


Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 2

observing the algebraic structures associated to them, which are, in principle, amenable to
a systematic treatment (algebra would be considered, in this sense, easier than topology).
One feature of Algebraic Topology is that, in order to get information from spaces of finite
dimension, it is required to pass through some infinite dimensional spaces (as loop spaces
for instance; see (May 1967) for details). This explains why Sergeraert chose Common
Lisp as implementation language for Kenzo: he used functional programming to encode
infinite sets needed in Algebraic Topology constructions. It turns out that Kenzo was able
to compute results which were previously unknown (see (Rubio and Sergeraert 2002)),
making it difficult to test its behaviour in some cases.

This is the reason why a project to apply formal methods to the study of Kenzo as
a software system was launched some years ago (Lambán et al. 2003; Domı́nguez et
al. 2007). Eventually, this research line arrived to the formalization of some parts of
Algebraic Topology and Homological Algebra by using proof assistants as Isabelle/HOL
(Aransay et al. 2008; Aransay et al. 2010) or Coq (Domı́nguez and Rubio 2010). A
different approach to using Coq to implement in constructive type theory some features
of Kenzo can be found in (Coquand and Spiwack 2007).

When talking about mechanized theorem proving and Kenzo, it is easy to think about
ACL2 (Kaufmann et al. 2000). ACL2 is, at the same time, a programming language, a
logic for specifying and proving properties of the programs defined in the language and a
theorem prover supporting mechanized reasoning in the logic. The ACL2 programming
language is an extension of an applicative subset of Common Lisp, and the logic is
first-order, in which formulas do not have quantifiers and all the variables in them are
implicitly universally quantified. It includes axioms for propositional logic, equality and
for a number of predefined Common Lisp functions and data types. Rules of inference of
the logic include those for propositional calculus, equality, instantiation and induction.

The previous discussion on Kenzo however shows the limits of an ACL2 approach to
verify Kenzo properties, since Kenzo uses higher order functional programming, while
ACL2 is, essentially, a first order tool. This constraint has not been an obstacle for us to
effectively use ACL2 to study first order fragments of Kenzo (Mart́ın-Mateos et al. 2009;
Heras et al. 2010).

In this paper we report on an experience of an ACL2 application which differs from
the previous ones in two aspects. But before explaining these differences, let us introduce
the problem solved here. A complete proof of the so-called Normalization Theorem (Mac
Lane 1963) formalized in ACL2 is presented in this work. Given a simplicial set K (a
combinatorial version of a topological space) there are two ways of associating to K

an algebraic object called chain complex, denoted usually by C(K) and CN (K). The
normalized chain complex CN (K) is much smaller than C(K), and the normalization
theorem explains that both chain complexes C(K) and CN (K) are equivalent when
obtaining homological information from K. A much more precise statement is given later
in this paper, together with its corresponding proof.

Once the main result has been briefly described, let us come back to the differences
with respect to other previous works using ACL2 to analyze Kenzo. The first peculiarity
of this paper is that the formalized algorithm is not directly used in Kenzo. It is rather
a precondition for Kenzo, because only normalized chain complexes CN (K) are dealt



When first order is enough 3

with in that system. Thus, our ACL2 proof certifies that the encoding strategy applied
in Kenzo is reliable. In addition, if in some future development the non-normalized chain
complex C(K) is needed, then our ACL2 proof will provide a certified transfer to the
Kenzo coding style (for a different but related problem, where algorithms involving non-
normalized objects are needed, see (Romero 2007), pp. 102–104).

The second differential feature of the problem tackled in this paper is that, in principle,
it is a higher order result, because it quantifies over every simplicial set (which, in general,
would be characterized by predicates).

The key point of this paper is that, for this concrete result, first order is enough. It is not
due to a simulation of higher order logic in ACL2 by means of encapsulates (Kaufmann et
al. 2000) (although this technique will be also used in our development, in order to present
our statements ina standard mathematical terminology). A symbolic setting is introduced
in which the theorem can be proved by using only simplification and induction on lists, the
kind of proofs ACL2 was designed for.We think that this approach could be useful in other
relatedresults,because it isbasedonsomefeaturesof the simplicial category.Thus, thiswork
could be considered a first milestone to formalize simplicial topology in a first order frame.

The organization of the paper is as follows. In Section 2 we introduce both the problem
(including the minimal mathematical machinery needed to state and understand the main
theorem) and the strategy of the solution we are proposing for it. The symbolic framework
based on simplicial polynomials is then described in Section 3. It is applied to give a proof
of the normalization theorem in Section 4. The statement of the normalization theorem
in Section 4 is expressed in terms of the first order concepts introduced in Section 3; then,
in Section 5 we reformulate it by using ACL2 encapsulates, providing a statement more
readable from the point of view of standard mathematical textbooks. Section 6 is devoted
to put the proof in context, illustrating that our approach is not so-original: higher order
logic is avoided due to the working with a category of pre-sheaves. The paper ends with
a section of conclusions and further work, followed by the bibliography.

The syntax of ACL2 terms and formulas is that of Common Lisp, and thus they are
written using prefix notation. For the sake of readability, in this paper the ACL2 defini-
tions and formulas will be presented using a notation closer to the usual mathematical
notation than its original Common Lisp syntax. For example, some of the functions will
be used in infix notation. When needed, we will show the correspondence between the
ACL2 functions and the mathematical notation used instead. Also, we will necessarily
skip many details and some of the function definitions will be omitted. The complete
source files containing the ACL2 formalization and proof of the Normalization Theorem
are accessible at: http://www.glc.us.es/fmartin/acl2/wfoe.

2. Presentation of the problem and the solution

2.1. Presentation of the problem

In this subsection the most important simplicial concepts needed to state the main theo-
rem are presented. More details on simplicial topology can be found, for instance, in
(May 1967).



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 4

Definition 1. A simplicial set K is a graded set {Kn}n∈N together with functions:

∂n
i : Kn → Kn−1, n > 0, i = 0, . . . , n,

ηn
i : Kn → Kn+1, n ≥ 0, i = 0, . . . , n,

subject to the following equations:

(1) ∂n−1
i ∂n

j = ∂n−1
j ∂n

i+1 if i ≥ j,

(2) ηn+1
i ηn

j = ηn+1
j+1 ηn

i if i ≤ j,

(3) ∂n+1
i ηn

j = ηn−1
j−1 ∂n

i if i < j,

(4) ∂n+1
i ηn

j = ηn−1
j ∂n

i−1 if i > j + 1,

(5) ∂n+1
i ηn

i = ∂n+1
i+1 ηn

i = idn,

The functions ∂n
i and ηn

i are called face and degeneracy maps, respectively. The function
idn denotes the identity function on Kn.

The elements of Kn are called n-simplexes (or simplexes of dimension n). A n-simplex
x is degenerate if x = ηn−1

i y for some simplex y, and for some degeneracy map ηn−1
i ;

otherwise x is non degenerate.

Although we have no enough room here to illustrate the notion of simplicial set, let
us try to explain where the identities come from. If we think that n-simplexes are non-
decreasing integer lists of length n + 1, and we interpret a face operator ∂n

i as erasing
the element at position i in a list (the first element is that at index 0), and a degeneracy
operator ηn

i as repeating the element at position i, the equalities obtained are exactly
those of Definition 1. With this interpretation, non-degenerate simplexes are those lists
strictly increasing, while the degenerate simplexes have some repetition. This kind of
simplicial set (whose simplexes are lists) is called simplicial complex (De Loera et al.
2010). It can be considered that a simplicial set is an abstraction of a simplicial complex,
where simplexes are no more lists, but whatever elements.

If no confusion can arise, usually we remove the superindex in the face and degeneracy
operators, writing simply ∂i and ηi, respectively.

A simplicial set is a combinatorial model of a topological space. Algebraic Topology asso-
ciates algebraic objects to topological spaces. This is the reason of the following definitions.

Let K be a simplicial set. For each n ∈ N, let us consider Z[Kn], the free abelian group
generated by the n-simplexes Kn, group denoted by Cn(K). Then, the elements of such
a group are formal linear combinations

∑r
j=1 λjxj , where λj ∈ Z and xj ∈ Kn,∀j =

1, . . . , r. These linear combinations are called chains of simplexes or, in short, chains.
Now, if n > 0, we introduce a homomorphism dn : Cn(K) → Cn−1(K), first defining

it over each generator, and then extending it by linearity. Given x ∈ Kn, define dn(x) =∑n
i=0(−1)i∂i(x). It can be proved that equation (1) in the definition of simplicial set

implies that dn◦dn+1 = 0,∀n ∈ N. That is to say, the family {dn}n∈N defines a differential
(or boundary) homomorphism on the graded group {Cn(K)}n∈N. Or, still in other words,
the family of pairs {(Cn(K), dn)}n∈N is the chain complex associated to the simplicial
set K, denoted by C(K).

Let C = {(Cn, dn)}n∈N be a general chain complex (that is, each Cn is an abelian
group, and each dn is a homomorphism such that the boundary condition holds). The
boundary property dn ◦dn+1 = 0 implies Im(dn+1) ⊆ Ker(dn), and since we are working



When first order is enough 5

with abelian groups, it is possible to consider the quotient group Ker(dn)/Im(dn+1). It
is called the n-th homology group of the chain complex C, denoted by Hn(C). In the
particular case where C = C(K) (K being a simplicial set) we call it the (simplicial)
n-th homology group of K, denoted by Hn(K). Much effort is devoted in Algebraic
Topology to study and determine such homology groups. And it is also the main object
to be computed by means of Kenzo.

There is an alternative way to associate a chain complex to a simplicial set K. Given
n ∈ N, let us denote by KD

n and KND
n the sets of degenerate and non-degenerate n-

simplexes of K, respectively (note that this gives a disjoint partition of the whole set
Kn). We now consider the following abelian free groups: Dn(K) = Z[KD

n ], that is to
say the abelian group freely generated by degenerate simplexes. Conditions (3)-(4)-(5)
in Definition 1 imply that the differential dn is well defined on D(K) (that is, if we take
a combination c =

∑m
j=1 λjxj where every xj is degenerated, then dn(c) ∈ Dn−1(K)).

Thus, the chain complex D(K) is a subcomplex of C(K), and we can obtain the quotient
chain complex C(K)/D(K), which is denoted by CN (K) and is called the normalized
chain complex of the simplicial set K.

