are operations which ap-
pear in an exponential way in most of Kenzo calculations (through the Eilenberg-Zilber
theorem [May67]), it is clear that having a better way for storing and processing de-
generacy operators is very important. But, no reward comes without a corresponding
price, and the Kenzo algorithms are somehow obscured, in comparison to the clean and
comprehensible EAT approach.

An abstract simplex, absm, is represented internally in the Kenzo system by a Lisp
object: (dgop gmsm) where dgop is a non-negative integer encoding a strictly decreas-
ing integer list and gmsm is a geometric simplex. The strictly decreasing integer list
represents a sequence of η operators and is encoded as a unique integer. Let us explain
this with an example: the degeneracy list (3 1) can equivalently be seen as the binary
list (0 1 0 1) in which 1 is in position i if the number i is in the degeneracy list, and
0 otherwise. This list, interpreted as a binary number in the reverse order, defines the
natural number 10. Thus, Kenzo encodes the degeneracy list (3 1) as the natural num-
ber 10. The empty list is encoded by the number 0. Then, the abstract simplexes (∅ σ)
and (η3η1 σ) are implemented in the Kenzo system as (0 σ) and (10 σ), respectively.

With this representation, we will say that an index is an active bit in a natural number
representing a degeneracy operator if the index appears in the degeneracy operator.

As Kenzo encodes degeneracy lists as integers, the face and degeneracy maps can be
implemented using very efficient Common Lisp primitives dealing with binary numbers
(such as logxor, ash, logand, logbitp and so on). This is one of the reasons why Kenzo dra-
matically improves the performance of its predecessor EAT. Nevertheless, these efficient
operators have a more obscure semantics than their counterparts in EAT.

The face and degeneracy maps over abstract simplexes are implemented using the
Kenzo representation by means of the functions face and degeneracy respectively. Both
face and degeneracy use the functions 1dlop-dgop and dgop*dgop and the face slot
which are the counterparts of the cmp-d-ls and cmp-ls-ls EAT functions and gdl slot
respectively.

Moreover, we can reuse the function inv-gmsm, which was previously defined, because
it is related to the geometric simplexes of simplicial sets and this part is encoded in the
same way for both Kenzo and EAT representations. From this function, the invariant
function for abstract simplexes in Kenzo can be defined according to (in this case l is
equal to the number of active bits in dgop):
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1. l ≤ q;

2. gmsm is an element of Kr, where r = q − l;

3. dgop < 2q.

As in the EAT case, there is a gap between the Kenzo code and the ACL2 code that
we use in our proofs. In particular we found the same problems related to multivalued
functions (we have defined the functions 1dlop-dgop-dgop and 1dlop-dgop-indx which
are the counterparts of cmp-d-ls-dgop and cmp-d-ls-indx respectively) and functions
taking other functions as input; therefore, we used the safe transformation techniques
presented in Paragraph 6.2.1.2.1. However, these are the only important differences
between the Kenzo and ACL2 code, since all the binary operations of Common Lisp
(logxor and the like) are present in ACL2. Thus, the ACL2 programs make up an
accurate version of the Kenzo ones.

6.2.1.4 The binary representation

The distance between EAT and Kenzo models is too large in order to prove the
equivalence between the two representations modulo the change of representation.
Then, we have used an intermediary representation introduced by Mart́ın-Mateos et
al. in [MMRRR09].

An abstract simplex, absm, is represented internally in the binary model by a Lisp
object: (dgop gmsm) where dgop is a list of 0’s and 1’s coding a strictly decreasing inte-
ger list and gmsm is a geometric simplex. The strictly decreasing integer list represents
a sequence of η operators and is coded as a unique list of 0’s and 1’s. Let us explain
this with an example: the degeneracy list (3 1) can equivalently be seen as the binary
list (0 1 0 1) in which 1 is in position i if the number i is in the degeneracy list, and
0 otherwise. Then, the abstract simplexes (∅ σ) and (η3η1 σ) are implemented in the
binary model as (nil σ) and ((0 1 0 1) σ), respectively.

The algorithms which implement the face and degeneracy operators are directly
inspired from those of Kenzo; then, we have the 1dlop-dgop-binary, dgop-dgop-binary
and face-binary which are the counterparts of the 1dlop-dgop, dgop*dgop functions
and face slot respectively. From these functions and slot, we can define the face and
degeneracy maps over abstract simplexes using the binary representation.

As in the case of the Kenzo representation, we reuse the function inv-gmsm because
it is related to the geometric simplexes of the simplicial sets and this part is encoded in
the same way for all the representations. From this function, the invariant function for
abstract simplexes using the binary representation is provided.

As the binary representation is an auxiliar artifact for our ACL2 proofs, we have
directly defined the necessary functions to be admissible in ACL2.

Once we have presented the different representations, we can start our proofs.
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6.2.2 Proving the correctness of Kenzo spheres

We started the work of proving that Kenzo initial simplicial sets are really simplicial
sets by examining the construction of the sphere S3. That is to say, we were interested
in proving the correctness of the following Kenzo statement.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (sphere 3) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This means that we want to prove in ACL2 that the returned object by the sphere

Kenzo function taking as input the natural number 3 satisfies the axioms of simplicial
sets. Then, we proceed as follows.

First of all, we implement the face map over abstract simplexes of S3. To this aim, we
define in ACL2 the face function which is stored in the face slot of the Simplicial-Set

instance associated with S3. This function, that will be called face-gmsm-S^3, has three
arguments: a face index, a simplex dimension and a geometric simplex; and computes
any face of any geometric simplex of S3.

From face-gmsm-S^3 and the functions 1dlop-dgop-dgop and 1dlop-dgop-indx we de-
fine a function called face-S^3 which encodes the face operator over abstract simplexes
associated with S3 using the Kenzo representation in ACL2, that is, the Kenzo face

macro for the particular case of S3. The function face-S^3 takes as input three argu-
ments: a face index i, a dimension q and an abstract simplex absm of S3 and computes
∂qi absm.

As we have said previously, the degeneracy operator functions are independent of
the simplicial set. So, from the function dgop*dgop we have defined a function called
degeneracy which encodes the degeneracy operator over abstract simplexes using the
Kenzo representation in ACL2. The function degeneracy takes as input three arguments:
a face index i, a simplex dimension q and an abstract simplex absm and computes
ηqi absm. This function can be used for every simplicial set.

Subsequently, as we have seen in Definition 1.22, S3 only has two geometric simplexes:
a 0-simplex and a 3-simplex, encoded respectively by ? and s3. Then, we can define
the function inv-gmsm-S^3, which is used to determine the invariant function of S3

according to the S3 definition. This test function, that will be called invariant-S^3,
has two arguments: a simplex dimension q and an abstract simplex absm.

Now, our goal consists in proving that the functions face-S^3, degeneracy and
invariant-S^3 satisfy the seven properties which define a simplicial set.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-1-Kenzo-S^3 ;; (x ∈ Kq ⇒ ∂qi x ∈ Kq−1)
(implies (and (natp i) (natp q) (< 0 q) (<= i q) (invariant-S^3 q absm))

(invariant-S^3 (1- q) (face-S^3 i q absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-2-Kenzo-S^3 ;; (x ∈ Kq ⇒ ηqi x ∈ Kq+1)
(implies (and (natp i) (natp q) (<= i q) (invariant-S^3 q absm))

(invariant-S^3 (1+ q) (degeneracy i q absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-3-Kenzo-S^3 ;; (∂q−1i ∂qj = ∂q−1j−1∂
q
i if i < j)

(implies (and (natp i) (natp j) (natp q) (< i j) (invariant q absm))
(equal (face-S^3 i (1- q) (face-S^3 j q absm))

(face-S^3 (1- j) (1- q) (face-S^3 i q absm)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-4-Kenzo-S^3 ;; (ηq+1
i ηqj = ηq+1

j ηqi−1 if i > j)
(implies (and (natp i) (natp j) (natp q) (> i j) (invariant-S^3 q absm))

(equal (degeneracy i (1+ q) (degeneracy j q absm))
(degeneracy j (1+ q) (degeneracy (1- i) q absm)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-5-Kenzo-S^3 ;; (∂q+1
i ηqj = ηq−1j−1∂

q
i if i < j)

(implies (and (natp i) (natp j) (natp q) (< i j) (invariant-S^3 q absm))
(equal (face-S^3 i (1+ q) (degeneracy j q absm))

(degeneracy (1- j) (1- q) (face-S^3 i q absm)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-6-Kenzo-S^3 ;; (∂q+1
i ηqi = identity = ∂q+1

i+1 η
q
i if i < j)

(implies (and (natp i) (natp q) (invariant-S^3 q absm) )
(and (equal (face-S^3 i (1+ q) (degeneracy i q absm))

absm)
(equal (face-S^3 (1+ i) (1+ q) (degeneracy i q absm))

absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-7-Kenzo-S^3 ;; (∂q+1
i ηqj = ηq−1j ∂qi−1 if i > j + 1)

(implies (and (natp i) (natp j) (natp q) (> i (1+ j)) (invariant-S^3 q absm))
(equal (face-S^3 i (1+ q) (degeneracy j q absm))

(degeneracy j (1- q) (face-S^3 (1- i) q absm)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The verification of these seven theorems is tackled in ACL2 with the methodology
presented in the following subsubsection which is imported from the work presented
in [MMRRR09].

6.2.2.1 Sketch of the proof

First of all, we have defined the EAT counterparts of face-S^3, degeneracy and
invariant-S^3 that will be called ADL-S^3, ANL and INV-S^3 respectively.

Subsequently, we prove the following seven theorems, that are the properties which
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the functions ADL-S^3, ANL and INV-S^3 must fulfill to determine a simplicial set.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-1-EAT-S^3 ;; (x ∈ Kq ⇒ ∂qi x ∈ Kq−1)
(implies (and (natp i) (natp q) (< 0 q) (<= i q) (INV-S^3 q absm))

(INV-S^3 (1- q) (ADL-S^3 i q absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-2-EAT-S^3 ;; (x ∈ Kq ⇒ ηqi x ∈ Kq+1)
(implies (and (natp i) (natp q) (<= i q) (INV-S^3 q absm))

(INV-S^3 (1+ q) (ANL i q absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-3-EAT-S^3 ;; (∂q−1i ∂qj = ∂q−1j−1∂
q
i if i < j)

(implies (and (natp i) (natp j) (natp q) (< i j) (INV q absm))
(equal (ADL-S^3 i (1- q) (ADL-S^3 j q absm))

(ADL-S^3 (1- j) (1- q) (ADL-S^3 i q absm)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-4-EAT-S^3 ;; (ηq+1
i ηqj = ηq+1

j ηqi−1 if i > j)
(implies (and (natp i) (natp j) (natp q) (> i j) (INV-S^3 q absm))

(equal (ANL i (1+ q) (ANL j q absm))
(ANL j (1+ q) (ANL (1- i) q absm)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-5-EAT-S^3 ;; (∂q+1
i ηqj = ηq−1j−1∂

q
i if i < j)

(implies (and (natp i) (natp j) (natp q) (< i j) (INV-S^3 q absm))
(equal (ADL-S^3 i (1+ q) (ANL j q absm))

(ANL (1- j) (1- q) (ADL-S^3 i q absm)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-6-EAT-S^3 ;; (∂q+1
i ηqi = identity = ∂q+1

i+1 η
q
i if i < j)

(implies (and (natp i) (natp q) (INV-S^3 q absm) )
(and (equal (ADL-S^3 i (1+ q) (ANL i q absm))

absm)
(equal (ADL-S^3 (1+ i) (1+ q) (ANL i q absm))

absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-7-EAT-S^3 ;; (∂q+1
i ηqj = ηq−1j ∂qi−1 if i > j + 1)

(implies (and (natp i) (natp j) (natp q) (> i (1+ j)) (INV-S^3 q absm))
(equal (ADL-S^3 i (1+ q) (ANL j q absm))

(ANL j (1- q) (ADL-S^3 (1- i) q absm)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For the verification development of these theorems, we followed a standard interaction
with the ACL2 theorem prover. That is, we first had an original hand proof of the results
that suggested the main definitions and lemmas. Some of these lemmas were not proved
in a first attempt and new lemmas were then suggested from the inspection of the failed
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attempts.

Afterwards, we prove the equivalence between the EAT and Kenzo functions, which
determine the face and degeneracy maps and the invariant function, modulo a domain
transformation. Inspecting the definition of these functions, we realize that this task
is, mainly, reduced to prove four equivalences module the change of representation:
(1) the equivalence between the cmp-d-ls-dgop EAT function and the 1dlop-dgop-dgop

Kenzo function; (2) the equivalence between the cmp-d-ls-indx EAT function and the
1dlop-dgop-indx Kenzo function; (3) the equivalence between the cmp-ls-ls EAT func-
tion and the dgop*dgop Kenzo function; and (4) the equivalence between the functions
of the invariants.

In [MMRRR09] the equivalence between the cmp-ls-ls EAT function and the
dgop*dgop Kenzo function was proved. Thus, we must focus on the other three equiv-
alences. Since the process to prove the rest of the equivalences is very similar, let us
focus on the first one.

The arguments and outputs of cmp-d-ls-dgop and 1dlop-dgop-dgop are, of course,
equivalent in both functions, but recall that in Kenzo a degeneracy operator is encoded
as a natural number.

The proof that the function 1dlop-dgop-dgop is equivalent to cmp-d-ls-dgop is not
simple, for two main reasons. On the one hand, the Kenzo function and the EAT one
deal with different representations of degeneracy operators. On the other hand, the
Kenzo function implements an algorithm which is not intuitive and is quite different
from the algorithm of the EAT version, which is closely related to the mathematical
definitions. The suitable strategy, used in [MMRRR09] for the degeneracy operator,
to attack the proof consists of considering the intermediary binary representation of
degeneracy operators, explained in Subsubsection 6.2.1.4.

The plan has consisted in defining the function 1dlop-dgop-binary-dgop implement-
ing the application of the face operator over a degeneracy list represented as a binary
list, by means of an algorithm directly inspired from that of Kenzo. Thus, the equiva-
lence between EAT and Kenzo face maps has been proved in two steps. We have proved
the equivalence between the Kenzo function 1dlop-dgop-dgop and the binary function
1dlop-dgop-binary-dgop. Subsequently, it has also been proved that the binary version
function and the EAT function are equivalent.

Schematically, let DLg be the set of strictly decreasing lists of natural numbers, DBg be
the set of binary lists and N the set of natural numbers. The proof consists in verifying
the commutativity of the following diagram (in which the names of the transformation
functions have been omitted):
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N×DLg
--

cmp−d−ls−dgop
��

N×DBgmm
--

1dlop−dgop−binary−dgop
��

N× Nmm

1dlop−dgop−dgop
��

DLg
,, DBgll ,, Nll

These functions, that implement the face operators in the different representations,
receive as input two arguments (a natural number representing the index of the face map
and a degeneracy operator encoded in the respective representation) and have as output
a degeneracy operator (in the same representation of the input one) which is obtained
as explained in detail in the case of cmp-d-ls in Subsubsection 6.2.1.2.

Thus the commutativity of the diagram ensures the equivalence modulo the change
of representation between the EAT and Kenzo models. We can proceed in the same way
in the other equivalences.

These equivalence can be propagated to the functions which determine the
face (face-S^3) and degeneracy (degeneracy) map and the invariant function
(invariant-S^3) using the Kenzo representation.

Therefore, thanks to both the domain transformation theorems and the EAT theo-
rems (theorem-i-EAT-S^3 i= 1, . . . , 7); we produce the proof of the theorems presented
at the beginning of this subsection.

Then, we have proved that the functions which encode the face and degeneracy maps
and the invariant function of the sphere S3 in Kenzo really determine a simplicial set.
Therefore, the Kenzo instruction (sphere 3) really constructs a simplicial set.

6.2.2.2 Kenzo spheres family

Inspecting the previous proof it became clear that most of the proof is independent
of number 3. Then, the next step consisted in proving, using the same ideas, that the
family of Kenzo spheres was really a family of simplicial sets; that is, ∀n ∈ N (sphere n)

is a simplicial set. To undertake this task we have been inspired by the work [LPR03],
where the algebraic specification for families of EAT objects was provided.

The process to prove the correctness of the Kenzo spheres family is very similar to
the one presented for the sphere S3. First of all, it is worth noting that when we go
from working with a concrete object to deal with a families of objects indexed by an
argument I, we need to include a new parameter which represents the set of indexes to
the functions which were used to determine the concrete object.

Taking into account the previous comment, we define the face operator over abstract
simplexes of Sn. To this aim, we define in ACL2 the face function which is associated
with the sphere Kenzo function. This function, that will be called face-gmsm-S^n, has
four arguments: the dimension of the sphere n, a face index, a simplex dimension and a
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geometric simplex, and computes any face of any geometric simplex of Sn.

From face-gmsm-S^n and the functions 1dlop-dgop-dgop and 1dlop-dgop-indx we
define a function called face-S^n which encodes the face operator over abstract simplexes
associated with Sn using the Kenzo representation. The function face-S^n takes as input
four arguments: the dimension of the sphere n, a face index i, a simplex dimension q
and an abstract simplex absm of Sn and computes ∂qi absm.

We could use the degeneracy function defined previously, but for symmetry with the
face operator we define the function degeneracy-n which takes as input four arguments:
the dimension of the sphere n, a face index i, a simplex dimension q and an abstract
simplex absm and computes ηqi absm. The behavior is the same that the one of the
function degeneracy.

Subsequently, as we have seen in Definition 1.22, Sn only has two geometric sim-
plexes: a 0-simplex and an n-simplex, encoded respectively by ? and sn (where n is
the dimension of the sphere). Then, we can define the function inv-gmsm-S^n, which is
used to determine the invariant function of Sn, according to the Sn definition. This test
function, that will be called invariant-S^n, has three arguments: the dimension of the
sphere n, a simplex dimension q and an abstract simplex absm.

Now, our goal consists in proving that the functions face-S^n, degeneracy-n and
invariant-S^n satisfy the seven properties which define a simplicial set.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
(defthm theorem-7-Kenzo-S^n ;; (∂q+1

i ηqj = ηq−1j ∂qi−1 if i > j + 1)
(implies (and (natp n) (natp i) (natp j) (natp q) (> i (1+ j))

(invariant-S^n n q absm))
(equal (face-S^n n i (1+ q) (degeneracy-n n j q absm))

(degeneracy-n n j (1- q) (face-S^n n (1- i) q absm)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The methodology followed to prove those theorems was the same previously ex-
plained. The main idea is to provide the EAT counterparts of the Kenzo functions,
afterwards prove the correctness of EAT programs, and then, by a domain transforma-
tion, translate the proofs to Kenzo programs using the intermediary binary model.

Then, we have proved that ∀n ∈ N, the Kenzo function (sphere n) really constructs
a simplicial set.

6.2.3 A Generic Simplicial Set Theory

One more time, the previous proof showed us clear guidelines to repeat the process
for other families of Kenzo simplicial sets. We started that work by examining several
families (standard simplicial sets, Moore spaces, Eilenberg MacLane spaces, and so on).
We carefully analyzed what is the common part for all the families of initial simplicial
sets, and what is particular for each one of them.
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This led us to develop a generic theory in ACL2, in the terms presented in Subsec-
tion 6.1.2, to make the task of certifying families of Kenzo initial simplicial sets easier.

6.2.3.1 A generic model for families of Kenzo initial simplicial sets

As we have seen in Subsection 6.1.2, the first step to create our generic theory for families
of Kenzo initial simplicial sets consists in defining a generic model of a family of Kenzo
simplicial sets. To this aim, we use an encapsulate with the generic functions which
define the generic Kenzo family and the axioms assumed about them.

Let {SS}K be a family of Kenzo initial simplicial sets indexed by K, then it is
determined through three functions:

• (imp-face-gmsm * * * *): this function takes as input four arguments, an element
k of the index family K, a face index i, a simplex dimension q and an geometric
simplex gmsm; and computes ∂qi gmsm in the element corresponding to k of the
family {SS}K;

• (imp-inv-gmsm * * *): this function takes as input three arguments, an element
k of the index family K, a simplex dimension q and a geometric simplex gmsm;
and returns t if gmsm is an element in dimension q of the element corresponding
to k of the family {SS}K and nil otherwise; and,

• (indexp *): this function takes as input an argument, an element k; and returns
t if k is an element of the index family K and nil otherwise.

To finish our generic model of a family of Kenzo initial simplicial sets we have to
assume two properties establishing the relations between the above functions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm faceoface (∂q−1i ∂qj gmsm = ∂q−1j−1∂
q
i gmsm if i < j)

(implies (and (natp i) (natp j) (natp q) (< i j) (<= 2 q)
(indexp k) (imp-inv-gmsm k q gmsm))

(equal (imp-face-gmsm k (1- q) i (imp-face-gmsm k q j gmsm))
(imp-face-gmsm k (1- q) (1- j) (imp-face-gmsm k q i gmsm)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm invariant-prop (gmsm ∈ Kq ⇒ ∂qi gmsm ∈ Kq−1)
(implies (and (natp i) (natp q) (< 0 q) (<= i q)

(indexp k) (imp-inv-gmsm k q gmsm))
(imp-inv-gmsm k (1- q) (imp-face-gmsm k q i gmsm)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

All the properties above are stated inside an ACL2 encapsulate. At this point we
have a specification for families of Kenzo initial simplicial sets. A concrete implemen-
tation of a family of Kenzo simplicial sets will be given by concrete definitions of the
generic functions, verifying the assumed properties.
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From these generic functions and the assumed properties, we have developed a generic
theory which allows us to prove the correctness of families of Kenzo simplicial sets. It
is important to remark that the properties below are proved using only the assumed
axioms.

The first thing we have to do is to define the face and degeneracy maps and the
invariant function. Subsequently, we must prove the seven theorems which assert that
those functions really determine a family of simplicial sets. All these definitions and
theorems constitutes our generic theory about families of Kenzo initial simplicial sets.

6.2.3.2 Definitions of face, degeneracy and invariant

From the generic functions of the encapsulate presented in the previous subsubsection,
we can define the face and degeneracy maps and the invariant function of a generic
family of simplicial sets by means of the following three functions which invoke the
ACL2 counterparts of the real Kenzo programs.

