
Paper two

On-the-fly Inlining of
Dynamic Dependency
Monitors for Secure
Information Flow

Luciano Bello and Eduardo Bonelli

Information flow analysis (IFA) in the setting of programming lan-
guages is steadily veering towards the adoption of dynamic techniques.
This is particularly attractive for scripting languages for web applica-
tions programming. A common manifestation of dynamic techniques
is that of run-time monitors, which should block program execution
in the presence of an insecure run. Significant efforts are still required
before practical, scalable monitors for secure IFA of industrial scale lan-
guages such as JavaScript can be achieved. Such monitors ideally should
compensate for the absence of the traces they do not track, should not
require modifications of the VM and should provide a fair compromise
between security and usability among other things. This paper discusses
on-the-fly inlining of monitors that track dependencies as a prospective
candidate.

Formal Aspects of Security and Trust Lecture Notes in Computer Science
Volume 7140, 2012, pp 55-69

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 63

1 Introduction

Secure IFA in the setting of programming languages [17] is steadily
veering towards the adoption of dynamic techniques [2, 3, 11, 12, 15, 18–
20]. There are numerous reasons for this among which we can mention
the following. First they are attractive from the perspective of scripting
languages for the web such as JavaScript which are complex subjects
of study for static-based techniques. Second, they allow dealing with
inherently run-time issues such as dynamic object creation and eval
run-time code evaluation mechanism. Last but not least, recent work
has suggested that a mix of both static and dynamic flavors of IFA will
probably strike the balance between correct, usable and scalable tools in
practice.

Language-based secure IFA is achieved by assigning variables a se-
curity level such as public or secret and then determining whether those
that are labeled as secret affect the contents of public ones during ex-
ecution. This security property is formalised as noninterference. In this
paper, we are concerned in particular with termination-insensitive nonin-
terference [17, 21]: starting with two identical run-time states that only
differ in the contents of secret variables, the final states attained after any
given pair of terminating runs differ at most in the contents of the secret
variables. Thus in this paper we ignore covert channels.

IFA Monitors. Dynamic IFA monitors track the security level of
data during execution. If the level of the data contained in a vari-
able may vary during execution we speak of a flow-sensitive analy-
sis [13]. Flow-sensitivity provides a more flexible setting than the flow-
insensitive one when it comes to practical enforcement of security poli-
cies. Purely dynamic flow-sensitive monitors can leak information re-
lated to control flow [16]. Such monitors keep track of the security
label of each variable and update these labels when variables are as-
signed. Information leak occurs essentially because these monitors can-
not track traces that are not taken (such as branches that are not executed).

1 tmp := 1; pub := 1;
2 ifp1 sec then
3 tmp := 0;
4 ifp2 tmp then
5 pub := 0;
6 retp3 (pub)

Fig. 1. Monitor attack, from [16]

Consider the example in Fig. 1 taken from
[18] (the subscripts may be ignored for
now). Assume that sec is initially labeled
as secret. The monitor labels variables
tmp and pub as public (since constants
are considered public values) after exe-
cuting the first two assignments. If sec
is nonzero, the label of tmp is updated to
secret since the assignment in line 3 de-
pends on the value of sec. The “then”
branch of the second conditional is not executed. If sec is zero, then the
“then” branch of the second conditional is executed. Either way, the value

64 Luciano Bello and Eduardo Bonelli

of sec, a secret variable, leaks to the returned value and the monitor is
incapable of detecting it.

Purely dynamic flow-sensitive monitors must therefore be supplied
with additional information in order to compensate for this deficiency.
One option is to supply the monitor with information on the branches
not taken. This is the approach taken for example in [16]. In the example
of Fig. 1, when execution reaches the conditional in line 4, although
the “then” branch is not taken the label of pub would be updated to
secret since this variable would have been written in the branch that
was not taken and that branch depends on a secret variable. In order
to avoid the need for performing static analysis [4] proposed the no-
sensitive upgrade scheme where execution gets stuck on attempting to
assign a public variable in a secret context. Returning to our example,
when sec is nonzero and execution reaches the assignment in line 3,
it would get stuck. A minor variant of that scheme is the permissive
upgrade [5] scheme where, although assignment of public variables in
a secret contexts is allowed, branching on expressions that depend on
such variables is disallowed. In our example, when sec is nonzero and
execution reaches the assignment in line 3, it would be allowed. However,
execution would get stuck at line 4. As stated in [6], not only can these
schemes reject secure programs, but also their practical applicability is
yet to be determined.

Dynamic dependency tracking. An alternative to supplying a mon-
itor that is flow-sensitive with either static information or resorting to
the no-sensitive upgrade or permissive upgrade schemes is dependency anal-
ysis [19]. Shroff et al. introduce a run-time IFA monitor that assigns
program points to branches and maintains a cache of dependencies of
indirect flows towards program points and a cache of direct flows towards
program points. These caches are called κ and δ, respectively. The former
is persistent over successive runs. Indeed, when execution takes a branch
which has hitherto been unexplored, the monitor collects information as-
sociated with it and adds it to the current indirect dependencies. Thus,
although an initial run may not spot an insecure flow, it will eventually
be spotted in subsequent runs.

In order to illustrate this approach, we briefly revisit the example of
Fig. 1 (further details are supplied in Sec. 2). We abbreviate the security
level “secret” with the letter H and “public” with L, as is standard. Values
in this setting are tagged with both a set of dependencies (set of program
points p, pi, etc.) and a security level. When the level is not important but
the dependency is, we annotate the value just with the dependency: e.g.
0p (in our example dependencies are singletons, hence we write p rather
that {p}). Likewise, when it is the security level that is relevant we write
for e.g. 0L or 0H. After initialization of the variables and their security
levels, the guard in line 2 is checked. Here two operations take place. First

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 65

First run Second run
line 1 2 3 4 6 1 2 4 5 6

sec 1H 1H 1H 1H 1H 0H 0H 0H 0H 0H

tmp 1L 1L 0p1 0p1 0p1 1L 1L 1L 1L 1L

pub 1L 1L 1L 1L 1L 1L 1L 1L 0p2 0p2

p1 H H H H H H H H
p2 L L L L L
p3 L L
ret 1p3 0p3

κ p1

p2
_
OO

p1

p2
_
OO

p1

p2
_
OO

p1

p2
_
OO

p1

p2
_
OO

p1

p2
_
OO

p1

p2
_
OO

p3
_
OO

Table 1. Dependency tracking on two runs of Fig. 1.

the level of program point p1 is set to H reflecting a direct dependency
of p1 with sec. This is stored in δ, the cache of direct dependencies. The
body of the condition is executed (since the guard is true) and tmp is
updated to 0p1, indicating that the assigned value depends on the guard
in p1. When the guard from the fourth line is evaluated, in κ (the cache of
indirect dependencies, which is initially empty) the system stores that p2
depends on p1 (written p2 7→ p1), since the value of the variable involved
in the condition depends on p1. At this point pub has the same value,
namely 1, as sec, and hence leaks this fact. The key of the technique is to
retain κ for future runs. Suppose that in a successive run sec is 0H. The
condition from line 2 is evaluated and the direct dependency p1 7→ H is
registered in δ. The third line is skipped and the condition pointed by p2
is checked. This condition refers to tmp whose value is 1L. The body in
line 5 is executed and pub is updated with 0p2. At this point, it is possible
to detect that pub depends on H as follows: variable pub depends on p2
(using the cache κ); p2 depends on p1; and the level of the latter program
point is H according to the direct dependency cache. Table 1 summarizes
both runs as explained above.

