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Abstract. Fiji is a Java platform widely used by biologists and other
experimental scientists to process digital images. In our research, made
together with a biologists team, we use Fiji in some pre-processing steps
before undertaking a homological digital processing of images. In a previ-
ous work, we have formalised the correctness of the programs which use
homological techniques to analyse digital images. However, the verifica-
tion of Fiji’s pre-processing step was missed. In this paper, we present a
multi-tool approach (based on the combination of Why/Krakatoa, Coq
and ACL2) filling this gap.

1 Introduction

Fiji [27] is a Java platform widely used by biologists and other experimental sci-
entists to process digital images. In our research, made together with a biologists
team, we use Fiji in some pre-processing steps before undertaking a homological
digital processing of images.

Due to the fact that the reliability of results is instrumental in biomedical
research, we are working towards the certification of the programs that we use
to analyse biomedical images – here, certification means verification assisted by
computers. In a previous work, see [16,17], we have formalised two homological
techniques to process biomedical images. However, in both cases, the verification
of Fiji’s pre-processing step was not undertaken.

Being a software built by means of plug-ins developed by several authors,
Fiji is messy, very flexible (program pieces are used in some occasions with a
completely different objective from the one they were designed), contains many
redundancies and dead code, and so on. In summary, it is a big software sys-
tem which has not been devised to be formally verified. So, this endeavour is
challenging.
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There are several approaches to verify Java code; for instance, proving the
correctness of the associated Java bytecode, see [22]. In this paper, we use Kraka-
toa [11] to specify and prove the correctness of Fiji/Java programs. This expe-
rience allows us to evaluate both the verification of production Fiji/Java code,
and the Krakatoa tool itself in an unprepared scenario.

Krakatoa uses some automated theorem provers (as Alt-Ergo [5] or CVC3 [3])
to discharge the proof obligations generated by means of the Why tool [11].
When a proof obligation cannot be solved by means of the automated provers,
the corresponding statement is generated in Coq [9]. Then, the user can try to
prove the missing property by interacting with this proof assistant.

In this picture, we add the ACL2 theorem prover [20]. ACL2 is an automated
theorem prover but more powerful than others. In many aspects, working with
ACL2 is more similar to interactive provers than to automated ones, see [20].
Instead of integrating ACL2 in the architecture of Why/Krakatoa, we have fol-
lowed another path leaving untouched the Why/Krakatoa code. Our approach
reuses a proposal presented in [2] to translate first-order Isabelle/HOL theories
to ACL2 through an XML specification language called XLL [2]. We have en-
hanced our previous tools to translate Coq theories to the XLL language, and
then apply the tools developed in [2] to obtain ACL2 files. In this way, we can
use, unmodified, the Why/Krakatoa framework; the Coq statements are then
translated (if needed) to ACL2, where an automated proof is tried; if it suc-
ceeds, Coq is only an intermediary specification step; otherwise, both ACL2 or
Coq can be interactively used to complete the proof.

The organization of the paper is as follows. The used tools together with
our general way of working are briefly presented in Section 2. Section 3 deals
with a methodology to “tame” production Fiji code in such a way that it is
acceptable for Why/Krakatoa – this method is general enough to be applied to
any Java code. Section 4 describes an example of the kind of specification we
faced. The role of ACL2, and the tools to interoperate between Coq and ACL2,
are explained in Section 5. The exposition style along the paper tries to be clear
(without much emphasis on formal aspects), driven by real examples extracted
from our programming experience in Fiji; in the same vein, Section 6 contains a
complete example illustrating the actual role of ACL2 in our setting. The paper
ends with a conclusions section and the bibliography.

All the programs and examples presented throughout this paper are available
at http://www.computing.dundee.ac.uk/staff/jheras/vpdims/.