The face operator:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun imp-face (k i q absm)
(let ((dgop (car absm))

(gmsm (cadr absm)))
(if (1dlop-dgop-indx i dgop)

(list (1dlop-dgop-dgop i dgop) gmsm)
(let ((absm2 (imp-face-gmsm k q (1dlop-dgop-indx i dgop) gmsm))

(dgop2 (car absm2)) (gmsm2 (cadr absm2)))
(list (dgop*dgop (1dlop-dgop-dgop i dgop) dgop2) gmsm2)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The degeneracy operator:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun imp-degeneracy (k i q absm)
(declare (ignore k q))
(let ((dgop (car absm))

(gmsm (cadr absm)))
(list (dgop*dgop (dgop-ext-int (list i)) dgop) gmsm)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the function dgop-ext-int transforms a degeneracy list represented as a strictly decreas-
ing list of natural numbers to its corresponding representation as a natural number.

And, the invariant function:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun imp-invariant (k q absm)
(let ((dgop (car absm))

(gmsm (cadr absm)))
(and (<= (logcount dgop) q)

(imp-inv-gmsm k (- q (logcount dgop)) gmsm)
(< dgop (expt 2 q))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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6.2.3.3 Proving the simplicial sets properties

In the previous subsubsection we have defined the functions which determine the face
and degeneracy maps and the invariant function of a generic family of Kenzo initial
simplicial sets. Now, we need to prove that these functions fulfill the properties which
determine a family of simplicial sets.

Then, the well definition of both face and degeneracy maps must be verified:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-1 ;; (x ∈ Kq ⇒ ∂qi x ∈ Kq−1)
(implies (and (natp i) (natp q) (< 0 q) (<= i q) (indexp k) (imp-invariant k q absm))

(imp-invariant k (1- q) (imp-face k i q absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-2 ;; (x ∈ Kq ⇒ ηqi x ∈ Kq+1)
(implies (and (natp i) (natp q) (<= i q) (indexp k) (imp-invariant k q absm))

(imp-invariant k (1+ q) (imp-degeneracy k i q absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Moreover, the 5 relations between the face and degeneracy maps stated in Defini-
tion 1.17 must be fulfilled. This task is performed in ACL2 with the verification of the
following 5 theorems:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-3 ;; (∂q−1i ∂qj = ∂q−1j−1∂
q
i if i < j)

(implies (and (natp i) (natp j) (natp q) (< i j) (indexp k)
(imp-invariant k q absm))

(equal (imp-face k i (1- q) (imp-face k j q absm))
(imp-face k (1- j) (1- q) (imp-face k i q absm)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-4 ;; (ηq+1
i ηqj = ηq+1

j ηqi−1 if i > j)
(implies (and (natp i) (natp j) (natp q) (> i j) (indexp k)

(imp-invariant k q absm))
(equal (imp-degeneracy k i (1+ q) (imp-degeneracy k j q absm))

(imp-degeneracy k j (1+ q) (imp-degeneracy k (1- i) q absm)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-5 ;; (∂q+1
i ηqj = ηq−1j−1∂

q
i if i < j)

(implies (and (natp i) (natp j) (natp q) (< i j) (indexp k)
(imp-invariant k q absm))

(equal (imp-face k i (1+ q) (imp-degeneracy k j q absm))
(imp-degeneracy k (1- j) (1- q) (imp-face k i q absm)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-6 ;; (∂q+1
i ηqi = identity = ∂q+1

i+1 η
q
i if i < j)

(implies (and (natp i) (natp q) (indexp k) (imp-invariant k q absm))
(and (equal (imp-face k i (1+ q) (imp-degeneracy k i q absm))

absm)
(equal (imp-face k (1+ i) (1+ q) (imp-degeneracy k i q absm))

absm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm theorem-7 ;; (∂q+1
i ηqj = ηq−1j ∂qi−1 if i > j + 1)

(implies (and (natp i) (natp j) (natp q) (> i (1+ j)) (indexp k)
(imp-invariant k q absm))

(equal (imp-face k i (1+ q) (imp-degeneracy k j q absm))
(imp-degeneracy k j (1- q) (imp-face k (1- i) q absm)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The verification of these seven theorems is tackled in ACL2 with the methodology
presented in Subsubsection 6.2.2.2. That is, we provide the EAT counterparts of the
Kenzo functions, afterwards prove the correctness of EAT programs, and then, by a
domain transformation, translate the proofs to Kenzo programs using the intermediary
binary model.

All these properties are proved in the book generic-simplicial-set.lisp, which
develops what we have named our “generic simplicial set theory”, that is the sequence
of definitions (imp-face, imp-degeneracy and imp-invariant) and theorems (theorem-i
for i= 1, . . . , 7) which prove that families of Kenzo initial simplicial sets are really
families of simplicial sets from generic assumptions about them. Moreover, this book
also contains the generic instantiation tool presented in Subsection 6.1.2 to make the
instantiation of their properties for a concrete family of Kenzo simplicial sets easier, as
we will explain in the next section.

6.2.4 Applications of the Generic Simplicial Set Theory

The strength of the “generic simplicial set theory” relies on the few preconditions needed
in order to prove that a family of Kenzo initial simplicial sets is really a family of sim-
plicial sets. In addition, thanks to the generic instantiation tool presented in Subsec-
tion 6.1.2, when a user provides concrete definitions of the generic functions for a family
of Kenzo initial simplicial sets, verifying the assumed properties, the generic instantia-
tion tool automatically generates the complete proof.

Let us note the importance of the automatic generation of the proof by means of
some data: from 3 definitions and 2 theorems the instantiation tool generates (and
instantiates) 3 definitions and 7 theorems. In addition, the proof of the 7 theorems
involves 92 definitions and 969 auxiliary lemmas. In this way, the hard task of proving
that the objects of a Kenzo family are simplicial sets from scratch can be relaxed to
introduce 3 definitions and prove 2 theorems (let us note that the proof of these 2
theorems can be not trivial at all).
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We have applied the previous infrastructure to three families of simplicial sets in
Kenzo: spheres (indexed by a natural number n, with n > 0), standard simplicial sets
(indexed by a natural number n, with n > 0) and simplicial sets coming from finite
simplicial complexes (here, each space in the family is determined by a finite simplicial
complex).

6.2.4.1 Kenzo spheres family

We retake the proof related to the Kenzo spheres family presented in Subsubsec-
tion 6.2.2.2. Here, we are going to write an ACL2 book ss-sphere.lisp which gen-
erates a proof of the fact that the family of Kenzo spheres is really a family of simplicial
sets, through the functions and properties of the generic theory. To this aim, we in-
clude the following: (include-book "generic-simplicial-sets"). This event generates
definstance-*simplicial-set-kenzo*, a macro which will be used to instantiate the
events from the generic book.

It is now needed to define the counterparts of the generic functions imp-face-gmsm,
imp-inv-gmsm and indexp and prove the analogous theorems to faceoface and
invariant-prop given in Subsubsection 6.2.3.1. This was done previously in Subsub-
section 6.2.2.2 (we only need to define the counterpart of indexp which is natp, since the
family of spheres is indexed by a natural number).

Finally, we instantiate all the events from *simplicial-set-kenzo*, simply by this
macro call:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(definstance-*simplicial-set-kenzo*
((imp-face imp-face-S^n) (imp-inv-gmsm imp-inv-S^n) (indexp natp))
"-sphere-family")

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At this moment, new instantiated definitions and theorems are available in the ACL2
logical world, proving that Kenzo spheres satisfy all the conditions of Definition 1.17.

Thanks to the use of this tool, the proof effort of verifying that the family of Kenzo
spheres is really a family of simplicial sets is considerably reduced.

6.2.4.2 Kenzo standard simplicial sets family

In this subsubsection, some comments about the verification that the standard simplicial
set Kenzo family is really a family of simplicial sets are provided. The notion of standard
simplicial set was introduced in Definition 1.18. Let us remark that the non degenerate
simplexes of ∆[m] are any (n+ 1)-tuple (a0, . . . , an) of integers such that 0 ≤ a0 < · · · <
an ≤ m.

As in the case of the spheres, our goal will consist of defining the concrete versions
of the functions of the encapsulate of Subsubsection 6.2.3.1 and proving the properties
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stated in that encapsulate for the concrete case of the standard simplicial set family;
and subsequently use the generic simplicial set theory.

Before giving the ACL2 definition of the face operator for standard simplicial sets,
let us present the Kenzo code for that operation. The standard simplicial sets are so
important in the Kenzo system that Kenzo programmers decided to use a very efficient
representation for saving memory space to deal with geometric simplexes of this kind of
simplicial sets. Namely, geometric simplexes of standard simplicial sets are encoded in
a similar way to degeneracy operators (see Subsubsection 6.2.1.3).

An increasing sequence of non-negative integers describing a geometric simplex of a
standard simplicial set, is coded on a binary integer with the following convention: a
number i representing the vertex i is the (i + 1)-th binary bit of a machine word. Let
us explain with an example: consider the simplex (0 1 3 5) which can be seen as the
binary list (1 1 0 1 0 1) in which 1 in position i if the number i is in the degeneracy
list, 0 otherwise. This list, seen as a binary number in the reverse order, is the number
43. Thus, Kenzo encodes the geometric simplex (0 1 3 5) as 43.

The Kenzo implementation of the face operator ∂i for simplexes of a standard simpli-
cial sets consists in deactivating the i-th active bit. This is better understood if we think
first in the binary representation. Let us consider the application of ∂2 to (0 1 3 5).
Applying the definition of the standard simplicial set, we obtain (0 1 5). Using binary
notation, this means that ∂2 of (1 1 0 1 0 1) is (1 1 0 0 0 1).

As we have said before, Kenzo does not directly use the binary notation: it uses the
natural number that this binary notation represents. Then, as in the case of degeneracy
and face operators explained throughout this section, the face operator over geometric
simplexes of standard simplicial sets is implemented by means of Common Lisp logical
operators. The following is the real Common Lisp code of Kenzo for the face operator
over simplexes of standard simplicial sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(DEFUN DELTA-FACE (indx dmns gmsm)
(declare (fixnum indx gmsm) (ignore dmns))

(do ((pmark 1 (ash pmark 1))
(bmark indx)
(gmsm2 gmsm (ash gmsm2 -1)))
(nil)

(declare (fixnum pmark bmark gmsm2))
(when (oddp gmsm2)

(when (minusp (decf bmark))
(return-from delta-face (absm 0 (logxor gmsm pmark)))))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This definition receives as input two natural numbers indx and gmsm and another
argument that is ignored, dmns, and executes an infinite do that uses three local variables
pmark, bmark and gmsm2 storing respectively the list that will be used to defuse the indx

active bit, the number of remaining active bits to reach the one to defuse and a number
which will be used to indicate if gmsm has an active bit in a concrete position. When
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the indx active bit is reached, the function stops and returns the result. Otherwise, it
updates the local variables and executes again the do.

We can provide an ACL2 definition of delta-face in a straightforward manner, based
on the above Common Lisp code, but with some things defined in a different (but equiv-
alent) way due to the applicative nature of ACL2. The only way of iterating in ACL2 is
by means of recursive functions, then we use an auxiliary recursive definition implement-
ing the internal do. Also, since destructive updates are not allowed in ACL2, we consider
the local variables pmark, bmark and gmsm2 as extra input parameters. Moreover, it is
worth noting that the internal do of the delta-face Kenzo function can produce a non-
terminating process; then, in order to get our ACL2 function admitted in the ACL2 logic
we have explicitly introduced in its logical definition a condition that ensures its termi-
nation. This condition is implemented by means of the good-input-p function checking
that pmark, bmark, gmsm2 and gmsm are natural numbers; and that the bmark value must
be lower than the number of active bits of gmsm, otherwise the do does not finish.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun good-input-p (pmark bmark gmsm2 gmsm)
(and (natp bmark) (natp gmsm2) (natp pmark) (natp gmsm)

(< bmark (logcount gmsm2))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Having defined the function good-input-p, we may now define the delta-face-do

function by means of the defexec macro, explained in Subsection 6.1.3, as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defexec delta-face-do (pmark bmark gmsm2 gmsm)
(declare (xargs :guard (good-input-p pmark bmark gmsm2 gmsm)
(mbe :logic (if (good-input-p pmark bmark gmsm2 gmsm)

(cond ((oddp gmsm2)
(cond ((minusp (1- bmark)) (logxor gmsm pmark))

(t (delta-face-do (ash pmark 1) (1- bmark)
(ash gmsm2 -1) gmsm))))

(t (delta-face-do (ash pmark 1) bmark (ash gmsm2 -1) gmsm)))
gmsm))

:exec (cond ((oddp gmsm2)
(cond ((minusp (1- bmark)) (logxor gmsm pmark))

(t (delta-face-do (ash pmark 1) (1- bmark)
(ash gmsm2 -1) gmsm))))

(t (delta-face-do (ash pmark 1) bmark (ash gmsm2 -1) gmsm))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that the logical definition of the function includes the condition (good-input-p

pmark bmark gmsm2 gmsm), needed to be accepted by the ACL2 principle of definition.
This test has to be evaluated in every recursive call of the function delta-face-do,
making the logical definition slow for execution. The use of mbe guarantees that once
the guards are verified, the :exec body, without the test, can be safely used for execution
when the function is called on arguments satisfying its guard.

The guard of the function ensures that pmark, bmark, gmsm2 and gmsm are natural
numbers; and the bmark value must be lower than the number of active bits of gmsm.
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The guard verification of the delta-face-do function involves some auxiliary lemmas.
The call to defexec also generates proof obligations than ensure the termination of the
:exec body on the domain specified by its guard.

Finally, the ACL2 definition of delta-face is a call to the above auxiliary function,
with suitable initial values:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun delta-face (indx dmns gmsm)
(declare (ignore dmns))
(delta-face-do 1 indx gmsm gmsm))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We claim that the ACL2 version is faithful with the original Kenzo definition, since
we have tried to keep it as similar as possible. As we have said, the fact that ACL2 is a
subset of Common Lisp makes this translation almost direct. Besides the use of defexec
to define delta-face-do increases the efficiency and reduces the gap between Kenzo and
ACL2 definitions. Anyway, we strengthened our claim by an intensive testing. Since
both definitions can be executed on any compliant Common Lisp, it was very easy to
test that they return the same result for all pairs of inputs indx and gmsm, with gmsm

≤ 10000000 and indx < (logcount gmsm).

Finally, to state the correctness property of delta-face (faceoface-delta theorem)
the same methodology explained for the case of both degeneracy and face operators has
been used. That is to say, we prove the desired properties using the EAT model of the
delta-face function (based on increasing natural lists and which is much simpler) and
then translating it to the Kenzo model modulo the change of representation by means of
an intermediate binary representation. Let us note that in this case 5 auxiliar definitions
and 66 lemmas are necessary to verify the theorems included in the encapsulate of
Subsubsection 6.2.3.1 for the standard simplicial sets functions.

Then, we can write an ACL2 book ss-delta.lisp which generates a proof of the
fact that the standard simplicial set family objects with the Kenzo implementation are
simplicial sets, through the functions and properties of the generic simplicial set theory,
as was explained in the case of the spheres.

6.2.4.3 Kenzo simplicial sets associated with simplicial complexes family

This subsubsection ends the verification of programs presented in Section 5.1 about
simplicial complexes. To verify that the Kenzo simplicial sets associated with simpli-
cial complexes family is really a family of simplicial sets, we proceed in the same way
presented in Subsubsection 6.2.4.1.

First of all, we include in our development the generic-simplicial-sets book.

Subsequently we define the counterparts of the generic functions imp-face-gmsm,
imp-inv-gmsm and indexp from the Kenzo functions. For instance the version of
imp-inv-gmsm is defined as follows:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun imp-inv-ss-sc (sc q gmsm)
(and (equal (len gmsm) q) (member-equal gmsm sc)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, we prove the analogous theorems to faceoface and invariant-prop given
in Subsubsection 6.2.3.1.

Finally, we instantiate all the events from *simplicial-set-kenzo*, simply by this
macro call:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(definstance-*simplicial-set-kenzo*
((imp-face imp-face-ss-sc) (imp-inv-gmsm imp-inv-ss-sc) (indexp simplicialcomplexp))
"-ss-sc-family")

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

At this moment, new instantiated definitions and theorems are available in the ACL2
logical world, proving that our Kenzo implementation of the family of simplicial sets
associated with simplicial complexes is really a family of simplicial sets.

To summarize this section, a methodology to verify that Kenzo initial simplicial sets
are really simplicial sets has been presented. In addition, we have developed a generic
simplicial set theory which allows us to prove that families of Kenzo simplicial sets are
really families of simplicial sets. We believe that similar developments can be done for
other mathematical Kenzo structures (such as chain complexes, abelian simplicial groups
and so on) and the functions which construct initial spaces of that structures.

6.3 Modeling algebraic structures in ACL2

Algebraic structures are important when we are trying to define a mathematical setting.
The implementation of algebraic structures in theorem proving environments is a well-
known problem; and most of the theorem prover systems offer an implementation of
modules that can be used to this aim. Inspired by the work presented in the previous
section and with the aim of making easier the task of modeling algebraic structures, we
have developed a methodology to deal with algebraic structures in ACL2.

6.3.1 Modeling simple algebraic structures in ACL2

Most often, an object of some type in Mathematics is a structure with several com-
ponents, frequently of functional nature. In ACL2 the implementation of algebraic
structures can be done by means of record structures; in addition, one must specify the
rules satisfied by the algebraic structure, too. Records can be implemented in ACL2
thanks to the defstructure macro [Bro97].

We start by introducing the implementation of a very basic algebraic structure in
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ACL2. A magma is a set with a binary operation over it. The ACL2 implementation of
this structure is as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defstructure magma
inv
binary-op)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As it can be seen, a record, called magma, with two fields representing the invariant
function of the magma (that is to say, the characteristic function of the underlying set),
and the binary operation over it is defined.

When we define a record with the defstructure macro, several functions are auto-
matically defined in ACL2: (1) a function called make-<record> (where <record> is the
name of the record) which allows one to define concrete instances of the record; and (2)
a function per each slot of the record called <record>-<slot> (where <record> is the
name of the record and <slot> is the name of the slot) which is the reader function
allowing the access to the <slot> value of <record> instances.

Now, if we want to construct a concrete magma instance (for instance, the magma
with just the 0 element) we must proceed as follows. First of all, we define the invariant
function and the binary operation of the magma.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun inv-unit (a) (equal a 0))
(defun op-unit (a b) (declare (ignore a b)) 0)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, we use those functions to create an instance of the magma record by
means of the make-magma instruction, where the value of the inv and binary-op slots are
the function symbols of the previously defined functions:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-magma :inv ’inv-unit :binary-op ’op-unit)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this way we can define the magma structure and provide concrete instances of it.

However, our specification of magmas is not complete, since the rules satisfied by this
algebraic structure must be specified, too. To this aim, we have defined a function called
magma-conditions. This function takes as argument a magma instance and generates a
list of the rules that the functions of the magma instance must satisfy to define a magma
structure. Using this function with the previous example, we obtain the following result.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (magma-conditions (make-magma :inv ’inv-unit :binary-op ’op-unit)) z
(IMPLIES (AND (INV-UNIT X) (INV-UNIT Y))

(INV-UNIT (OP-UNIT X Y)))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The generated list specifies the closure axiom of magmas for the concrete functions of
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our magma instance. It is worth noting that the magma-conditions function does not
prove that the functions of a magma instance define a magma, but it just generates the
list of rules that those functions must satisfy to determine an object which belongs to
that structure. Thus, if we want to prove that the functions of a magma instance define
a magma; we must state a theorem whose body is the output of the magma-conditions

function.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm unit-is-a-magma
(implies (and (inv-unit x) (inv-unit y))

(inv-unit (op-unit x y))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When the above theorem is evaluated in ACL2, a proof attempt is started trying to
prove the rules generated by magma-conditions for the concrete magma instance. In this
case, the attempt is successful and the unit-is-a-magma theorem is introduced in the
ACL2 logic stating the magma properties for our implementation of the magma with
just the 0 element.

To make easier the definition of theorems like unit-is-a-magma, a macro called
check-magma-p has been defined. This macro takes a magma instance and a symbol s as
arguments and expands into a call of defthm. The name of the defthm is s-is-a-magma.
The term generated for the defthm event states that the functions of the magma instance
determine a magma; to this aim, the magma-conditions function is used. For instance,
in our example, we proceed as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (check-magma-p (make-magma :inv ’inv-unit :binary-op ’op-unit) ’unit2) z
...
Q.E.D
unit2-is-a-magma
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which produces the same theorem as before but with other name.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> :pe unit2-is-a-magma z
(DEFTHM UNIT2-IS-A-MAGMA
(IMPLIES (AND (INV-UNIT X) (INV-UNIT Y))

(INV-UNIT (OP-UNIT X Y))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this way, we can fully define the magma structure in ACL2.

Let us summarize our methodology to define mathematical structures in ACL2. Let
us suppose that we want to define a mathematical structure called A with components
a1, . . . , an. First of all, we define a record with so many slots as components has the
structure:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defstructure A
a1 ... an)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Afterwards, we define a function called A-conditions which has as argument an A

instance. This function generates the list of rules that the functions a1,. . ., an of the A

instance must satisfy to define an A structure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun A-conditions (A)
(A-rules A))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us remark that the A-conditions function does not prove that the functions of
an A instance define an A structure, but it generates the list of rules that those functions
must satisfy to determine an object which belongs to this mathematical structure. Thus,
if we want to prove that the functions of an A instance define an A structure; we must
state a theorem whose body is the output of the A-conditions function. To that aim,
a macro called check-A-p is defined. This macro takes an A instance and a symbol s as
arguments and expands into a call of defthm. The name of the defthm is s-is-an-A. The
term generated for the defthm event states that the functions of the A instance determine
an A structure; to this aim, the A-conditions function is used. It is worth noting that
the verification of some of the rules may require some auxiliary lemma.

The definition of macros like check-A-p was inspired by the definition of the ACL2
macro defequiv, see [KM].

In this way, algebraic structures can be defined in ACL2.

6.3.2 Modeling algebraic structures in terms of others in ACL2

Let us note that most often algebraic structures are defined in terms of others; for
instance, a semigroup is a magma where the binary operation satisfies the associativity
property. Thus, the semigroup structure should be defined in terms of the magma one.