There exists an alternative isomorphic description of the normalized chain complex
CN (K). It consists of defining as CN

n (K) the free abelian group Z[KND
n ] generated by

non-degenerate simplexes. Then, to get an actual chain complex, it is necessary to redefine
the differential map dn by erasing, in the image, the generators which are degenerate.
With this description the group CN

n (K) is no more a quotient, but a subgroup of Cn(K).
Observe however that CN (K) is not in general a chain subcomplex of C(K) (because
some faces of a non-degenerate simplex can be degenerate simplexes).

With any of the two descriptions of the normalized chain complex CN (K), there exists
a canonical epimorphism f : C(K) → CN (K). If CN (K) is considered a quotient, the
map f is nothing but the canonical projection. If CN (K) is described as a free graded
group, then f(

∑r
j=1 λjxj) consists simply of erasing in the combination the terms λjxj

where xj is a degenerate simplex.
Note that the map f respects in both cases the differentials; that is to say, fn−1 ◦dn =

dN
n ◦ fn,∀n > 0, where dN denotes the differential of CN (K). Or still in other words, f

is a chain morphism.
This canonical chain morphism f preserves the homological information, and this is

established by the normalization theorem.

Theorem 1. (Normalization Theorem) For all simplicial set K, the canonical homomor-
phism f :C(K)→CN (K) induces group isomorphismsHn(C(K))∼=Hn(CN (K)),∀n∈N.

The theorem explains that, from the computational pointof view, it is the same to work
withC(K) orwithCN (K).This justifies Sergeraert’s decision ofworking inKenzo onlywith
the smaller chain complex CN (K) to compute homology groups of a simplicial set K.

One proof of the Normalization Theorem can be found in (Mac Lane 1963), pages 236-
237. It consists of filtering the big group Cn(K) by considering sequentially n-simplexes
of the form ηn−1x, then of the form ηn−2x or ηn−1x, and so on. In each step, the ho-
mological information is preserved. And finally f is described as the composition of all
these homology-preserving maps.



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 6

It is not difficult to give a more precise proof (and statement) of the normalization
theorem using the notion of reduction. (In (Romero 2007), pages 102-104, a proof similar
to Mac Lane’s one is converted into an algorithm constructing a reduction, in a slightly
different context.)

Definition 2. A reduction is a 5-tuple (C, C ′, f, g, h)

C

f
��

h �� C ′
g

��

where C = (M, d) and C ′ = (M ′, d′) are chain complexes, f : C → C ′ and g : C ′ → C

are chain morphisms, h = (hi : Mi → Mi+1)i∈N is a family of homomorphisms (called
homotopy operator), which satisfy the following properties for all i ∈ N:

(1) fi ◦ gi = idM ′
i

(2) di+2 ◦ hi+1 + hi ◦ di+1 + gi+1 ◦ fi+1 = idMi+1

(3) fi+1 ◦ hi = 0
(4) hi ◦ gi = 0
(5) hi+1 ◦ hi = 0

This concept precisely describes a situation where the homological information is
preserved. More concretely, if (C, C ′, f, g, h) is a reduction, then fn induces an iso-
morphism of groups (with gn defining the corresponding inverse) between Hn(C) and
Hn(C ′),∀n > 0.

Therefore the following statement describes a stronger version of the normalization
theorem.

Theorem 2. (Normalization Reduction) For all simplicial sets K, there exists a reduc-
tion (C(K), CN (K), f, g, h) where f is the canonical chain epimorphism.

Instead of trying a proof based on Mac Lane’s ideas, we formalized a different proof,
with the additional goal of applying it to study an experimental result presented in
(Rubio and Sergeraert 1990). There, after running several examples, it was conjectured
that some possible formula for the normalization theorem could be:

• gm =
∑

(−1)
∑ p

i=1 ai+bi ηap
. . . ηa1∂b1 . . . ∂bp

where the indexes range over 0 ≤ a1 < b1 < . . . < ap < bp ≤ m, with 0 ≤ p ≤
(m + 1)/2.

• hm =
∑

(−1)ap+1+
∑ p

i=1 ai+bi ηap+1ηap
. . . ηa1∂b1 . . . ∂bp

where the indexes range over 0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ m, with
0 ≤ p ≤ (m + 1)/2.

We will prove in ACL2 that, with these formulas, the equalities (1), (2) and (3) in
Definition 2 hold. This result is the most difficult one in all our formalization. To stress
the complexity of this task, let us observe that the sum for gm has 2m terms, while that
for hm has 2m+1 − 1 terms.

Let us call strong homotopy equivalence to a 5-tuple (C, C ′, f, g, h) as in the definition of
reduction, but where equalities (4) and (5) possibly are not satisfied. Then, the following



When first order is enough 7

result can be used to construct, from our previous explicit formula, a reduction linking
C(K) and CN (K).

Theorem 3. Let (C, C ′, f, g, h0) be a strong homotopy equivalence. Then, an algorithm
produces a reduction (C, C ′, f, g, h).

Let us explain the proof of this last theorem, because it will serve us later to illustrate
how ACL2 can be effectively used in this kind of higher-order reasoning (observe that C

and C ′ can be supported by infinite sets, defined by predicates, and that the construction
of h from (f, g, h0) would require higher order functional programming).

First, we define: h1 := h0 − h0gf . This new homomorphism of degree +1 satis-
fies conditions (1)-(2)-(3) in the definition of reduction. For instance: dh1 + h1d =
d(h0 − h0gf) + (h0 − h0gf)d = dh0 − dh0gf + h0d − h0gfd = dh0 − dh0gf + h0d −
h0dgf = dh0 + h0d − (dh0 + h0d)gf = id − gf − (id − gf)gf = id − gf − gf + gfgf =
id − gf − gf + gf = id − gf , and so condition (2) is satisfied for the new homotopy h1.
In addition: h1g = (h0 − h0gf)g = h0g − h0gfg = h0g − h0g = 0.

Now, with this kind of simple rewritings, it is easy to verify that all the properties of
a reduction are obtained with the following homotopy operator: h := h1dh1.

2.2. Presentation of the solution

Summarizing the previous subsection, our problem is to prove in ACL2 the Normalization
Theorem (in its strong version providing a reduction, as in Theorem 2). In addition,
our proof should be based on the explicit formula experimentally found in (Rubio and
Sergeraert 1990).

As already mentioned, the statement in Theorem 2 is clearly of second-order. It quan-
tifies over all simplicial sets. But a simplicial set is given by a collection of predicates
(defining, ∀n ∈ N, the set of n-simplexes, that can be an infinite set) and of functions
∂n

i , ηn
i . To deal with these structures as first-class citizens (to pass them as arguments

to functions, and to produce them as outputs of functions) Kenzo uses higher-order
functional programming.

Higher order can be simulated in ACL2 by means of encapsulates, a mechanism to intro-
duce abstract functions with constraints. For instance, a generic definition of a reduction
can be encoded in an encapsulate. Then, properties obtained from that encapsulate can
be applied to any reduction. In Section 5 we will use this technique to produce in ACL2 a
presentation of the Normalization Theorem close to the one usually found in textbooks.
Furthermore, we prove there Theorem 3, by guiding the theorem prover.

However, to give a proof of Theorem 2, a greater degree of automation would be desira-
ble, because the mathematical proof is much more complicated than that of Theorem 3.
To this aim, we have devised an ACL2 proof free of encapsulates. That is to say, a purely
first order proof. The idea is as follows.

Let us define a simplicial operator as any sequence of face and degeneracy maps. For
instance, ∂5η3∂1∂2η4 is such a simplicial operator. Observe that, as dimensions are
dropped (there are no superindexes), this expression denotes a functional object in each
valid dimension (at least dimension 5 in the example), and for every simplicial set on



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 8

which it is applied. Now, if equalities in Definition 1 are considered as rewriting rules
(reading them from left to right) then there exists a canonical form for each simpli-
cial operator (see (Andrés et al. 2007) for a complete development of this idea, for-
malized in ACL2). Let us show this conversion to canonical form step by step in our
running example: ∂5η3∂1∂2η4 = η3∂4∂1∂2η4 = η3∂1∂5∂2η4 = η3∂1∂2∂6η4 = η3∂1∂2η4∂5 =
η3∂1η3∂2∂5 = η3η2∂1∂2∂5.

Thus any simplicial operator can be encoded, in a unique way, as a pair of lists of natural
numbers: the first list being a strictly decreasing list of natural numbers, and the second one
strictly increasing. In our example: ((3 2) (1 2 5)). Let us call such pairs simplicial
terms, and note that they can be represented very conveniently in ACL2. Simplicial terms
can be composed (by using again the simplicial identities of Definition 1) and so they are
endowed with a monoid structure (the unity being the pair with two empty lists).

Now, let us observe that the formula for gm and hm in the previous subsection can
be interpreted as linear combinations of simplicial terms. Thus it is sensible to try the
proof in the ring freely generated by simplicial terms. We will call the elements of this
ring simplicial polynomials. The ACL2 formalization of simplicial polynomials presented
here is similar to the formalization of polynomials over the rational field developed in
(Medina-Bulo et al. 2010).

Simplicial polynomials can be interpreted functionally only over a single chain complex
C(K). This implies, for instance, that the canonical projection f cannot be represented
inside this framework (since it links two different chain complexes, namely C(K) and
CN (K)). In Section 4, we manage to reformulate the properties of a reduction in the
simplicial polynomials setting. Then, in Section 5, we use the encapsulation principle to
recover the standard statement of the results (in terms of functional objects).

The intuitive idea underlying our approach is that if we prove a result by only using
the simplicial equalities of Definition 1, then the scope of the proof is the whole category
of Simplicial Sets. Let us see it in action with the following example.

Theorem 4. dn ◦ dn+1 = 0,∀n ∈ N.

Let us start from the definition:

dn+1 =
n+1∑

i=0

(−1)i∂n+1
i = (−1)n+1∂n+1

n+1 +
n∑

i=0

(−1)i∂n+1
i .

Now, we do a forbidden operation: remove the superindexes in the last expression. This
allows us a recursive definition of the differential: dn+1 = (−1)n+1∂n+1 +

∑n
i=0(−1)i∂i =

(−1)n+1∂n+1 + dn. Analogously: dn = (−1)n∂n + dn−1.
By applying the formal properties of the simplicial ring, we obtain: dn ◦ dn+1 =

[(−1)n∂n + dn−1][(−1)n+1∂n+1 + dn] = −∂n∂n+1 + (−1)n∂ndn + (−1)n+1dn−1∂n+1 +
dn−1dn. And then, using the induction hypothesis dn ◦ dn+1 = −∂n∂n+1 + (−1)n∂ndn +
(−1)n+1dn−1∂n+1.