Inlining Monitors. An alternative to implementing a monitor as part
of a custom virtual machine or modifying the interpreter [8, 10] is to
resort to inlining [6, 9, 14, 20]. The main advantage behind this option is
that no modification of the host run-time environment is needed, hence
achieving a greater degree of portability. This is particularly important
in web applications. Also, such an inlining can take place either at the
browser level or at the proxy level, thus allowing dedicated hardware to
inline system wide. Magazinius et al. [14] introduce the notion of on-the-
fly inlining. The monitor in charge of enforcing the security policy uses a
function trans to inline a monitored code. This function is also available

66 Luciano Bello and Eduardo Bonelli

at run-time and can be used to transform code only known immediately
before its execution. The best example of this dynamic source is the eval
primitive.

Contribution. This paper takes the first steps in inlining the depen-
dency analysis [19] as a viable alternative to supplying a flow-sensitive
monitor with either static information or resorting to the no-sensitive up-
grade or permissive upgrade schemes. Given that we aim at applying our
monitor to JavaScript, we incorporate eval into our analysis. Since the
code evaluated by eval is generated at run-time and, at the same time,
the dependency tracking technique requires that program points be per-
sisted, we resort to hashing to associate program points to dynamically
generated code. We define and prove correct an on-the-fly inlining trans-
formation, in the style of [14], of a security monitor which is based on
dependency analysis that incorporates these extensions.

Paper Structure. Sec. 2 recasts the theory of [19] originally developed
for a lambda calculus with references to a simple imperative language.
Sec. 3 briefly describes the target language of the inlining transformation
and defines the transformation itself. Sec. 4 extends the transformation
to eval. The properties of the transformation are developed in Sec. 5.
Finally, we present conclusions and possible lines of additional work. A
prototype in Python is available at [1], as well as the formal definitions
and proof.

2 Dependency Analysis for a Simple Imperative
Language

We adapt the dependency analysis framework of Shroff et al. [19] to
a simple imperative language Wdeps prior to considering an inlining
transformation for it. Its syntax is given in Fig. 2. There are two main
syntactic categories, expressions and commands. An expression is either
a variable, a labeled value, a binary expression, an application (of a
user-defined function to an argument expression) or a case expression.
A labeled value is a tuple consisting of a value (an integer or a string), a
set of program points and a security level. We assume a set of program
points p1, p2, Security levels are taken from a lattice (L,v). We write t
for the supremum. Commands are standard. For technical purposes, it
is convenient to assume that the program to be executed ends in a return
command ret, and that moreover this is the unique occurrence of ret in
the program. Note however that this assumption may be dropped at the
expense of slightly complicating the statement of information leak (Def. 1)
and delayed leak detection (Prop. 1). The while, if and ret commands are
sub-scripted with a program point.

The operational semantics of Wdeps is defined in terms of a binary
relation over configurations, tuples of the form 〈E, κ, δ, π, µ, c〉 where E

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 67

P, π ::= {p} (set of ppids, program counter)
v ::= i

∣∣∣ s (value)
σ ::= 〈v,P,L〉 (labeled value)
e ::= x

∣∣∣ σ ∣∣∣ e ⊕ e
∣∣∣ f(e)

∣∣∣ case e of (e : e)+ (expression)
c ::= skip

∣∣∣ x := e
∣∣∣ let x = e in c

∣∣∣ c; c
∣∣∣ whilep e do c (command)∣∣∣ ifp e then c else c

∣∣∣ retp(e)
∣∣∣ stop

E ::= ∅
∣∣∣ f (x) � e; E (expr. environment)

µ ::= {x 7→ σ} (memory)
κ ::= {p 7→ P} (cache of dependencies)
δ ::= {p 7→ L} (cache of direct flows)

Fig. 2. Syntax ofWdeps

is an expression environment, κ is a cache of indirect flows, δ is a cache of
direct flows, π is the program counter (a set of program points), µ is a
(partial) function from variables to labeled values and c is the current
command. We use D,Di, etc for configurations. We write µ[x 7→ σ] for
the memory that behaves as µ except on x to which it associates σ. Also,
µ \ x undefines µ on x. The domain of µ includes a special variable ret
that holds the return value. The expression environment declares all
available user-defined functions. We omit writing it in configurations
and assume it is implicitly present. Expression evaluation is introduced in
terms of closed expression evaluation and then (open) expression evaluation.
Closed expression evaluation is defined as follows,

I(〈v,P,L〉)
def
= 〈v,P,L〉

I(f (e))
def
= f̂ (I(e))

I(case e of e : e′)
def
= ˆcase I(e) o f e′

i
: e′

I(e1 ⊕ e2)
def
= I(e1)⊕̂I(e2)

where we assume
f̂ (〈v,P,L〉)

def
= I(e[x := 〈v,P,L〉]), if f (x) � e ∈ E; ˆcase 〈u,P,L〉 o f e : e′

def
=

〈v,P∪P′,LtL′〉 if u matches1 ei with substitution σ andI(σe′i) = 〈v,P′,L′〉;

and 〈i1,P1,L1〉⊕̂〈i2,P2,L2〉
def
= 〈i1 ⊕ i2,P1 ∪P2,L1 tL2〉. We assume that in a

case-expression exactly one branch applies. Moreover, we leave it to the
user to guarantee that user-defined functions are terminating.

Given a memory µ, the variable replacement function, also written µ,
applies to expressions: it traverses expressions replacing variables by
their values. It is defined only if the free variables of its argument are in

1 Here we mean the standard notion of matching of a closed term e1 against an
algebraic pattern e2; if successful, it produces a substitution σ for the variables
of e2 s.t. σ(e2) = e1.

68 Luciano Bello and Eduardo Bonelli

the domain of µ. Finally, open expression evaluation is defined as I◦µ, the
composition of I and µ, and abbreviated µ̂.