Let us present the definition of the semigroup structure. First of all, we define a
semigroup record which has two functional slots representing the invariant function and
the binary operator.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defstructure semigroup
inv
binary-op)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, we define a function called semigroup-conditions in charge of generating
the list of rules which must satisfy the functions of a semigroup instance to define a
semigroup. The fact that a semigroup is a magma is taken into account in the definition
of semigroup-conditions which invokes magma-conditions. In addition, the associativity
property about the binary operation is included, too.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun semigroup-conditions (semigroup)
’(and
(magma-conditions (make-magma :inv (semigroup-inv semigroup)

:binary-op (semigroup-binary-op semigroup)))
(implies (and ((semigroup-inv semigroup) x)

((semigroup-inv semigroup) y)
((semigroup-inv semigroup) z))

(equal ((semigroup-binary-op semigroup)
((semigroup-binary-op semigroup) x y) z)

((semigroup-binary-op semigroup) x
((semigroup-binary-op semigroup) y z)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As in the case of magmas, we have defined a macro, called check-semigroup-p,
which invokes the function semigroup-conditions in order to check that the functions
of a semigroup instance define a semigroup. Let us present an example of its usage, for
instance, the functions considered in the magma case also define a semigroup.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (check-semigroup-p (make-semigroup :inv ’inv-unit :binary-op ’op-unit) ’unit) z
...
Q.E.D
unit-is-a-semigroup
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> :pe unit-is-a-semigroup z
(DEFTHM UNIT-IS-A-SEMIGROUP
(AND (IMPLIES (AND (INV-UNIT X) (INV-UNIT Y))

(INV-UNIT (OP-UNIT X Y)))
(IMPLIES (AND (INV-UNIT X) (INV-UNIT Y) (INV-UNIT Z))

(EQUAL (OP-UNIT (OP-UNIT X Y) Z) (OP-UNIT X (OP-UNIT Y Z))))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, we have defined the semigroup structure in terms of the magma one.

Let us summarize our methodology to define mathematical structures in terms of
others in ACL2. Let us suppose that we want to define a mathematical structure called
B with components b1, . . . , bm in terms of other mathematical structures A1, . . . , An.
First of all, we define a record with so many slots as components has the B structure:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defstructure B
b1 ... bm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, we define a function called B-conditions which has as argument a B

instance. This function generates the list of rules that the functions of the B instance
must satisfy to define a B structure; as B is defined in terms of A1, . . . , An; then, the
B-conditions function invokes the A1-conditions, . . ., An-conditions ones.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun B-conditions (B)
’(and (A1-conditions (make-A1 ...))

...
(An-conditions (make-An ...))
(B-concrete-rules B)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, a macro called check-B-p, which invokes the B-conditions function
and checks that the functions of a B instance define a B structure, is defined. This
macro has an analogous behavior to the one explained previously for the other macros.

So, we have presented a way of modeling algebraic structures which are defined in
terms of others in ACL2.

6.3.3 Modeling operations between algebraic structures in
ACL2

Up to now, we have presented how to model algebraic structures in ACL2; now we are
going to tackle the task of representing operations over those mathematical structures.

Let us consider the definition of a homomorphism between magmas. First of all, we
define a magma-homomorphism record which has three slots which represent the source
magma, the target magma and the map between them.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defstructure magma-homomorphism
magma-source
magma-target
map)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is worth noting that in this case, the values of both magma-source and magma-target

fields of a magma-homomorphism instance will be magma instances instead of function sym-
bols as in the rest of the cases. For instance, we define the trivial map between the
magma with just the element 0 and the magma with just the element 1:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun trivial (x) (declare (ignore x)) 1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

then, we define the trivial magma homomorphism between the magma with just the
element 0 and the magma with just the element 1 as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-magma-homomorphism
:magma-source (make-magma :inv ’inv-unit-0 :binary-op ’op-unit-0)
:magma-target (make-magma :inv ’inv-unit-1 :binary-op ’op-unit-1)
:map ’trivial)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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where the inv-unit-0 and op-unit-0 functions are respectively the inv-unit and op-unit

functions that have been defined in Subsection 6.3.1, and inv-unit-1 and op-unit-1 are
analogous to the inv-unit and op-unit functions but with 1 as element.

Afterwards, we define a function called magma-homomorphism-conditions in charge
of generating the list of rules which must satisfy the functions of a magma-homomorphism

instance to define a magma homomorphism. A magma homomorphism involves two mag-
mas; then the magma-homomorphism-conditions function invokes the magma-conditions

one, with both magma-source and magma-target values of the magma-homomorphism in-
stance; and includes the properties about homomorphisms between magmas.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun magma-homomorphism-conditions (magma-homomorphism)
’(and

(magma-conditions (magma-source magma-homomorphism))
(magma-conditions (magma-target magma-homomorphism))
(implies ((magma-inv (magma-source magma-homomorphism)) x)

((magma-inv (magma-target magma-homomorphism))
((map magma-homomorphism) x)))

(implies (and ((magma-inv (magma-source magma-homomorphism)) x)
((magma-inv (magma-source magma-homomorphism)) y)

(equal ((map magma-homomorphism)
((magma-binary-op (magma-source magma-homomorphism)) x y))

((magma-binary-op (magma-target magma-homomorphism))
((map magma-homomorphism) x) ((map magma-homomorphism) y)
))))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, as in the previous cases, we have defined a macro called
check-magma-homomorphism-p with the expected behavior. For instance, in the case
of the trivial magma homomorphism between the magma with just the 0 element and
the magma with just the element 1, we use the following command.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (check-magma-homomorphism-p
(make-magma-homomorphism

:magma-source (make-magma :inv ’inv-unit-0 :binary-op ’op-unit-0)
:magma-target (make-magma :inv ’inv-unit-1 :binary-op ’op-unit-1)
:map ’trivial) ’trivial) z

...
Q.E.D
trivial-is-a-magma-homomorphism
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> :pe trivial-is-a-magma-homomorphism z
(DEFTHM TRIVIAL-IS-A-MAGMA-HOMOMORPHISM
(AND (IMPLIES (AND (INV-UNIT-0 X) (INV-UNIT-0 Y))

(INV-UNIT-0 (OP-UNIT-0 X Y)))
(IMPLIES (AND (INV-UNIT-1 X) (INV-UNIT-1 Y))

(INV-UNIT-1 (OP-UNIT-1 X Y)))
(IMPLIES (INV-UNIT-0 X)

(INV-UNIT-1 (TRIVIAL X)))
(IMPLIES (AND (INV-UNIT-0 X) (INV-UNIT-0 Y))

(EQUAL (TRIVIAL (OP-UNIT-0 X Y))
(OP-UNIT-1 (TRIVIAL X) (TRIVIAL Y))))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, we have presented a way of defining and verifying homomorphisms between
magmas in ACL2.

Let us summarize our methodology to define operations between mathematical struc-
tures in ACL2. Let us suppose that we want to define an operation, called op, between
the mathematical structures A and B. First of all, we define a record with three slots:
(1) the source structure, (2) the target structure and (3) the map between the structures.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defstructure op
source target map)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For an op instance, the value of its source slot is an instance of the A structure, the
value of its target slot is an instance of the B structure and the value of its map slot is a
function symbol.

Afterwards, we define a function called op-conditions which has as argument an
op instance. This function generates the list of rules that the fields of the op instance
must satisfy to determine an op operation; namely, this function generates the list of
properties that the source must satisfy to be an A structure, the list of properties that
the target must satisfy to be a B structure, and the concrete properties associated
with the operation op; then, the op-conditions function invokes both A-conditions and
B-conditions functions with the values of the source and target slots of the op instance
respectively.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun op-conditions (op)
’(and (A-conditions (source op))

(B-conditions (target op))
(op-concrete-rules op)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, a macro called check-op-p using the op-conditions function is defined
to state that the functions of the op instance determine an op operation.

Therefore, we can define in ACL2 operations between mathematical structures.
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Figure 6.2: Algebraic structure hierarchy

6.3.4 An algebraic hierarchy in ACL2

Algebraic hierarchies are, in some cases, the foundation for large proof developments.
Several algebraic hierarchies have been proposed for the Coq system: the CCorn hier-
archy [GPWZ02] based on dependent records and used in the proof of the fundamental
theorem of algebra, the SSReflect hierarchy [GGMR09] based on packed classes and
currently used in the development of the proof of the Feit-Thompson Theorem, and also
an approach based on the Coq’s type class mechanism [SvdW10]; other examples can
be found in systems such as Nuprl [Jac95] and Lego [Bai99]. Nevertheless, the devel-
opment of an ACL2 algebraic hierarchy had not been undertaken until now up to our
knowledge. The main difference between the cited approaches and the presented in this
paper comes from the nature of the systems since all the quoted hierarchies are written
in higher order Theorem Provers based on type theory; on the contrary our hierarchy is
written in the untyped first order logic ACL2 Theorem Prover.

Following the guidelines provided in the previous subsections, we have defined the
structures: magma, semigroup, monoid, group, abelian group and ring. Moreover, some
of the main mathematical structures used in Algebraic Topology, such as morphisms,
chain complexes, reductions and so on; are also introduced. In Figure 6.2 we have
depicted the current status of our hierarchy and the relations among the structures.
A continue arrow entails that the source structure is defined in terms of the target
structure (see Subsection 6.3.2), and a dashed arrow means a use relationship (see Sub-
section 6.3.3).
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6.3.5 Generic theories about algebraic structures in ACL2

Up to now, we have presented how to model algebraic structures in ACL2. However,
we are also interested in reasoning with them in a generic way; that is to say, allowing
the user to state general properties about the structures and, subsequently, instantiate
those properties with concrete instances of the structures. Let us note, that this goal
involves the introduction of higher order results in ACL2.

A typical result involving mathematical structures has the following form: “Let x be
a mathematical structure A, then x satisfies the property P”. To formalize this kind of
results, we use a well known ACL2 technique to simulate higher order logic explained in
Subsection 6.1.2: the combination of encapsulates and functional instantiation. To be
more concrete, we proceed as follows.

First of all, we define the mathematical structure A with components a1,. . . , an as
was explained in the previous subsections. Afterwards, we use an encapsulate, where we
assume the existence of functions a1, . . ., an which determine an A structure, to check
this fact we use the check-A-p macro. Eventually, once that the encapsulate has been
admitted, we prove the formula P which describes the property P . This higher order
result ensures that any instance x of the A structure fulfills the property P.

Let us consider, the definition of a generic theory about groups. As we have said in
Subsection 6.3.4 we have defined the group structure following the guidelines presented
in the previous subsections. Then, we can use the following encapsulate to define a
generic group.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
; the signatures
(((invariant *) => *)
((prod * *) => *)
((inverse *) => *)
((nullel ) => *))
; witnesses
...
; the axioms
(check-group-p (make-group :inv ’invariant :binary-op ’prod

:inverse ’inverse :nullel ’nullel) ’group-encapsulate))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The first expression of the encapsulate is a list with the arity description of the
functions which are introduced with the encapsulate principle. In this case, we indicate
the arities of the four functions which describe a group: the invariant unary opera-
tion (the characteristic function of the underlying set), the prod binary operation (the
“product”), the inverse unary operation (the “inverse”) and the nullel constant (the
“identity element”).

Since we are defining invariant, prod, inverse and nullel functions in this way, the
functions defined from them are not executable. However, there exists a great advantage
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from the verification point of view; due to the fact that we are formalizing and verifying
a generic result which can be instantiated for concrete cases later on.

Finally, the properties assumed over the encapsulate functions (that is to say, the
group properties) are stated by means of the check-group-p. It is worth noting the profit
of using this approach to define the properties assumed over the encapsulate functions;
since otherwise we should introduce manually each one of the group axioms. In this way,
our definition of a generic group is more compact and less likely to forget some group
axiom.

After admitting the encapsulate in the ACL2 logic, we want to prove some properties
about groups. For instance, let (G, ·, −1, 1) be a group (where · denotes the binary
operation, the exponent −1 denotes the inverse operation and 1 the null element) then
g1, g2 ∈ G ⇒ (g1 · (g1−1 · g2)) · g2−1 = 1. This result can be proved in ACL2 with
the generic functions invariant, prod, inverse and nullel, thanks to the group axioms
stated in the encapsulate about them:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm property
(implies (and (invariant g1)

(invariant g2))
(equal (prod (prod g1 (prod (inverse g1) g2)) (inverse g2))

(nullel))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now, we are interesting in proving the same property but for a concrete group in-
stance. For instance, let us consider the implementation of the cyclic group of dimension
two, which can be defined in ACL2 as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun invariant-binary (g) (or (equal g 0) (equal g 1)))
(defun prod-binary (g1 g2) (mod (+ g1 g2) 2))
(defun inverse-binary (g) g)
(defun nullel-binary () 0)
(make-group :inv ’invariant-binary :binary-op ’prod-binary

:inverse ’inverse-binary :nullel ’nullel-binary)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Now instead of directly proving the property theorem for this concrete group, since
the above functions determine a group,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (check-group-p (make-group :inv ’invariant-binary :binary-op ’prod-binary
:inverse ’inverse-binary :nullel ’nullel-binary)

’cyclic2) z
...
Q.E.D
cyclic2-is-a-group
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

we can instantiate the looked for result, with the functional-instance hint.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm property-binary
(implies (and (invariant-binary a)

(invariant-binary b))
(equal (prod-binary (prod-binary a (prod-binary (inverse-binary a) b))

(inverse-binary b))
(nullel-binary)))

:hints (("Goal" :by (:functional-instance property
(invariant invariant-binary)
(prod prod-binary)
(inverse inverse-binary)
(nullel nullel-binary)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This means that once we have proved a result for the generic group, we do not need
to prove over and over again the same result for concrete group instances, a task that
in some cases can be not trivial, but we just instantiate the general result.

In this way, higher order results related to algebraic structures are obtained in ACL2.
It is worth noting that we can use this procedure to packing the “Generic Simplicial Set
Theory” presented in Subsection 6.2.3 making that development more readable. More-
over, we can use our mathematical structures modeling to provide an ACL2 infrastruc-
ture to formalize Kenzo higher order constructors as we will see in the following section;
but, first, let us present some differences between Kenzo and ACL2 mathematical struc-
tures that deserve to be explained.

6.3.6 Distance from ACL2 mathematical structures to Kenzo
mathematical structures

We are interesting in using our ACL2 mathematical structures to verify properties about
Kenzo mathematical structures. However, there are some differences between them, so,
let us briefly present the differences between ACL2 and Kenzo encodings for mathemat-
ical structures. Mathematical structures are implemented by means of classes in the
Kenzo system, see Subsection 1.2.1, and records in ACL2. In both cases the idea is the
same, mathematical structures are encoded by means of functions that represent their
operators. However, in most of the cases the number of slots of a Kenzo class and the
slots of the correspondent ACL2 record are different. This gap comes from the goal
pursued by Kenzo, devoted to compute homology groups, and the goal of ACL2, related
to verify the correctness of the programs.

On the one hand, some key slots to perform computations are irrelevant to develop
a proof, hence they are removed from the definition of the ACL2 record; for instance,
the definition of morphisms in Kenzo includes a slot used to implement a memoization
strategy which is not included in the ACL2 definition.

On the other hand, ACL2 records must include all the necessary slots of the mathe-
matical structure to be able to prove, but some of them are unnecessary to compute; so,
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they are not included in Kenzo. For instance, the ACL2 chain complex record includes
a slot that represents the invariant function of the structure, which is instrumental to
prove the correctness of our programs; however, as we explained in Paragraph 6.2.1.2.1,
due to the fact that Kenzo is a computational tool, the invariant functions were removed
from the Kenzo programs.

Then, we have a separation of concerns where Kenzo mathematical structures are
used for computing and its ACL2 version (which removes the computing slots of the
Kenzo version and includes new slots which are necessary for deduction purposes) can
be used for reasoning.

6.4 An ACL2 infrastructure to formalize Kenzo

Higher Order constructors

In Section 6.2 an ACL2 infrastructure allowing us to prove the correctness of Kenzo
programs for constructing initial simplicial sets has been explained. This can be inter-
preted as first step of a (simplified) Kenzo user interaction and can be modeled in a
first order logic. However, the construction of Kenzo spaces from other ones involves
higher order functional programming; thus, at least at first glance, higher order logic
tools (such as Isabelle or Coq) seem more suitable than ACL2 (a first order tool) to this
task. Nevertheless, as we commented at the beginning of this chapter, we can simulate
higher order logic results in ACL2, obtaining code much more closer to actual Kenzo
code than the one extracted from the proofs of the higher order logic tools.

This section is devoted to explain an ACL2 infrastructure, whose foundation is the
method for modeling mathematical structures explained in the previous section, allow-
ing us to prove the correctness of topological spaces constructed by the application of
topological constructors. We simulate higher order by applying a combination of the
encapsulate tool and the derived rule of inference named functional instantiation, this
is a well-known procedure to cope with this kind of situations in ACL2, see [BGKM91].
The feasibility of using our framework is illustrated with several examples.

The rest of this section is organized as follows. Subsection 6.4.1 is devoted to present
our methodology to formalize in ACL2 the constructors of spaces from other ones; first
by using the example of the direct sum of chain complexes (Subsubsection 6.4.1.1) and
subsequently explaining the general case (Subsubsection 6.4.1.2). The methodology is
evaluated with several case studies in Subsection 6.4.2. The gap between the verified
ACL2 code and the actual Kenzo code is described in Subsection 6.4.3.

6.4.1 Formalization of the Kenzo constructors in ACL2

This section is devoted to present our methodology to formalize the Kenzo constructors
of spaces from other ones in ACL2. In order to provide a better understanding of
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our methodology the basic example of the direct sum of chain complexes is presented.
Subsequently, the general case is explained.

6.4.1.1 The correctness of the Kenzo direct sum constructor

The notion of direct sum of two chain complexes was introduced in Definition 1.8. The
Kenzo system implements the direct sum of chain complexes, then, we want to verify
that its implementation acts as it is supposed to. This is translated to the ACL2 context
as follows.

A chain complex is an algebraic structure determined by means of their op-
erations and whose properties are given in an axiomatic way. In our framework
chain complexes are encoded in the way explained in Section 6.3; that is, we use
a record with 12 functional slots that correspond with the operations of the chain
complex structure. This record is called chain-complex and can be instantiated by
means of the make-chain-complex functions. In addition, we have defined the macro
check-chain-complex-p which verifies that chain complex record instances satisfies the
axiomatical properties of chain complexes. This macro takes a chain-complex instance
and a symbol s as arguments and expands into a call of defthm. The name of the
defthm is s-is-a-chain-complex. The term generated for the defthm event states that
the functions of the chain-complex instance determine a chain complex.

Then, we can define concrete chain complex instances and verify that they really
are chain complexes, but we want to prove that the direct sum Kenzo implementation
is correct for every pair of chain complexes. Then, we follow the approach presented
in Subsection 6.3.5 where a way of developing generic theories about mathematical
structures was provided by means of the combination of encapsulates and the functional
instantiation rule. Thus, a representation of two generic chain complex instances is given
in ACL2 by means of the following encapsulate.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
; Signatures
((inv-A * *) => *)
((diff-A * *) => *)
...
((inv-B * *) => *)
((diff-B * *) => *)
...
; Witnesses
...
; Properties
(check-chain-complex-p (make-chain-complex :inv-cc ’inv-A ... :diff-cc ’diff-A) ’A)

(check-chain-complex-p (make-chain-complex :inv-cc ’inv-B ... :diff-cc ’diff-B) ’B))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The above encapsulate should be read as follows. First of all, the signatures of the
functions which determine two generic chain complexes are provided. In this case, only
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the signatures of two of the functions which determine the chain complex structure,
namely inv (the characteristic function of the underlying graded set of generators of the
chain complex) and diff (the differential of the chain complex) are shown. The suffixes
-A and -B indicate that the functions correspond with the chain complexes A and B
respectively.

Subsequently, a witness for each one of the functions is given in order to avoid the
introduction of inconsistencies in ACL2. The ellipsis in this part of the encapsulate
means that we omit the local definitions (since they are irrelevant).

Finally, we gather the functions in two instances of the chain-complex record,
constructed with make-chain-complex. Besides, we assume the properties of chain
complexes for the functions which are declared in the encapsulate by means of the
check-chain-complex-p macro.

The effect of the above encapsulate is an extension of the ACL2 universe in which
the functions that determine two generic chain complexes have been defined. Now, our
intention is to develop the direct sum constructor, based on the Kenzo definition, and
prove that such constructor corresponds with the mathematical definition of the direct
sum of two chain complexes given in Definition 1.8.

To this aim, we have been inspired by the notion of functor (also called parametric
module) implemented in Coq [Chr03]. A similar notion can be found in Paulson’s
book on ML [Pau96]. In these works, the notion of functor builds a new module of a
determined type from some given modules, in other words the new module is a parametric
module. We translate this idea to our case, where the initial modules are the two generic
chain complex instances declared in the encapsulate, the functor is the set of function
definitions coming from the Kenzo system for the direct sum (that will be called functor
functions) which will be defined from the encapsulate functions:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun inv-ds (n x)
(and (inv-A n (car x))

(inv-B n (cadr x))
(equal (list (car x) (cadr x)) x)))

...
(defun diff-ds (n a)

(list (diff-A n (car a)) (diff-B n (cadr a))))
...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and the new module is a new chain complex instance gathering these functions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-chain-complex :inv-cc ’inv-ds ... :diff-cc ’diff-ds)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, we have defined the functions which determine the direct sum constructor in
ACL2. Now we want to prove that this constructor really acts as the direct sum of two
chain complexes. To this purpose, we need to verify that the direct sum constructor is
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a chain complex which satisfies the rules imposed on Definition 1.8.

The former task, the verification that the ACL2 direct sum constructor is a chain
complex, is carried out with the check-chain-complex-p macro.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check-chain-complex-p (make-chain-complex :inv-cc ’inv-ds ... :diff-cc ’diff-ds)
’direct-sum-a-b)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, the proof fails in the first attempt, but we only need the introduc-
tion of six auxiliary lemmas to succeed, and then the theorem stating the properties
of chain complexes for the direct sum is admitted in ACL2; this theorem is called
DIRECT-SUM-A-B-is-a-chain-complex.

The latter task, that is to say, prove that our definition of the direct sum constructor
satisfies the rules imposed on Definition 1.8 (namely, Mn = (Cn, Dn) and dn((x, y)) =
(dCn(x), dDn(y))), can be consider a quite simple task (ACL2 is able to find the proof
of the theorem without any additional help) because the functor functions have been
defined following the mathematical definition of the direct sum of chain complexes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defthm properties-ds
(and (implies (and (integerp n)

(inv-ds n x))
(and (equal (list (car x) (cadr x)) x)

(inv-A n (car x))
(inv-B n (cadr x))))

(implies (integerp n)
(equal (diff-ds n a)

(list (diff-A n (car a))
(diff-B n (cadr a)))))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Then, we have two ACL2 theorems which guarantee that our implementation of the
direct sum of chain complexes really models the direct sum of chain complexes.