It is not difficult to prove, also by induction, the following auxiliary result.

Lemma 1. ∂ndn = (−1)n∂n∂n+1 + dn−1∂n+1.

And therefore, we conclude that dn ◦ dn+1 = 0.



When first order is enough 9

Note that this kind of (heuristic) reasoning is fully first-order (even more: it is simply
based on simplification and induction, the kind of reasoning ACL2 was designed for). We
made, in the previous arguments, several logical simplifications: first, the simplicial set
K has been skipped; second, simplexes have been skipped too (because the extensional
equality between functions can in this case be reduced to the syntactic equality between
symbolic expressions). Finally, dimensions (superindexes) are skipped, since there is al-
ways an implicit dimension from where the result is true. Simplicial polynomials are the
right data structures to efficiently deal in ACL2 with this kind of inferences. In Section 6,
this way of working will be explained in terms of well-known properties of the simplicial
category.

3. The ring of simplicial polynomials

In this section we describe the framework of simplicial polynomials. As pointed out in
Section 2, simplicial polynomials are symbolic expressions representing sums of face and
degeneracy maps composites. This set of expressions can be endowed with a ring struc-
ture, where we will carry out, in a convenient way, most of the proofs needed for our
main result. In Section 5, we will show that these simplified (and first-order) frame-
work is enough for our purposes, lifting our results to a more standard mathematical
formalization of the result.

A simplicial term is a two-element list. Its two elements are lists of natural numbers:
the first one (called list of degeneracies) is strictly decreasing and the second one (called
list of faces) is strictly increasing. Simplicial terms represent composites of face and
degeneracy maps in a canonical order, but without explicit mention to the dimension
of the operators. For example, the simplicial term ((4 2 1) (1 3 4)) represents the
composite η4η2η1∂1∂3∂4. That is, degeneracy and face maps are represented simply as
natural numbers. In our ACL2 formalization, the function st-p recognizes those ACL2
objects that represent simplicial terms (in this paper st-p(t) will be denoted as t ∈ T ).

The main operation between simplicial terms is composition. Since we are dealing with
terms in canonical form (w.r.t. the simplicial identities applied from left to right), this
operation has to be defined in such a way that its result is returned also in canonical
form. Let us explain with an example how this composition operation works. Consider
the two simplicial terms η5η3∂2∂3 and η5η4η1∂1∂4. To compose these two terms we first
compose ∂2∂3 with η5η4η1. Applying the simplicial identities (3), (4) and (5), the result is
the composite of a list of degeneracies and a list of faces: η3η2 and ∂2, respectively. Then
we compose η5η3 with η3η2, and applying the simplicial identity (2) we obtain η5η4η3η2.
Analogously, we compose ∂2 with ∂1∂4 and applying the simplicial identity (1) we obtain
∂1∂3∂4. Thus, the final result of the composition is η5η4η3η2∂1∂3∂4.

This example shows us that we need a number of auxiliary functions implementing the
intermediate compositions. For example the following function ln-cmp-ld-ln computes
the degeneracies component obtained when composing a list of faces with a list of degene-
racies (for that, we need the auxiliary function ln-cmp-d-ln that computes the degene-
racies component obtained composing one face map with a list of degeneracies):



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 10

Definition:

ln-cmp-d-ln(d,ln) :=
if endp(ln) then nil
elseif d < first(ln)

then cons(first(ln)−1,ln-cmp-d-ln(d,rest(ln)))
elseif d > first(ln)+1

then cons(first(ln),ln-cmp-d-ln(d−1,rest(ln)))
else rest(ln)

Definition:

ln-cmp-ld-ln(ld,ln) :=
if endp(ld) then ln

else ln-cmp-d-ln(first(ld),ln-cmp-ld-ln(rest(ld),ln))

In a similar way, we can define a function ld-cmp-ld-ln computing the faces compo-
nent resulting when composing a list of faces with a list of degeneracies. And also two
functions cmp-ln-ln and cmp-ld-ld computing the composition of two lists of degene-
racies and the composition of two list of faces, respectively. With all these functions, we
can define the composition (in canonical form) of two simplicial terms:

Definition: [t1 · t2]
cmp-st-st(t1,t2) :=

list(cmp-ln-ln(first(t1),
ln-cmp-ld-ln(second(t1),first(t2))),

cmp-ld-ld(ld-cmp-ld-ln(second(t1),first(t2)),
second(t2)))

Note the expression [t1 · t2] with the square brackets in the first line of the definition
above. In general, when the notation used in this paper for a function is different from
the corresponding ACL2 expression in the sources, we will show in that way the notation
used instead. This means that once defined the function, in the rest of the paper (and for
the sake of readability) we will use that notation for future references to that function.

As we have seen in Section 2, functions generated from degeneracy and face maps can
be linearly extended to Cn(K), the free abelian group Z[Kn]. Thus, it makes sense to deal
with symbolic expressions representing linear combinations (with integer coefficients) of
simplicial terms. In this context, a monomial is defined to be a (dotted) pair of an
integer and a simplicial term, and a simplicial polynomial is simply a list of monomials.
For example, the expressions p1 = 3 ·η4η1∂3∂6∂7−2 ·η1∂3∂4 and p2 = η3∂4∂6 +2 ·η1∂3∂4

are both simplicial polynomials.
As with simplicial terms, in our ACL2 representation we will only consider simplicial

polynomials in canonical form: a true list of monomials, with non-null coefficients, and
strictly increasingly ordered with respect to a fixed total order on simplicial terms. The
functions sm-p and sp-p recognizes those ACL2 objects representing monomials and
simplicial polynomials, respectively:

Definition: [m ∈ M]
sm-p(m) := consp(m) ∧ car(m) ∈ Z ∧ car(m) �= 0 ∧ cdr(m) ∈ T



When first order is enough 11

Definition: [p ∈ P]
sp-p(p) :=

if endp(p) then p = nil
elseif endp(rest(p))

then first(p) ∈ M ∧ rest(p) = nil
else first(p) ∈ M ∧ sm-<(first(p),second(p)) ∧ sp-p(rest(p))

In this definition, sm-< is a total strict ordering on monomials, that compares its
respective simplicial terms with respect to the ACL2 function lexorder, a total order on
ACL2 objects. In fact, any total order between simplicial terms would do for our purpose.

Note that face and degeneracy maps can be seen as particular cases of simplicial
polynomials. For example ∂3 is represented by the simplicial polynomial ((1 . (nil

(3)))). These particular polynomials are given respectively by the functions di(i) and
ni(i) in our formalization, although we will denote them here as ∂i and ηi, respectively.
We will also denote the polynomial with no terms by 0 (represented by nil). In general,
in this paper we will use boldface to denote polynomials.

Note the advantages of considering the representation of simplicial polynomials in a
canonical form: we can check that two polynomials represent the same function simply by
using equal, the ACL2 syntactic equality. Of course, there is a price to pay for this clean
treatment of the equality: it will make the definitions of operations between polynomials
(and the proof of their properties) more difficult, since we have to return the results also
in canonical form.

The first operation we define on simplicial polynomials is addition, the usual sum
of linear combinations. In our example, the addition of p1 and p2 is the polynomial
η3∂4∂6 + 3 · η4η1∂3∂6∂7.

The function add-sp-sp defines polynomial addition, iteratively adding the monomials
of one of the polynomials to the other. In order to return its result in canonical form,
addition of a monomial to a polynomial (function add-sm-sp) is defined “inserting” the
monomial in the right position of the polynomial (with respect to the term ordering),
taking care also of possible cancellations:

Definition: [m + p]
add-sm-sp(m,p) :=

if endp(p) then list(m)
elseif sm-<(m,first(p))

then cons(m,p)
elseif sm-<(first(p),m)

then cons(first(p),add-sm-sp(m,rest(p)))
elseif car(m) + car(first(p)) = 0

then cdr(p)
else cons(cons(car(m) + car(first(p)),cdr(m)), cdr(p))

Definition: [p1 + p2]
add-sp-sp(p1,p2) :=

if endp(p1) then p2

else first(p1) + add-sp-sp(rest(p1),p2))



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 12

We now define the composition (or product) of two polynomials. This operation com-
putes the simplicial polynomial that represents the composition of the functions repre-
sented by its inputs. For example, the composition of p1 and p2 is the polynomial
−2 · η1∂3∂4∂6 − 4 · η2η1∂2∂3∂4∂5 + 3 · η4η1∂4∂6∂7∂8 + 6 · η4η2η1∂2∂3∂4∂7∂8.

The function cmp-sp-sp defines polynomial composition. It uses polynomial addition
and an auxiliary function cmp-sm-sp computing the composition of a monomial and a
polynomial (which in turn uses the composition of simplicial terms defined above):

Definition: [m · p]
cmp-sm-sp(m,p) :=

if endp(p) then 0
else cons(car(m) · car(first(p)), cmp-st-st(cdr(m),cdr(first(p)))) +

cmp-sm-sp(m,cdr(p)))

Definition: [p1 · p2]
cmp-sp-sp(p1,p2) :=

if endp(p1) then 0
else first(p1) · p2 + cmp-sp-sp(rest(p1),p2))

Another operation on polynomials, that we will use later, is what we call the scalar
product of a polynomial by an integer, obtained multiplying its coefficients by a that
integer:

Definition: [k · p]
scl-prd-sp(k,p) :=

if endp(p) ∨ k = 0 then 0
else cons(cons(k · car(first(p)), cdr(first(p))), scl-prd-sp(k,rest(p)))

We now describe the properties we proved to conclude that the set of simplicial poly-
nomials together with the addition and composition operations is a ring. But before this,
we show that the set of simplicial terms together with the composition operation is a
monoid. That is, composition is a closed operation on simplicial terms, associative and
with an identity element (namely the list (nil nil), returned by the 0-ary function
st-id and denoted here as idT ):

Theorem: st-p-cmp-st-st

(t1 ∈ T ∧ t2 ∈ T ) → t1 · t2 ∈ T
Theorem: cmp-st-st-associative

(t1 ∈ T ∧ t2 ∈ T ∧ t3 ∈ T ) → (t1 · t2) · t3 = t1 · (t2 · t3)
Theorem: cmp-st-st-identity

idT ∈ T ∧ (t1 ∈ T → t1 · idT = t1 ∧ idT · t1 = t1)

It should be noted that the proof of the associativity of cmp-st-st is not trivial at all,
motivated again by the fact that the function returns its result in canonical form.