2 Context, tools, method

2.1 Context

Fiji [27] is a Java program which can be described as a distribution of ImageJ [26].
These two programs help with the research in life sciences and biomedicine since
they are used to process and analyse biomedical images. Fiji and ImageJ are
open source projects and their functionality can be expanded by means of either
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a macro scripting language or Java plug-ins. Among the Fiji/ImageJ plug-ins
and macros, we can find functionality which allows us to binarise an image via
different threshold algorithms, homogenise images through filters such as the
“median filter” or obtain the maximum projection of a stack of images.

In the frame of the ForMath European project [1], one of the tasks is de-
voted to the topological aspects of digital image processing. The objective of
that consists in formalising enough mathematics to verify programs in the area
of biomedical imaging. In collaboration with the biologists team directed by
Miguel Morales, two plug-ins for Fiji have been developed (SynapCountJ [24]
and NeuronPersistentJ [23]); these programs are devoted to analyse the effects
of some drugs on the neuronal structure. At the end of such analysis, some ho-
mological processing is needed (standard homology groups in SynapCountJ and
persistent homology in NeuronPersistentJ). As explained in the introduction, we
have verified these last steps [16, 17]. But all the pre-processing steps, based on
already-built Fiji plug-ins and tools, kept unverified. This is the gap we try to
fill now, by using the facilities presented in the sequel.

2.2 Tools

Why/Krakatoa: Specifying and verifying Java code. The Why/Kraka-
toa tools [11] are an environment for proving the correctness of Java programs
annotated with JML [7] specifications which have been successfully applied in
different context, see [4]. The environment involves three distinct components:
the Krakatoa tool, which reads the annotated Java files and produces a repre-
sentation of the semantics of the Java program into Why’s input language; the
Why tool, which computes proof obligations (POs) for a core imperative lan-
guage annotated with pre- and post-conditions, and finally several automated
theorem provers which are included in the environment and are used to prove
the POs. When some PO cannot be solved by means of the automated provers,
corresponding statements are automatically generated in Coq [9], so that the
user can then try to prove the missing properties in this interactive theorem
prover. The POs generation is based on a Weakest Precondition calculus and
the validity of all generated POs implies the soundness of the code with respect
to the given specification. The Why/Krakatoa tools are available as open source
software at http://krakatoa.lri.fr.

Coq and ACL2: Interactive theorem proving. Coq [9] is an interactive
proof assistant for constructive higher-order logic based on the Calculus of Induc-
tive Construction. This system provides a formal language to write mathematical
definitions, executable algorithms and theorems together with an environment
for semi-interactive development of machine-checked proofs. Coq has been suc-
cessfully used in the formalisation of relevant mathematical results; for instance,
the recently proven Feit-Thompson Theorem [13].

ACL2 [20] is a programming language, a first order logic and an automated
theorem prover. Thus, the system constitutes an environment in which algo-
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rithms can be defined and executed, and their properties can be formally speci-
fied and proved with the assistance of a mechanical theorem prover. ACL2 has
elements of both interactive and automated provers. ACL2 is automatic in the
sense that once started on a problem, it proceeds without human assistance.
However, non-trivial results are not usually proved in the first attempt, and the
user has to lead the prover to a successful proof providing a set of lemmas, in-
spired by the failed proof generated by ACL2. This system has been used for
a variety of important formal methods projects of industrial and commercial
interest [15] and for implementing large proofs in mathematics.

2.3 Method

In this section, we present the method that we have applied to verify Fiji code.
This process can be split into the following steps.

1. Transforming Fiji code into compilable Krakatoa code.
2. Specifying Java programs.
3. Applying the Why tool.
4. If all the proof obligations are discharged automatically by the provers inte-

grated in Krakatoa, stop; the verification has ended.
5. Otherwise, study the failed attempts, and consider if they are under-specified;

if it is the case, go again to step (2).
6. Otherwise, consider the Coq expressions of the still-non-proven statements

and transform them to ACL2.
7. If all the statements are automatically proved in ACL2, stop; the verification

has ended.
8. Otherwise, by inspecting the failed ACL2 proofs, decide if other specifications

are needed (go to item (2)); if it is not the case, decide if the missing proofs
should be carried out in Coq or ACL2.