This result can be reused for every pair of concrete chain complexes by means of the
derived rule of inference called functional instantiation. To make the instantiation of this
result easier, we have used the generic instantiation tool developed by Mart́ın-Mateos et
al. presented in Subsection 6.1.2. This tool provides a way to develop a generic theory
and to instantiate the definitions and theorems of the theory for different implementa-
tions. To be more concrete, the generic instantiation tool is used as follows. First of all,
we define a constant *ds* whose value is the list of the functor functions (inv-ds, . . . ,
diff-ds) and both DIRECT-SUM-A-B-is-a-chain-complex and properties-ds theorems.
Subsequently, we include, at the end of the book where we have developed our generic
theory about the direct sum constructor, a call to the macro make-generic-theory of
the generic instantiation tool with the constant *ds* as argument:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-generic-theory *ds*)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The above macro generates the macro named definstance-*ds* when the generic
book is included in other developments. When we want to construct the direct sum of two
particular chain complexes in a new book, we simply call the macro definstance-*ds*

with two arguments: the first one is an association list that relates the names of the
concrete functions of the two particular chain complexes to the names of the functions of
the generic chain complexes defined in the encapsulate of the direct sum book; and the
second argument is provided to give new names to the events obtained by instantiation,
that are the functor functions and the two theorems that state the correctness of the
direct sum constructor; that is, the events of the constant *ds*. For instance, if we have
the definitions of the chain complexes C and D:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun inv-C (n x) ... )
...

(defun diff-D (n a) ... )
...

(defun inv-D (n x) ...)
...

(defun diff-D (n a) ...)
...

(make-chain-complex :inv-cc ’inv-C ... :diff-cc ’diff-C
(make-chain-complex :inv-cc ’inv-D ... :diff-cc ’diff-D)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and if we have proved that these chain complex instances are really chain complexes
with the macro check-chain-complex-p:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check-chain-complex-p (make-chain-complex :inv-cc ’inv-C ... :diff-cc ’diff-C) ’C)

(check-chain-complex-p (make-chain-complex :inv-cc ’inv-D ... :diff-cc ’diff-D) ’C)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

then, the simple macro call:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(definstance-*ds*
((inv-A inv-C) ... (diff-A diff-C) ...
(inv-B inv-D) ... (diff-B diff-D) ...) "-C-D")

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

automatically defines the functions inv-ds-C-D, . . . , diff-ds-C-D from the origi-
nal ones inv-ds, . . . , diff-ds and instantiates the theorems related to the correct-
ness of the direct sum construction producing two theorems: properties-ds-C-D and
DIRECT-SUM-A-B-is-a-chain-complex-C-D. In this way, the direct sum of the concrete
chain complexes C and D is defined and the proof of the fact that it is a chain com-
plex and follows the definition given in Kenzo is automatically generated without any
additional user interaction.
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6.4.1.2 The general case

In the previous subsubsection, the correctness of the direct sum constructor of the Kenzo
system has been stated in ACL2. The methodology followed in that case can be extrap-
olated to prove the correctness of all the construction of Kenzo objects from other ones.
This is due to the fact that they implement mathematical constructions which always
follow the same pattern.

Pattern 6.3. Let X1, . . . , Xn be objects belonging to the mathematical structures
T1, . . . , Tn respectively such that they satisfy the properties A1, . . . , Am. Then, the φ
constructor of X1, . . . , Xn, φ(X1, . . . , Xn), is an object belonging to the mathematical
structure T such that the rules R1, . . . , Rk are satisfied.

We have undertaken the task of developing a methodology in ACL2 which allows us
to verify that the Kenzo constructors which implement the different constructors which
follow the above pattern act as they are supposed to.

First of all, we define each one of the mathematical structures T1, . . . , Tn in the way
explained in Section 6.3. That is to say, we encode the algebraic structures T1, . . . , Tn
with the records T1, . . . , Tn (that can be instantiated with the functions make-T1, . . . ,
make-Tn) and define the macros check-T1-p, . . . , check-Tn-p, that check the properties
of the respective mathematical structure for different record instances.

Then, we can define concrete instances of the mathematical structures T1,. . ., Tn
and verify that they really are objects belonging to those mathematical structures, but
we want to prove that the Kenzo implementation of φ(X1, . . . , Xn) is correct for every
sequence of objects X1, . . . , Xn belonging to the mathematical structures T1, . . . , Tn such
that they satisfy the properties A1, . . . , Am. Then, we follow the approach presented
in Subsection 6.3.5 where a way of developing generic theories about mathematical
structures is provided by means of the combination of encapsulates and the functional
instantiation rule. Thus, a representation of a sequence of generic objects X1, . . . , Xn

belonging to the mathematical structures T1, . . . , Tn such that they satisfy the properties
A1, . . . , Am is given in ACL2 by means of the following encapsulate.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
; Signatures
...
; Witnesses
...
; Properties
(check-T1-p (make-T1 ...) ’X1)
...
(check-Tn-p (make-Tn ...) ’Xn)

(defthm property-A1 ...)
...
(defthm property-Am ...))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The effect of the above encapsulate is an extension of the ACL2 universe in which
the functions that determine a sequence of generic objects X1, . . . , Xn belonging to the
mathematical structures T1, . . . , Tn such that satisfy the properties A1, . . . , Am (speci-
fied respectively by means of property-A1, . . ., property-Am theorems) have been defined.
Now, our intention consists of implementing φ(X1, . . . , Xn), based on the Kenzo defini-
tion, and prove that such constructor acts like φ(X1, . . . , Xn); that is to say, it belongs
to the mathematical structure T and satisfies the rules R1, . . . , Rk.

From the generic functions defined in the previous encapsulate, we develop the con-
structor φ(X1, . . . , Xn) based on its Kenzo definition. This task is performed by the
definition of a set of functions that depends on the functions which define the generic
objects X1, . . . , Xn; which are called functor functions. The functor functions are gath-
ered in a T record which encodes the type T of φ(X1, . . . , Xn). Then, we need to prove
that the new object belongs to the mathematical structure T with the macro function
check-T-p.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check-T-p (make-T ...) ’phi)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us remark that macros like check-T-p generate a proof attempt that can be
unsuccessful; then some auxiliary lemmas are needed to guide the ACL2 system to
prove the result.

The last step consists of proving that our constructor fulfills the rules R1,. . ., Rk of
the constructor φ(X1, . . . , Xn). These rules are proved by means of a bunch of ACL2
theorems rule-R1, . . . , rule-Rk which describe respectively the rules R1, . . . , Rk. The
task of verifying these theorems is usually straightforward because the Kenzo construc-
tors are normally defined following the rules R1, . . . , Rk; so, in some cases ACL2 is able
to find the proof in the first attempt without any additional help; but the trickiest parts
of the proofs usually need external help.

Hence, we have provided a methodology to prove theorems which guarantees that
the Kenzo implementation of φ(X1, . . . , Xn) acts like it is supposed to. This kind of
results is involved in approximately the 60% of the Kenzo code. However, in spite of
being a good starting point to verify the correctness of Kenzo constructors from other
spaces, our methodology does not become this task trivial because of the fact that the
Kenzo implementation of some operators, such as the loop space of simplicial sets or the
cobar of a coalgebra, are quite complicated and, therefore, verifying its correctness can
be a challenging task.

Eventually, in order to reuse the results of the generic books developed in the way
presented throughout this subsubsection, we use the derived rule of inference named
functional instantiation. This tool allows us to instantiate theorems about partially
defined functions for new functions if they are known to have the same properties.
Nevertheless, the number of events to instantiate can be high, so, to overcome this
problem we have used the generic instantiation tool presented in Subsection 6.1.2. This
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tool provides a way to develop a generic theory and to instantiate the definitions and
theorems for different implementations in an easy way. This tool is used as follows,
we define a constant *theory* whose value is the list of functor functions, the theorem
produced in the call (check-T-p (make-T ...) ’phi) and the properties related to the
mathematical structure: rule-R1, . . . , rule-Rk. Finally, at the end of the book, let us
call it “generic.lisp”, we include a call to the macro of the generic instantiation tool
make-generic-theory with the constant *theory* as argument.

This macro automatically defines a new macro called definstance-*theory* when
the book “generic.lisp” is included by a user in other developments. Then, the events
(the functor functions and the theorems that state the correctness of the construc-
tor) of the generic book can be easily instantiated with only a simple macro call to
definstance-*theory* with two arguments: the first one is an association list that re-
lates the names of the concrete functions to the names of the generic functions defined
in the encapsulate of the book “generic.lisp”; and the second argument is provided to
give new names to the events obtained by instantiation, that are the functor functions
and the theorems that state the correctness of the operator φ(X1, . . . , Xn). In this way,
if we give objects Y1, . . . , Yn that are concrete instances of the mathematical structures
T1, . . . , Tn satisfying the properties A1, . . . , Am, the object φ(Y1, . . . , Yn), based on the
Kenzo implementation, is defined and a proof of its correctness is automatically gener-
ated without any additional user interaction.

6.4.2 Case studies

In order to evaluate how practical our methodology was, we have started formalizing
some important results included in the Kenzo system. In this section, we present some
of them. The complete development of these results and also more examples can be con-
sulted in [Her11]. Our main source of inspiration for the proofs of the results presented
in this subsection was some lectures notes on Constructive Homological Algebra by J.
Rubio and F. Sergeraert [RS06].

6.4.2.1 The Easy Perturbation Lemma

The Easy Perturbation Lemma was stated in Theorem 1.44. This lemma is one basic
result in the effective homology method and has been previously formalized both in
Isabelle and Coq [AD09]. To facilitate the reading of this part of the memoir, the Easy
Perturbation Lemma is stated as follows.

Theorem (Easy Perturbation Lemma, EPL, Theorem 1.44). Let C∗ = (Cn, dCn)n∈N
and D∗ = (Dn, dDn)n∈N be two chain complexes, ρ = (f, g, h) : C∗⇒⇒D∗ a reduction,
and δD a perturbation of dD. Then a new reduction ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗ can be
constructed where:

1) C ′∗ is the chain complex obtained from C∗ by replacing the old differential dC by
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the perturbed differential dC + g ◦ δD ◦ f ;

2) the new chain complex D′∗ is obtained from the chain complex D∗ only by replacing
the old differential dD by dD + δD;

3) f ′ = f ;

4) g′ = g;

5) h′ = h.

Let us note that the Easy Perturbation Lemma defines an operator which follows
Pattern 6.3:

• the objects X1, . . . , Xn are: ρ = (f, g, h) : C∗⇒⇒D∗ (where C∗ = (Cn, dCn)n∈N and
D∗ = (Dn, dDn)n∈N) and δD;

• the mathematical structures T1, . . . , Tn are: reduction (the type of ρ) and mor-
phism (the type of δD);

• there is just one property about ρ and δD, namely the fact that δD is a perturbation
of dD;

• φ(ρ, δD) is the object which constructs ρ′ = (f ′, g′, h′) : C ′∗⇒⇒D′∗,

• the mathematical structure T is reduction, and

• the rules R1, . . . , Rk are: C ′∗ = (Cn, dCn + g ◦ δD ◦ f)n∈Z, D′∗ = (Dn, dDn + δD)n∈Z,
f ′ = f , g′ = g and h′ = h.

Then, following the guidelines given in Subsubsection 6.4.1.2 we proceed as follows.
First of all, we have defined the necessary records and macros related to reductions and
morphisms. Due to the fact that both reductions and morphisms are operators, we
followed the guidelines given in Subsection 6.3.3 to model these operations in ACL2.
Namely, a reduction is encoded by means of the following record.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defstructure reduction
tcc bcc f g h)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the instances of the reduction record, the value of the slots tcc and bcc are chain
complex instances and the value of the slots f, g and h are function symbols.

Afterwards, a generic reduction and a generic perturbation of the chain complex D∗
of the generic reduction are declared using the encapsulate mechanism.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
...
(check-reduction-p
(make-reduction
:tcc (make-chain-complex :group-operation-cc ’group-operation-top ...

:diff-cc ’diff-top)
:bcc (make-chain-complex ...) :f ’f :g ’g :h ’h) ’original-reduction)

(check-morphism-p (make-morphism ... :map ’delta) ’delta)

(defthm perturbation-property ...) )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From these objects, the functor functions can be defined to declare the new reduc-
tion. For instance the differential of the new chain complex C ′∗ of the new reduction is
(dtop + g ◦ δD ◦ f) which is declared in ACL2 as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun new-diff-top (n a)
(group-operation-top (1- n) (diff-top n a) (g (1- n) (delta n (f n a)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Once we have defined all the functions which determine the new reduction, we can
gather them in a new reduction instance and prove that they really determine a reduc-
tion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check-reduction-p
(make-reduction
:tcc (make-chain-complex ... :diff-cc ’new-diff-top)
:bcc (make-chain-complex ...)
:f ’f :g ’g :h ’h) ’EPL)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The proof attempt generated by the call to the above macro is unsuccessful in the
first attempt; so we need the proof of some auxiliary lemmas. It is worth noting that
the macro check-reduction-p checks 83 properties that are necessary to certify that an
object of the reduction structure determines a reduction; however, most of them are
automatically obtained by ACL2 and only the most tricky ones (namely 13 properties)
need auxiliary lemmas. These auxiliary lemmas are formally proved in ACL2 by applying
equational reasoning over morphisms, following closely the style of a paper and pencil
proof.

Eventually, we need to prove that the new reduction is the one that we are look-
ing for; that is to say, we need to prove the rules R1, . . . , Rn which in this case are:
C ′∗ = (Cn, dCn + g ◦ δD ◦ f)n∈Z, D′∗ = (Dn, dDn + δD)n∈Z, f ′ = f , g′ = g and
h′ = h. However, as usual, this ACL2 proof is straightforward and does not need any
help from the user to succeed.
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6.4.2.2 Composition of reductions

The example presented in this subsubsection comes from the composition of reductions
theorem, see Theorem 1.40. As in the case of the EPL, in order to facilitate the reading
of this part of the memoir, the composition of reductions theorem is stated as follows.

Theorem (Composition of reductions, Theorem 1.40). Let ρ = (f, g, h) : C∗⇒⇒D∗ and
ρ′ = (f ′, g′, h′) : E∗⇒⇒F∗ be two reductions such that D∗ = E∗. Then a new reduction
ρ′′ = (f ′′, g′′, h′′) : C ′∗⇒⇒D′∗ can be constructed where:

1) C ′∗ is the chain complex C∗;

2) D′∗ is the chain complex F∗;

3) f ′′ = f ′ ◦ f ;

4) g′′ = g ◦ g′;

5) h′′ = h+ g ◦ h′ ◦ f .

Let us note that the composition of reductions Theorem defines an operator which
follows Pattern 6.3:

• the objects X1, . . . , Xn are: ρ = (f, g, h) : C∗⇒⇒D∗ and ρ′ = (f ′, g′, h′) : E∗⇒⇒F∗;

• the only mathematical structure is the reduction (the type of ρ and ρ′);

• there is just one property about ρ and ρ′, namely the fact that D∗ = E∗;

• φ(ρ, ρ′) is the object which constructs ρ′′ = (f ′′, g′′, h′′) : C ′∗⇒⇒D′∗;

• the mathematical structure T is the reduction, and

• the rules R1, . . . , Rk are: C ′∗ = C∗, D
′
∗ = F∗, f

′′ = f ′ ◦ f , g′′ = g ◦ g′ and
h′′ = h+ g ◦ h′ ◦ f .

The verification of the correctness of the Kenzo constructor which implements the
composition of reductions follows the same schema presented in Subsubsection 6.4.2.1
to verify the correctness of the construction related to the Easy Perturbation Lemma.

First of all, two generic reductions are declared using the encapsulate mechanism.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
...
(check-reduction-p
(make-reduction
:tcc (make-chain-complex ...)
:bcc (make-chain-complex ...)
:f ’f1 :g ’g1 :h ’h1) ’reduction-1))

(check-reduction-p
(make-reduction
:tcc (make-chain-complex ...)
:bcc (make-chain-complex ...)
:f ’f2 :g ’g2 :h ’h2) ’reduction-2))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the functions which determine the new reduction are defined. For
instance the f function of the new reduction is defined as follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun f (n a)
(f1 n (f2 n a)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, we can gather those functions in a reduction instance and prove that
they really determine a reduction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check-reduction-p
(make-reduction
:tcc (make-chain-complex ...)
:bcc (make-chain-complex ...)
:f ’f :g ’g :h ’h) ’cmps-reduction)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As in the case of the Easy Perturbation Lemma, the proof effort is considerably
reduced: from the 83 properties that are necessary to certify that the functions of a
reduction instance determine a reduction, only 11 of them need some auxiliary lemma
to be proved.

Eventually, we need to prove that the new reduction is the one that we are looking
for.

6.4.2.3 The Cone constructor

The next example is related to the cone construction of a chain complex morphism, see
Definition 5.28. This example is similar to the construction of the direct sum of two
chain complexes.

Let us note that the cone of a chain complex morphism defines an operator which
follows Pattern 6.3:
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• there is only one initial object: ϕ : B → A;

• there is only one initial mathematical structure: chain complex morphism (the
type of ϕ);

• in this case there are not properties A1, . . . , Am;

• φ(ϕ) constructs the object Cone(ϕ) = (Cn, dn)n∈Z;

• the mathematical structure T is chain complex, and

• the rules R1, . . . , Rk are Cn = (An, Bn−1) and dn = (dan + ϕn,−dbn−1).

The verification of the correctness of the Kenzo constructor which implements the
cone of a chain complex morphism follows the same schema presented in Subsubsec-
tion 6.4.1.1 to verify the correctness of the construction related to the direct sum of
chain complexes.

First of all, a generic chain complex morphism is defined using the encapsulate mech-
anism.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
...
(check-chain-complex-morphism-p
(make-chain-complex-morphism-p
:source (make-chain-complex ...)
:target (make-chain-complex ...)
:map ’varphi) ’varphi))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the functions which determine the cone chain complex are provided.
Afterwards, we can gather those functions in a chain complex instance and prove that
they really determine a chain complex.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check-chain-complex-p (make-chain-complex ...) ’cone-varphi)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, we ACL2 successfully prove that Cn = (An, Bn−1) and dn = (dan +
ϕn,−dbn−1), that are the rules R1, . . . , Rn in this case.

6.4.2.4 Cone Equivalence Theorem

In the previous subsubsections we have presented several generic constructors which can
be instantiated for concrete objects thanks to the generic instantiation tool presented in
Subsection 6.1.2. However, we can also use the generic theories previously developed to
generate new generic theories as we are going to see in the following two examples.
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The following result is related to the construction of the equivalence of the cone of a
chain complex morphism. This result was presented in Theorem 5.29, but we restate it
here to make the reading of this subsubsection easier.

Theorem (Cone Equivalence Theorem, Theorem 5.29). Let A∗⇐⇐⇒⇒HA∗ and
B∗⇐⇐⇒⇒HB∗ be two equivalences and ϕ a chain complex morphism between B∗ and
A∗:

DA∗

lha

��

rha

��

lfa||

rfa

##

DB∗

lhb

��

rhb

��

lfb||

rfb

##
A∗

lga
<<

HA∗

rga

cc

B∗

lgb
<<

ϕ

gg HB∗
rgb

cc

then we can construct an equivalence for Cone(ϕ).

The proof of this theorem provides all the formulas to define an operator which
follows Pattern 6.3:

• the objects X1, . . . , Xn are: A⇐⇐⇒⇒HA, B⇐⇐⇒⇒HB and ϕ : B → A;

• the mathematical structures T1, . . . , Tn are: equivalence (the type of A⇐⇐⇒⇒HA
and B⇐⇐⇒⇒HB) and chain complex morphism (the type of ϕ);

• in this case there are not properties A1, . . . , Am;

• φ(A⇐⇐⇒⇒HA,B⇐⇐⇒⇒HB,ϕ) constructs the object:

DC∗

lh

��

rh

��

lfyy

rf

##
Cone(ϕ)

lg
99

HC∗

rg

cc

• the mathematical structure T is the equivalence, and

• the rules R1, . . . , Rk are:

– DC∗ = Cone(lga ◦ ϕ ◦ lfb);
– HC∗ = Cone(rfa ◦ lga ◦ ϕ ◦ lfb ◦ rgb);
– lf = (lfa, lfb);

– lg = (lga, lgb);
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– lh = (lha,−lhb);
– rf = (rha+ rfa ◦ lga ◦ ϕ ◦ lfb ◦ rhb, rhb);
– rg = (rga− rha ◦ lga ◦ ϕ ◦ lfb ◦ rgb, rgb), and

– rh = (rha+ rha ◦ lga ◦ ϕ ◦ lfb ◦ rhb,−rhb).

In this case, the verification of the correctness of the Kenzo constructor which imple-
ments the equivalence constructor associated with the Cone Equivalence Theorem has
some steps that we consider interesting enough to be detailed.