Once proved the monoid properties of simplicial terms, we prove that the set of sim-
plicial polynomials has a ring structure with respect to addition and composition. The
additive identity is 0, defined by the 0-ary function add-sp-sp-id. The inverse (w.r.t.
addition) of a polynomial is simply the scalar product of the polynomial by −1, de-
fined by the function inv-add-sp-sp. Also, the composition identity is the polynomial



When first order is enough 13

((1 . (nil nil))), defined by the 0-ary function cmp-sp-sp-id and denoted here as
id (representing the identity function).

For example, two of the properties proved are the commutativity of addition and the
right distributivity of the composition with respect to addition:

Theorem: add-sp-sp-commutative

(p1 ∈ P ∧ p2 ∈ P) → p1 + p2 = p2 + p1

Theorem: cmp-sp-sp-add-sp-sp-distributive-r

(p1 ∈ P ∧ p2 ∈ P ∧ p3 ∈ P) → p1 · (p2 + p3) = (p1 · p2) + (p1 · p3)

We do not list here all the properties we proved, establishing the ring structure of
the set of simplicial polynomials, but we refer the reader to the sources for a detailed
description. All those ring properties are essential in our formalization, since the proofs
of the results presented in the following section are mostly done by induction and by
using the ring theorems as rewrite rules.

It is worth pointing out that we proved all these theorems as (functional) instances
of a more general formalization. In the sources, the reader will find the development
of a general theory about the ring of linear combinations (with integer coefficients) of
elements of a generic monoid. The ring of simplicial polynomials is just a particular
instance of this generic theory, obtained using encapsulation in combination with the
functional instance inference rule of ACL2. (A related development for polynomials in
commutative algebra can be found in (Medina-Bulo et al. 2010).)

In ACL2, the encapsulation principle allows one to introduce partially defined func-
tions, consistently assuming only certain properties about them. A derived rule of inferen-
ce, functional instantiation, provides a limited higher-order-like reasoning mechanism
allowing to instantiate the function symbols of a previously proved theorem, replacing
them with other function symbols, provided it can be proved that the new functions
satisfy the constraints assumed on the replaced functions.

Thus, a generic monoid is defined via the encapsulation principle, assuming about it
only the monoid properties. From this, generic linear combinations with integer coeffi-
cients, its addition and its multiplication, are defined, and then the ring properties of
these operations are proved. This allows us to derive (by functional instantiation) the
ring properties for the set of linear combinations of elements of any concrete monoid.
In particular, since the set of simplicial terms is proved to be a monoid with respect to
composition, the ring properties of simplicial polynomials can be directly derived from
the generic theory. In our case, this instantiation has been done in a convenient and
almost automatic way, using an instantiation tool previously developed by some of the
authors (Mart́ın-Mateos et al. 2002).

4. Formal proofs in the polynomial framework

As sketched in Section 2, our main goal is to prove the Normalization Theorem (in its
strong version), by explicitly giving a reduction (C(K), CN (K), f, g, h).

Unfortunately, we cannot directly state this theorem in the simplicial polynomial
framework. There are several reasons for this. For example, f is defined to be the canoni-



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 14

cal chain epimorphism, from C(K) to CN (K). This function can be described as the
operation of erasing all the degenerate simplexes of a chain (recall from Subsection 2.1: a
linear combination of simplexes with integer coefficients). Since a simplicial polynomial
does not have an explicit mention to the arguments on which the function that it repre-
sents is supposed to be applied, this epimorphism cannot be described as a simplicial
polynomial. Also, we should not forget that in our polynomial setting we dropped any
explicit mention to the dimensions of the face and degeneracy maps involved, and these
dimensions are explicit in the definition of simplicial set (Definition 1).

But fortunately, we can do most of the work (or at least, the hard part) using simplicial
polynomials in a convenient way, as we will describe. The idea is to define polynomial
versions for the differential d and for g and h, and prove, in the simplicial polynomial
ring, their main properties.

4.1. The polynomials dm, gm and hm

First, let us recall the definitions (parameterized by m ∈ N) for the differential dm and
for the conjectured definitions of gm and hm, given in Section 2:

• dm =
∑m

i=0(−1)i∂i

• gm =
∑

(−1)
∑ p

i=1 ai+biηap
. . . ηa1∂b1 . . . ∂bp

, where the indexes range over the ai and
bi such that 0 ≤ a1 < b1 < . . . < ap < bp ≤ m, with 0 ≤ p ≤ (m + 1)/2.

• hm =
∑

(−1)ap+1+
∑ p

i=1 ai+biηap+1ηap
. . . ηa1∂b1 . . . ∂bp

, where the indexes range over
0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ m, with 0 ≤ p ≤ (m + 1)/2.

Note that, viewed as symbolic expressions, the above define three families of simplicial
polynomials. Thus, we can define ACL2 functions returning the corresponding polyno-
mials dm, gm and hm for every m ∈ N. These ACL2 definitions will necessarily be
recursive, since recursion is the only way we have in ACL2 to generate iterative structures
(summations, in this case). That is, the polynomial for m will be defined in terms of the
polynomial for m − 1.

For example, this is the function diff-pol, defining the differential dm:

Definition: [dm]
diff-pol(m) :=

if m �∈ N
+ then ∂0

else (−1)m · ∂m+ diff-pol(m − 1)

For the definition of gm, let pi,j denote the polynomial ηi∂j , when i < j. Consider the
following recursive definition:

Definition: [gm]
G-pol(m) :=

if m �∈ N
+ then id

else G-pol(m − 1) · (id − pm−1,m)

Some explanation is needed, to give an intuitive a idea of why this recursive version
implements the explicit formula for gm conjectured in (Rubio and Sergeraert 1990).
Note that the terms in that explicit formula are of two types: those not containing ∂m,



When first order is enough 15

which are precisely the terms of gm−1, and those containing ∂m, which can be obtained
composing gm−1 and pm−1,m. In this last composition, simplicial identities have to be
applied to get the terms in normal form, but note that this is built in our polynomial
operations.

For example, this is the result obtained when we compute g3 using the above definition:
idT − η0∂1 + η0∂2 − η0∂3 − η1∂2 + η1∂3 − η2∂3 + η2η0∂1∂3.

For the recursive definition of hm, we first define a new family of parameterized poly-
nomials, denoted am, in the following way:

Definition: [am]
A-pol(m) :=

if m �∈ N
+ then 0

else −A-pol(m − 1) · pm−1,m + (−1)m−1 · ηm · gm−1 · pm−1,m

Now we define hm in the following recursive way:

Definition: [hm]
H-pol(m) :=

if m �∈ N
+ then η0

else H-pol(m − 1) + (−1)m · ηm + am

An intuitive idea of why this recursive definition is equivalent to the explicit definition
for hm conjectured in (Rubio and Sergeraert 1990) is the following. Again, the terms in
that explicit definition are of two types, depending on whether they contain ∂m or not.
Those not containing ∂m are precisely the terms in hm−1 + (−1)m · ηm. Now, the idea
introducing am is to generate all the terms of hm containing ∂m. To see this, note that
these terms can be, in turn, of two types, depending on whether they do not contain ηm

or they do. In the first case, these terms can be obtained composing −am−1 and pm−1,m.
In the second case, these terms can be obtained composing ηm with every term in gm

containing ∂m. And the terms in gm containing ∂m are obtained composing gm−1 and
pm−1,m. Again, all these compositions need applications of simplicial identities to get the
terms in normal form, but we do not need to explicit this because they are built in our
polynomial operations.

As an example, the following is the computation of h3 using the above definition:
η0 − η1 + η1η0∂1 − η1η0∂2 + η1η0∂3 + η2 + η2η0∂2 − η2η0∂3 − η2η1∂2 + η2η1∂3 − η3 +
η3η0∂3 − η3η1∂3 + η3η2∂3 − η3η2η0∂1∂3.

4.2. The main theorems

Having defined the functions, the following are the ACL2 theorems establishing the main
properties (regarding the Normalization Theorem) of those polynomials:

Theorem: cmp-diff-pol-diff-pol=0

m ∈ N → dm · dm+1 = 0

Theorem: G-pol-on-degenerate=0

(m ∈ N ∧ i ∈ N ∧ i < m) → gm · ηi = 0

Theorem: G-pol-and-diff-pol-commute

m ∈ N → dm · gm = gm−1 · dm



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 16

Theorem: H-pol-property-2

m ∈ N
+ → dm+1 · hm + hm−1 · dm = id − gm

We emphasize the fact that in these formulas, + and · respectively denote addition
and composition of simplicial polynomials. That is, we prove that the above equalities
hold in the ring of simplicial polynomials.

These properties are polynomial versions of some of the results we need to prove Theo-
rem 2. In particular, cmp-diff-pol-diff-pol=0 is the polynomial version of the result
establishing that dm is a differential homomorphism; theorem G-pol-on-degenerate=0

gives the behavior of gm on degenerate simplexes; G-pol-and-diff-pol-commute is
the polynomial version of the result that states that gm is a chain morphism; and
H-pol-property-2 will be essential to prove property (2) required in the definition of
reduction.

These four theorems, although with substantial differences in its difficulty, have been
proved in a similar way: we apply induction on the natural numbers and use the properties
of the simplicial polynomial ring and the simplicial identities, to prove the inductive case.
To illustrate this, we describe in the following subsection a sketch of the proof of the
theorem G-pol-and-diff-pol-commute† We hope this description will give the reader a
flavor of how we prove properties in the ring of simplicial polynomials.

The proof of the theorem H-pol-property-2 is by far the most difficult, and we omit
its description here due to lack of space. We urge the interested reader to consult the
source files.

4.3. A sketch of a proof of dm · gm = gm−1 · dm

Let us first give some lemmas that will be used in the proof. First, the following lemma
establishes that gm and ∂k commute when m < k:

Lemma: G-pol-and-faces-commute

(m ∈ N ∧ k ∈ N ∧ m < k) → ∂k · gm = gm · ∂k

This property is easily proved by induction on m, and expanding the definition of gm.
Now we prove a lemma that establishes how we can commute dm and pi,j when

m < i < j. Again, this property is easily proved by induction on m, and expanding the
definition of dm:

Lemma: pij-pol-and-diff-pol-commute

(n ∈ N ∧ i ∈ N ∧ j ∈ N ∧ m < i ∧ i < j) → pi−1,j−1 · dm = dm · pi,j

Let us now describe the proof of G-pol-and-diff-pol-commute, which is proved by
induction on m:

• Base case: m = 0. This is trivial, since d0 · id = id · d0.
• Inductive case: suppose m > 0 and dm−1 · gm−1 = gm−2 · dm−1. We will see how we

can rewrite dm · gm to gm−1 · dm. First, we expand the definitions of gm and dm,

† A sketch of the proof of the theorem cmp-diff-pol-diff-pol=0 was also given in Section 2.