The first step is the most sensitive one, because it is the only point where informal
(or, rather, semi-formal) methods are needed. Thus, some unsafe, and manual,
code transformation can be required. To minimize this drawback, we apply two
strategies:

– First, only well-known transformations are applied; for instance, we elimi-
nate inheritance by “flattening” out the code, but without touching the real
behaviour of methods.

– Second, the equivalence between the original code and the transformed one
is systematically tested.

Both points together increase the reliability of our approach; a more detailed
description of the transformations needed in step (1) are explained in Section 3.
Step (2) is quite well-understood, and some remarks about this step are provided
in Section 4. Steps (3)-(6) are mechanized in Krakatoa. The role of ACL2 (steps
(6)-(8)) is explained in Section 5 and, by means of an example, in Section 6.



3 Transforming Fiji-Java to Krakatoa-Java

In its current state, the Why/Krakatoa system does not support the complete
Java programming language and has some limitations. In order to make a Fiji
Java program compilable by Krakatoa we have to take several steps.

1. Delete annotations. Krakatoa JML annotations will be placed between \*@
and @*\. Therefore, we need to remove other Java Annotations preceded
by @.

2. Move the classes that are referenced in the file that we want to compile into
the directory whyInstallationDir/java api/. For example, the class RankFil-
ters uses the class java.awt.Rectangle; therefore, we need to create the folder
awt inside the java directory that already exists, and put the file Rectan-
gle.java into it. Moreover, we can remove the body of the methods because
only the headers and the fields of the classes will be taken into consideration.
We must iterate this process over the classes that we add. The files that we
add into the java api directory can contain import, extends and implements

clauses although the file that we want to compile cannot do it – Krakatoa
does not support these mechanisms. This is a tough process: for instance, to
make use of the class Rectangle, we need to add fifteen classes.

3. Reproduce the behaviour of the class that we want to compile. Considering
that we are not able to use extends and implements clauses, we need to move
the code from the upper classes into the one that we want to compile in
order to have the same behaviour. For instance, the class BinaryProcessor
extends from ByteProcessor and inside its constructor it calls the constructor
of ByteProcessor ; to solve this problem we need to copy the body of the super
constructor at the beginning of the constructor of the class BinaryProcessor.
If we find the use of interfaces, we can ignore them and remove the implements

clause because the code will be implemented in the class that makes use of
the interface.

4. Remove import clauses. We need to delete them from the file that we want to
compile and change the places where the corresponding classes appear with
the full path codes. If for example we are trying to use the class Rectangle
as we have explained in Step 2, we need to replace it by java.awt.Rectangle.

5. Owing to package declarations are forbidden, we need to remove them with
the purpose of halting “unknown identifier packageName” errors.

6. Rebuild native methods. The Java programming language allows the use
of native methods, which are written in C or C++ and might be specific
to a hardware and operating system platform. For example, many of the
methods in the class Math (which perform basic numeric operations such
as the elementary exponential, logarithm, square root, and trigonometric
functions) simply call the equivalent method included in a different class
named StrictMath for their implementation, and then the code in StrictMath
of these methods is just a native call. Since native methods are not written
in Java, they cannot be specified and verified in Krakatoa. Therefore, if our
Fiji program uses some native methods, it will be necessary to rewrite them



with our own code. See in Section 6 our implementation (and specification)
of the native method sqrt computing the square root of a number of type
double, based on Newton’s algorithm.

7. Add a clause in if-else structures in order to remove “Uncaught exception:
Invalid argument(“equal: abstract value”)”. We can find an example in the
method filterEdge of the class MedianFilter where we have to replace the
last else... clause by else if(true)....

8. Remove debugging useless references. We have mentioned in a previous step
that we can only use certain static methods that we have manually added to
the Why core code and therefore we can remove some debugging instructions
like System.out.println(...). We can find the usage of standard output
printing statement in the method write of the class IJ.