The reduction judgementD1 � D2 states that the former configuration
reduces to the latter. This judgement is defined by means of the reduction
schemes of Fig. 3. It is a mixed-step semantics in the sense that it mixes
both small and big-step semantics. Thus D1 � D2 may be read as D2
may be obtained fromD1 in some number of small reduction steps. We
write D1

n
� D2 for the n-fold composition of�. Rule Skip is straight-

forward; stop is a run-time command to indicate the end of execution.
The Let scheme is standard; we resort to [x := e] for capture avoiding
substitution of all occurrences of the free variable x by e. The Assign
scheme updates memory µ by associating x with the labeled value of e,
augmenting the indirect dependencies with the program counter π. We
omit the description of While-T and While-F and describe the schemes
for the conditional (which are similar). If the condition is true (the reduc-
tion scheme when the condition is false, namely If-F, is identical except
that it reduces c2, hence it is omitted), then before executing the corre-
sponding branch the configuration is updated. First the program counter
is updated to include the program point p. A new dependency is added
to the cache of indirect dependencies for p, namely π∪P, indicating that
there is an indirect flow from the current security context under which the
conditional is being reduced and the condition e (via its dependencies).
The union operator κ]κ′ is defined as κ′′ iff κ′′ is the smallest cache such
that κ, κ′ ≤ κ′′. Here the ordering relation on caches is defined as κ ≤ κ′

iff ∀p ∈ dom(κ).κ(p) ⊆ κ′(p). Finally, the security level L of the condition
is recorded in δ′, reflecting the direct dependency of the branch on e. The
scheme for ret updates the cache of indirect dependencies indicating
that there is an indirect flow from the program counter and e (via its
dependencies) towards the value that is returned. Finally, we note that
〈κ, δ, π, µ, c〉� 〈κ′, δ′, π′, µ′, c′〉 implies κ ≤ κ′ and π′ = π.

2.1 Properties

Delayed leak detection (Prop. 1), the main property that the monitor en-
joys, is presented in this section. Before doing so however, we require
some definitions. The transitive closure of cache look-up is defined

as κ(p)
def
= P ∪ κ(P)+, where κ(p) = P. Suppose P = {p1, . . . , pk}. Then

κ(P)
def
=

⋃
i∈1..k k(pi) and κ(P)+ def

=
⋃

i∈1..k k(pi)+. We define secLevelκ,δP
def
=

δ(P ∪ κ(P)+), the join of all security levels associated to the transitive
closure of P according to the direct dependencies recorded in δ. We write
µ[xk 7→ 〈vk, ∅,Lhigh〉] for µ[x1 7→ 〈v1, ∅,Lhigh〉] . . . [xk 7→ 〈vk, ∅,Lhigh〉]. We fix
Llow and Lhigh to be any two distinct levels. A terminating run leaks infor-
mation via its return value, if this return value is visible to an attacker
as determined by the schemes in Fig. 3 and there is another run of the

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 69

Skip
〈κ, δ, π, µ, skip〉� 〈κ, δ, π, µ, stop〉

〈κ, δ, π, µ[z 7→ µ̂(e)], c[x := z]〉 n
� 〈κ′, δ′, π, µ′, stop〉 z fresh

Let
〈κ, δ, π, µ, let x = e in c〉� 〈κ′, δ′, π, µ′ \ z, stop〉

〈κ, δ, π, µ, c1〉
n
� 〈κ′, δ′, π, µ′, stop〉

Seq
〈κ, δ, π, µ, c1; c2〉� 〈κ

′, δ′, π, µ′, c2〉

µ̂(e) = 〈v,P,L〉 µ′ = µ[x 7→ 〈v,P ∪ π,L〉]
Assign

〈κ, δ, π, µ, x := e〉� 〈κ, δ, π, µ′, stop〉

µ̂(e) = 〈i,P,L〉 i , 0 π′ = π ∪ {p} κ′ = κ] {p 7→ π ∪ P}

δ′ = δ] {p 7→ L} 〈κ′, δ′, π′, µ, c〉 n
� 〈κ′′, δ′′, π′, µ′′, stop〉

While-T
〈κ, δ, π, µ, whilep e do c〉� 〈κ′′, δ′′, π, µ′, whilep e do c〉

µ̂(e) = 〈0,P,L〉 κ′ = κ] {p 7→ π ∪ P} δ′ = δ] {p 7→ L}
While-F

〈κ, δ, π, µ, whilep e do c〉� 〈κ′, δ′, π, µ, stop〉

µ̂(e) = 〈i,P,L〉 i , 0 π′ = π ∪ {p} κ′ = κ] {p 7→ π ∪ P}

δ′ = δ] {p 7→ L} 〈κ′, δ′, π′, µ, c1〉
n
� 〈κ′′, δ′′, π′, µ′, stop〉

If-T
〈κ, δ, π, µ, ifpe then c1 else c2〉� 〈κ

′′, δ′′, π, µ′, stop〉

µ̂(e) = 〈v,P,L〉 κ′ = κ] {p 7→ π ∪ P} δ′ = δ] {p 7→ L}
Ret

〈κ, δ, π, µ, retp(e)〉� 〈κ′, δ′, π, µ[ret 7→ 〈v,P ∪ π,L〉], stop〉

Fig. 3. Mixed-step semantics forWdeps

same command, whose initial memory differs only in secret values w.r.t.
that of the first run, that produces a different return value. Moreover, this
second run has the final cache of indirect dependencies of the first run
(κ1) as its initial cache of indirect dependencies.

Definition 1 (Information Leak [19]). Let µ0
def
= µ[xk 7→ 〈vk, ∅,Lhigh〉] for

some memory µ. A run 〈κ0, δ0, π, µ0, c〉
n1� 〈κ1, δ1, π, µ1, stop〉 leaks informa-

tion w.r.t. security level Llow, with Lhigh @ Llow iff

1. µ1(ret) = 〈i1,P1,L1〉;
2. (secLevelκ1,δ1 P1) t L1 v Llow; and

70 Luciano Bello and Eduardo Bonelli

3. there exists k labeled values 〈v′k, ∅,Lhigh〉 s.t.

µ′0 = µ[xk 7→ 〈v′k, ∅,Lhigh〉] and 〈κ1, δ0, π, µ′0, c〉
n2� 〈κ2, δ2, π, µ2, stop〉

and µ2(ret) = 〈i2,P2,L2〉 with i1 , i2.

Delayed leak detection is proved in [19] in the setting of a higher-
order functional language and may be adapted to our simple imperative
language.

Proposition 1. If

– µ0 = µ[xk 7→ 〈vk, ∅,Lk〉];
– the run 〈κ0, δ0, π, µ0, c〉

n1� 〈κ1, δ1, π, µ1, stop〉 leaks information w.r.t.
security level Llow; and

– µ1(ret) = 〈i1,P1,L1〉

then there exists 〈v′k, ∅,L
′

k〉 s.t.

– µ′0 = µ[xk 7→ 〈v′k, ∅,L
′

k〉];

– 〈κ1, δ0, π, µ′0, c〉
n2� 〈κ2, δ2, π, µ2, stop〉; and

– secLevelκ2,δ1 P1 @ Llow.

The labeled values 〈v′k, ∅,L
′

k〉 may be either public or secret since, if
the first run leaks information, then appropriate input values of any
required level must be supplied in order for the second run to gather the
necessary dependencies that allow it to detect the leak.