First of all, as we have done in the rest of the cases, an encapsulate which defines
two generic equivalences A⇐⇐⇒⇒HA, B⇐⇐⇒⇒HB and a generic chain complex morphism
ϕ : B → A is constructed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
...
(check-heq-p
(make-heq
:lrdc (make-reduction ... :f ’lfa :g ’lga :h ’lha)
:rrdc (make-reduction ... :f ’rfa :g ’rga :h ’rha)) ’heq-a)

(check-heq-p
(make-heq
:lrdc (make-reduction ... :f ’lfb :g ’lgb :h ’lhb)
:rrdc (make-reduction ... :f ’rfb :g ’rgb :h ’rhb)) ’heq-b)

(check-chain-complex-morphism-p
(make-chain-complex-morphism-p
:source (make-chain-complex ...)
:target (make-chain-complex ...)
:map ’varphi) ’varphi))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the book where we have defined the cone constructor, let us call it
“cone.lisp”, is included.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(include-book "cone")
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When the “cone.lisp” book is included, the macro definstance-*cone* is defined. This
macro allows us to build the cone of a chain complex morphism and instantiate the
theorems which assert the correctness of that construction. In this way, our amount of
work is dramatically reduced because with this tool the chain complexes: C∗ = Cone(ϕ),
DC∗ = Cone(lga ◦ ϕ ◦ lfb) and HC∗ = Cone(rfa ◦ lga ◦ ϕ ◦ lfb ◦ rgb) are defined and
the theorems which assert their correctness are instantiated.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(definstance-*cone*
(...
(varphi varphi))
"-cone-A-B"))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun lga-varphi-lfb (n a)
(lga n (varphi n (lfb n a))))

(definstance-*cone*
(...
(varphi lga-varphi-lfb))

"-cone-DA-DB"))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun rfa-lga-varphi-lfb-rgb (n a)
(rfa n (lga-varphi-lfb n (rgb n a))))

(definstance-*cone*
(...
(varphi rfa-lga-varphi-lfb-rgb))

"-cone-HA-HB"))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, the morphisms lf , lg, lh, rf , rg and rh are defined following the rules
given in the proof of the Cone Equivalence Theorem, which are also followed by the Kenzo
implementation. Afterwards, we can gather the functions generated in the instantiation
process and the ones used to define the morphisms lf , lg, lh, rf , rg and rh, in an
equivalence instance and prove that they really determine an equivalence.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check-heq-p
(make-heq
:lrdc (make-reduction ... :f ’lf :g ’lg :h ’lh)
:rrdc (make-reduction ... :f ’rf :g ’rg :h ’rh)) ’cone-equivalence)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eventually, we need to prove that the above equivalence is the one that we are looking
for. However, it is worth noting that the rules related to DC∗ = Cone(lga ◦ ϕ ◦ lfb)
and HC∗ = Cone(rfa ◦ lga ◦ ϕ ◦ lfb ◦ rgb) were instantiated when we defined these
objects from the generic cone theory; so, here the proof effort is reduced thanks to the
generic instantiation tool and we only need to prove that lf , lg, lh, rf , rg and rh are
well defined, a straightforward task.

6.4.2.5 The SES1 Theorem

This last example uses the generic theories previously developed to generate a generic
theory related to SES1 Theorem, see Theorem 5.32.

Theorem (SES1 Theorem, Theorem 5.32). Let

0 A0oo
σ // B
j

oo
ρ // C
i

oo 0oo
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be an effective short exact sequence of chain complexes and B⇐⇐⇒⇒HB, C⇐⇐⇒⇒HC be
two equivalences. Then an equivalence for the chain complex A can be constructed.

The proof of this theorem provides all the formulas to define an operator which
follows Pattern 6.3:

• the objects X1, . . . , Xn are: A, B⇐⇐⇒⇒HB, C⇐⇐⇒⇒HC, i, j, σ and ρ;

• the mathematical structures T1, . . . , Tn are: chain complex (the type of A), equiv-
alence (the type of B⇐⇐⇒⇒HB and C⇐⇐⇒⇒HC), chain complex morphism (the
type of i and j) and morphism (the type of σ and ρ);

• the properties A1, . . . , Am state that A, B, C, i, j, σ and ρ determine an effective
short exact sequence;

• φ(A,B⇐⇐⇒⇒HB,C⇐⇐⇒⇒HC, i, j, σ, ρ) constructs the object A⇐⇐⇒⇒HA,

• the mathematical structure T is the equivalence, and

• the rules R1, . . . , Rk are the properties which determine the construction of
A⇐⇐⇒⇒HA, the interested reader can see them in [RS06].

The procedure to construct the equivalence of the chain complex A given in the
proof of SES1 Theorem is as follows (we present here a sketch of the procedure, the
complete one can be consulted in [RS06]). First of all, the chain complex Cone(i) is
constructed; afterwards, we apply the Cone Equivalence Theorem obtaining the equiv-
alence Cone(i)⇐⇐TC⇒⇒RC. Subsequently, a reduction A⇐⇐Cone(i) is constructed.
Eventually, using Theorem 1.40 the reductions A⇐⇐Cone(i) and Cone(i)⇐⇐TC can be
composed and the equivalence A⇐⇐TC⇒⇒RC is obtained.

This process is translated into ACL2 as follows. First of all, as usual, an encapsulate
which defines a chain complex A, two equivalences B⇐⇐⇒⇒HB and C⇐⇐⇒⇒HC, two
chain complex morphisms i and j and two morphisms σ and ρ such that they determine
a short exact sequence is constructed.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(encapsulate
...
(check-chain-complex-p (make-chain-complex ...) ’A)

(check-heq-p (make-heq ...) ’heq-b)

(check-heq-p (make-heq ...) ’heq-c)

(check-chain-complex-morphism-p (make-chain-complex-morphism-p ... :map ’i) ’i)

(check-chain-complex-morphism-p (make-chain-complex-morphism-p ... :map ’j) ’j)

(check-morphism-p (make-morphism-p ... :map ’sigma) ’sigma)

(check-morphism-p (make-morphism-p ... :map ’rho) ’rho)

(defthm rho-i ...)
(defthm i-rho-sigma-j ...)
(defthm j-sigma ...)
(defthm rho-sigma ...)
(defthm j-i ...)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the book where we have defined the Cone Equivalence Theorem, let
us call it “cone-equivalence.lisp”, is included.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(include-book "cone-equivalence")
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The macro definstance-*cone-equivalence* is defined when the “cone-equivalence.lisp”
book is included. This macro builds from two equivalences E⇐⇐⇒⇒HE, F⇐⇐⇒⇒HF and a
chain complex morphism ϕ : F → E the equivalence Cone(ϕ)⇐⇐⇒⇒H with the formulas
presented in the previous subsection. In this way, our amount of work is dramatically
reduced because with this tool we can obtain Cone(i)⇐⇐TC⇒⇒RC from B⇐⇐⇒⇒HB,
C⇐⇐⇒⇒HC and i : B ← C.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(definstance-*CONE-equivalence*
(...
(varphi i))

"-cone-SES1")
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Afterwards, the reduction A⇐⇐Cone(i) is defined following the formulas given in
the proof of the SES1 Theorem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(check-reduction (make-reduction ...) ’cone=>>A)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subsequently, the book where we have defined the composition of reductions, let us
call it “reduction-cmps.lisp”, is included.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(include-book "reduction-cmps")
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When the “reduction-cmps.lisp” book is included, the macro definstance-*cmps* is
defined. This macro builds from two reductions A1⇐⇐B1 and B1⇐⇐C1 a new reduction
A1⇐⇐C1 with the formulas provided in Theorem 1.40. In this way, our amount of work
is dramatically reduced because with this tool we can obtain A⇐⇐TC from A⇐⇐Cone(i)
and Cone(i)⇐⇐TC.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(definstance-*cmps*
(...)
"-tc-A")

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eventually, gathering the reductions A⇐⇐TC and TC⇒⇒RC, the equivalence
A⇐⇐TC⇒⇒RC is obtained.

Here again, we see the importance of using the generic instantiation tool to instan-
tiate the generic theories because of the fact that the number of events which must be
instantiated when we want to use the generic theories related to the Cone Equivalence
Theorem and the composition of reductions is quite big; therefore, this tool makes this
process easier.

6.4.3 Distance from ACL2 to Kenzo code

Let us present now the gap between the code that is used in our ACL2 proofs, related
to this part of the memoir, and the actual Kenzo code.

In addition to the differences between the representation of mathematical structures
in Kenzo and ACL2, which was explained in Subsection 6.3.6, there are other two main
differences.

Kenzo objects such as chain complexes or reductions are defined over the ring Z (the
most important case in Algebraic Topology; see [RS06]); on the contrary in our ACL2
formalization we work over a generic ring R; then the slots to define the ring R are
included in our records. As we work over a generic ring R instead of working with Z the
Kenzo results are a particular case of our formalization.

The second difference is related to the values of the slots of the mathematical struc-
tures. Several Kenzo functions have as input other functions, this feature is not allowed
in the ACL2 theorem prover. Then, an uncurrying process is needed. For instance
the definition of the values of f, g and h in the composition of reductions (Subsubsec-
tion 6.4.2.2) is given in Kenzo as follows.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(make-instance ’reduction
...
:f (cmps bf tf)
:g (cmps tg bg)
:h (add th (i-cmps tg bh tf)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where bf, bg, bh, tf, tg and th are respectively the functions f , g and h of the C∗⇒⇒D∗
and D∗⇒⇒F∗ reductions, cmps is the function in charge of the composition of two func-
tions, add is the sum of functions and i-cmps is a macro composing n-functions with
n ≥ 2. The functions cmps, add and i-cmps take functions as arguments. Then, we need
to uncurry these functions and then the functions f, g and h are defined in ACL2 as
follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(defun f (n a) (tf n (bf n a)))
(defun g (n a) (bg n (tg n a)))
(defun h (n a) (group-operation-top (1+ n) (th n a) (tg (1+ n) (bh n (tf n a)))))
...
(make-reduction
...
:f ’f
:g ’g
:h ’h)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The uncurrying technique is a well-known form of defunctionalization [Rey98] and
can be considered as a safe transformation.

Therefore, we can consider that the transformations between real Kenzo code and
the one that we are using in our ACL2 verification developments are safe.
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Conclusions

This work should be understood as a first step towards an integral assistant for research
and teaching in Algebraic Topology. From our point of view, the main contributions
accomplished in this work, gathered by chapters, are the following ones.

• Chapter 2:

◦ We have showed how some guidance can be achieved in the field of Com-
putational Algebraic Topology, without using standard Artificial Intelligence
techniques. The idea is to build an infrastructure, giving a mediated access
to an already-written symbolic computation system. Putting together both
Kenzo itself and this infrastructure, we have produced the Kenzo framework
which is able to be connected to different clients (desktop GUIs, web applica-
tions and so on). In general, this can imply a restriction of the full capabilities
of the kernel system, but the interaction with it is easier and enriched, con-
tributing to the objective of increasing the number of users of the system.
This work has been presented in [HPRS08, HPR08b].

◦ We have included the following intelligent enhancements in the Kenzo frame-
work: (1) controlling the input specifications on constructors, (2) avoiding
some operations on objects which would raise errors, (3) chaining methods in
order to provide the user with new tools, and (4) using expert knowledge to
obtain some results not available in the Kenzo system. This work has been
published in [HP10b].

◦ As a by-product, we have developed OpenMath Content Dictionaries devoted
to Simplicial Algebraic Topology. Namely, for each one of the mathematical
structures of the Kenzo system, an OpenMath Content Dictionary has been
defined. The definitions given in these Content Dictionaries include the ax-
iomatic parts and have been used to interoperate with the ACL2 deduction
system. This work can be found in [HPR09c].

◦ We have developed a first version of a system with the same aim that the
Kenzo framework, but which can process queries concurrently and where
persistent results are available. This work has been presented in [HPR09b].

313
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• Chapter 3:

◦ We have implemented a plug-in framework which allows us to add new func-
tionality to the Kenzo framework without modifying the original source code.
This plug-in framework has allowed us to increase the capabilities of the
Kenzo framework by means of new Kenzo functionalities or the connection
with other systems such as Computer Algebra systems or Theorem Prover
tools.

◦ Since the final users of the Kenzo framework are Algebraic Topology students,
teachers or researchers that usually do not have a background in Common
Lisp, we have developed a user-friendly front-end allowing a topologist (stu-
dent, teacher or researcher) to use the Kenzo program guiding his interaction
by means of the Kenzo framework, without being disconcerted by the Lisp
technicalities which are unavoidable when using the Kenzo system. This work
has been presented in [HPR08a, HPR09a].

◦ Several profiles of interaction with our system can be considered; therefore,
we have used the plug-in framework to be able to customize our graphical
user interface. In this way, the user can configure the application depending
on his needs. This work can be found in [HPR09d].

◦ We have gathered the two frameworks (Kenzo framework and plug-in frame-
work) and the graphical user interface in a new system called fKenzo. This
work has been published in [HPRS11].

• Chapter 4:

◦ We have achieved the integration, in the same system, of computation (thanks
to both Kenzo and GAP) and deduction (by means of ACL2). Even if our
proposal has a limited extend, both thematically and from the point of view
of the core systems, we think it shows a solid line of research that could be
exported to other areas of mathematical knowledge management. This work
has been presented in [HPRR10].

◦ We have not only achieved the integration of several tools in the same system,
but also the interoperability among them (a problem much more difficult).
On the one hand, we have automated the composability between Kenzo and
GAP which was presented in [RER09] hiding the technical details of the
integration of these systems to a final user. On the other hand, Kenzo, GAP
and ACL2 work together in our framework to provide a powerful and reliable
tool related to the construction of Eilenberg MacLane spaces of type K(G, n)
where G is a cyclic group; those spaces are instrumental in the computation
of homotopy groups. This work has been published in [HPRR10].

• Chapter 5:

◦ We have presented some programs that improve the functionality of Kenzo,
generating simplicial complexes from its facets and building the simplicial set
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canonically associated with a simplicial complex. Moreover, we have certified
the correctness of the programs in the ACL2 Theorem Prover, increasing
in this way the reliability of this new Kenzo module. This work has been
presented in [HP10a].

◦ We have developed a new Kenzo module devoted to study 2D and 3D
monochromatic images based on the simplicial complex module. In addi-
tion, we have formalized our algorithms in ACL2; in this way, if we use our
programs in real life problems (for instance, in the study of medical images),
we are completely sure that the results produced by our programs are always
correct.

◦ We have presented an algorithm to build the effective homology of the pushout
of simplicial sets with effective homology. As a by-product the wedge and
join of simplicial sets can be built as particular cases of the pushout. The
algorithms are implemented as a new Kenzo module which in turn is tested
with some interesting case studies such as the projective space P 2(C) or
SL2(Z). This work has been presented in [Her10].

◦ We have integrated all the modules presented in this chapter in fKenzo.

• Chapter 6:

◦ We have designed a framework to prove the correctness of simplicial sets
as implemented in the Kenzo system. As examples of application we have
given a complete correctness proof of the implementation in Kenzo of spheres,
standard simplicial sets and simplicial sets coming from simplicial complexes
(modulo a safe translation of Kenzo programs to ACL2 syntax). By means
of the same generic theory the correctness of other Kenzo simplicial sets can
be proved. This work has been published in [HPR11].

◦ We have provided a methodology to model mathematical structures in the
ACL2 Theorem Prover. This modeling process has been used to partly imple-
ment an ACL2 algebraic hierarchy which is the foundation for verifying the
correctness of the construction of spaces from other ones, and can be useful
for works non related to our development.

◦ We have presented a framework to prove the correctness of construction of
spaces from other ones implemented in the Kenzo system. As examples of
application, we have given, among others, a complete correctness proof of the
implementation in Kenzo of the direct sum of chain complexes, the Easy Per-
turbation Lemma and the SES1 theorem. By means of the same framework
the correctness of other constructions can be proved.

To sum up, we can claim that we have developed an assistant for Algebraic Topology
called fKenzo. This system not only provides a friendly front-end for using the Kenzo
kernel, but also guides the user in his interaction with the system. In addition, this
system can evolve at the same time as Kenzo. We have tested this feature with the de-
velopment of several new Kenzo modules which have been integrated in fKenzo without
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any special hindrance. Moreover, the functionality of the system can also be extended
by means of the integration with other systems such as Computer Algebra systems or
Theorem Prover tools which not only work individually, but also cooperate to produce
new tools. Eventually, we can claim that we have developed a reliable tool since we have
partly verified the kernel of our system with the ACL2 Theorem Prover.

Open problems and further work

Several research lines, related to the work presented in this memoir, are still open, we
gather them by chapters:

• Chapter 2:

◦ The Homotopy Expert System (Paragraph 2.2.3.2.3) could be endowed with
a higher level language to describe rules that could be made available for an
algebraic topologist without any special computer science knowledge.

◦ The algorithm implemented in the Homotopy Algorithm Module (Para-
graph 2.2.3.2.2) can be completed thanks to the development presented
in [RER09] which allows us to compute the effective homology of Eilenberg
MacLane spaces of type K(G, n) where G is a cyclic group. In this way,
all the homotopy groups of 1-reduced simplicial sets with effective homology
could be computed.

◦ One of the most important issues to be tackled in the next versions of the
Kenzo framework is how organizing the decision on when (and how) a calcu-
lation should be derived to a remote server. Some ideas about this problem
were presented in Section 2.4.

◦ The architecture presented in Section 2.5 will allow us to move to a distributed
computing context. We are thinking of a federated architecture, where sev-
eral rich clients communicate with a central powerful computing server. The
central server acts as a general repository and also provides computing power
to deal with difficult calculations. The most complicated problem is to devise
good heuristics to decide what is the meaning of the fuzzy predicate “to be a
difficult computation”.

• Chapter 3:

◦ One of the feasible enhancements for fKenzo could be to find a suitable way
(free from the Common Lisp syntax) of editing and handling elements of
each constructed space. Thus we could approach the difficult question of
introducing in fKenzo computations as the homology groups of P 2(C), see
Subsubsection 5.3.4.
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◦ In the area of user interfaces, a feasible objective could be the development of
a Web User Interface (WUI). At this moment the structure of a possible WUI
is provided by means of the XUL specifications, the job now would consist of
connecting the WUI with the framework to obtain a new usable front-end.

◦ Also in the area of user interfaces, we could integrate a “drag and drop”
equation editor, like DragMath [Bil], in the fKenzo user interface. The ed-
itor would let users build up mathematical expressions in a traditional two
dimensional way, and then output the expression in OpenMath format. The
OpenMath expression will be used to invoke the Kenzo framework.

• Chapter 4:

◦ More computational and deduction capabilities could be integrated in our
framework. From the Computer Algebra side, we can consider, for instance,
the Cocoa [CoC] system, where some works related to Kenzo has been already
done, see [dC08]. From the Theorem Proving side, we can consider Coq
and Isabelle, which have been already used to formalize Kenzo algorithms,
see [ABR08, DR11]. Moreover, as in the case of GAP and ACL2, the real
interest does not lie in using them individually, but making them work in a
coordinate and collaborative way to obtain new tools and results not reachable
if we use individually each system.

◦ It would be necessary to improve the interaction with the ACL2 system. At
this moment the queries must be pre-processed (even if parametrized spec-
ification allows the system to cover complete families of structures: cyclic
groups, spheres, simplicial complexes and so on); a comfortable way of in-
troducing questions about the truth of properties of intermediary objects,
dynamically generated during a computing session, should be provided.

◦ We want to integrate more ACL2 certification capabilities in our system. The
idea is to interact in a same friendly front-end with Kenzo and ACL2. For
instance, the user could give information to construct a new simplicial set
with Kenzo; then, he could provide minimal clues to ACL2 explaining why
his construction is sensible; then ACL2 would produce a complete proof of the
correctness of the construction. This kind of interaction between Computer
Algebra systems and Theorem Provers would be very valuable, but severe
difficulties related to finding common representation models are yet to be
overcome.

◦ A meta-language should be designed to specify how and when a new kernel
system can be plugged in the framework. This capability and the necessity
of orchestrating the different services suppose a real challenge, which could
be explored by means of OpenMath technologies.

• Chapter 5:

◦ A quite natural research line consists of developing new algorithms and pro-
grams. For instance, a challenging task is the implementation of the dual
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notion of pushout, called pullback [Mat76].

◦ In Subsubsection 5.1.5.2, we have presented two different programs which
construct the simplicial complex associated with a list of simplexes. One of
those programs was only implemented in Common Lisp since it uses a mem-
oization strategy which cannot be directly implemented in ACL2. However,
the work presented in [BH06] provides the mechanism to memoize functions
in ACL2, then an optimized version of our algorithm could be implemented in
ACL2. Moreover, we could use the semantic attachment procedure presented
in Subsection 6.1.3 to use the already implemented not optimized version for
reasoning and the new optimized one for executing.

◦ In the same way that we have applied the algorithms related to simplicial
complexes in the study of digital images, we could develop new programs to
be applied in different contexts such as coding theory or robotics. Likewise
that in the case of digital images, if we want to apply our programs to real
life problems, we must be completely sure that the results produced by our
programs are correct. Therefore, the formal verification of our programs with
a Theorem Prover would be significant.

• Chapter 6:

◦ With the acquired experience, the methodology presented in Section 6.2 could
be extrapolated to other algebraic Kenzo data structures. So, the work pre-
sented in that section can be considered a solid step towards our objective
of verifying in ACL2 first order fragments of the Kenzo Computer Algebra
system.

◦ The hierarchy presented in Subsection 6.3.4 should be enriched by means of
the rest of mathematical data structures implemented in Kenzo, see Subsec-
tion 1.2.1.

◦ The methodology presented in Section 6.4 could be applied to several cases. In
particular, it would be interesting the formalization of the construction of the
effective homology of the pushout which involves several of the constructions
already presented in this memoir.

◦ The formalization of the computation of homology groups of spaces remains
as further work. In this case we could focus on the computation of homology
groups of spaces of finite type thanks to the Effective Homology method.
Then, computing each homology group can be translated to a problem of
diagonalizing certain integer matrices. Therefore, we should formalize this
diagonalization process.

All these problems are interesting enough to be undertaken, however, we cannot
tackle all of them at the same time. Therefore, our main priorities are:

• Formalization of Homological Algebra and Algebraic Topology libraries. Through-
out this memoir we have presented the formalization of several results related to
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Homological Algebra and Algebraic Topology in the ACL2 theorem prover. We
are planning the formalization of more results in the future. To undertake this
goal, we foresee the use of not only the ACL2 theorem prover but also the proof
assistant Coq [BGBP08] as well as its SSReflect extension [GM09] and the
libraries it provides. A first step in this line is the work [HPDR11], where the for-
malization in Coq of incidence matrices associated with simplicial complexes as
well as the main theorem that gives meaning to the definition of homology groups
are presented.

• Integration of different Theorem Prover tools. As explained in the previous item,
we are planning to work simultaneously with two different proof assistants: ACL2
and Coq. This goal can be split in two different subgoals. On the one hand, we
want to compare the different formalizations of the same problem in ACL2 and in
Coq/SSReflect; a related work to this topic can be found in [AD10]. On the
other hand, we are interesting in using ACL2 as oracle of inductive schemas for
Coq/SSReflect; obtaining an interoperability which is, in some sense, similar
to the one presented for the Kenzo and GAP Computer Algebra systems.

• Applications to medical imagery. The methods presented in this memoir related
to digital images can be applied in the study of medical images. However, to this
aim it is necessary to implement new tools in software systems. In addition, if we
want to apply our methods in the study of medical images we must be completely
sure that they are correct, therefore, a formalization process is required, too.