9. Modify the declaration of some variables to avoid syntax errors. There can
be some compilation errors with the definition of some floats and double
values that match the pattern <number>f or <number>d. We can see an
example in the line 180 of the file RankFilters.java; we have to transform
the code: float f = 50f; into float f = 50.

10. Change the way that Maximum and Minimum float numbers are written.
Those two special numbers are located in the file Float.java and there are
widely used to avoid overflow errors, but they generate an error due to the
eP exponent. To stop having errors with expressions like 0x1.fffffeP+127d

we need to convert it into 3.4028235e+38f.

4 Specifying programs for digital imaging

As already said in Section 2.2, Fiji and ImageJ are open source projects and many
different people from many different teams (some of them not being computer
scientists) are involved in the development of the different Fiji Java plug-ins.
This implies that the code of these programs is in general not suitable for its
formal verification and a deep previous transformation process, following the
steps explained in Section 3, is necessary before introducing the Java programs
into the Why/Krakatoa system. Even after this initial transformation, Fiji pro-
grams usually remain complex and their specification in Krakatoa is not a direct
process. In this section we present some examples of Fiji methods that we have
specified in JML trying to show the difficulties we have faced.

Once that a Fiji Java program has been adapted, following the ideas of Sec-
tion 3, and is accepted by the Why/Krakatoa application, the following step in
order to certify its correctness consists in specifying its behaviour (that is, its
precondition and its postcondition) by writing annotations in the Java Mod-
elling Language (JML) [7] . The precondition of a method must be a proposition
introduced by the keyword requires which is supposed to hold in the pre-state,
that is, when the method is called. The postcondition is introduced by the key-
word ensures, and must be satisfied in the post-state, that is, when the method
returns normally. The notation \result denotes the returned value. To differen-
tiate the value of a variable in the pre- and post- states, we can use the keyword
\old for the pre-state.



Let us begin by showing a simple example. The following Fiji method, in-
cluded in the class Rectangle, translates an object by given horizontal and vertical
increments dx and dy.

/*@ ensures x == \old(x) + dx && y == \old(y) + dy;

@*/

public void translate(final double dx, final double dy) {

this.x += dx; this.y += dy;

}

The postcondition expresses that the field x is modified by incrementing it
by dx, and the field y is increased by dy. In this case no precondition is given
since all values of dx and dy are valid, and the keyword \result does not appear
because the returned type is void.

Using this JML specification, Why/Krakatoa generates several lemmas (Proof
Obligations) which express the correctness of the program. In this simple case,
the proof obligations are elementary and they can be easily discharged by the
automated theorem provers Alt-Ergo [5] and CVC3 [3], which are included in
the environment. The proofs of these lemmas guarantee the correctness of the
Fiji method translate with respect to the given specification.

Unfortunately, this is not the general situation because, as already said, Fiji
code has not been designed for its formal verification and can be very compli-
cated; so, in most cases, Krakatoa is not able to prove the validity of a program
from the given precondition and postcondition. In order to formally verify a Fiji
method, it is usually necessary to include annotations in the intermediate points
of the program. These annotations, introduced by the keyword assert, must
hold at the corresponding program point. For loop constructs (while, for, etc),
we must give an inductive invariant, introduced by the keyword loop invariant,
which is a proposition which must hold at the loop entry and be preserved by
any iteration of the loop body. One can also indicate a loop variant, which must
be an expression of type integer, which remains non-negative and decreases at
each loop iteration, assuring in this way the termination of the loop. It is also
possible to declare new logical functions, lemmas and predicates, and to define
ghost variables which allow one to monitor the program execution.

Let us consider the following Fiji method included in the class RankFilters.
It implements Hoare’s find algorithm (also known as quickselect) for computing
the nth lowest number in part of an unsorted array, generalizing in this way the
computation of the median element. This method appears in the implementation
of the“median filter”, a process very common in digital imaging which is used
in order to achieve greater homogeneity in an image and provide continuity,
obtaining in this way a good binarization of the image.