3 Inlining the Dependency Analysis

The inlining transformation trans inserts code that allows dependencies
to be tracked during execution. The target of the transformation is a sim-
ple imperative language we callW whose syntax is defined as follows:

v ::= i
∣∣∣ s ∣∣∣ P ∣∣∣ L (value)

e ::= x
∣∣∣ v ∣∣∣ e ⊕ e

∣∣∣ f(e)
∣∣∣ case e of (e : e)+ (expression)

c ::= skip
∣∣∣ c; c

∣∣∣ let x = e in c
∣∣∣ x := e

∣∣∣ while e do c
∣∣∣ (command)∣∣∣ if e then c else c

∣∣∣ ret(e)
∣∣∣ stop

M ::= {x 7→ v} (memory)

In contrast to Wdeps, it operates on standard, unlabeled values and
also includes sets of program points and security levels as values, since
they will be manipulated by the inlined monitor. Moreover, branches,
loops and return commands are no longer decorated with program
points. Expression evaluation is defined similarly to Wdeps. A W-(run-
time) configuration is an expression of the form 〈E,M, c〉 (as usual E shall
be dropped for the sake of readability) denoted with lettersC,Ci, etc. The

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 71

1 trans(y) =
2 case y of
3 "skip": "skip"
4 "x:=e":
5 "xL:= lev(” ++ vars(”e”) ++ ”);" ++
6 "xP:= dep(” ++ vars(”e”) ++ ”) | pc;" ++
7 "x := e"
8 "let x=e in c":
9 "let x=e in " ++

10 "xL:= lev(" ++ vars(”e”) ++ ");" ++
11 "xP:= dep(" ++ vars(”e”) ++ ") | pc;" ++
12 trans(c)
13 "c1;c2":
14 trans(c1) ++ ";" ++ trans(c2)
15 # continued below

Fig. 4. Inlining transformation (1/2)

small-step2 semantics ofW commands is standard and hence omitted.
We write C → C′ when C′ is obtained from C via a reduction step. The
transformation trans is a user-defined function that resides in E; when
applied to a string it produces a new one. We use double-quotes for
string constants and ++ for string concatenation.

We now describe the inlining transformation depicted in Fig. 4 and
Fig. 5. The inlining of skip is immediate. Regarding assignment x := e, the
transformation introduces two shadow variables xP and xL. The former is
for tracking the indirect dependencies of x while the latter is for tracking
its security level. As may be perceived from the inlining of assignment,
the transformation trans is in fact defined together with three other user-
defined functions, namely vars, lev and dep. The first extracts the variables
in a string returning a new string listing the comma-separated variables.
Eg. vars(”x ⊕ f (2 ⊕ y)”) would return, after evaluation, the string “x, y”.
The second user-defined function computes the least upper bound of the
security levels of the variables in a string and the last computes the union
of the implicit dependencies of the variables in a string. The level of e
and its indirect dependencies are registered in xL and xP, respectively.
In the case of xP, the current program counter is included by means of
the variable pc. The binary operator | denotes the union between sets. In
contrast to vars(”e”), which is computed at inlining time, lev and dep are
computed when the inlined code is executed. We close the description of
the inlining of assignment by noting that the transformed code adopts
flow-sensitivity in the sense that the security level of the values stored

2 Hence not mixed-step but rather the standard notion.

72 Luciano Bello and Eduardo Bonelli

1 # continued from above
2 "whilep e do c":
3 "kp := kp | dep(" ++ vars(”e”) ++ ") | pc;" ++
4 "dp := dp | lev(" ++ vars(”e”) ++ ");" ++
5 "while e do " ++
6 "(let pc′= pc in " ++
7 "pc := pc | {p};" ++
8 trans(c) ++
9 "pc := pc′;" ++

10 "kp := kp | dep(” ++ vars(”e”) ++ ”) | pc;" ++
11 "dp := dp | lev(” ++ vars(”e”) ++ ”));"
12 "ifp e then c1 else c2":
13 "kp := kp | dep(" ++ vars(”e”) ++ ") | pc;" ++
14 "dp := dp | lev(" ++ vars(”e”) ++ ");" ++
15 "let pc′= pc in " ++
16 "pc := pc | {p};" ++
17 "if e then " ++ trans(c1) ++ "else" ++ trans(c2)++ ";" ++
18 "pc := pc′"
19 "retp (e)":
20 "kp := kp | dep(" ++ vars(”e”) ++ ") | pc;" ++
21 "dp := dp | lev(" ++ vars(”e”) ++ ");" ++
22 "ret (e)"

Fig. 5. Inlining transformation (2/2)

in variables may vary during execution. It should also be noted that
rather than resort to the no sensitive upgrade discipline of Austin and
Flanagan [4] to avoid the attack of Fig. 1 (which is also adopted by [14]
in their inlining transformation), the dependency monitor silently tracks
dependencies without getting stuck.

The let construct is similar to assignment but also resorts to the let
construct ofW. Here we incur in an abuse of notation since in practice
we expect xL and xP to be implemented in terms of dictionaries L[x] and
P[x]. Hence we assume that the declared variable x also binds the x in xL
and xP. The inlining of command composition is simply the inlining of
each command. In the case of while (Fig. 5) first we have to update the
current indirect dependencies cache and the cache of direct flows (lines
3 and 4, respectively). This is because evaluation of e will take place at
least once in order to determine whether program execution skips the
body of the while-loop or enters it. For that purpose we assume that we
have at our disposal global variables kp and dp, for each program point p
in the command to inline. Once inside the body, a copy of the program
counter is stored in pc′ and then the program counter is updated (line 7)
with the program point of the condition of the while. Upon completing

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 73

the execution of trans(c), it is restored and then the dependencies are
updated reflecting that a new evaluation of e takes place. The clause for
the conditional is similar to the one for while. The clause for ret follows
a similar description.

4 Incorporating eval

This section considers the extension ofWdeps with the command eval(e).
Many modern languages, including JavaScript, perform dynamic code
evaluation. IFA studies have recently begun including it [2, 7, 14].

The argument of eval is an expression that denotes a string that
parses to a program and is generated at run-time. Therefore its set of
program points may vary. Since the monitor must persist the cache of
indirect flows across different runs, we introduce a new element toWdeps-
configurations, namely a family of caches indexed by the codomain of
a hash function: K is a mapping from the hash of the source code to a
cache of indirect flows (i.e. K ::= {h 7→ κ} where h are elements of the
codomain of the hash function).Wdeps-configurations thus take the new
form 〈K , κ, δ, π, µ, c〉. The reduction schemes of Fig. 3 are extended by
(inductively) dragging along the new component; the following new
reduction scheme, Eval, will be in charge of updating it. A quick word
on notation before proceeding: we write K (h) for the cache of indirect
dependencies of s, where s is a string that parses to a command and
hash(s) = h. Also, given a cache κ and a command c, the expression κ|c is
defined as follows (where programPoints(c) is the set of program points

in c): κ|c
def
= {p 7→ P | p ∈ programPoints(c)∧ κ(p) = P}. The Eval reduction

scheme is as follows:

µ̂(e) = 〈s,P,L〉 π′ = π ∪ {p} h = hash(s)

κ′ = κ]K (h)] {p 7→ π ∪ P} δ′ = δ] {p 7→ L}

〈K , κ′, δ′, π′, µ,parse(s)〉 n
� 〈K ′, κ′′, δ′′, π′, µ′′, stop〉

Eval
〈K , κ, δ, π, µ, evalp(e)〉� 〈K ′[h 7→ K ′(h)] κ′′|parse(s)], κ′′, δ′′, π, µ′′, stop〉

This reduction scheme looks up the cache for the hash of s (that is
K (h)) and then adds it to the current indirect cache. Also added to this
cache is the dependency of the code to be evaluated on the level of the
context and the dependencies of the expression e itself. The resulting
cache is called κ′. After reduction, K ′ is updated with any new depen-
dencies that may have arised (recursively3) for s (written K ′(h) above)
together with the set of program points affected to parse(s) by the outer-
most (i.e. non-recursive) reduction (written κ′′|parse(s) above). Eval may
be inlined as indicated in Fig. 6 where dep(k, e) represents the user-defined

3 When parse(s) itself has an occurrence of eval whose argument evaluates to
s.

74 Luciano Bello and Eduardo Bonelli

1 "evalp(e)":
2 "let pc′ = pc in " ++
3 "pc := pc | {p}" ++
4 "kp := kp | dep(” ++ vars(”e”) ++ ”) | pc′" ++
5 "dp := dp | lev(” ++ vars(”e”) ++ ”)" ++
6 "let h = hash(e) in " ++
7 "k := k | Kh;" ++
8 "eval(trans(e));" ++
9 "Kh := Kh | depsIn(k, e);" ++

10 "pc := pc′"

Fig. 6. Inlining of evalp(e)

function that computes κ|c. Note that c here is the code that results from
parsing the value denoted by e.

This approach has a downside. When the attacker has enough con-
trol over e, she can manipulate it in order to always generate different
hashes. This affects the accumulation of dependencies (the cache of indi-
rect flows will never be augmented across different runs) and hence the
effectiveness of the monitor in identifying leaks. Since the monitor can
leak during early runs, this may not be desirable. The following code
exemplifies this situation:

1 tmp := 1; pub := 1;
2 evalp(x ++ " ifq1 sec then tmp := 0;
3 ifq2 tmp then pub := 0");
4 retq3 (pub)

qH
1

��

q2a
oo

��
p q3

b

OO

Fig. 7. Edges a and b are both
needed to detect the leak in q3

The attacker may have control over x,
affecting the hash and, therefore, avoid
indirect dependencies from accumulat-
ing across different runs. Fig 7 represents
a dependency chain of this code. The
shaded box represents the eval context.
Notice that q1 and q2 point to p because
π had been extended with the latter. The
edges a and b are created separately in
two different runs, when sec is 1 or 0
respectively. The monitor should be able to capture the leak by accumu-
lating both edges in κ, just like in the example in Fig. 1, because there is
a path that connects q3 with the high labeled q1. But, since the attacker
may manipulate the hash function output via the variable x, it is pos-
sible to avoid the accumulative effect in κ thus a and b will not exist
simultaneously in any run.

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 75

1 "evalp(e)":
2 "let pc′ = pc in:" ++
3 "pc := pc | {p}" ++
4 "kp := kp | dep(” ++ vars(”e”) ++ ”) | pc′" ++
5 "dp := dp | lev(” ++ vars(”e”) ++ ”)" ++
6 "let h = hash(e) in:" ++
7 "k := k | Kh;" ++
8 "eval(trans(e));" ++
9 "dp := dp | secLevel(k,d,dom(depsIn(k, e));" ++

10 "Kh := Kh | depsIn(k, e);" ++
11 "pc := pc′"

Fig. 8. External anchor for evalp(e)

One approach to this situation is to allow the program point p in the
evalp(e) command to absorb all program points in the code denoted by
e. Consequently, if a high node is created in the eval context, p will be
raised to high just after the execution of eval. The reduction scheme Eval
would have to be replaced by Eval’:

µ̂(e) = 〈s,P,L〉 h = hash(s) π′ = π ∪ {p}
δ′ = δ] {p 7→ L} κ′ = κ]K (h)] {p 7→ π ∪ P}

δ′′′ = δ′′[p 7→ secLevelκ
′′ ,δ′′dom(κ′′|parse(s))]

〈K , κ′, δ′, π′, µ,parse(s)〉 n
� 〈K ′, κ′′, δ′′, π′, µ′′, stop〉

Eval’
〈K , κ, δ, π, µ, evalp(e)〉� 〈K ′[h 7→ K ′(h)] κ′′|parse(s)], κ′′, δ′′′, π, µ′′, stop〉

qH
1

��

q2a
oo

��
pH q3

b

OO

Fig. 9. Dependency chain with
external anchor for evalp(e)

Intuitively, every node associated to
the program argument of eval passes on
to p its level which hence works as an
external anchor. In this way, if any node
has the chance to be in the path of a leak,
every low variable depending on them
is considered dangerous. The new de-
pendency chain for the above mentioned
example is shown in Fig. 9, where the
leak is detected. More precisely, when
evalp(e) concludes, δ′′ is upgraded to
secLevelκ,δdom(κ′′|c) (where dom is the domain of the mapping). Since
q1 is assigned level secret by δ′′, this bumps the level of p to secret. The
proposed inlining is given in Fig. 8. In this approach the ret statement
should not be allowed inside the eval, since the bumping of the security
level of p is produced a posteriori to the execution of the argument of
eval.

76 Luciano Bello and Eduardo Bonelli

5 Properties of the Inlining Transformation

This section addresses the correctness of the inlined transformation. We
show that the inlined transformation of a command c simulates the exe-
cution of the monitor. First we define what it means for aW-configuration
to simulate aWdeps-configuration. We write trans(c) for the result of ap-
plying the recursive function determined by the code for trans to the ar-
gument ”c” and then parsing the result. Two sample clauses of trans

are: trans(c1; c2)
def
= trans(c1); trans(c2) for command composition and

trans(eval(e))
def
=

let h = hash(e) in (k := k |Kh; eval(trans(e)); Kh :=Kh | depsIn(k, e)) for

eval. We also extend this definition with the clause: trans(stop)
def
= stop.

Definition 2. AW-configurationC simulates aWdeps-configurationD, writ-
tenD ≺ C, iff

1. D = 〈K , κ, δ, π, µ, c〉;
2. C = 〈M, trans(c)〉;
3. M(K) = K , M(k) = κ, M(d) = δ, M(pc) = π; and
4. µ(x) = 〈M(x),M(xP),M(xL)〉, for all x ∈ dom(µ).

In the expression ‘M(K) = K ’ by abuse of notation we view M(K) as a
“dictionary” and therefore understand this expression as signifying that
for all h ∈ dom(K), M(Kh) = K (h). Similar comments apply to M(k) = κ
and M(d) = δ. In the case of M(pc) = π, both sets of program points are
tested for equality.