When first order is enough 17

and apply ring properties:

dm · gm = dm · gm−1 · (id− pm−1,m) = (dm−1 + (−1)m∂m) · gm−1 · (id− pm−1,m) =

= dm−1 · gm−1 · (id − pm−1,m) + (−1)m · ∂m · gm−1 · (id − pm−1,m)

We apply lemma G-pol-and-faces-commute above and the induction hypothesis,
rewriting the last expression:

gm−2 · dm−1 · (id − pm−1,m) + (−1)m · gm−1 · ∂m · (id − pm−1,m)

Note that using the simplicial identity (5), it is easy to prove ∂m · (id−pm−1,m) = 0;
using this identity and then applying distributivity, we obtain:

gm−2 · dm−1 · (id − pm−1,m) = gm−2 · (dm−1 − dm−1 · pm−1,m)

Expanding the second occurrence of dm−1 and applying distributivity, we have:

gm−2 · (dm−1 − (−1)m−1 · ∂m−1 · pm−1,m − dm−2 · pm−1,m)

Now, by the lemma pij-pol-and-diff-pol-commute, we have that dm−2 · pm−1,m

is equal to pm−2,m−1 · dm−2; and applying the simplicial identity (5) we prove
∂m−1 · pm−1,m = ∂m. So we can simplify the last expression (contracting also the
definition of dm) to the following:

gm−2 · (dm − pm−2,m−1 · dm−2)

Finally, it is not difficult to prove (using the simplicial identities) that pm−2,m−1·dm−2

is equal to pm−2,m−1 · dm; applying this to the last expression and factoring out dm

we obtain:

gm−2 · (id − pm−2,m−1) · dm = gm−1 · dm

The mechanical proof of G-pol-and-diff-pol-commute is carried out in ACL2 in a
very similar way to the hand proof described above, guiding the prover with the appro-
priate lemmas and applying the same rewriting steps (although not necessarily in the
same direction). As pointed out in Section 3, the polynomial ring properties, used as
rewriting rules, are an essential component in this proof.

5. Reformulating the statement

As we have seen, simplicial polynomials give us a convenient framework for reasoning
about the simplicial maps and how they combine according to the simplicial identities. In
this framework we have proved non-trivial properties about those combinations, needed
for the proof of the Normalization Theorem. Nevertheless, being symbolic expressions,
what we have proved is not a complete and faithful formalization of the standard formu-
lation of this theorem in Simplicial Topology. For example, we have not defined notions
like simplicial sets, chain complexes or degenerate simplexes.

In this section we show a formalization of the Normalization Theorem in ACL2, as
close as possible to the standard mathematical formulation presented in Section 2. We
will also show how the theorems proved in the polynomial framework can be translated
and used in this formalization.



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 18

5.1. Simplicial sets and chain complexes

It is clear that the first step in our formalization has to be the definition of the notion of
simplicial set, as presented in Definition 1. Since the theorem we want to prove is a result
on any simplicial set, we introduce a generic simplicial set using the ACL2 encapsulation
principle.

A simplicial set can be defined by means of three functions K, d and n. The function
K is a predicate with two arguments, with the idea that K(m,x) holds if and only if
x ∈ Km. The functions d and n have both three arguments and they represent the face
and degeneracy maps, respectively. The intended meanings for d(m,i,x) and n(m,i,x) are
respectively ∂m

i (x) and ηm
i (x). To be generic, the only assumed properties about K, d

and n are those stating well-defineness and the simplicial identities. They are introduced
via encapsulate:

Assumption: d-well-defined

(x ∈ Km ∧ m ∈ N
+ ∧ i ∈ N ∧ i ≤ m) → ∂m

i (x) ∈ Km−1

Assumption: n-well-defined

(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ i ≤ m) → ηm
i (x) ∈ Km+1

Assumption: simplicial-id1

(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ j ≤ i ∧ i < m ∧ 1 < m)
→ ∂m−1

i (∂m
j (x)) = ∂m−1

j (∂m
i+1(x))

Assumption: simplicial-id2

(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ i ≤ j ∧ j ≤ m)
→ ηm+1

i (ηm
j (x)) = ηm+1

j+1 (ηm
i (x))

Assumption: simplicial-id3

(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ i < j ∧ j ≤ m)
→ ∂m+1

i (ηm
j (x)) = ηm−1

j−1 (∂m
i (x))

Assumption: simplicial-id4

(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ j + 1 < i ∧ i − 1 ≤ m)
→ ∂m+1

i (ηm
j (x)) = ηm−1

j (∂m
i−1(x))

Assumption: simplicial-id5

(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ i ≤ j ≤ i + 1 ∧ i ≤ m) → ∂m+1
j (ηm

i (x)) = x

These assumptions are a formalization of the standard definition of simplicial set, as
given in any textbook, and constitute the basis where we will state the Normalization
Theorem. To differentiate from the polynomial framework, we will call this the “standard
framework”.

The next step is to define chain complexes in this standard framework. Since chains
are linear combinations of simplexes of a given dimension, it is natural to represent them
as lists whose elements are (dotted) pairs formed by an integer and a simplex. As with
simplicial polynomials, we will consider only chains in canonical form: their elements
must have non-null coefficients and have to be strictly increasingly ordered with respect
to a total order (given by the function ss-<). The following function sc-p defines chains
in a given dimension (the auxiliary function ss-p defines the dotted pairs formed by a
non-null integer and a simplex):



When first order is enough 19

Definition:

ss-p(m,s) := (consp(s) ∧ car(s) ∈ Z ∧ car(s) �= 0 ∧ cdr(s) ∈ Km)

Definition:

sc-p(m,c) :=
if endp(c) then c = nil
elseif endp(cdr(c))

then ss-p(m,first(c)) ∧ rest(c) = nil
else ss-p(m,first(c)) ∧ ss-<(m,first(c),second(c)) ∧ sc-p(m,rest(c))

As with polynomials, the main advantage of considering chains in canonical form is
that we can check its equality using equal.

The main operations on chains are addition and scalar product by an integer, for
each dimension m. The ACL2 functions for these operations are add-sc-sc(m,c1,c2)
and scl-prd-sc(m,k,c). We omit their definitions here, because they are very similar
to the corresponding operations on polynomials. In this paper we will respectively use
c1 + c2 and k · c for those operations on chains. Note that, for the sake of readability, we
omit the dimension and that we abuse of the notation using the same notation as with
polynomials. Anyway, the precise meaning of every use of these symbols will be clear
from the context.

We have proved that the set of chains of a given dimension is an abelian group with
respect to addition, where the identity in this group is the zero chain (represented as nil
and denoted here as 0). It is worth mentioning that, as we did in the case of polynomials,
these definitions and theorems about chains were obtained as a particular instance of a
more generic theory about the free abelian group generated by a given basis.

Simplicial maps can be linearly extended on chains. For example, this is the definition
of c-d, the face map extended to chains:

Definition: [∂m
i (c)]

c-d(m,i,c) :=
if endp(c) then c

else cons(car(first(c)),∂m
i (cdr(first(c)))) + c-d(m,i,rest(c)))

Note that this function is not a simple “mapcar” on the simplexes of a chain, since the
result is returned in canonical form. In a similar way, we define c-n, the extension of the
degeneracy map to chains. We will use the same notation (∂m

i (c) and ηm
i (c)) to denote

these maps both on simplexes and on chains.

5.2. Evaluation of simplicial polynomials

As we have said before, our intention is to translate the theorems described in Section 3
from the polynomial framework to the standard framework. The key point here is to
interpret a simplicial polynomial as a function from chains in a given dimension to chains
in another dimension.

Nevertheless, not every simplicial polynomial can be interpreted consistently as a func-
tion on chains. Think for example in the simplicial term η5η2η1∂1∂3. Interpreted as a com-
position of simplicial maps, it could not be applied to elements of C4(K), since in that



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 20

case, η5 would have to be applied to a chain in C4(K) and that is impossible, regardless
of the superindex this degeneracy map might have. Nevertheless, this simplicial term may
be interpreted as a function on C7(K), for example. In the case that the simplicial term
may be interpreted as a function on dimension m, we say that the simplicial term is
valid for m. For example, the simplicial term of the example is valid for every dimension
m > 4.

If we consider now simplicial polynomials, other problems appear. Even if a simplicial
polynomial contains, for a given dimension, only valid simplicial terms for that dimension,
it may be the case that still it cannot be interpreted in a consistent way as a function on
chains. Consider for example the polynomial η5η2η1∂1∂3 + η3η2∂1∂3. Its two terms are
valid, for example, in dimension 7, but the first term would give us a function from C7(K)
to C8(K) and the second term a function from C7(K) to C7(K). Thus, they cannot be
added consistently. The degree of a simplicial term is an integer giving the “dimension
jump” of every function it may represent (or equivalently, it is the difference between the
number of degeneracies and the number of faces). It is clear that another restriction we
must impose on a simplicial polynomial, in order to being able to interpret it as a function
on chains, is that it has to be uniform (that is, all its terms with the same degree).

We have formalized those restrictions in ACL2 by means of three functions valid-sp,
uniform-sp and degree-sp, whose definitions we omit here: valid-sp(p,m) checks
whether all the simplicial terms in p are valid for dimension m, uniform-sp(p) checks if
all the terms in p have the same degree and degree-sp(p) is the common degree of the
terms of a uniform polynomial (or 0 if it is the zero polynomial).