/*@ requires buf!=null && 1<= bufLength <= buf.length && 0<=n <bufLength;

@ ensures Permut{Old,Here}(buf,0,bufLength-1)

@ && (\forall integer k; (0<=k<=n-1 ==> buf[k]<=buf[n])

@ && (n+1<=k<=bufLength-1 ==> buf[k]>=buf[n]))

@ && \result==buf[n] ;



@*/

public final static float findNthLowestNumber

(float[] buf, int bufLength, int n) {

int i,j;

int l=0;

int m=bufLength-1;

float med=buf[n];

float dum ;

while (l<m) {

i=l ;

j=m ;

do {

while (buf[i]<med) i++ ;

while (med<buf[j]) j-- ;

dum=buf[j];

buf[j]=buf[i];

buf[i]=dum;

i++ ; j-- ;

} while ((j>=n) && (i<=n)) ;

if (j<n) l=i ;

if (n<i) m=j ;

med=buf[n] ;

}

return med ;

}

Given an array buf and two integers bufLength and n, the Fiji method
findNthLowestNumber returns the (n+ 1)-th lowest number in the first bufLength

components of buf. The precondition expresses that buf is not null, bufLength

must be an integer between 1 and the length of buf, and n is an integer be-
tween 0 and bufLength− 1. The definition of the postcondition includes the use
of the predicate Permut, a predefined predicate, which expresses that when the
method returns the (modified) bufLength first components of the array buf must
be a permutation of the initial ones. The array has been reordered such that the
components 0, . . . , n− 1 are smaller than or equal to the component n, and the
elements at positions n+1, . . . , bufLength−1 are greater than or equal to that in
n. The returned value must be equal to buf[n], which is therefore the (n+ 1)-th
lowest number in the first bufLength components of buf.

In order to prove the correctness of this program, we have included different
JML annotations in the Java code. First of all, loop invariants must be given
for all while and do structures appearing in the code. Difficulties have been
found in order to deduce the adequate properties for invariants which must be
strong enough to imply the program (and other loops) postconditions; automated
techniques like discovery of loop invariants [18] will be used in the future. We
show as an example the loop invariant (and variant) for the exterior while, which
is given by the following properties:

/*@ loop_invariant



@ 0<=l<=n+1 && n-1<=m<=bufLength-1 && l<=m+2

@ && (\forall integer k1 k2; (0<=k1<=n && m+1<=k2<=bufLength-1)

@ ==> buf[k1]<=buf[k2])

@ && (\forall integer k1 k2; (0<=k1<=l-1 && n<=k2<=bufLength-1)

@ ==> buf[k1]<=buf[k2])

@ && Permut{Pre,Here}(buf,0,buf.length-1) && med==buf[n]

@ && ((l<m)==> ((l<=n)&&(m>=n)));

@ loop_variant m - l+2;

@*/

To help the automated provers to verify the program and prove the generated
proof obligations it is also necessary to introduce several assertions in some
intermediate points of the program and to use ghost variables which allow the
system to deduce that the loop variant decreases.

Our final specification of this method includes 78 lines of JML annotations
(for only 24 Java code lines). Krakatoa/Why produces 175 proof obligations
expressing the validity of the program. The automated theorem prover Alt-Ergo
is able to demonstrate all of them, although in some cases more than a minute (in
an ordinary computer) is needed; another prover included in Krakatoa, CVC3, is,
on the contrary, only capable of proving 171. The proofs of the lemmas obtained
by means of Alt-Ergo certify the correctness of the method with respect to the
given specification.

In this particular example, the automated theorem provers integrated in
Krakatoa are enough to discharge all the proof obligations. In other cases, some
properties are not proven, and then one should try to prove them using interac-
tive theorem provers, as Coq. In this architecture, we also introduce the ACL2
theorem prover, as explained in the next section.

5 The role of ACL2

In this section, we present the role played by ACL2 in our infrastructure to
verify the correctness of Java programs. The Why platform relies on automated
provers, such as Alt-Ergo or CVC3, and interactive provers, such as Coq or PVS,
to discharge proof obligations; however, it does not consider the ACL2 theorem
prover to that aim. We believe that the use of ACL2 can help in the proof
verification process. The reason is twofold.