The main reason for choosing these goals, and no others, lies in the fact that they are
three of the tasks assigned to La Rioja node of the Formath project [For]. This project
has partially supported the work presented in this memoir.





Glossary

ACID A set of properties (Atomicity, Consistency, Isolation and Durability) that guar-
antee that transactions over a shared space are processed reliably. The atomicity
rule said that a modification over the shared space is fully completed; otherwise
the shared space state is unchanged. The consistency rule said that a modification
of the shared state will take the shared space from one consistent state to another.
The isolation rule refers to the requirement that other process cannot access data
that has been modified during a modification that has not yet completed. Finally,
durability rule ensures that a datum inserted in the shared space remains until a
process explicitly deletes it. 85

active socket An active socket is connected to a remote socket via an open data con-
nection. 93

architectural pattern An architectural pattern expresses a fundamental structural or-
ganization schema for software systems. It provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guidelines for organizing the
relationships between them. 42

binary semaphore A semaphore which has two operations (P and V) for controlling
access by multiple processes to a common resource. The P operation sleeps the
process until the resource controlled by the semaphore becomes available, at which
time the resource is immediately claimed. The V operation is the inverse, it makes
a resource available again after the process has finished using it. 93

bmp Image format used to store bitmap digital images. 209

byu Classic Brigham Young University file format for surfaces in 3D. 209

CLOS Common Lisp Object System (CLOS) [Gra96] is the facility for object-oriented
programming which is part of ANSI Common Lisp. 21, 22, 48

component A part of a software system. A component has an interface that pro-
vides access to its services. On a programming language level components may be
represented as modules, classes, objects or a set of related functions. 42, 53, 72

concurrency Property of systems in which several computations are executing simul-
taneously. 97

321
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CORBA The Common Object Request Broker Architecture, a distributed object com-
puting middleware standard defined by the Object Management Group (OMG),
see [Gro]. 40

Curry A logic functional programming language, see [Han06], based on the Haskell
language. It merges elements of functional and logic programming. 111

event An action initiated either by the user or the computer. An example of a user
event is any mouse movement or a keystroke. 322

event handler A software routine that provides the processing for various events such
as mouse movement, a mouse click, a keystroke or a spoken word. 112

expert system An expert system is an interactive computer-based decision tool that
uses both facts and heuristics to solve decision problems based on knowledge ac-
quired from an expert. 60

framework A software system intended to be instantiated. A framework defines the
architecture for a system. 42

functional programming A programming paradigm that treats computation as the
evaluation of mathematical functions and avoids state and mutable data. 20, 322

hash table Data structures which use a hash function to map certain identifiers (keys)
to associated values. 57

Haskell A functional programming language, see [Hut07]. 322

IDE Integrated Development Environment (IDE). An editor that lets the programmer
edit, compile and debug all from within the same program. 106, 112

initial space In this text, a space whose definition does not involve any other space.
248

interface A publicly accessible portion of a component, subsystem, or application. 53,
55

jpeg Image format used by digital cameras and other photographic image capture de-
vices. 209

jvx Geometry file format for curves, surfaces and volumes in n-dimensional space. 209

Maple A general-purpose commercial Computer Algebra system. 39

Mathematica A computational software program used in scientific, engineering, and
mathematical fields and other areas of technical computing. 39
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MathML Mathematical Markup Language (MathML) [A+08] is a standard XML lan-
guage adopted by the World Wide Web Consortium (W3C) as the approved way
of expressing math on the web. 46

Maxima A free Lisp system for the manipulation of symbolic and numerical expres-
sions, see [Sch09]. 40

memoization An optimization technique used to speed up computer programs by
storing the results of function calls for later reuse, rather than recomputing them
at each invocation of the function. 30, 44

module A portion of a program that carries out a specific function and may be used
alone or combined with other modules of the same program. 116

native XML databases A data persistence software system that allows data to be
stored in XML format; the internal model of such databases depends on XML and
uses XML documents as the fundamental unit of storage, which are, however, not
necessarily stored in the form of text files. 85

obj Popular geometry format 3D geometry file format for surfaces in 3D originally used
in Wavefront’s Advanced Visualizer and now by Sun’s Java3D. 209, 210, 215, 216

OMDoc An open markup language for mathematical documents, and the knowledge
encapsulate in them, see [Koh06]. This format extends OpenMath and hence
provides some features not available in OpenMath, for example a theory level and
a way of incorporating executable code. 101

OpenMath An XML standard for representing mathematical objects with their se-
mantics, allowing them to be exchanged between computer programs, stored in
databases, or published on the worldwide web, see [Con04]. 46, 73

passive socket A passive socket is not connected, but rather awaits an incoming con-
nection, which will spawn a new active socket. 93

pattern A pattern describes a problem that happens over and over, and also the solu-
tion to that problem. Patterns cover various ranges of scale and abstraction. Some
patterns help in structuring a software system into subsystems. Other patterns
support the refinement of subsystems and components. 42

pbm Portable Bit Map (PBM). The PBM format is a monochrome file format for
images. 209, 210, 214, 216

Phrasebook A piece of software which transforms from the internal representation of
a data structure of an application to its OpenMath representation and viceversa.
45, 75
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platform The software that a system uses for its implementations. Software platforms
include operating systems, libraries, and frameworks. A platform implements a
virtual machine with applications running on top of it. 42

plug-in A set of software components that adds specific capabilities to a larger software
application. Plug-in based applications can be executed with no plug-ins. 99–102,
116

png Image format, that does not requiring a patent license, used to store bitmap digital
images. 209

prefix notation Mathematical notation where the function is noted before the argu-
ments it operates on. 36

process The actual running of a program module. 97

prompt A message on the computer screen indicating that the computer is ready to
accept user input. In a command-line interface, the prompt may be a simple “>”
symbol or “READY >” message, after which the user may type a command for
the computer to process. 105

raster A rectangular grid of picture elements representing graphical data for displaying.
209

request An event sent by a client to a service provider asking it to perform some
processing on the client’s behalf. 45

semaphore A mechanism for controlling access by multiple processes to a common
resource in a concurrent programming environment. 93

service A set of functionality offered by a service provider or server to its clients. 53,
72, 73

SOAP Simple Object Access Protocol is a standard protocol for exchanging structured
information in the implementation of Web Services. 90

socket A mechanism for interprocess communication. A socket is an end-point of com-
munication that identifies particular network address and port number. 93, 132–
134

stack overflow An error which occurs when too much memory is used on the data
structure that stores information about the active computer program. 256

stylesheet A program used to render an XML document into another format. 113, 121

thread One subprocess in a system which allows the concurrently execution of multiple
streams of instructions within the same program. 98
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UI User Interface. 111

web service A web service is traditionally defined by the World Wide Web Consor-
tium as a software system designed to support interoperable machine-to-machine
interaction over a network. 82, 90

well-formed XML XML that follows the XML tag rules listed in the W3C Recom-
mendation for XML 1.0. A well-formed XML document contains one or more
elements; it has a single document element, with any other elements properly
nested under it; and each of the parsed entities referenced directly or indirectly
within the document is well formed. 73, 75

XML enabled databases A data persistence software system that allows data to
be stored in XML format; the internal model of such databases is a tradicional
database (relational or object oriented). This databases do the conversion between
XML and its internal representation. 85

XML schema A formal specification of element names that indicates which elements
are allowed in an XML document, and in what combinations. It also defines
the structure of the document: which elements are child elements of others, the
sequence in which the child elements can appear, and the number of child elements.
It defines whether an element is empty or can include text. The schema can also
define default values for attributes. 46

XPath XML Path Language, is a query language for selecting nodes from an XML
document. 85

XQuery XQuery is a query and functional programming language that is designed to
query collections of XML data. 85

XSLT eXtensible Stylesheet Language Transformations (XSLT) [K+07] are procedures,
defined in XML, for converting one kind of XML into another. For viewing on the
Web, an XSLT can be written for conversion to XHTML. 121

XUL XML User Interface [H+00], it is Mozilla’s XML-based user interface language
which lets us build feature rich cross-platform applications defining all the elements
of a User Interface. 111
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ceedings of the 11th Encuentro de Álgebra Computacional y Aplicaciones
(EACA’08), pp. 93–96, 2008.

[HPR08b] J. Heras, V. Pascual, and J. Rubio. Mediated access to Symbolic Com-
putation Systems. In Proceedings of the 7th International Conference
on Mathematical Knowledge Management (MKM’08), volume 5144 of
Lectures Notes in Artificial Intelligence, pp. 446–461. Springer-Verlag,
2008.

[HPR09a] J. Heras, V. Pascual, and J. Rubio. A customizable GUI through an OM-
Doc documents repository. In Proceedings of the 4th Mathematical User-
Interfaces Workshop (MATHUI’09), 2009. http://www.activemath.

org/workshops/MathUI/09/.

[HPR09b] J. Heras, V. Pascual, and J. Rubio. Applying Generative Communication
to Symbolic Computation in Common Lisp. In Proceedings of the 2nd
European Lisp Symposium (ELS’09), pp. 27–42, 2009.

[HPR09c] J. Heras, V. Pascual, and J. Rubio. Content Dictionaries for Algebraic
Topology. In Proceedings of the 22nd OpenMath Workshop, pp. 112–118,
2009.

[HPR09d] J. Heras, V. Pascual, and J. Rubio. Using Open Mathematical Docu-
ments to Interface Computer Algebra and Proof Assistant Systems. In
Proceedings of the 8th International Conference on Mathematical Knowl-
edge Management (MKM’09), volume 5625 of Lectures Notes in Artificial
Intelligence, pp. 467–473. Springer-Verlag, 2009.

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/PapersAndSlides
http://www.activemath.org/workshops/MathUI/09/
http://www.activemath.org/workshops/MathUI/09/


334 Bibliography

[HPR11] J. Heras, V. Pascual, and J. Rubio. Proving with ACL2 the correct-
ness of simplicial sets in the Kenzo system. In Proceedings of the 20th
International Symposium on Logic-Based Program Synthesis and Trans-
formation (LOPSTR’2010), volume 6564 of Lectures Notes in Computer
Science, pp. 37–51. Springer-Verlag, 2011.

[HPRR10] J. Heras, V. Pascual, A. Romero, and J. Rubio. Integrating multiple
sources to answer questions in Algebraic Topology. In Proceedings of the
9th International Conference on Mathematical Knowledge Management
(MKM’10), volume 6167 of Lectures Notes in Artificial Intelligence, pp.
331–335. Springer-Verlag, 2010.

[HPRS08] J. Heras, V. Pascual, J. Rubio, and F. Sergeraert. Improving the usability
of Kenzo, a Common Lisp system for Algebraic Topology. In Proceedings
of the 1st European Lisp Symposium (ELS’08), pp. 155–176, 2008.

[HPRS11] J. Heras, V. Pascual, J. Rubio, and F. Sergeraert. fKenzo: A user
interface for computations in Algebraic Topology. To be published in
Journal of Symbolic Computation, 2011. DOI: 10.1016/j.jsc.2011.01.005.
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[MlBR07] E. Mata, P. Álvarez, J. A. Bañares, and J. Rubio. Formal Modelling
of a Coordination System: from Practice to Theory and back again. In
Proceedings 7th Annual International Workshop Engineering Societies
in the Agents World (ESAW’2006), volume 4457 of Lectures Notes in
Artificial Intelligence, pp. 229–244. Springer-Verlag, 2007.

[MMAHRR02] F. J. Mart́ın-Mateos, J. A. Alonso, M. J. Hidalgo, and J. L. Ruiz-Reina.
A Generic Instantiation Tool and a Case Study: A Generic Multiset
Theory. Proceedings of the Third ACL2 workshop. Grenoble, Francia,
pp. 188–203, 2002.

[MMRRR09] F. J. Mart́ın-Mateos, J. Rubio, and J. L. Ruiz-Reina. ACL2 verification
of simplicial degeneracy programs in the kenzo system. In Proceedings
16th Symposium on the Integration of Symbolic Computation and Mech-
anised Reasoning (Calculemus’2009), volume 5625 of Lectures Notes in
Computer Science, pp. 106–121. Springer-Verlag, 2009.

[MMS03] J. Mayer, I. Melzer, and F. Schweiggert. Lightweight plug-in-based appli-
cation development. In Proceedings International Conference NetObject-
Days (NODe’2002), volume 2591 of Lecture Notes in Computer Science,
pp. 87–102. Springer-Verlag, 2003.

[Mon] MoNET: Mathematics on the Net. http://monet.nag.co.uk/cocoon/
monet/index.html.

[Moz] Mozilla. An Introduction To Hacking Mozilla. http://www.mozilla.

org/hacking/coding-introduction.html.

[MPRR10] I. Medina, F. Palomo, and J. L. Ruiz-Reina. A verified Common Lisp
implementation of Buchberger’s algorithm in ACL2. Journal of Symbolic
Computation, 45(1), pp. 96–123, 2010.

[MW10] R. Mikhailov and J. Wu. On homotopy groups of the suspended classi-
fying spaces. Algebraic & Geometric Topology, 10, pp. 565–625, 2010.

http://www.oracle.com/technetwork/java/index-138643.html
http://www.oracle.com/technetwork/java/index-138643.html
http://www.mkm-ig.org/
http://www.mkm-ig.org/
http://monet.nag.co.uk/cocoon/monet/index.html
http://monet.nag.co.uk/cocoon/monet/index.html
http://www.mozilla.org/hacking/coding-introduction.html
http://www.mozilla.org/hacking/coding-introduction.html


338 Bibliography

[Nie94] J. Nielsen. Heuristic evaluation. In J. Nielsen and R. L. Mack, editors,
Usability Inspection Methods. John Wiley & Sons, New York, NY, 1994.

[NSS59] A. Newell, J. C. Shaw, and H. A. Simon. Report on a general problem-
solving program. In Proceedings of the International Conference on In-
formation Processing, pp. 256–264, 1959.

[OS03] D. Orden and F. Santos. Asymptotically efficient triangulations of the
d-cube. Discrete and Computational Geometry, 30(4), pp. 509–528, 2003.

[OSG03] OSGi Service Platform, Release 3, March 2003. http://www.osgi.org.

[P+02] K. Polthier et al. JavaView - Interactive 3D Geometry and Visualization.
In Multimedia Tools for Communicating Mathematics, 2002. http://

www.javaview.de/index.html.

[Pau96] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 1996.

[Pec08] A. Peck. Beginning GIMP: From Novice to Professional. Apress, 2008.
http://gimpbook.com/.

[Poi95] H. Poincaré. Analysis Situs. Journal de l’École Polytechnique, 1, pp.
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192, pp. 57–67, 1990.

[Ser92] F. Sergeraert. Effective homology, a survey. Technical report, Institut
Fourier, 1992. http://www-fourier.ujf-grenoble.fr/~sergerar/

Papers/Survey.pdf.

[Ser94] F. Sergeraert. The computability problem in Algebraic Topology. Ad-
vances in Mathematics, 104(1), pp. 1–29, 1994.

http://www-fourier.ujf-grenoble.fr/~sergerar/Summer-School/
http://www-fourier.ujf-grenoble.fr/~sergerar/Summer-School/
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
ftp://fourier.ujf-grenoble.fr/pub/EAT
http://www.gap-system.org/Packages/openmath.html
http://www.gap-system.org/Packages/openmath.html
http://www.maxima.sourceforge.net/index.shtml
http://www.maxima.sourceforge.net/index.shtml
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf
http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Survey.pdf


340 Bibliography

[Ser01] F. Sergeraert. Common Lisp, Typing and Mathematics. Techni-
cal report, University of La Rioja, 2001. http://www-fourier.

ujf-grenoble.fr/~sergerar/Papers/Ezcaray.pdf.

[Ser10] F. Sergeraert. Triangulations of complex projective spaces. In
L. Lambán, A. Romero, and J. Rubio, editors, Contribuciones cient́ıficas
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Julio Rubio; sin ellos está claro que este trabajo no hubiera sido posible. Gracias por
haberme escuchado siempre que lo he necesitado, por vuestras brillantes ideas, vuestra
comprensión, paciencia y confianza. No hay palabras suficientes para expresar toda mi
gratitud.

También quiero agradecer su apoyo a todos los miembros de grupo de investigación al
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1.2.7 Grupos de homotoṕıa en Kenzo . . . . . . . . . . . . . . . . . . . 33

1.3 ACL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.1 Fundamentos de ACL2 . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.2 Encapsulados ACL2 . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii
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4.1 Integración del sistema de Cálculo Simbólico GAP . . . . . . . . . . . . . 127
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4.3.1 Añadiendo información axiomática a los Diccionarios de Contenido 163

4.3.2 De los Diccionarios de Contenido a los encapsulados ACL2 . . . . 166

4.3.3 Integración del demostrador de teoremas ACL2 . . . . . . . . . . 168

4.3.3.1 Extendiendo el esquema XML-Kenzo . . . . . . . . . . . 168

4.3.3.2 Un nuevo servidor interno: ACL2 . . . . . . . . . . . . . 169
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5.3.1.2 Preliminares sobre homoloǵıa efectiva para el pushout . 225
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6.1.3 Adscripción semántica en ACL2 . . . . . . . . . . . . . . . . . . . 254

6.2 Demostrando con ACL2 la corrección de los conjuntos simpliciales en Kenzo258

6.2.1 Representaciones de los conjuntos simpliciales . . . . . . . . . . . 259
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Introducción

El interés por la mecanización de las Matemáticas apareció en los inicios de la Informáti-
ca, o incluso antes: léase bajo esta perspectiva el trabajo de Alan Turing [Tur36], uno
de los fundadores de las Ciencias de la computación. Dejando de lado las aplicaciones
cient́ıficas del cálculo numérico (que dieron literalmente origen a los primeros ordenado-
res), desde 1950 se comenzó a desarrollar el cálculo simbólico, que aspira a reproducir con
la asistencia de ordenadores el modo de trabajo de los matemáticos. El cálculo simbólico
tiene dos ramas: el álgebra computacional y el razonamiento mecanizado basado en la
lógica computacional. Para la historia inicial del álgebra computacional puede consultar-
se el texto de referencia [DST93]. Sobre el razonamiento mecanizado y los demostradores
automatizados de teoremas se puede citar el influyente GPS (General Problem Solver)
de Newell y Simon [NSS59], cuyas primeras versiones aparecieron hacia 1955, vinculado
al nacimiento de la Inteligencia Artificial.

Estas dos ĺıneas de la manipulación simbólica (el álgebra computacional, o cálculo
simbólico, y el razonamiento mecanizado) conocieron en los siguientes 40 años desarrollos
paralelos, sin mucha relación entre ambas. Sin embargo, el panorama cambió radicalmen-
te hace unos 15 años, cuando la iniciativa de investigación Calculemus [Cal], financiada
por proyectos europeos, planteó el desaf́ıo de integrar los sistemas de álgebra computacio-
nal (cálculo) con los de razonamiento mecanizado (deducción). En la misma ĺınea la red
de investigación MAP (Mathematics, Algorithms and Proofs) [MAP], creada en 2003,
trabaja en los fundamentos de esa integración, basándose sobre todo en la matemática
constructiva.

Además, concurrentemente en el tiempo, con la eclosión de Internet, aparecen múlti-
ples propuestas para hacer posible las Matemáticas (simbólicas) en la red. Tal vez la
contribución más sólida sea la que se articula a través de la iniciativa IAMC (Inter-
net Accessible Mathematical Computation) [IAM]. A partir de ah́ı, se han propuesto
distintas arquitecturas (como “buses” [CH97], [MATd], “brokers” [Mata], [Matb], ser-
vidores genéricos [Matc], o basadas en servicios web [DSW05], [SSW04]) y patrones de
diseño [Dus06], que han desembocado en el paradigma de las “Matemáticas en Red”
MoNET [Mon] y Matemáticas en y para la red semántica [CDDP04]. Instrumental pa-
ra todas estas contribuciones ha sido la especificación de los estándares XML llamados
MathML [A+08] y OpenMath [Con04], que proporcionan los protocolos de comunicación
para la transmisión del conocimiento matemático. Una iniciativa de éxito, pero que es
independiente de estos estándares es SAGE [Ste]; una alternativa a los paradigmas que
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2 Introducción

ahora son dominantes.

De la confluencia de estas ĺıneas (la que pretende integrar cálculo y deducción, y la
que propugna unas Matemáticas en red) surge en 2001 la comunidad dedicada al Mathe-
matical Knowledge Management (Gestión del Conocimiento Matemático) MKM [MKM].
Su objetivo final es el desarrollo de asistentes integrales para las Matemáticas, que in-
corporen cálculo, deducción, acceso en red e interfaces de usuario potentes que puedan
mejorar el trabajo cotidiano de los investigadores en Matemáticas, aśı como influir en
las estrategias de enseñanza de las Matemáticas. Se trata de un objetivo sumamente
ambicioso, que retoma alguno de los temas de la Inteligencia Artificial clásica.

Tras esta introducción general al campo en el que se enmarca esta tesis, vayamos
a nuestra área de aplicación particular: la Topoloǵıa Algebraica. Es ésta una rama de
las Matemáticas que se ocupa de la distinción de espacios según su forma intŕınseca (y
no según su tamaño u otras caracteŕısticas extŕınsecas), por medio de unos invariantes
algebraicos (grupos o anillos, usualmente).

A pesar de ser una rama abstracta de las Matemáticas, los métodos de la Topoloǵıa
Algebraica pueden ser implementados en sistemas software y ser aplicados a distintos
contextos como la teoŕıa de códigos [Woo89], la robótica [Mac03] o el análisis de imágenes
digitales [GDMRSP05, GDR05, SGF03].

Podemos decir que el presente trabajo pretende particularizar el MKM al campo de
la Topoloǵıa Algebraica.

En este contexto jugará un papel fundamental el sistema Kenzo [DRSS98], un progra-
ma de álgebra computacional dedicado a la investigación en Topoloǵıa Algebraica. Dicho
sistema ha sido desarrollado principalmente por Francis Sergeraert y está programado en
el lenguaje Common Lisp [Gra96]. Este sistema implementa el método de la Homoloǵıa
Efectiva que apareció en los años 80 tratando de proporcionar algoritmos reales para el
cálculo de grupos de homoloǵıa y homotoṕıa (dos de los invariantes más importantes
en Topoloǵıa Algebraica). Esta técnica fue introducida por Francis Sergeraert en [Ser87]
y [Ser94], y su estado actual queda descrito en [RS97] y [RS06].