The following correctness property is proved by induction on an
appropriate notion of depth of the reduction sequenceD1

n
� D2.

Proposition 2. If (1)D1 = 〈K1, κ1, δ1, π1, µ1, c〉; (2) C1 = 〈M1, trans(c)〉; (3)
D1 ≺ C1; and (4) D1

n
� D2, n ≥ 0; then there exists C2 s.t. C1 � C2 and

D2 ≺ C2.

D1��

n
��

≺ C1

����

D2 ≺ C2

Remark 1. A converse result also holds: modulo the administrative com-
mands inserted by trans, reduction from C1 originates from correspond-
ing commands in c. This may be formalised by requiring the inlining
transformation to insert a form of labeled skip command to signal the
correspondence of inlined commands with their original counterparts
(cf. Thm.2(b) in [6]).

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 77

6 Conclusions and Future Work

We recast the dependency analysis monitor of Shroff et al. [19] to a sim-
ple imperative language and propose a transformation for inlining this
monitor on-the-fly. The purpose is to explore the viability of a com-
pletely dynamic inlined dependency analysis as an alternative to other
run-time approaches that either require additional information from the
source code (such as branches not taken [6]) or resort to rather restrictive
mechanisms such as no sensitive upgrade [4] (where execution gets stuck
on attempting to assign a public variable in a secret context) or permissive
upgrade [5] (where, although assignment of public variables in a secret
contexts is not allowed, branching on expressions that depend on such
variables is disallowed).

This paper reports work in progress, hence we mention some of the
lines we are currently following. First we would like to gain some ex-
perience with a prototype implementation of the inlined transformation
as a means of foreseeing issues related to usability and scaling. Second,
we are considering the inclusion of an output command and an analysis
of how the notion of progress-sensitivity [2] adapts to the dependency
tracking setting. Finally, inlining declassification mechanisms will surely
prove crucial for any practical tool based on IFA.

Acknowledgements: To the referees for supplying helpful feedback.

References

1. http://www.cse.chalmers.se/~bello/inlining.
2. Askarov, A., and Sabelfeld, A. Tight enforcement of information-release

policies for dynamic languages. In Computer Security Foundations Workshop
(2009), pp. 43–59.

3. Austin, T. H., and Flanagan, C. Efficient purely-dynamic information flow
analysis. In SIGPLAN Conference on Programming Language Design and Imple-
mentation (2009), pp. 113–124.

4. Austin, T. H., and Flanagan, C. Efficient purely-dynamic information flow
analysis. SIGPLAN Not. 44 (December 2009), 20–31.

5. Austin, T. H., and Flanagan, C. Permissive dynamic information flow
analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (New York, NY, USA, 2010), PLAS ’10,
ACM, pp. 3:1–3:12.

6. Chudnov, A., and Naumann, D. A. Information flow monitor inlining. In
Computer Security Foundations Workshop (2010), pp. 200–214.

7. Chugh, R., Meister, J. A., Jhala, R., and Lerner, S. Staged information flow
for javascript. In SIGPLAN Conference on Programming Language Design and
Implementation (2009), pp. 50–62.

8. Dhawan, M., and Ganapathy, V. Analyzing information flow in javascript-
based browser extensions. In Annual Comp. Sec. App. Conference (2009),
pp. 382–391.

http://www.cse.chalmers.se/~bello/inlining

78 Luciano Bello and Eduardo Bonelli

9. Erlingsson, U. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Department of Computer Science, Cornell University,
2003. TR 2003-1916.

10. Futoransky, A., Gutesman, E., andWaissbein, A. A dynamic technique for
enhancing the security and privacy of web applications. Black Hat USA 2007
Briefings. Las Vegas, NV, USA, August 1-2 2007.

11. Guernic, G. L. Automaton-based confidentiality monitoring of concurrent
programs. In Computer Security Foundations Workshop (2007), pp. 218–232.

12. Guernic, G. L., Banerjee, A., Jensen, T. P., and Schmidt, D. A. Automata-
based confidentiality monitoring. In Asian Computing Science Conference
(2006), pp. 75–89.

13. Hunt, S., and Sands, D. On flow-sensitive security types. In POPL (2006),
J. G. Morrisett and S. L. P. Jones, Eds., ACM, pp. 79–90.

14. Magazinius, J., Russo, R., and Sabelfeld, A. On-the-fly inlining of dynamic
security monitors. In In Proc. IFIP International Information Security Conference
(2010).

15. Mccamant, S., and Ernst, M. D. Quantitative information flow as network
flow capacity. In SIGPLAN Conference on Programming Language Design and
Implementation (2008), pp. 193–205.

16. Russo, A., and Sabelfeld, A. Dynamic vs. static flow-sensitive security
analysis. In Proceedings of the 2010 23rd IEEE Computer Security Foundations
Symposium (Washington, DC, USA, 2010), CSF ’10, IEEE Computer Society,
pp. 186–199.

17. Sabelfeld, A., andMyers, A. C. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications.

18. Sabelfeld, A., and Russo, A. From dynamic to static and back: Riding the
roller coaster of information-flow control research. In Ershov Memorial Conf.
(2009), pp. 352–365.

19. Shroff, P., Smith, S., and Thober, M. Dynamic dependency monitoring to
secure information flow. In Proceedings of the 20th IEEE Computer Security
Foundations Symposium (Washington, DC, USA, 2007), IEEE Computer Soci-
ety, pp. 203–217.

20. Venkatakrishnan, V. N., Xu, W., Duvarney, D. C., and Sekar, R. Provably
correct runtime enforcement of non-interference properties. In International
Conference on Information and Communication Security (2006), pp. 332–351.

21. Volpano, D. M., Irvine, C. E., and Smith, G. A sound type system for secure
flow analysis. Journal of Computer Security 4, 167–188.

Paper two

Appendix
1 A simple while language (W)

This section presents W, a simple imperative language in which the
inlined transformation executes. The syntax ofW is defined as follows:

P, pc ::= {p} (set of ppids, program counter)
v ::= i

∣∣∣ s ∣∣∣ P ∣∣∣ L (value)
e ::= x

∣∣∣ v ∣∣∣ e ⊕ e
∣∣∣ f(e)

∣∣∣ case e of (e : e)+ (expression)
c ::= skip

∣∣∣ x := e
∣∣∣ let x = e in c

∣∣∣ c; c
∣∣∣ while e do c

∣∣∣ (command)∣∣∣ if e then c else c
∣∣∣ ret(e)

∣∣∣ eval(e)
∣∣∣ stop

E ::= ∅
∣∣∣ f (x) � e; E (expr. environment)

M ::= {x 7→ v} (memory)

In contrast toWdeps, it operates on standard, unlabeled values. How-
ever, it is necessary to add sets of program points and security levels as
values, since they will be manipulated by the inlined monitor.