– The scope of automated provers is smaller than the one of ACL2; therefore,
ACL2 can prove some of the proof obligations which cannot be discharged
by automated provers.

– Moreover, interactive provers lack automation; then, ACL2 can automat-
ically discharge proof obligations which would require user interaction in
interactive provers.

We have developed Coq2ACL2, a Proof General extension, which integrates
ACL2 in our infrastructure to verify Java programs; in particular, we work with



ACL2(r) a variant of ACL2 which supports the real numbers [12] – the for-
malisation of real analysis in theorem provers is an outstanding topic, see [6].
Coq2ACL2 features three main functions:

F1. it transforms Coq statements generated by Why to ACL2;

F2. it automatically sends the ACL2 statements to ACL2; and

F3. it displays the proof attempt generated by ACL2.

If all the statements are proved in ACL2; then, the verification process is ended.
Otherwise, the statements must be manually proved either in Coq or ACL2.

The major challenge in the development of Coq2ACL2 was the transforma-
tion of Coq statements to ACL2. There is a considerable number of proposals
documented in the literature related to the area of theorem proving interoper-
ability. We have not enough space here to do a thorough review, but we can
classify the translations between proof assistants in two groups: deep [8, 14, 19]
and shallow [10, 21,25].

In our work, we took advantage of a previous shallow development presented
in [2], where a framework called I2EA to import Isabelle/HOL theories into
ACL2 was introduced. The approach followed in [2] can be summarized as fol-
lows. Due to the different nature of Isabelle/HOL and ACL2, it is not feasible
to replay proofs that have been recorded in Isabelle/HOL within ACL2. Nev-
ertheless, Isabelle/HOL statements dealing with first order expressions can be
transformed to ACL2; and then, they can be used as a schema to guide the proof
in ACL2.

A key component in the framework presented in [2] was an XML-based spec-
ification language called XLL (that stands for Xmall Logical Language). XLL
was developed to act as an intermediate language to port Isabelle/HOL theo-
ries to both ACL2 and an Ecore model (given by UML class definitions and
OCL restrictions) – the translation to Ecore serves as a general purpose formal
specification of the theory carried out. The transformations among the different
languages are done by means of XSLT and some Java programs. We have in-
tegrated the Coq system into the I2EA framework as can be seen in Figure 1;
in this way, we can reuse both the XLL language and some of the XSLT files
developed in [2] to transform (first-order like) Coq statements to ACL2.

In particular, functionality F1 of Coq2ACL2 can be split into two steps:

1. given a Coq statement, Coq2ACL2 transforms it to an XLL file using a
Common Lisp translator program; then,

2. the XLL file is transformed to ACL2 using an XSLT file previously developed
in [2].

In this way, ACL2 has been integrated into our environment to verify Java
programs. As we will see in the following section, this has meant an improvement
to automatically discharge proof obligations.
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Fig. 1. (Reduced) Architecture of the I2EA framework integrating Coq.

6 The method in action: a complete example

In our work, we deal with images acquired by microscopy techniques from biolog-
ical samples. These samples have volume and the object of interest is not always
in the same plane. For this reason, it is necessary to obtain different planes from
the same sample to get more information. This means that several images are
acquired in the same XY plane at different levels of Z. To work with this stack
of images, it is often necessary to make their maximum projection. To this aim,
Fiji provides several methods such as maximum intensity or standard deviation
to obtain the maximum projection of a set of images.

In this section, we consider the Fiji code for computing the maximum projec-
tion of a set of images based on the standard deviation, which uses in particular
the method calculateStdDev located in the class ImageStatistics.

double calculateStdDev(double n, double sum, double sum2) {

double stdDev = 0.0;

if (n>0.0) {

stdDev = (n*sum2-sum*sum)/n;

if (stdDev>0.0)

stdDev = Math.sqrt(stdDev/(n-1.0));

else

stdDev = 0.0;

} else

stdDev = 0.0;

}

The inputs are n (the number of data to be considered), sum (the sum of
all considered values; in our case, these values will obtained from the pixels in
an image) and sum2 (the sum of the squares of the data values). The method
calculateStdDev computes the standard deviation from these inputs and assigns
it to the field stdDev. The specification of this method is given by the following
JML annotation.