Desde el año 2000 el trabajo del grupo de Programación y Cálculo Simbólico de la
Universidad de La Rioja, dirigido por Julio Rubio, puede decirse que ha sido, en cierto
modo, paralelo al que se ha esbozado anteriormente para la disciplina en general. Tras
una primera fase en la que los esfuerzos se dedicaron a la mejora y ampliación de algorit-
mos y programas de Kenzo, se inició una nueva ĺınea de investigación (sin abandonar la
anterior) en la que se pretend́ıa aplicar los Métodos Formales de la Ingenieŕıa del Soft-
ware al sistema Kenzo. Fruto de esta investigación se obtuvieron resultados relevantes
en cuanto a la especificación algebraica de Kenzo y, más en general, de sistemas software
orientados a objetos (véanse, a t́ıtulo de ejemplo, [LPR03] y [DLR07]). Profundizando
aún más en esta ĺınea, se utilizó el asistente para la demostración Isabelle para certificar
la corrección de uno de los algoritmos centrales en Kenzo, el Lema Básico de Pertur-
bación [ABR08]. En esta misma ĺınea encontramos la formalización de la Homoloǵıa
Efectiva de los Bicomplejos en el asistente para la demostración Coq [DR11] o la de-
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mostración del Teorema de Normalización en el sistema ACL2 [LMMRRR10]. En cuanto
a la Topoloǵıa Algebraica en la red, una primera propuesta fue publicada en [APRR05],
donde el acceso remoto (pero parcial) a Kenzo fue conseguido utilizando la tecnoloǵıa
CORBA [Gro].

En esta memoria las tres ĺıneas de investigación presentadas (desarrollo de algorit-
mos, formalización con herramientas de ayuda a la demostración e implementación de
interfaces de usuario para la Topoloǵıa Algebraica) convergen. En concreto, el objetivo
de este trabajo ha consistido en el desarrollo de un asistente integral para la investigación
en Topoloǵıa Algebraica. El adjetivo “integral” se refiere a que el asistente proporciona
no solo una interfaz para utilizar el motor de cálculo Kenzo, sino también gúıa al usua-
rio y, en la medida de lo posible, da certificados de corrección de los cálculos realizados.
A su vez, distintos subobjetivos han sido logrados. En primer lugar, hemos intentado
incrementar la usabilidad y accesibilidad del sistema Kenzo, aumentando de este modo
el número de usuarios que se puede beneficiar de Kenzo. Además, se han incrementado
las capacidades computacionales de Kenzo por medio de nuevos módulos para Kenzo y
de la conexión con el sistema de cálculo simbólico GAP [GAP]. Asimismo, el objetivo
de integrar cálculo (Kenzo) y deducción (ACL2 [KM]) ha sido logrado en este trabajo
gracias a la formalización de los programas de Kenzo en el demostrador de teoremas
ACL2.

La organización de la memoria es la siguiente. El primer caṕıtulo incluye algunas
nociones y resultados preliminares que serán usados en el resto del trabajo. En la primera
sección se presentan las nociones fundamentales sobre Algebra Homológica, Topoloǵıa
Simplicial y Homoloǵıa Efectiva que serán utilizadas en el resto del trabajo. La segunda
sección introduce el sistema de Álgebra Computacional Kenzo aśı como algunas de sus
caracteŕısticas más importantes. Por último el sistema ACL2 es presentado brevemente.

Después de este primer caṕıtulo, la memoria se divide en tres partes diferentes. Los
caṕıtulos 2 y 3 están dedicados a incrementar la accesibilidad y usabilidad del sistema
Kenzo. La capacidad computacional del sistema Kenzo es aumentada en los caṕıtulos 4
y 5 mediante la integración con otros sistemas de cálculo y el desarrollo de nuevos
programas verificados en ACL2 para Kenzo. Finalmente, el caṕıtulo 6 está totalmente
dedicado a probar la corrección de algunos programas del sistema Kenzo mediante ACL2.

El caṕıtulo 2 presenta un entorno, llamado Kenzo framework, que proporciona un
acceso mediado al sistema Kenzo restringiendo su funcionalidad pero guiando al usuario
en su interacción con el sistema. Se describen en este caṕıtulo la arquitectura, las com-
ponentes y el flujo de ejecución del Kenzo framework. Además, al final de este caṕıtulo,
se presentan dos ĺıneas de trabajo futuro para incrementar las capacidades computacio-
nales del sistema Kenzo mediante ideas sobre el balanceo de cálculos y computación
distribuida.

Una vez que hemos presentado el Kenzo framework, queremos ser capaces de incre-
mentar sus capacidades ya sea a través de la inclusión de nuevos módulos de Kenzo
o mediante la integración de otras herramientas como sistemas de cálculo simbólico o
demostradores de teoremas, pero sin modificar el código fuente del núcleo. Además, nos
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dimos cuenta de que la interfaz del Kenzo framework, basada en XML, no es usable para
un usuario humano, por lo que un modo más agradable de interactuar con el sistema
teńıa que ser proporcionado. El caṕıtulo 3 presenta como se han resuelto estos dos obje-
tivos. La primera parte de este caṕıtulo se centra en presentar un framework de plug-ins
que permite extender el Kenzo framework. En la segunda parte se presenta una interfaz
de usuario adaptable que permite usar el Kenzo framework de manera fácil, incremen-
tando de este modo la usabilidad y accesibilidad del sistema. El sistema completo, es
decir, la combinación de los dos frameworks y la interfaz de usuario, se llama fKenzo
(del inglés friendly Kenzo). Los dos caṕıtulos siguientes se centran en extender fKenzo
por medio de la integración de nuevos sistemas y nuevos programas para Kenzo.

El caṕıtulo 4 describe la integración de varios sistemas en fKenzo. En primer lugar,
el sistema de cálculo simbólico GAP [GAP] es incorporado al sistema permitiendo el
cálculo de homoloǵıa de grupos. Además, el sistema GAP no sólo se utiliza de manera
individual, sino que algunos de sus programas son combinados con el sistema Kenzo
para obtener nuevas herramientas, que vuelven a aumentar las capacidades de cálculo
de fKenzo. La segunda parte de este caṕıtulo presenta la integración del demostrador
de teoremas ACL2 en fKenzo, consiguiendo de este modo la integración de cálculo y
deducción dentro de un mismo sistema. Del mismo modo que para el caso de GAP, el
sistema ACL2 es combinado con Kenzo para incrementar la fiabilidad de los programas
usados en nuestro sistema. A partir de este caṕıtulo el sistema ACL2 será utilizado de
manera intensiva.

El caṕıtulo 5 realiza una aportación a los algoritmos y programas del sistema Kenzo
extendiendo a su vez el sistema fKenzo. En primer lugar se presenta un nuevo módulo
para Kenzo que permite trabajar con complejos simpliciales. Este módulo sobre com-
plejos simpliciales es utilizado como base para desarrollar un entorno para el análisis
de imágenes digitales monocromáticas. En particular, un nuevo módulo para analizar
imágenes digitales es presentado en la segunda parte de este caṕıtulo. Por último, se
desarrollan los algoritmos y programas necesarios para la construcción de la homoloǵıa
efectiva del pushout de conjuntos simpliciales. Además, este caṕıtulo no está sólo dedi-
cado a presentar los nuevos módulos para el sistema Kenzo sino también a la verificación
de la corrección de dichos programas en ACL2.

El caṕıtulo 6 está dedicado a probar la corrección de alguno de los programas imple-
mentados en el sistema Kenzo por medio de ACL2. En la primera parte de este caṕıtulo
se describen una serie de herramientas del sistema ACL2 que serán utilizadas a lo lar-
go de dicho caṕıtulo. La segunda parte está centrada en verificar los constructores de
conjuntos simpliciales constantes del sistema Kenzo en ACL2. A continuación se pre-
senta una manera de modelar estructuras algebraicas en ACL2. Por último se introduce
una metodoloǵıa para demostrar la corrección de los programas Kenzo utilizados para
construir espacios a partir de otros por medio de constructores topológicos.

La memoria termina con un caṕıtulo que contiene las conclusiones y posibles ĺıneas
de trabajo futuro, un glosario de términos y finalmente incluimos la bibliograf́ıa.



Resumen de los caṕıtulos

Presentamos a continuación un breve resumen de cada uno de los caṕıtulos de esta
memoria.

1 Preliminares

En el primer caṕıtulo incluimos las definiciones y resultados básicos que serán utiliza-
dos en el resto de la memoria. Este caṕıtulo está dividido en tres secciones. La primera
está dedicada a presentar las nociones fundamentales sobre Algebra Homológica, To-
poloǵıa Simplicial y Homoloǵıa Efectiva que serán utilizadas en el resto del trabajo.
Las referencias fundamentales para cada una de esas subsecciones son respectivamen-
te [Mac63], [May67] y [RS06]. En la segunda sección se introduce el sistema de Álgebra
Computacional Kenzo [DRSS98] aśı como algunas de sus caracteŕısticas más importan-
tes. Finalmente, presentamos el demostrador de teoremas ACL2. La referencia principal
para esta última parte del caṕıtulo es el libro [KMM00b].

2 Un framework para realizar cálculos en Topoloǵıa

Algebraica

El caṕıtulo 2 presenta un entorno, llamado Kenzo framework, que proporciona un acceso
mediado al sistema Kenzo, restringiendo la funcionalidad de Kenzo, pero guiando al
usuario en su interacción con el sistema y también introduciendo ciertas mejoras en
Kenzo. Para diseñar este framework hemos utilizado metodoloǵıas y patrones que hab́ıan
sido utilizados de manera exitosa anteriormente.

La organización del caṕıtulo es la siguiente. En primer lugar se presentan la arqui-
tectura, las componentes y el flujo de ejecución del Kenzo framework. Al final de este
caṕıtulo se presentan dos posibles ĺıneas de trabajo futuro para incrementar la capacidad
de cálculo del Kenzo framework mediante ideas sobre balanceo de cálculos y computación
distribuida.
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6 Resumen de los caṕıtulos

3 Extensibilidad y Usabilidad del Kenzo framework

El tercer caṕıtulo de la memoria se centra en dos de los aspectos más importantes en
el desarrollo de un sistema software: la extensibilidad y la usabilidad. Para abordar
el reto de la extensibilidad, desarrollamos un framework de plug-ins que nos permite
añadir nueva funcionalidad al Kenzo framework de dos modos distintos: (1) mediante la
integración de nueva funcionalidad para el sistema Kenzo o (2) mediante la conexión con
otros sistemas tales como sistemas de cálculo simbólico o asistentes para la demostración.
Para incrementar la usabilidad del Kenzo framework una interfaz de usuario amigable
es presentada en este caṕıtulo. Dicha interfaz es personalizable gracias al framework
de plug-ins. El sistema completo (es decir, la combinación de los dos frameworks y la
interfaz de usuario) ha sido llamado fKenzo.

El caṕıtulo se divide en dos partes. La primera está dedicada al framework de plug-
ins. En esta primera sección se presenta la arquitectura del framework de plug-ins y
el modo general de incrementar la funcionalidad del Kenzo framework a través de este
sistema. La segunda parte se centra en presentar la interfaz de usuario cubriendo las
perspectivas tanto de un usuario como de un desarrollador.

4 Interoperabilidad para la Topoloǵıa Algebraica

Este caṕıtulo está dedicado a explicar la integración de diferentes herramientas, tales
como sistemas de cálculo simbólico y demostradores de teoremas, en el Kenzo frame-
work. Como sistema de cálculo simbólico hemos elegido el sistema GAP, un sistema
conocido por sus contribuciones en el área de la Teoŕıa de Grupos Computacional, y
como demostrador de teoremas el sistema que integramos fue ACL2. La integración de
estos sistemas en nuestro framework no es el objetivo final, sino que es un medio para
lograr un entorno que combine los distintos sistemas para crear herramientas potentes
y fiables.

El caṕıtulo está dividido en dos partes, la primera dedicada a la integración del
sistema de cálculo simbólico GAP y la segunda a la integración de ACL2. La estructura
de ambas es similar, con una breve introducción, la integración de dichos sistemas en el
Kenzo framework, el modo en el que se extiende la interfaz gráfica de fKenzo para incluir
la nueva funcionalidad y por último la combinación de los sistemas con la funcionalidad
ya disponible para obtener nuevas herramientas.

5 Nuevos módulos certificados de Kenzo

El quinto caṕıtulo de la memoria está dedicado a incrementar la funcionalidad del sis-
tema Kenzo mediante programas certificados en ACL2, aśı como la inclusión de dichos
programas en fKenzo. En concreto, tres nuevos módulos para Kenzo son presentados.
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El primero de ellos implementa una noción básica en Topoloǵıa Algebraica que son los
complejos simpliciales. A partir del módulo de complejos simpliciales se desarrollan una
serie de algoritmos que permiten el estudio de imágenes digitales monocromáticas. La
implementación de dichos algoritmos ha dado lugar a nueva funcionalidad para el siste-
ma Kenzo. Por último los algoritmos que definen la homoloǵıa efectiva del pushout de
conjuntos simpliciales, una de las construcciones más utilizadas en Topoloǵıa Algebraica,
son desarrollados e implementados.

El caṕıtulo está dividido en tres partes, la primera dedicada a los complejos simpli-
ciales, la segunda al análisis de imágenes digitales y la tercera a la construcción de la
Homoloǵıa Efectiva del pushout de conjuntos simpliciales. La estructura de todas ellas
es similar, con una breve introducción, la implementación de los programas como nuevos
módulos para Kenzo, la integración de dichos programas en el Kenzo framework, el modo
en el que se extiende la interfaz gráfica de fKenzo para incluir la nueva funcionalidad y
finalmente la verificación de los programas en ACL2.

6 Integración de Cálculo y Deducción

En el último caṕıtulo de la memoria utilizamos el demostrador de teoremas ACL2 para
verificar que los programas utilizados en Kenzo para construir diferentes tipos de espacios
son correctos.

Este caṕıtulo está dividido en cuatro partes. La primera está centrada en presentar
tres herramientas de ACL2 que serán utilizadas en el resto del caṕıtulo. La segunda parte
contiene una descripción de una infraestructura implementada en ACL2 que nos permite
probar que los programas de Kenzo dedicados a la construcción de conjuntos simpliciales
constantes realmente construyen conjuntos simpliciales. A continuación, se introduce una
metodoloǵıa para modelar las estructuras matemáticas en ACL2. Finalmente, se presenta
en la última parte, una metodoloǵıa en ACL2 para probar que los espacios de Kenzo
construidos a partir de otros por medio de la aplicación de constructores topológicos son
correctos.





Conclusiones y trabajo futuro

Conclusiones

Este trabajo debeŕıa ser entendido como un primer paso hacia un asistente integral para
la investigación y la enseñanza en Topoloǵıa Algebraica. Desde nuestro punto de vista,
las principales contribuciones logradas en este trabajo, organizadas por caṕıtulos, son
las siguientes.

• Caṕıtulo 2:

◦ Hemos mostrado cómo se puede guiar a un usuario en el uso de herramien-
tas para la Topoloǵıa Algebraica Computacional, sin recurrir a las técnicas
estándares de la Inteligencia Artificial. La idea ha consistido en desarrollar
una infraestructura que proporciona un acceso mediado a un sistema de cálcu-
lo simbólico desarrollado previamente. Juntando Kenzo y esta infraestructu-
ra, hemos producido el Kenzo framework que se puede conectar a diferentes
clientes (interfaces de escritorio, aplicaciones web, etcetera). En general, esto
supone una restricción a las capacidades del sistema base, pero la interacción
con dicho sistema se facilita y enriquece, contribuyendo de este modo a incre-
mentar el número de usuarios del sistema. Este trabajo ha sido presentado
en [HPRS08, HPR08b].

◦ Hemos incluido las siguientes capacidades en el Kenzo framework: (1) control
de la especificación de entrada de los constructores, (2) se evitan operaciones
sobre objetos que daŕıan lugar a errores, (3) se encadenan métodos para pro-
porcionar nuevas herramientas al usuario, y (4) se usa conocimiento experto
para obtener resultados que no estaban disponibles en el sistema Kenzo. Este
trabajo ha sido publicado en [HP10b].

◦ Como sub-producto, hemos escrito Diccionarios de Contenido OpenMath de-
dicados a la Topoloǵıa Algebraica Simplicial. Concretamente, para cada una
de las estructuras matemáticas disponibles en Kenzo hemos definido un Dic-
cionario de Contenido. Las definiciones dadas en estos Diccionarios de Conte-
nidos incluyen partes axiomáticas que han sido utilizadas para interactuar con
el sistema de deducción ACL2. Este trabajo puede encontrarse en [HPR09c].

9
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◦ Hemos desarrollado una primera versión de un sistema con el mismo objetivo
que el Kenzo framework pero que permite procesar peticiones de forma con-
currente y donde los resultados son almacenados de forma persistente. Este
trabajo ha sido presentado en [HPR09b]

• Caṕıtulo 3:

◦ Hemos implementado un framework de plug-ins que permite añadir nueva fun-
cionalidad al Kenzo framework sin modificar el código fuente. Este framework
de plug-ins nos ha permitido incrementar las capacidades del Kenzo frame-
work mediante la integración de nueva funcionalidad para el sistema Kenzo
o la conexión con otros sistemas tales como sistemas de cálculo simbólico o
asistentes para la demostración.

◦ Debido a que los usuarios finales del Kenzo framework son estudiantes, pro-
fesores o investigadores de Topoloǵıa Algebraica que normalmente no cono-
cen el sistema Common Lisp, hemos desarrollado una interfaz de usuario
amigable que permite la interacción con el Kenzo framework, sin necesi-
dad de preocuparse por las cuestiones técnicas relacionadas con Lisp que son
inevitables cuando se usa el sistema Kenzo. Este trabajo ha sido presentado
en [HPR08a, HPR09a].

◦ Varios tipos de interacción con nuestro sistema son posibles dependiendo del
tipo de usuario, por lo tanto, hemos usado el framework de plug-ins para ser
capaces de personalizar nuestra interfaz gráfica dependiendo de sus necesida-
des. Este trabajo puede encontrarse en [HPR09d].

◦ Hemos reunido los dos frameworks (Kenzo framework y framework de plug-
ins) y la interfaz gráfica de usuario en un único sistema llamado fKenzo. Este
trabajo ha sido publicado en [HPRS11].

• Caṕıtulo 4:

◦ Hemos logrado la integración, en un mismo sistema, de cálculo (gracias a Ken-
zo y GAP) y deducción (por medio de ACL2). Incluso si nuestra propuesta
tiene una extensión limitada, tanto desde el punto de vista temático como
desde los sistemas base, creemos que hemos mostrado una ĺınea de investiga-
ción lo suficientemente sólida para ser exportada a otras áreas de la gestión
mecanizada del conocimiento matemático. Este trabajo ha sido presentado
en [HPRR10].

◦ No sólo hemos logrado la integración de varias herramientas en el mismo
sistema, sino que las hemos hecho cooperar (un problema mucho más dif́ıcil).
Por un lado, hemos automatizado la integración entre Kenzo y GAP que fue
propuesta en [RER09] ocultando los detalles técnicos de la integración de estos
sistemas al usuario final. Por otro lado, Kenzo, GAP y ACL2 han trabajado
de manera conjunta en nuestro sistema para proporcionar una herramienta
potente y fiable relacionada con la construcción de espacios de Eilenberg
MacLane de tipo K(G, n) donde G es un grupo ćıclico; dichos espacios son
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fundamentales a la hora de calcular grupos de homotoṕıa. Este trabajo ha
sido presentado en [HPRR10].

• Caṕıtulo 5:

◦ Hemos presentado un programa que incrementa la funcionalidad del sistema
Kenzo, por medio de la generación de complejos simpliciales a partir de sus
elementos maximales y de la construcción de los conjuntos simpliciales aso-
ciados con complejos simpliciales. Además, hemos certificado la corrección de
dicho programa en ACL2, mejorando de este modo la fiabilidad del nuevo
módulo de Kenzo. Este trabajo puede encontrarse en [HP10a].

◦ Hemos desarrollado un nuevo módulo Kenzo dedicado a estudiar imágenes
monocromáticas 2D y 3D que está basado en el módulo de los complejos sim-
pliciales. Asimismo, hemos formalizado nuestros algoritmos en ACL2; de este
modo, si usamos nuestros sistemas en problemas de la vida real (por ejemplo,
el estudio de imágenes médicas) podemos estar completamente seguros de que
los resultados producidos por nuestros programas son siempre correctos.

◦ Hemos presentado un algoritmo para construir la homoloǵıa efectiva del pus-
hout de conjuntos simpliciales con homoloǵıa efectiva. Como subproducto el
wedge y el join de conjuntos simpliciales pueden ser construidos como casos
particulares del pushout. Los algoritmos han sido implementados como un
nuevo módulo para Kenzo que ha sido probado con algunos casos de estudio
interesantes como el espacio proyectivo P 2(C) ó SL2(Z). Este trabajo ha sido
presentado en [Her10].

◦ Hemos integrado los nuevos módulos presentados en este caṕıtulo en fKenzo.

• Caṕıtulo 6:

◦ Hemos diseñado un marco para probar la corrección de los conjuntos simpli-
ciales implementados en el sistema Kenzo. Como ejemplos de aplicación he-
mos proporcionado la prueba completa de la corrección de la implementación
en Kenzo de las esferas, los conjuntos simpliciales estándar y los conjuntos
simpliciales asociados con complejos simpliciales (módulo una transformación
segura entre los programas Kenzo y la sintaxis ACL2). Por medio de la misma
teoŕıa genérica la corrección de otros conjuntos simpliciales de Kenzo puede
ser demostrada. Este trabajo ha sido publicado en [HPR11].

◦ Hemos proporcionado una metodoloǵıa para modelar estructuras matemáti-
cas en ACL2. Este proceso de modelado ha sido utilizado para implementar
parcialmente una jerarqúıa algebraica en ACL2 que es la base para verificar
la corrección de la construcción de espacios a partir de otros, y que puede ser
útil para trabajos no relacionados con nuestros desarrollos.

◦ Hemos presentado un marco para probar la corrección de la construcción de
espacios a partir de otros a partir de su implementación en Kenzo. Como
ejemplos de aplicación, hemos dado, entre otros, una prueba completa de
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la corrección de la implementación de la suma directa de dos complejos de
cadenas, del Lema de Perturbación Fácil y del Teorema SES1. Usando el
mismo marco, la corrección de otros constructores puede ser probada.

