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It is commonly conceived that computationally well-behaved programs and data structures
are usually more difficult to study formally than naive ones. Rich formalisms like the Calculus
of Inductive Constructions, on which the Coq [2] proof assistant relies, allow several different
representations of the same object so that users can choose the one suiting their needs.

Even simple objects like natural numbers may have both a unary representation which fea-
tures a very straightforward induction scheme and a binary one which is exponentially more
compact, but usually entails more involved proofs. Their respective incarnations in the stan-
dard library of Coq are the two inductive types nat and N along with two isomorphisms
N.of_nat : nat -> N and N.to_nat : N -> nat. Operators and proofs used to be dupli-
cated over these two types, whereas recent versions of the library make use of functors and type
classes to factor the code.

However, this traditional approach to abstraction, by defining an interface specifying the
signature of operators and axiomatizing their properties, proving correctness from the axioms,
and then instantiating to particular implementations, has at least two drawbacks in our context.
First, it is not always obvious how to define the correct interface, and not even clear that a
suitable one always exists. Second, having abstract axioms goes against the type-theoretic view
of objects with computational content which means in practice that proof techniques like small
scale reflection, as advocated by the SSReflect extension [4], are not applicable. Instead, the
approach we propose involves proving the correctness of operators on data structures designed
for proofs – as opposed to an abstract signature – and then transporting them to more efficient
implementations. We distinguish two notions: program refinements and data refinements.

The first of these consists in transforming a program into a more efficient one computing the
same thing, preserving the involved types. For example, standard matrix multiplication can be
refined to a more efficient implementation like Strassen’s fast matrix product. The correctness
of this kind of refinements is often straightforward to state in Coq as, in many cases, it suffices
to prove that the two algorithms are extensionally equal.

However, we consider program refinement as an input to our framework and we do not
explain here how to prove them formally. Instead, we focus on data refinements, by which we
mean linking two different datatypes representing the same mathematical objects, and lifting
the associated operators from one to the other.

We rely on a previous work [3] which defines a framework refining algebraic structures in
a similar way, while allowing a step-by-step approach to prove correctness of algorithms. The
present work1 improves generality by extending to previously unsupported data types (like
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the rational numbers), flexibility and modularity by refining each operator in isolation, and
automation.

In practice our framework decomposes each library into three parts. The first part con-
sists in defining the computation-oriented datastructures together with the (possibly efficient)
algorithms operating on it. Both may be based on abstract types and operators for the un-
derlying structures. For example, given an abstract type A equipped with a binary operator
mul : A -> A -> A representing multiplication, rational numbers may be implemented by the
type A * A of pairs of elements in A. It is then possible to define multiplication for this represen-
tation. In order to make programming easier we use operational typeclasses [7] to parametrize
by operations such as mul.

In the second part, the correctness of the computation-oriented type and its operations is
proved by linking them to their proof-oriented counterparts. For rational numbers this could
for example mean that the representation as a pair would be linked to the type rat of rational
numbers of SSReflect, which are pairs of coprime integers where the second component is
nonzero. In this case A * A and rat would not be isomorphic, but the latter would be a partial
quotient of the former [1].

The correctness of the implemented algorithms is proved by instantiating by proof-oriented
types and is proved with respect to its proof-oriented counterpart. For rational numbers, this
would lead us to change the abstract type A to a proof-oriented representation of integers and
prove that the definition of multiplication computes the same thing as the one for rat (modulo
normalization). These correctness proofs are stored in a database (using typeclass instances
[6]) so that they can be instrumented for automated translation.

The third step is to substitute the proof-oriented parameters with computation-oriented
ones. Applying it on rational numbers implies changing the proof-oriented representation of
integers into a computation-oriented one, which refines the former. This step can be done by
taking advantage of parametricity. However since parametricity is not internal in Coq [5], we
rely on meta-programming.

This work is intended to be used as a new basis for CoqEAL – The Coq Effective Algebra
Library. This is a library that we are currently developing, containing many formally veri-
fied program refinements such as Strassen’s fast matrix product, Karatsuba’s fast polynomial
product and the Sasaki-Murao algorithm to compute the characteristic polynomial of a matrix.
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