/*@ requires ((n==1.0)==> sum2==sum*sum) && ((n<=0.0) || (n>=1.0)) ;

@ behaviour negative_n :

@ assumes n<=0.0 || (n>0.0 && (n*sum2-sum*sum)/n <=0.0);

@ ensures stdDev == 0.0;

@ behaviour normal_behaviour :

@ assumes n>=1.0 && ((n*sum2-sum*sum)/n > 0.0);

@ ensures is_sqrt(stdDev,(double)((n*sum2-sum*sum)/n/(n-1.0)));

@*/

The precondition, introduced by the keyword requires, expresses that in the
case n = 1 (that is, there is only one element in the data) the inputs sum and
sum2 must satisfy sum2 = sum ∗ sum. Moreover we must require that n is less than
or equal to 0 or greater than or equal to 1 to avoid the possible values in the
interval (0, 1); for n in this interval one has n− 1 < 0 and then it is not possible
to apply the square root function to the given argument stdDev/(n− 1.0). This
fact has not been taken into account by the author of the Fiji program because
in all real applications the method will be called with n being a natural number;
however, to formalise the method we must specify this particular situation in
the precondition. For the postcondition we distinguish two different behaviours:
if n is non-positive or sum and sum2 are such that n ∗ sum2 − sum ∗ sum < 0, the
field stdDev is assigned to 0; otherwise, the standard deviation formula is applied
and the result is assigned to the field stdDev. The predicate is sqrt is previously
defined.

For the proof of correctness of the method calculateStdDev in Krakatoa, it is
necessary to specify (and verify) the method sqrt. The problem here, as already
explained in Section 3, is that the method sqrt of the class Math simply calls
the equivalent method in the class StrictMath, and the code in StrictMath of
the method sqrt is just a native call and might be implemented differently on
different Java platforms. In order to give a JML specification of the method
sqrt is necessary then to rewrite it with our own code. The documentation of
StrictMath states “To help ensure portability of Java programs, the definitions
of some of the numeric functions in this package require that they produce the
same results as certain published algorithms. These algorithms are available from
the well-known network library netlib as the package “Freely Distributable Math
Library”, fdlibm”. In the case of the square root, one of these recommended
algorithms is Newton’s method; based on it, we have implemented and specified
in JML the computation of the square root of a given (non-negative) input of
type double.

/*@ requires c>=0 && epsi > 0 ;

@ ensures \result >=0 && (\result*\result>=c)

@ && \result*\result - c < epsi ;

@*/

public double sqrt(double c, double epsi){

double t;

if (c>1) t= c;

else t=1.1;

/*@ loop_invariant



@ (t >= 0) && (t*t> c) ;

@*/

while (t* t - c >= epsi) {

t = (c/t + t) / 2.0;

}

return t;

}

/*@ requires c>=0 ;

@ ensures (\result >=0) && (\result*\result>=c)

@ && (\result*\result - c < 1.2E-7);

@*/

public double sqrt(double c){

double eps=1.2E-7;

return sqrt(c,eps);

}

The first method computes the square root of a double x with a given pre-
cision epsi; the second one calls the previous method with a precision less than
1.2E−7. Using JUnit, we have run one million tests between 1E9 and 1E−9 to
show that the results of our method sqrt have similar precision to those obtained
by the original method Math.sqrt. Here, we applied the “first test, then verify”
approach – intensive testing can be really useful to find bugs (and can save us
time) before starting the verification process.