Definition 1. Closed expression evaluation is defined as follows,

I(i)
def
= i

I(s)
def
= s

I(f (e))
def
= f̂ (I(e))

I(case e of e : e′)
def
= ˆcase I(e) o f e′

i
: e′

I(e1 ⊕ e2)
def
= I(e1)⊕̂I(e2)

where f̂ (v)
def
= I(e[x := v]), if f (x) � e ∈ E and ˆcase u o f e : e′ = I(σ(e′i))

if u matches ei with substitution σ. We leave it to the user to guarantee that
user-defined functions are terminating.

Given a memory M, the variable replacement function, also written M,
applies to expressions: it traverses expressions replacing variables by
their values.It is defined only if the free variables of its argument are in
the domain of M. Finally, open expression evaluation is defined as I ◦M
and abbreviated M̂.

80 Luciano Bello and Eduardo Bonelli

Skip
〈M, skip〉 → 〈M, stop〉

M̂(e) = v y fresh
Let

〈M, let x = e in c〉 → 〈M[y 7→ v], c[x := y]〉

〈M, c1〉 −→ 〈M′, c′1〉 c′1 , stop
Seq-L

〈M, c1; c2〉 → 〈M′, c′1; c2〉

〈M, c1〉 −→ 〈M′, stop〉
Seq-R

〈M, c1; c2〉 → 〈M′, c2〉

M̂(e) = v
Assign

〈M, x:=e〉 → 〈M[x := v], stop〉

M̂(e) , 0
While-T

〈M, while e do c〉 → 〈M, c; while e do c〉

M̂(e) = 0
While-F

〈M, while e do c〉 → 〈M, stop〉

M̂(e) , 0
If-T

〈M, if e then c1 else c2〉 → 〈M, c1〉

M̂(e) = 0
If-F

〈M, if e then c1 else c2〉 → 〈M, c2〉

M̂(e) = v
Ret

〈M, ret(e)〉 → 〈M[ret 7→ v], stop〉

M̂(e) = s parse(s) = c
Eval

〈M, eval(e)〉 → 〈M, c〉

Fig. 10. Semantics forW

A W-(run-time) configuration is an expression of the form 〈E,M, c〉
where E a user-defined expression environment, M is a memory and
c is a command. Since E is never modified during execution, we drop
it for the sake of readability and assume it is implicit. The small-step
semantics ofW commands is given in terms of a binary reduction relation
over configurations witnessed by the judgement 〈M, c〉 → 〈M′, c′〉. This
judgement is defined by means of the reduction schemes of Fig. 10, which
are standard.

Since the semantics of Wdeps is defined in terms of a mixed-step
relation whereas W uses a small-step one, the following simple result
will be useful for establishing the correctness property of the inlined
monitor.

Lemma 1. 1. 〈M1, c1〉 � 〈M2, stop〉 and 〈M2, c2〉 � 〈M3, stop〉 implies
〈M1, c1; c2〉� 〈M3, stop〉.

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 81

2. 〈M1, c〉� 〈M2, stop〉 and M̂1(e) , 0 implies
〈M1, while e do c〉� 〈M2, while e do c〉.

2 Correspondence between inlined monitor and the
monitor

We write trans(c) for the result of applying the recursive function deter-
mined by the code for trans to the argument ”c” and then parsing the
result. It resorts to a similar recursive function vars associated to the code
for vars only this function applies to expressions rather than strings that
parse to expressions.

Definition 2. The command translation function trans, is defined as follows:

trans(stop)
def
= stop

trans(skip)
def
= skip

trans(x := e)
def
= xL := lev(vars(e));

xP := dep(vars(e)) | pc;
x := e;

trans(let x = e in c)
def
= let x = e in

xL := lev(vars(e));
xP := dep(vars(e))|pc;
trans(c)

trans(c1; c2)
def
= trans(c1); trans(c2)

trans(whilep e do c)
def
= kp := kp|dep(vars(e))|pc;

dp := dp | lev(vars(e));
while e do
(let pc′ = pc in

pc := pc | {p};
trans(c)
pc := pc′;
kp := kp | dep(vars(e))|pc;
dp := dp | lev(vars(e)));

trans(ifp e then c1 else c2)
def
= kp := kp | dep(vars(e))|pc;

dp := dp | lev(vars(e));
let pc′ = pc in
pc := pc | {p};
if e then trans(c1) else trans(c2);
pc := pc′

trans(eval(e))
def
= let h = hash(e) in

k := k |Kh;
eval(trans(e));
Kh :=Kh | depsIn(k, e)

82 Luciano Bello and Eduardo Bonelli

Note that the clause that defines trans for eval is not recursive.

Definition 3. AW-configurationC simulates aWdeps-configurationD, writ-
tenD ≺ C, iff

1. D = 〈κ, δ, π, µ, c〉;
2. C = 〈M, trans(c)〉;
3. M(pc) = π;
4. M(k) = κ;
5. M(d) = δ; and
6. µ(x) = 〈M(x),M(xP),M(xL)〉, for all x ∈ dom(µ).

Before addressing the main result (Prop. 2) an auxiliary result.

Lemma 2. Suppose D = 〈κ, δ, π, µ, c〉, e is an expression, µ̂(e) = 〈i,P,L〉 and
D ≺ C. Let vars(e) = x. Then

1. dep(x) = P; and
2. lev(x) = L.

Proof. By induction on e.

Definition 4. AW-configurationC simulates aWdeps-configurationD, writ-
tenD ≺ C, iff

1. D = 〈K , κ, δ, π, µ, c〉;
2. C = 〈M, trans(c)〉;
3. M(K) = K , M(k) = κ, M(d) = δ, M(pc) = π; and
4. µ(x) = 〈M(x),M(xP),M(xL)〉, for all x ∈ dom(µ).

Remark 1. D ≺ C, implies µ̂(e) = M̂(e) for all e s.t. vars(e) ⊆ dom(µ).

Given D1
n
� Dn+1 consisting of a sequence of composable mixed-

step judgements D1 � D2 � . . . � Dn+1 and assume π1, . . . , πn are
the derivations of each of these judgements (i.e. πi is a derivation of the
judgement Di � Di+1, i ∈ 1..n). We define the depth of this sequence,
written depth(D1

n
� Dn+1), as the maximum of the depths of the πis. If

n = 0 (i.e. the sequence is empty), then we declare the depth to be 0.
The following result is required for the proof of Prop. 2 (case of eval)

and is proved by induction on the strings that may be correctly parsed
as commands:

s ::= ”skip”
∣∣∣ ”x := e”

∣∣∣ ”eval(e)”
∣∣∣ ”let x = e in ” ++ s

∣∣∣ s ++ ”; ” ++ s
∣∣∣

”i f e then ” ++ s ++ ” then ” ++ s
∣∣∣ ”while e do ” ++ s

Lemma 3. parse(ˆtrans(s)) = trans(parse(s))

Proof. – s = ”skip”.