To define the functional behaviour of a simplicial polynomial, we simply apply the
operations indicated in the symbolic expression. For example, the following function
eval-ld is the evaluation of a list of faces ld on a chain c of dimension m (where ld is
expected to be valid for dimension m):

Definition:

eval-ld(ld,m,c) :=
if endp(ld) then c

else c-d(m-len(rest(ld)),first(ld),eval-ld(rest(ld),m,c)))

In a similar way, we can define the evaluation of a list of degeneracies of a given
dimension. Extending these, we define the evaluation of simplicial terms (eval-st) and
the evaluation of monomials (eval-sm). Finally, we define eval-sp, the evaluation of a
polynomial on a chain in a given dimension:

Definition:

eval-sp(p,m,c) :=
if endp(p) then 0
else eval-sm(first(p),m,c) + eval-sp(rest(p),m,c))

The key properties of the evaluation function we have just defined is that for a given
dimension, it behaves consistently with respect to the operations of the ring of simplicial
polynomials, whenever the input polynomials are valid for that dimension and uniform:



When first order is enough 21

Theorem: eval-sp-add-sp-sp

(p1 ∈ P ∧ p2 ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧
valid-sp(p1,m) ∧ valid-sp(p2,m) ∧ uniform-sp(p1) ∧ uniform-sp(p2) ∧
(endp(p1) ∨ endp(p2) ∨ degree-sp(p1) = degree-sp(p2)))
→ eval-sp(p1 + p2,m,c) = eval-sp(p1,m,c) + eval-sp(p2,m,c))

Theorem: eval-sp-scl-prd-sp

(p ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ valid-sp(p,m) ∧ uniform-sp(p) ∧ k ∈ Z)
→ eval-sp(k · p,m,c) = k·eval-sp(p,m,c)

Theorem: eval-sp-cmp-sp-sp

(p1 ∈ P ∧ p2 ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ valid-sp(p1,m+degree-sp(p2)) ∧
valid-sp(p2,m) ∧ uniform-sp(p1) ∧ uniform-sp(p2))
→ eval-sp(p1 · p2,m,c) = eval-sp(p1,m+degree-sp(p2),eval-sp(p2,m,c))

These properties allow us to translate in a convenient way the properties proved in
the polynomial framework to the corresponding properties in the standard framework.
We can illustrate this by showing how we prove the differential property. Recall that the
precise definition (without removing the superindexes) of the differential homomorphism
is dm(c) =

∑m
i=0(−1)i∂m

i (c). The following is the corresponding ACL2 definition in the
standard framework. Note that we need an auxiliary function diff-aux to deal properly
with the superindex:

Definition:

diff-aux(m,i,c) :=
if i �∈ N

+ then ∂m
0 (c)

else (−1)i · ∂m
i (c) + diff-aux(m,i − 1,c))

Definition: [dm(c)]
diff(m,c) := diff-aux(m,m,c)

The following theorem establishes the connection between the differential polynomial
and the differential function, via eval-sp:

Theorem: diff-eval-sp-sd

(m ∈ N
+ ∧ c ∈ Cm(K)) → eval-sp(dm,m,c) = dm(c)

Now, from the theorem cmp-diff-pol-diff-pol=0 in Section 3, using the theorem
eval-sp-cmp-sp-sp and previously proving that dm is a polynomial valid for dimension
m, uniform, and with degree −1, we can easily prove the differential property for the
function dm:

Theorem: diff-diff=0

(m ∈ N
+ ∧ c ∈ Cm+1(K)) → dm(dm+1(c)) = 0

5.3. The normalized chain complex

We now describe the formalization of the normalized chain complex CN (K). First of all
we define degenerate simplexes, those that can be obtained applying a degeneracy map
to another simplex:



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 22

Definition: [x ∈ KD
m ]

Kd(m,x) := ∃y,i (i ∈ N ∧ i < m ∧ y ∈ Km−1 ∧ ηm−1
i (y) = x)

The existential quantifier in this definition is introduced using defun-sk, which is the
way ACL2 provides support for first-order quantification. This macro allows (by means
of a choice axiom) to define functions whose body has an outermost quantifier.

Having defined degenerate simplexes, we define non-degenerate simplexes simply as
the negation of that property:

Definition: [x ∈ KND
m ]

Kn(m,x) := x ∈ Km ∧ x �∈ KD
m

Since normalized chains are linear combinations of non-degenerate simplexes of a given
dimension, we represent them in the same way as we represent general chains, but in
this case requiring non-degenerate generators. As with general chains, the theory of
normalized chains is obtained as an instance of the generic theory of freely generated
groups. That is, this instantiated theory contains the definitions and properties showing
that normalized chains together with addition is an abelian group. We also proved that it
is a subgroup of Cm(K) so it makes sense to denote c1+c2 the addition of two normalized
chains c1 and c2; and k · c the scalar product of an integer k and a normalized chain c.
Since in our representation an element x of CN

m (K) is also an element of Cm(K) (that is
to say, there is a canonical implicit inclusion from CN

m (K) to Cm(K), as sets), then any
function defined on Cm(K) can also be considered defined on CN

m (K); analogously, any
function ranging over CN

m (K) will be interpreted, implicitly, as ranging over Cm(K), too.
We define the canonical epimorphism f : C(K) → CN (K) as the function that, given

an element of Cm(K), returns the normalized chain obtained eliminating its degenerate
addends. In our formalization, the following function F-norm defines f (here SSn-P checks
the property of being a non-degenerate addend, and it uses the function Kn above):

Definition: [fm(c)]
F-norm(m,c) :=

if endp(c) then 0
elseif SSn-P(m,first(c))

then first(c) + F-norm(m,rest(c)))
else F-norm(m,rest(c))

A key property relating the canonical chain epimorphism f and the differential on
C(K) is the following: fm−1(dm(fm(c))) = fm−1(dm(c)). Intuitively, this means that if
we apply normalization on the result of the differential of a chain, we obtain the same
result as if we apply the same operation previously normalizing the chain. A sketch
of the proof of this result is the following: given a chain c ∈ Cm(K), we can write
it as the result of summing its normalization and a linear combination of degenerate
simplexes: c = fm(c)+

∑
k λk ·ηm−1

ik
(y). Thus, dm(c) = dm(fm(c))+

∑
k λk ·dm(ηm−1

ik
(y)).

From the definition of dm and applying the simplicial identities, it can be proved that
dm(ηm−1

j (y)) is still a linear combination of degenerate simplexes (this is the essential
property proving that the degenerate chain complex D(K), introduced in Subsection 2.1,
is a chain subcomplex of C(K)). Thus,

∑
k λk · dm(ηm−1

ik
(y)) is a linear combination



When first order is enough 23

of degenerate simplexes and therefore fm−1(dm(c)) = fm−1(dm(fm(c))). The following
theorem establishes this result:

Theorem: diff-n-F-norm

(m ∈ N
+ ∧ c ∈ Cm(K)) → fm−1(dm(fm(c))) = fm−1(dm(c))

Let us now define the differential operation of the normalized chain complex CN (K),
denoted as dN

m(c). We will define it as the result of applying the differential dm, and after
that, normalizing with fm−1.

Definition: [dN
m(c)]

diff-n(m,c) := fm−1(dm(c))

The differential property for d in C(K) (theorem diff-diff=0 in the last subsection),
together with the property diff-n-F-norm, allows us to prove the differential property
for dN in CN (K), since for all c ∈ CN

m (K), dN
m(dN

m+1(c)) = fm−1(dm(fm(dm+1(c)))) =
fm−1(dm(dm+1(c))) = fm−1(0) = 0. The following theorem establishes it:

Theorem: diff-n-diff-n=0

(m ∈ N
+ ∧ c ∈ CN

m+1(K)) → dN
m(dN

m+1(c)) = 0

5.4. A strong homotopy equivalence (C(K), CN (K), f, g, h0)

Once f is defined, it remains to define in the standard framework the functions g and h

of the reduction given in the strong version of the Normalization Theorem. It turns out
that the direct translation of the polynomial hm (a function that we will call h0, due to
the notation used in Subsection 2.1 to state Theorem 3) will only meet the properties
required for being an strong homotopy equivalence (recall from Subsection 2.1: only
properties (1), (2) and (3) in the Definition 2 are required). In the next subsection we
will see how it is possible to derive from h0 a function h that, together with f and g,
constitute a reduction from C(K) to CN (K).

So let us first introduce the definitions of the functions gm and h0
m in the framework

of the standard formalization of simplicial sets. As expected, their definitions closely
resembles the corresponding definition in the polynomial framework. Nevertheless in this
case, we have to introduce auxiliary functions to properly deal with the superindexes:

Definition:

G-aux(m,n,c) :=
if n �∈ N

+ then c

else G-aux(m,n − 1,c − ηm−1
n−1 (∂m

n (c)))

Definition: [gm(c)]
G(m,c) := G-aux(m,m,c)

Definition:

A-aux(m,n,c) :=
if n �∈ N

+ then 0
else −A-aux(m,n − 1,ηm−1

n−1 (∂m
n (c))) +

(−1)n−1 · ηm
n (G-aux(m,n − 1,ηm−1

n−1 (∂m
n (c))))



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 24

Definition:

H0-aux(m,n,c) :=
if n �∈ N

+ then ηm
0 (c)

else H0-aux(m,n − 1,c) + (−1)n · ηm
n (c) + A-aux(m,n,c)

Definition: [h0
m(c)]

H0(m,c) := H0-aux(m,m,c)

Following the lines discussed in Subsection 5.2, we can prove the following theorems
relating, via eval-sp, the functions gm and h0

m just defined to the corresponding poly-
nomial definitions:

Theorem: G-eval-sp-G-pol

(m ∈ N ∧ c ∈ CN
m (K)) → eval-sp(gm,c) = gm(c)

Theorem: H0-eval-sp-H-pol

(m ∈ N ∧ c ∈ Cm(K)) → eval-sp(hm,c) = h0
m(c)

These correspondences allow us to translate the polynomial properties shown in Sub-
section 4.2 to analogue properties in the standard formalization:

Theorem: G-and-diff-commute

(m ∈ N
+ ∧ c ∈ Cm(K)) → gm−1(dm(c)) = dm(gm(c))

Theorem: diff-H0-H0-diff-G-id

(m ∈ N
+ ∧ c ∈ Cm(K)) → dm+1(h0

m(c)) + h0
m−1(dm(c)) = c − gm(c)

Also, translating the property a G-pol-on-degenerate=0, and applying it to the defi-
nition of fm, it is straightforward to prove that gm “embeds” fm:

Theorem: G-embeds-F-norm

(m ∈ N ∧ c ∈ Cm(K)) → gm(fm(c)) = gm(c)

These translated properties are not yet the properties we intend to prove, since they
do not mention the normalized chains CN (K). But, together with some properties of the
canonical chain epimorphism, it is all what we need to show that (C(K), CN (K), f, g, h0)
is a strong homotopy equivalence. Let us see this in detail:

• f is a chain morphism:

Theorem: F-chain-morphism

(m ∈ N
+ ∧ c ∈ Cm(K)) → dN

m(fm(c)) = fm−1(dm(c))

This a direct consequence of diff-n-F-norm, since for all c ∈ CN
m (K), we have

dN
m(fm(c)) = fm−1(dm(fm(c))) = fm−1(dm(c)).