From the given JML specification for the Fiji method calculateStdDev and
our sqrt method, Why/Krakatoa produces 52 proof obligations, 9 of them cor-
responding to lemmas that we have introduced and which are used in order to
prove the correctness of the programs. Alt-Ergo is able to prove 50 of these proof
obligations, but two of the lemmas that we have defined remain unsolved. CVC3
on the contrary only proves 44 proof obligations.

The two lemmas that Alt-Ergo (and CVC3) are not able to prove are the
following ones:

/*@ lemma double_div_pos :

@ \forall double x y; x>0 && y > 0 ==> x / y > 0;

@*/

/*@ lemma double_div_zero :

@ \forall double x y; x==0.0 && y > 0 ==> x / y == 0.0;

@*/

In order to discharge these two proof obligations, we can manually prove
their associated Coq expressions.

Lemma double_div_zero : (forall (x_0_0:R), (forall (y_0:R),

((eq x_0_0 (0)%R) /\ (Rgt y_0 (0)%R) -> (eq (Rdiv x_0_0 y_0) (0)%R)))).

Lemma double_div_pos : (forall (x_13:R), (forall (y:R),

((Rgt x_13 (0)%R) /\ (Rgt y (0)%R) -> (Rgt (Rdiv x_13 y) (0)%R)))).



Both lemmas can be proven in Coq in less than 4 lines, but, of course, it
is necessary some experience working with Coq. Therefore, it makes sense to
delegate those proofs to ACL2. Coq2ACL2 translates the Coq lemmas to the
following ACL2 ones. ACL2 can prove both lemmas without any user interaction
(a screenshot of the proof of one of this lemmas in ACL2 is shown in Figure 2).

(defthm double_div_zero

(implies (and (realp x_0_0) (realp y_0) (and (equal x_0_0 0) (> y_0 0)))

(equal (/ x_0_0 y_0) 0)))

(defthm double_div_pos

(implies (and (realp x_13) (realp y) (and (> x_13 0) (> y 0)))

(> (/ x_13 y) 0))

Fig. 2. Proof General with Coq2ACL2 extension. The Coq2ACL2 extension consists
of the Coq2ACL2 menu and the right-most button of the toolbar. Left: the Coq file
generated by the Why tool. Top Right: current state of the Coq proof. Bottom Right:
ACL2 proof of the lemma.

7 Conclusions and further work

This paper reports an experience to verify actual Java code, as generated by
different-skilled programmers, in a multi-programmer tool called Fiji. As one
could suspect, the task is challenging and, in some sense, the objectives are
impossible to accomplish, at least in their full extent – after our experiments,
we have found that the Fiji system is unsound, but the errors are minor (e.g. a



variable declared as a real number but which should be declared as an integer)
and can be easily corrected.

Nevertheless, we defend the interest of this kind of experimental work. It is
useful to evaluate the degree of maturity of the verification tools (Krakatoa, in
our case). In addition, by a careful examination of the code really needed for a
concrete application, it is possible to isolate the relevant parts of the code, and
then it is possible to achieve a complete formalisation. Several examples in our
text showed this feature, see Section 4.

In addition to Krakatoa, several theorem provers (Coq and ACL2) have been
used to discharge some proof obligations that were not automatically proved by
Krakatoa. To this aim, it has been necessary the integration of several tools,
and our approach can be considered as semi-formal: we keep transformations as
simple as possible, and substantiate the process by systematic testing.

As a further interest of our work, we have reused a previous interoperability-
proposal [2], between Isabelle and ACL2, to get an integration of ACL2 (through
a partial mapping from Coq to ACL2), without touching the Krakatoa kernel.

Future work includes several improvements in our method. Starting from the
beginning, the transformation from real Java code to Krakatoa one could be
automated (Section 3 can be understood as a list of requirements to this aim).
Then, a formal study of this transformation could be undertaken to increase the
reliability of our method. In addition, we can try to automatically reconstruct
ACL2 proofs in Coq.

As for applications, more verification is needed to obtain a certified version
of, for instance, the SynapCountJ plug-in [24]. The preliminary results presented
in this paper allow us to be reasonably optimistic with respect to the feasibility
of this objective.
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