En resumen, podemos afirmar que hemos desarrollado un asistente para la Topoloǵıa
Algebraica llamado fKenzo. Este sistema no sólo proporciona una interfaz de usuario
amigable para utilizar Kenzo, sino que además gúıa al usuario en su interacción con
el sistema. Además, este sistema puede evolucionar al mismo tiempo que Kenzo. Esta
caracteŕıstica ha sido probada mediante el desarrollo de varios módulos para el sistema
Kenzo que han sido integrados en fKenzo sin mayor dificultad. Asimismo, la funciona-
lidad del sistema puede también ser extendida mediante la integración con sistemas de
cálculo simbólico o demostradores de teoremas, que no sólo trabajan de manera indivi-
dual, sino que cooperan para producir nuevas herramientas. Finalmente, podemos decir
que hemos desarrollado una herramienta fiable ya que su núcleo ha sido parcialmente
verificado mediante el sistema ACL2.

Problemas abiertos y trabajo futuro

La investigación presentada en esta memoria se puede continuar en varias direcciones,
las agrupamos por caṕıtulos:

• Caṕıtulo 2:

◦ El módulo HES (Párrafo 2.2.3.2.3) debeŕıa ser dotado con un lenguaje de alto
nivel para describir reglas de modo que un investigador de Topoloǵıa Algebrai-
ca sin ningún conocimiento espećıfico sobre ordenadores pudiera introducir
nuevas reglas.

◦ El algoritmo implementado en el módulo HAM (Párrafo 2.2.3.2.2) puede ser
completado gracias al desarrollo presentado en [RER09] que permite el cálcu-
lo de la homoloǵıa efectiva de espacios de Eilenberg MacLane de tipo K(G, n)
donde G es un grupo ćıclico. De este modo, todos los grupos de homotoṕıa
de conjuntos simpliciales 1-reducidos con homoloǵıa efectiva podŕıan ser cal-
culados.

◦ Uno de los temas más importantes que debe ser abordado en las nuevas ver-
siones del Kenzo framework es la organización de cuándo (y cómo) un cálculo
debe ser enviado a un servidor remoto. Algunas ideas sobre este tema fueron
presentadas en la Sección 2.4.

◦ La arquitectura presentada en la Sección 2.5 nos permitirá trabajar en un
contexto distribuido. Estamos pensando en una arquitectura, donde varios
clientes se comunica con un servidor central. Dicho servidor actúa como repo-
sitorio general y proporciona potencia de cálculo para tratar con los cálculos
complejos. El mayor problema consiste en diseñar buenas heuŕısticas para
decidir cuál es el significado de “ser un cálculo dif́ıcil”.
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• Caṕıtulo 3:

◦ Una de las posibles mejoras para fKenzo consistiŕıa en encontrar un modo
cómodo (sin los detalles técnicos de la sintaxis Common Lisp) de editar y
manipular los elementos de los espacios construidos. De este modo podŕıamos
tratar la dif́ıcil cuestión de introducir en fKenzo cálculos como los grupos de
homoloǵıa de P 2(C), ver subsubsección 5.3.4.

◦ En el área de interfaces de usuarios, un objetivo posible seŕıa el desarrollo
de una interfaz de usuario web. En este momento la estructura de dicha
interfaz ya es proporcionada mediante la especificación XUL, el trabajo ahora
consistiŕıa en conectar dicha interfaz con el Kenzo framework.

◦ También en el área de las interfaces de usuario, se podŕıa integrar un editor
de ecuaciones, del estilo a DragMath [Bil], en la interfaz de usuario de fKenzo.
El editor podŕıa ser usado para escribir expresiones matemáticas en el estilo
tradicional, y producir expresiones OpenMath. Por último, las expresiones
OpenMath serán usadas para invocar al Kenzo framework.

• Caṕıtulo 4:

◦ Más capacidades de cálculo y deducción debeŕıan ser integradas en nuestro
sistema. Desde el punto de vista de los sistemas de cálculo simbólico podemos
considerar, por ejemplo, el sistema Cocoa [CoC], que ya ha sido utilizado en
trabajos relacionados con Kenzo, véase [dC08]. Desde el punto de vista de los
demostradores de teoremas podemos considerar Coq e Isabelle, ya utilizados
para la formalización de distintos algoritmos de Kenzo, véase [ABR08, DR11].
Además, como en el caso de GAP y ACL2, el verdadero interés no reside en
usar los sistemas de forma individual, sino en hacerlos cooperar para obtener
nuevas herramientas y resultados que no podŕıan alcanzarse trabajando por
separado.

◦ Seŕıa necesario mejorar la interacción con el sistema ACL2. En este momento
las peticiones deben ser preprocesadas (incluso cuando la especificación pa-
ramétrica permite al sistema cubrir familias completas de estructuras: grupos
ćıclicos, esferas, complejos simpliciales, etcetera). Se debeŕıa proporcionar un
modo cómodo de introducir preguntas sobre la veracidad de propiedades de
objetos intermedios, generadas de manera dinámica durante una sesión de
cálculo.

◦ Queremos integrar más certificados ACL2 en nuestro sistema. La idea seŕıa
interactuar como hasta ahora en la misma interfaz con Kenzo y ACL2. Por
ejemplo, el usuario podŕıa dar información sobre cómo construir un conjunto
simplicial en Kenzo. Además, él podŕıa proporcionar ciertas pistas a ACL2
explicando el motivo de que esta construcción sea correcta; entonces ACL2
produciŕıa una prueba completa de la corrección de la construcción. Este tipo
de interacción entre sistemas de cálculo simbólico y demostradores de teore-
mas seŕıa muy valiosa, sin embargo las dificultades relacionadas con encontrar
una representación común todav́ıa no han sido resueltas.
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◦ Un meta-lenguaje debeŕıa ser diseñado para especificar cómo y cuándo un
nuevo sistema puede ser integrado en el framework. Esta capacidad y la ne-
cesidad de organizar los diferentes servicios supone un reto, que puede ser
explorado mediante la tecnoloǵıa OpenMath.

• Caṕıtulo 5:

◦ Una ĺınea natural de investigación consiste en desarrollar nuevos algoritmos y
programas. Por ejemplo, una tarea que supone un desaf́ıo es la implementación
de la noción dual de pushout llamada pullback [Mat76].

◦ En la subsubsección 5.1.5.2, hemos presentado dos programas diferentes que
permiten construir el complejo simplicial asociado con una lista de śımplices.
Uno de estos programas fue implementado únicamente en Common Lisp debi-
do a que usaba una estrategia de memoización que no pod́ıa ser directamente
implementada en ACL2. Sin embargo, el trabajo presentado en [BH06] pro-
porciona las herramientas necesarias para memoizar funciones en ACL2, por
lo que una versión optimizada de nuestro algoritmo puede ser implementada
en ACL2. Además, se podŕıa utilizar la adscripción semántica presentada en
la subsección 6.1.3 para utilizar la versión no optimizada para razonar y la
nueva versión optimizada para ejecutar.

◦ Del mismo modo que se han aplicado los algoritmos relacionados con com-
plejos simpliciales en el estudio de imágenes digitales, se pueden desarrollar
nuevos programas para ser aplicados en distintos contextos como la teoŕıa
de códigos o la robótica. Del mismo modo que en el caso de las imágenes
digitales, si queremos utilizar nuestros programas en aplicaciones de la vida
real, debemos estar seguros de que los resultados que producen son correc-
tos. Por lo tanto, la verificación formal de nuestros programas mediante un
demostrador de teoremas es importante.

• Caṕıtulo 6:

◦ Con la experiencia adquirida, la metodoloǵıa presentada en la sección 6.2
puede ser utilizada en otras estructuras algebraicas de Kenzo. Por lo tanto,
el trabajo presentado en dicha sección puede ser considerado una buena base
para nuestro objetivo de verificar en ACL2 los fragmentos de primer orden
del sistema Kenzo.

◦ La jerarqúıa presentada en la subsección 6.3.4 debeŕıa ser enriquecida por
medio del resto de estructuras matemáticas implementadas en Kenzo, ver la
subsección 1.2.1.

◦ La metodoloǵıa presentada en la sección 6.4 puede ser aplicada en distintos
casos. En particular, seŕıa interesante formalizar la construcción de la ho-
moloǵıa efectiva del pushout que involucra varias de las construcciones ya
presentadas en esta memoria.

◦ La formalización del cálculo de grupos de homoloǵıa queda como trabajo
futuro. En este caso sólo nos debeŕıamos centrar en el cálculo de grupos
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de homoloǵıa de espacios de tipo finito gracias al método de la Homoloǵıa
Efectiva. En estos casos, el cálculo de cada grupo de homoloǵıa se traduce a un
problema de diagonalizar ciertas matrices de enteros. Por lo tanto, debeŕıamos
formalizar este proceso de diagonalización.

Todos estos problemas son interesantes para ser abordados, sin embargo no podemos
atacarlos todos a la vez. Por lo tanto, nuestras principales prioridades son las siguientes:

• Formalizar libreŕıas para el Álgebra Homológica y la Topoloǵıa Algebraica. A lo
largo de esta memoria hemos presentado la formalización de varios resultados re-
lacionados con el Álgebra Homológica y la Topoloǵıa Algebraica por medio del
sistema ACL2. En el futuro planeamos la formalización de más resultados. Pa-
ra llevar a cabo esta tarea, no sólo vamos a utilizar el sistema ACL2, sino que
también tenemos pensado usar el sistema Coq [BGBP08] aśı como su extensión
SSReflect [GM09]. Un primer paso en esta dirección es el trabajo [HPDR11],
donde se presenta una formalización en Coq de las matrices de incidencia aso-
ciadas a conjuntos simpliciales aśı como el principal teorema que da sentido a la
definición de los grupos de homoloǵıa.

• Integración de diferentes demostradores de teoremas. Como hemos explicado en
el punto anterior, estamos planeando el uso simultáneo de dos demostradores de
teoremas: ACL2 y Coq. Este objetivo se puede partir en dos tareas diferentes.
Por un lado, queremos comparar distintas formalizaciones del mismo problema en
Coq/SSReflect; un trabajo relacionado con esta ĺınea de investigación puede
verse en [AD10]. Por otra parte, estamos interesados en utilizar ACL2 como oráculo
de esquemas inductivos para Coq/SSReflect, obteniendo de este modo una
interoperabilidad, similar a la presentada para los sistemas de cálculo simbólico
Kenzo y GAP.

• Aplicaciones al estudio de imágenes médicas. Los métodos presentados en esta me-
moria relacionados con imágenes digitales pueden ser aplicados en el estudio de
imágenes médicas. Sin embargo, para lograr este objetivo es necesario implementar
nuevas herramientas en sistemas software. Además, si queremos aplicar nuestros
métodos en el estudio de imágenes médicas debemos estar completamente segu-
ros de que estos son correctos, por lo tanto es también necesario un proceso de
formalización.

La razón principal para escoger estos objetivos y no otros, es debido a que ellos corres-
ponden con tres de las tareas asignadas al nodo de La Rioja del proyecto ForMath [For]
que ha financiado parcialmente el trabajo presentado en esta memoria.
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of Kenzo, a Common Lisp system for Algebraic Topology. En Actas del
1st European Lisp Symposium (ELS’08), pp. 155–176. Universidad de
Bourdeaux, 2008.
Kenzo es un sistema de cálculo simbólico dedicado a la Topoloǵıa Algebraica. Es-
crito en Common Lisp, este programa ha sido exitoso en el cálculo de grupos de
homoloǵıa y homotoṕıa hasta entonces desconocidos. El objetivo ahora consiste en
incrementar el número de usuarios y mejorar la usabilidad del sistema. En lugar
de diseñar simplemente una interfaz de usuario, decidimos abordar el desarrollo
de un acceso mediado al sistema, restringiendo su funcionalidad, pero proporcio-
nando orientación al usuario en la interacción con el sistema. Este objetivo ha
sido alcanzado mediante la construcción en Common Lisp de una capa intermedia,
permitiendo un acceso inteligente a algunas funciones del sistema. Esta capa in-
termedia esta sostenida por la tecnoloǵıa XML y sirve de enlace entre la interfaz
gráfica de usuario y el sistema Kenzo puro.

• J. Heras, V. Pascual y J. Rubio. A graphical user interface for the Kenzo
system, a program to compute in Algebraic Topology. En Actas del XI
Encuentro de Álgebra Computacional y Aplicaciones (EACA’08), pp.
93–96. Universidad de Granada, 2008.
Kenzo es un sistema de cálculo simbólico dedicado a la Topoloǵıa Algebraica. Fue
desarrollado por F. Sergeraert principalmente como una herramienta de investiga-
ción. El objetivo ahora consiste en incrementar su número de usuarios y mejorar
su usabilidad. La primera tarea llevada a cabo ha sido el diseño de una interfaz de
usuario sencilla, después de esta tarea nos hemos centrado en el desarrollo de un
marco completo que envuelve el sistema Common Lisp Kenzo puro y hace el uso
de Kenzo más sencillo para diferentes clientes.

• J. Heras, V. Pascual y J. Rubio. Mediated access to Symbolic Compu-
tation Systems. En Actas del 7th International Conference on Mathema-
tical Knowledge Management (MKM’08). Lectures Notes in Artificial
Intelligence 5144, pp. 446–461, 2008.
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Kenzo es un sistema de cálculo simbólico dedicado a la Topoloǵıa Algebraica. Fue
desarrollado por F. Sergeraert principalmente como una herramienta de investiga-
ción. El objetivo ahora consiste en incrementar su número de usuarios y mejorar
su usabilidad. En lugar de diseñar simplemente una interfaz de usuario, decidimos
abordar el desarrollo de un acceso mediado al sistema, restringiendo su funciona-
lidad, pero proporcionando orientación al usuario en la interacción con el sistema.
Este objetivo ha sido alcanzado mediante la construcción en Common Lisp de una
capa intermedia, permitiendo un acceso inteligente a algunas funciones del sistema.
Esta capa intermedia esta sostenida por la tecnoloǵıa XML y sirve de interacción
entre la interfaz gráfica de usuario y el sistema Kenzo puro.

• J. Heras, V. Pascual y J. Rubio. Applying Generative Communication
to Symbolic Computation in Common Lisp. En Actas del 2nd European
Lisp Symposium (ELS’09), pp. 27–42. Universidad de Milán, 2009.
En este art́ıculo, se describe una arquitectura para interactuar con un sistema
llamado Kenzo. Kenzo es un sistema Common Lisp dedicado a la computación
simbólica en Matemáticas, concretamente en el área de la Topoloǵıa Algebraica. La
arquitectura presentada en este art́ıculo es una evolución de una propuesta previa,
donde varios aspectos han sido mejorados. En particular, se han desacoplado los
diferentes componentes y se han implementado mecanismos para reusar los cálculos
intermedios. La nueva tecnoloǵıa que nos permite estas mejoras está basada en el
Modelo Linda (un modelo donde los procesos se comunican mediante un espacio
de tuplas compartido), implementado a través de AllegroCache (una base de datos
orientada a objetos de Allegro Common Lisp). El marco desarrollado actúa como
mediador entre algunos clientes de Kenzo y el propio Kenzo.

• J. Heras, V. Pascual y J. Rubio. A customizable GUI through an
OMDoc documents repository. En Actas del 4th Mathematical User-
Interfaces Workshop, 2009.
http://www.activemath.org/workshops/MathUI/09/

Kenzo es un sistema de cálculo simbólico dedicado a la Topoloǵıa Algebraica.
En algunos trabajos previos se presentó un framework que envolv́ıa a Kenzo pro-
porcionando un acceso mediado a dicho sistema haciendo su uso más fácil. En
este trabajo, se presenta un cliente de este framework, concretamente una interfaz
gráfica de usuario. Por medio de un repositorio de documentos OMDoc, esta inter-
faz es totalmente personalizable. Además, permite a Kenzo interoperar con otros
sistemas, concretamente con el demostrador de teoremas ACL2. De este modo,
representación, cálculo y deducción son integrados en un mismo sistema.

• J. Heras, V. Pascual y J. Rubio. Content Dictionaries for Algebraic
Topology. En Actas del 22nd OpenMath Workshop, pp. 112–118, 2009.
Kenzo es un sistema de cálculo simbólico dedicado a la Topoloǵıa Algebraica que
trabaja con las principales estructuras matemáticas usadas en esta disciplina. En
este art́ıculo, presentamos Diccionarios de Contenido OpenMath para cada una
de las estructuras matemáticas con las que trabaja el sistema Kenzo. Además, se

http://www.activemath.org/workshops/MathUI/09/
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explica el modo en que se usan para interactuar con un demostrador de teoremas
y para obtener cálculos certificados de Kenzo.

• J. Heras, V. Pascual y J. Rubio. Using Open Mathematical Documents
to Interface Computer Algebra and Proof Assistant Systems. En Actas
del 8th International Conference on Mathematical Knowledge Mana-
gement (MKM’09). Lectures Notes in Artificial Intelligence 5625, pp.
467–473, 2009.
El conocimiento matemático puede ser codificado por medio de documentos ma-
temáticos abiertos (cuyas siglas en inglés son OMDoc) para interactuar tanto con
sistemas de cálculo simbólico como con sistemas de ayuda a la demostración. En
este art́ıculo, mostramos como una única estructura de OMDoc puede ser usada
para generar dinámicamente tanto una interfaz gráfica de usuario para un sis-
tema de cálculo simbólico como un fichero para un asistente a la demostración.
Aśı que, el formato OMDoc puede ser usado para representar diferentes aspectos.
Esta aproximación genérica ha sido puesta en práctica por medio de un primer
prototipo que conecta el sistema de cálculo simbólico Kenzo y el demostrador de
teoremas ACL2, ambos basados en el lenguaje de programación Common Lisp. Un
repositorio de documentos OMDoc ha sido desarrollado permitiendo al usuario la
personalización de la aplicación de una manera sencilla.

• J. Heras, V. Pascual. Mediated Access To Symbolic Computation Sys-
tems: An OpenMath Approach. Contribuciones Cient́ıficas En Honor
De Mirian Andrés Gómez, pp. 85–105, 2010.
En este art́ıculo, se describe una arquitectura para interactuar con el sistema de
Cálculo Simbólico Kenzo (dedicado a la Topoloǵıa Algebraica). El acceso que se
proporciona esta mediado por medio de varios artefactos basados en XML, produ-
ciendo una capa intermedia inteligente. La parte más externa de la arquitectura
ha sido creada usando Diccionarios de Contenido OpenMath y el correspondien-
te Phrasebook. Como consecuencia, varios Diccionarios de Contenido OpenMath
para la Topoloǵıa Algebraica Simplicial han sido desarrollados.

• J. Heras, V. Pascual. ACL2 verification of Simplicial Complexes pro-
grams for the Kenzo system. En Actas del Algebraic computing, soft
computing, and program verification workshop. Intl Center for Mathe-
matical Meetings (CIEM), Castro Urdiales, Spain, 2010.
Kenzo es un sistema de álgebra computacional dedicado a la Topoloǵıa Algebraica,
escrito en el lenguaje de programación Common Lisp. A pesar de ser más sencilla
la noción de complejo simplicial que la de conjunto simplicial, el sistema Kenzo
sólo incluye la segunda. En este art́ıculo, se presentan los programas que permiten
trabajar en Kenzo con los complejos simpliciales, además de proporcionar una de-
mostración automatizada de su corrección. La demostración es llevada a cabo por
medio de ACL2, un sistema para probar propiedades de programas escritos en (un
subconjunto de) Common Lisp.
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• J. Heras. Effective Homology of the Pushout of Simplicial Sets. En Ac-
tas del XII Encuentro de Álgebra Computacional y Aplicaciones (EA-
CA’2010), pp. 152–156. Universidad de Santiago de Compostela, 2010.
En este art́ıculo, el algoritmo que construye la versión con homoloǵıa efectiva del
pushout de los morfismos simpliciales f : X → Y y g : X → Z, donde X, Y y Z
son conjuntos simpliciales con homoloǵıa efectiva es presentado.

• J. Heras, V. Pascual, A. Romero y J. Rubio. Integrating multiple
sources to answer questions in Algebraic Topology. En Actas del 9th
International Conference on Mathematical Knowledge Management
(MKM’2010). Lectures Notes in Artificial Intelligence 6167, pp. 331–
335, 2010.
Presentamos en este art́ıculo la evolución de una herramienta desde una interfaz
de usuario para un sistema de cálculo simbólico dedicado a la Topoloǵıa Algebrai-
ca (el sistema Kenzo), hasta un front-end que permite la interoperabilidad entre
diferentes fuentes de información para el cálculo y la deducción. La arquitectura
permite al sistema no sólo interactuar con varios sistemas, sino también hacer que
cooperen entre ellos para obtener cálculos de manera distribuida.

• J. Heras, V. Pascual y J. Rubio. Proving with ACL2 the correctness
of simplicial sets in the Kenzo system. En Actas del 20th Internatio-
nal Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR’2010). Lectures Notes in Computer Science 6564, pp. 37–51,
2011.
Kenzo es un sistema Common Lisp dedicado a la Topoloǵıa Algebraica. En este
art́ıculo mostramos cómo el demostrador de teoremas ACL2 puede ser usado pa-
ra probar la corrección de fragmentos de primer orden de Kenzo. De forma más
concreta, nosotros presentamos la verificación en ACL2 de la implementación de
los conjuntos simpliciales. Por medio de un mecanismo de instanciación genéri-
ca, nosotros conseguimos reducir el esfuerzo de la demostración para cada una
de las familias de conjuntos simpliciales, dejando a ACL2 automatizar las partes
rutinarias de la demostración.

• J. Heras, V. Pascual, J. Rubio y F. Sergeraert. fKenzo: a user interface
for computations in Algebraic Topology. Será publicado en Journal of
Symbolic Computation.
fKenzo (del inglés friendly Kenzo) es una interfaz gráfica de usuario que proporcio-
na una interfaz amigable al sistema Kenzo, un programa Common Lisp dedicado a
la Topoloǵıa Algebraica. El sistema fKenzo proporciona la interfaz de usuario, una
capa intermedia basada en XML y, finalmente el núcleo Kenzo. Describimos en es-
te art́ıculo las principales propiedades del programa fKenzo, y también explicamos
las ventajas y limitaciones de fKenzo con respecto a Kenzo.
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