• g is a chain morphism:

Theorem: G-chain-morphism

(m ∈ N
+ ∧ c ∈ CN

m (K)) → gm−1(dN
m(c)) = dm(gm(c))

This property is an easy consequence of G-and-diff-commute and G-embeds-F-norm.
• Property (1) in the definition of reduction:

Theorem: F-G-H0-property-1

(m ∈ N ∧ c ∈ CN
m (K)) → fm(gm(c)) = c

This property is easily obtained from the definitions of gm and fm.



When first order is enough 25

• Property (2) in the definition of reduction:

Theorem: F-G-H0-property-2

(m ∈ N
+ ∧ c ∈ Cm(K)) → dm+1(h0

m(c)) + h0
m−1(dm(c)) = c − gm(fm(c))

Obtained from G-embeds-F-norm and diff-H0-H0-diff-G-id.
• Property (3) in the definition of reduction:

Theorem: F-G-H0-property-3

(m ∈ N ∧ c ∈ Cm(K)) → fm+1(h0
m(c)) = 0

Easily obtained from the definitions of fm and h0
m.

5.5. A reduction (C(K), CN (K), f, g, h)

As we have said, the functions f , g and h0 defined in the previous subsections do not
necessarily verify properties (4) and (5) required in the definition of reduction (Defini-
tion 2). Thus, the final step in our formalization will be to define a new function h such
that, while preserving properties (2) and (3), also holds properties (4) and (5). This can
be done applying a two-step transformation to h0, as explained at the end of Subsection
2.1, in the sketch of the proof of Theorem 3.

First, we define a function h1 transforming h0 in the following way:

Definition: [h1
m(c)]

H1(m,c) := h0
m(c) − h0

m(gm(fm(c)))

We will see that h1 holds property (4), but in general, does not hold property (5). To
get property (5), we obtain the function h transforming h1 in the following way:

Definition: [hm(c)]
H(m,c) := h1

m(dm+1(h1
m(c)))

All the theorems regarding these transformations can be proved in ACL2 using only
rewriting. To illustrate the type of reasoning we needed in this last step of our forma-
lization, let us show a proof sketch of the fact that after the first transformation (from
h0 to h1), we preserve properties (2) and (3) and we get property (4):

• The proof of property (2) for h1 is as follows (compare with the informal explanation
given at the end of Subsection 2.1; now we are supported by formal lemmas already
encoded in ACL2). Expanding the definition of h1 in dm+1(h1

m(c)) + h1
m−1(dm(c)),

we obtain:

dm+1(h0
m(c)) + h0

m(dm(c)) − (dm+1(h0
m(gm(fm(c)))) + h0

m(gm(fm(dm(c))))

Now, using the property (2) for h0 and the properties G-and-diff-commute and
G-embeds-F-norm in the last subsection, we get:

c − gm(fm(c)) − (dm+1(h0
m(gm(c))) + h0

m(dm(gm(c))))

By using again property G-embeds-F-norm and property (2) for h0, we get c −
gm(fm(c))− gm(c)+ gm(fm(gm(c))). Finally, applying property (1), we get c− gm(c).

• Property (3) holds as a direct consequence of the same property for h0: fm+1(h1
m(c)) =

fm+1(h0
m(c) − h0

m(gm(fm(c)))) = fm+1(h0
m(c)) − fm+1(h0

m(gm(fm(c)))) = 0



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 26

• As for property (4), h1
m(gm(c)) = h0

m(gm(c)) − h0
m(gm(fm(gm(c)))) and since by

property (1), we have fm(gm(c)) = c, then h1
m(gm(c)) = 0.

The proof of the properties for the second transformation (from h1 to h) is carried out
with similar techniques. The interested reader may consult the source files, where a more
detailed description is given.

Finally, the following theorems establish that this final version for h (together with
the already known definitions for f and g) holds properties (2), (3), (4) and (5) in the
definition of reduction:

Theorem: F-G-H-property-2

(m ∈ N
+ ∧ c ∈ Cm(K)) → dm+1(hm(c)) + hm−1(dm(c)) = c − gm(fm(c))

Theorem: F-G-H-property-3

(m ∈ N ∧ c ∈ Cm(K)) → fm+1(hm(c)) = 0

Theorem: F-G-H-property-4

(m ∈ N ∧ c ∈ CN
m (K)) → hm(gm(c)) = 0

Theorem: F-G-H-property-5

(m ∈ N ∧ c ∈ Cm(K)) → hm+1(hm(c)) = 0

Note that property (1) and the conditions for f and g being chain morphisms do not
have to be proved again, since h is not involved in them. Thus, the above theorems are
what was needed to complete our formalization of the Normalization Theorem.

6. Putting the proof in context

The objective of this section is to present (informally and without many details) the
mathematical foundations which allowed us to give a first order proof of the Normaliza-
tion Theorem. There are three aspects to be considered. First, the main part of the proof
can be carried out over the chain complex C(K), being the link with CN (K) simply
a consequence of a universal categorical property. This is a necessary step towards our
second structural simplification: to prove that simplicial polynomials accurately repre-
sent natural transformations between functors; this is the main property allowing us to
pass from second order to first order logic. Third, simplicial terms can be safely operated
without considering a dimension frame, due again to categorical properties.

In our approach to the problem, in order to build for each simplicial set K a reduction
(f, g, h) : C(K) → CN (K), we have defined, by means of explicit formula, two families
of simplicial polynomials gm and hm (see Subsection 4.1). For the sake of simplicity,
let us denote in this section by G and H the operators defined on C(K) by gm and
hm, respectively. Observe that the expressions for G and for H are independent from
the simplicial set K (and from the evaluation of simplicial operators over simplexes),
while f (the canonical projection) requires for its definition a test function, determining
whether a given simplex is degenerate or not. This implies that f depends on K. In order
to make generic the proof (independent from K), let us denote by C∗(K) and CN

∗ (K)
the graded free abelian groups {Cn(K)}n∈N and {CN

n (K)}n∈N, respectively (that is,
the differential maps are not considered yet). In this setting, the canonical projection



When first order is enough 27

f : C∗(K) → CN
∗ (K) is part of a retract : there exists a homomorphism of graded groups

i : CN
∗ (K) → C∗(K) such that f ◦i = idCN∗ (K) (this property is reflecting the double view

of CN
∗ (K) as a quotient and as a subgroup of C∗(K), as explained in Subsection 2.1).

With this notation, if d denotes the differential operator over C∗(K), then the differential
dN over CN

∗ (K) is characterized by the equality: dN = f ◦ d ◦ i.
More generally, given a chain complex (A, dA), a graded abelian group B, and a retract

A

f
��
B,

i

�� satisfying (in addition to f◦i = idB) the condition f◦dA = f◦dA◦i◦f ,

then the composite dB := f ◦ dA ◦ i defines a differential operator over B such that f :
(A, dA) → (B, dB) becomes a chain morphism. Furthermore, given any chain morphism
S from (A, dA) to another chain complex (C, dC) satisfying S = S ◦ i ◦ f , then the group
homomorphism s = S ◦ i is indeed the unique chain morphism from (B, dB) to (C, dC)
such that the following diagram commutes.

A

S

��

f �� B

s
��

C

Applying these properties to our case, we conclude that to obtain the chain morphism
g : CN (K) → C(K) in the reduction, it is enough to find the corresponding chain endo-
morphism G : C(K) → C(K) satisfying G = G ◦ i ◦ f (in our case, it has been proved
in ACL2 by using the G-pol-on-degenerate=0 property). All the properties linking f

and g can be then deduced from properties of G. This has been made explicit in the last
section, for instance by proving H-pol-property-2 (in plain text: dh0 + h0d = Id − G)
and then inferring diff-H0-H0-diff-G-id (dh0 + h0d = Id − gf).

Thus, we have re-stated the Normalization Theorem to deal with some (explicitly de-
fined) endomorphisms G and H of C∗(K). In order to proceed to our second structural
simplification, let us now consider the functors Cn(−) : S → AG, where S denotes the
category of simplicial sets and AG the category of abelian groups. These functors are
objects of a category of functors, denoted [S,AG], where arrows are natural transfor-
mations. The morphisms t in [S,AG] we are interested in are natural transformations
t : Cn(−) → Cn+r(−), being the integer r the degree of t. For instance, each component
of the graded morphism G has degree 0, for H the degree is 1 and for d the degree is −1.
In order to put it in first order terms, let us observe that the functor Cn(−) can be consi-
dered the composite of a functor (−)n : S → SET with the free functor SET → AG. Here
SET denotes the category of sets and (−)n is the functor associating to each simplicial
set K the set of n-simplexes Kn.

We shall study some morphisms of the category of functors [S,SET ]. Our objective is
to prove that there is a natural equivalence between the [S,SET ]-morphisms from (−)n to
(−)m and some simplicial operators (recall form Subsection 2.2 that a simplicial operator
is any valid sequence of face and degeneracy maps). To this aim, let us explain the well-
known description of S as a category of pre-sheaves (or, in other words, a category of
contravariant functors with target in SET ).



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 28

Let us denote by Δ (Mac Lane and Moerdijk 1992) the category with objects all finite
nonempty sets of the form [n] = {0, . . . , n}, n ≥ 0, and with morphisms α : [n] → [m]
all the order preserving functions. There exist two relevant families of morphisms in Δ.
On one hand, the injections εn

i : [n − 1] → [n] which skip the element i ∈ [n]. On the
other hand, the surjections δn

j : [n + 1] → [n] which cover j ∈ [n] twice. A morphism
α : [n] → [m] in Δ can be decomposed (uniquely) as α = εis

. . . εi1δjt
. . . δj1 , where

0 ≤ i1 < . . . < is ≤ m, 0 ≤ jt < . . . < j1 ≤ n and m = n+(s− t). A simplicial object in a
category C is a contravariant functor from Δ to C. If we consider the category SET as C, it
is well-known (May 1967) that there exists a canonical equivalence between the category
S and the (pre-sheaves) category of simplicial objects in SET : SS = [Δop,SET ] (where
Δop denotes the opposite category of Δ). Remark that the decomposition of α : [n] → [m]
exactly corresponds (up to contravariance) to the canonical form of a simplicial operator
described in Subsection 2.2.

The representable functor Δ(−, [n]) : Δop → SET in SS defines in S a simplicial
set, denoted by Δ[n] and called standard n-simplex, where the elements of Δ[n]m =
Δ([m], [n]) are usually represented by lists of m+1 non-decreasing numbers chosen from
[n]. The Yoneda Lemma (Mac Lane 1971) provides a natural one to one correspondence
between n-simplexes of a simplicial set K and natural transformations (S-morphisms)
from Δ[n] to K. Particularizing to the case K =Δ[m], a natural bijective map between
simplexes Δ[n]m and S-morphisms S(Δ[m], Δ[n]) is obtained (the Yoneda embedding).
In summary, the functional objects in S(Δ[m], Δ[n]) can be accurately represented by
integer lists.

Repeating similar arguments (with the contravariant Yoneda embedding) on the cate-
gory [SS,SET ], it is easy to show that the lists in Δ[n]m are also representing the natural
transformations from the functor (−)n to the functor (−)m. In particular, it proves that
such a morphism must be a simplicial operator (generated by composition from faces
and degeneracies), and also that, by writing the list in canonical form, a simplicial term
(as a pair of lists) together with a source dimension n, is also representing the same
natural transformation from (−)n to (−)m. This is the reason why our arguments can
be expressed in first order logic; roughly speaking, we have replaced reasoning in the
category of simplicial sets by reasoning in the small, first order category Δ.

It is necessary now to compose the functors (−)n with the free functor from SET to AG,
in order to study the natural transformations for functors Cn(−). The sets of morphisms
in [S,AG] are endowed with an abelian group structure. Then, the group of natural
transformations between the free group functors Cn(−) and Cm(−) is the free group on
the set of natural transformations from (−)n to (−)m. A morphism Φ : Cn(−) → Cm(−)
is canonically determined by an element of the free abelian group Z[Δ[n]m] (namely, by
ΦΔ[n](In), where In = (0, 1, . . . , n) ∈ Δ[n]n). Thus, natural transformations in [S,AG]
as F , H and d can be represented by simplicial polynomials (that is to say, linear com-
binations of simplicial terms) together with the dimension n of the source free abelian
group functor Cn(−).

Therefore, we have reduced our problem to deal with simplicial polynomials plus one
dimension. Our ACL2 proof, described in Section 4, was however carried out over sim-
plicial polynomials without any dimension information. The reason for this third, and



When first order is enough 29

last, simplification is now explained. Let us interpret εi (which skips the element i ∈ N)
and δj (which cover j ∈ N twice) as order-preserving maps from N to N. We denote by
N the monoid of maps generated (by composition) from {εi, δj ;∀i, j ∈ N}. The elements
of N are exactly the order-preserving maps from N to N containing a finite amount of
information: they stabilize from a given number (that is, a function γ : N → N such
that there exists r0 ∈ N satisfying γ(r + 1) = γ(r) + 1,∀r > r0). The elements in N
can be represented in canonical form as explained for morphisms of the category Δ. This
proves that, as monoids, there is a canonical isomorphism between N and our monoid of
simplicial terms (the isomorphism being simply induced by contravariance).

We can now think in N as a (monoidal) category with only one object, and morphisms
the elements of the monoid. There is a functor (−)# : Δ → N which completes each
morphism α : [n] → [m] of Δ, by stabilizing it. This functor is faithful, that is to say:
given two morphisms α, β : [n] → [m] such that α# = β# then α = β. In others words,
equational reasoning about simplicial operators can be safely simulated over simplicial
terms, without any reference to the dimensions where the simplicial operators apply. The
same argument apply to the ring of simplicial polynomials (obtained from the free abelian
group on the monoid of simplicial terms), showing that any chain of equalities deduced
from combinations over morphisms of the monoidal category N also holds in the valid
dimensions. Thus, the complete proof of the Normalization Theorem can be developed
in a first order setting by using equational reasoning on simplicial polynomials, as it has
been done in ACL2.

7. Conclusions and further work

The work reported in this paper demonstrates that the ACL2 theorem prover can be
efficiently used to mechanize non-trivial mathematics, in fields (like Algebraic Topology)
where higher-order tools (as Isabelle/HOL or Coq) could be thought as more appropriate.
Our case study is the Normalization Theorem, an important result in simplicial topology
establishing a link between the two chain complexes that can be naturally associated to a
simplicial set. As a by-product, our proof has been used to formally prove the correctness
of some explicit formula experimentally found in (Rubio and Sergeraert 1990).

To quantify the proof effort, the complete formalization contains 99 definitions and
565 lemmas and theorems (with 158 non trivial proof hints explicitly given), which gives
an idea of the degree of automation of the proof. As for the formalization development,
we followed a standard interaction with the theorem prover. That is, we first had an
original hand proof of the result that suggested the main definitions and lemmas. Some
of these lemmas were not proved in a first attempt and new lemmas are then suggested
from the inspection of the failed attempts. It is also worth pointing out that the whole
development has benefited from the use of our instantiation tool for generic theories
described in (Mart́ın-Mateos et al. 2002). That allowed us to obtain in an automated way,
the definitions and theorems proving the ring of simplicial polynomials and the abelian
group of chains and normalized chains, as instances of generic theories (we have not
included these automatically generated definitions and lemmas in the statistics above).

The planned future work is trying to extend the techniques introduced here (based on



Lambán, Mart́ın–Mateos, Rubio, Ruiz–Reina 30

simplicial polynomials) to other problems in simplicial topology. Our next objective is the
Eilenberg-Zilber Theorem (May 1967). It is a very important result giving a reduction
between the chain complex of a cartesian product of simplicial sets, CN (A×B), and the
tensor product of the corresponding chain complexes of the factors, CN (A) ⊗ CN (B).
The associated algorithm (in its most explicit version, the arrows f , g, h are described
by explicit formula; see the Appendix in (Real 2000)) is very important in Kenzo, being
responsible for a great part of the (exponential) complexity of many Kenzo programs.
Thus the task of formalizing it can be considered a good next step for our project. The
results in Section 6 show that there are categorical reasons to think that the Eilenberg-
Zilber Theorem could be tackled in a first order setting. From the ACL2 point of view, the
challenge is that in the Eilenberg-Zilber Theorem there are two simplicial sets involved,
and then the scope of our techniques should be significantly extended to be applied in
that case.

References

Andrés, M., Lambán, L., Rubio, J. and Ruiz-Reina, J.L. (2007) Formalizing Simplicial Topology

in ACL2. In Proceedings ACL2 Workshop 2007, 34–39. University of Austin.

Aransay, C., Ballarin, C. and Rubio, J. (2008) A Mechanized Proof of the Basic Perturbation

Lemma. Journal of Automated Reasoning 40 (4), 271–292.

Aransay, C., Ballarin, C. and Rubio, J. (2010) Generating certified code from formal proofs: a

case study in Homological Algebra. Formal Aspects of Computing 22 (2), 193–213.

Coquand, T. and Spiwack, A. (2007) Towards Constructive Homological Algebra in Type The-

ory. In Calculemus 2007, Lecture Notes in Artificial Intelligence 4573, 40–54. Springer-Verlag.

De Loera, J. A., Rambau, J. and Santos, F. (2010) Triangulations. Structures for Algorithms

and Applications. Springer-Verlag.

Domı́nguez, C., Lambán, L. and Rubio, J. (2007) Object-Oriented Institutions to Specify Sym-

bolic Computation Systems. Rairo - Theoretical Informatics and Applications 41, 191–214.

Domı́nguez, C. and Rubio, J. (2010) Computing in Coq with Infinite Algebraic Data Structures.

In Calculemus 2010, Lecture Notes in Artificial Intelligence 6167, 204–218. Springer-Verlag.

Dousson, X., Sergeraert, F. and Siret, Y. (1999) The Kenzo Program. Institut Fourier, Grenoble,

1999. http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

Heras, J., Pascual, V. and Rubio, J. (2010) Proving with ACL2 the correctness of simplicial sets

in the Kenzo system. In LOPSTR 2010, Lecture Notes in Computer Science. Springer-Verlag.

Kaufmann, M., Manolios, P. and Moore, J S. (2000) Computer-Aided Reasoning: An Approach.

Kluwer.

Lambán, L., Pascual, V. and Rubio, J. (2003) An Object-Oriented interpretation of the EAT

System. Applicable Algebra in Engineering, Communication and Computing 14 (3), 187–215.

Mac Lane, S. (1963) Homology. Springer-Verlag.

Mac Lane, S. (1971) Categories for the working mathematician. Springer-Verlag.

Mac Lane, S. and Moerdijk, I. (1992) Sheaves in Geometry and Logic. Springer-Verlag.

Mart́ın–Mateos, F. J., Alonso, J. A., Hidalgo, M. J. and Ruiz–Reina, J. L. (2002) A Generic

Instantiation Tool and a Case Study: A Generic Multiset Theory. In Proceedings of the third

international ACL2 workshop and its applications, 188–201.

Mart́ın–Mateos, F. J., Rubio, J. and Ruiz–Reina , J. L. (2009) ACL2 verification of simplicial

degeneracy programs in the Kenzo system. In Calculemus 2009, Lecture Notes in Artificial

Intelligence 5625, 106–121. Springer-Verlag.



When first order is enough 31

May, J. P. (1967) Simplicial objects in Algebraic Topology. Van Nostrand.

Medina–Bulo, I., Palomo–Lozano, F. and Ruiz–Reina, J.L. (2010) A verified Common Lisp

implementation of Buchberger’s algorithm in ACL2. Journal of Symbolic Computation 45 (1),

96–123.

Real, P. (2000) Homological Perturbation Theory and Associativity. Homology, Homotopy and

Applications 2 (5), 51–88.

Romero, A. (2007) Effective Homology and Spectral Sequences. PhD Thesis. Universidad de La

Rioja. Available at: http://www.unirioja.es/cu/anromero/tesis.pdf

Rubio, J. and Sergeraert, F. (1990) Supports Acycliques and Algorithmique. Astérisque 192,

35–55.

Rubio, J. and Sergeraert, F. (2002) Constructive Algebraic Topology. Bulletin Sciences

Mathématiques 126, 389–412.


	wfoeParaWikiForMathCAR.pdf
	wfoeParaWikiForMathCDR.pdf