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 83

parse(ˆtrans(”skip”))
= parse(I(case ”skip” of ...))
= parse(”skip”)
= skip
= trans(skip)
= trans(parse(”skip”))

– s = ”x := e”. Let t denote the string

”xL := lev(x); xP := dep(x)|pc; x := e”

where x is the string of comma separated variables “x1, . . . , xn” re-

turned byI(vars(”e”)).

parse(ˆtrans(”x := e”))
= parse(I(case ”x := e” of ...))
= parse(t)
= xL := lev(x); xP := dep(x)|pc; x := e
= xL := lev(vars(e)); xP := dep(vars(e))|pc; x := e
= trans(x := e)
= trans(parse(”x := e”))

– s = ”eval(e)”. Let t denote the string

”let h = hash(e) in(k := k|Kh; eval(trans(e)); Kh := Kh|depsIn(k, e))”

parse(ˆtrans(”eval(e)”))
= parse(I(case ”eval(e)” of ...))
= parse(t)
= let h = hash(e) in

k := k|Kh;
eval(trans(e));
Kh :=Kh|depsIn(k, e)

= trans(eval(e))
= trans(parse(”eval(e)”))

– s = ”let x = e in ” ++ s1. Let t be the string

"let x = e in xL := lev(x); xP := dep(x)|pc; ” ++ I(trans(s1))

where x is the string of comma separated variables “x1, . . . , xn” re-
turned by I(vars(”e”)).

parse(ˆtrans(”let x = e in ” ++ s1))
= parse(I(case ”let x = e in ” ++ s1 of ...))
= parse(t)
= let x = e in xL := lev(x); xP := dep(x)|pc; parse(I(trans(s1)))
= let x = e in xL := lev(vars(e)); xP := dep(vars(e))|pc; parse(I(trans(s1)))
= let x = e in xL := lev(vars(e)); xP := dep(vars(e))|pc; parse(ˆtrans(I(s1)))
= let x = e in xL := lev(vars(e)); xP := dep(vars(e))|pc; parse(ˆtrans(s1))
=IH let x = e in xL := lev(vars(e)); xP := dep(vars(e))|pc; trans(parse(s1))
= trans(let x = e inparse(s1))
= trans(parse(”let x = e in ” ++ s1))

84 Luciano Bello and Eduardo Bonelli

– s = s1 ++ ”; ” ++ s2.

parse(ˆtrans(s1 ++ ”; ” ++ s2))
= parse(I(case (s1 ++ ”; ” ++ s2) of ...))
= parse(I(trans(s1)) ++ ”; ” ++ I(trans(s2)))
= parse(I(trans(s1))); parse(I(trans(s2)))
= parse(ˆtrans(I(s1))); parse(ˆtrans(I(s2)))
= parse(ˆtrans(s1)); parse(ˆtrans(s2))
=IH trans(parse(s1)); trans(parse(s1))
= trans(parse(s1 ++ ”; ” ++ s1))

– s = ”i f e then ” ++ s1 ++ ” then ” ++ s2. Let t be the string

”kp := kp|dep(x)|pc; ”++
”dp := dp|lev(x); ”++
”letpc′ = pcin”++

”pc := pc|{p}; ”++
”if e then ” ++ trans(s1) ++ ” else ” ++ trans(s2); ++
”pc := pc′”

where x is the string of comma separated variables “x1, . . . , xn” re-
turned by I(vars(”e”)).

parse(ˆtrans(”i f e then ” ++ s1 ++ ” then ” ++ s2))
= parse(I(case ”i f e then ” ++ s1 ++ ” then ” ++ s2 of ...))
= parse(t)
= kp := kp|dep(x)|pc; dp := dp|lev(x);

let pc′ = pc in
pc := pc|{p};
if e thenparse(I(trans(s1))) elseparse(I(trans(s1)));
pc := pc′

= kp := kp|dep(x)|pc; dp := dp|lev(x);
let pc′ = pc in

pc := pc|{p};
if e thenparse(ˆtrans(I(s1))) elseparse(ˆtrans(I(s1)));
pc := pc′

= kp := kp|dep(x)|pc; dp := dp|lev(x);
let pc′ = pc in

pc := pc|{p};
if e thenparse(ˆtrans(s1)) elseparse(ˆtrans(s2));
pc := pc′

=IH kp := kp|dep(x)|pc; dp := dp|lev(x);
let pc′ = pc in

pc := pc|{p};
if e then trans(parse(s1)) else trans(parse(s2));
pc := pc′

= trans(if e thenparse(s1) elseparse(s2))
= trans(parse(”if e then ” ++ s1 ++ ” else ” ++ s2))

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 85

– s = ”while e do ” ++ s1. Similar to previous item.

Proposition 1. If

– D1 = 〈K1, κ1, δ1, π1, µ1, c〉;
– C1 = 〈M1, trans(c)〉;
– D1 ≺ C1;
– D1

n
� D2, n ≥ 0;

then there exists C2 s.t. C1 � C2 andD2 ≺ C2.

D1��

n
��

≺ C1

����

D2 ≺ C2

Proof. By induction on (d,n) ordered by the standard lexicographic or-
dering, where d is the depth of the sequenceD1

n
� D2. We perform case

analysis on c.

– c = skip. In this caseD1 = 〈K1, κ1, δ1, π1, µ1, skip〉andC1 = 〈M1, skip〉.
By definition of the reduction relation overWdeps, it must be the case
thatD1

n
� D2 is of the formD1 � D2 (i.e. n = 1) with the derivation

of this judgement ending in an application of Skip:

Skip
〈K1, κ1, δ1, π1, µ1, skip〉� 〈K1, κ1, δ1, π1, µ1, stop〉

For this base case ((d,n) = (1, 1)), it suffices to take C2 = 〈M1, stop〉.
– c = let x = e in c1. In this caseD1 = 〈κ1, δ1, π1, µ1, let x = e in c1〉 and
C1 is

〈M1, let x = e in xL := lev(x); xP := dep(x); trans(c1)〉

where x is a string of comma separated variables returned by vars(e).
By definition of the reduction relation overWdeps, it must be the case
thatD1

n
� D2 is of the formD1 � D2 (i.e. n = 1) with the derivation

of this judgement ending in an application of Let:

〈K1, κ1, δ1, π1, µ1[y 7→ µ̂(e)], c1[x := y]〉
n1�

〈K2, κ2, δ2, π1, µ2[y 7→ v], stop〉
Let

〈K1, κ1, δ1, π1, µ1, let x = e in c1〉� 〈K2, κ2, δ2, π1, µ2 \ y, stop〉

where y is some fresh variable. Thus (d,n) = (d, 1). Note that:

〈M1, let x = e in xL := lev(x); xP := dep(x); trans(c1)〉
→ 〈M1[z 7→ M̂1(e)], zL := lev(x); zP := dep(x); trans(c1)[x := z]〉
→→ 〈M2, trans(c1)[x := z]〉

86 Luciano Bello and Eduardo Bonelli

where M2 = M1[z 7→ M̂1(e)][zL 7→ lev(x)][zP 7→ dep(x)|M1(pc)]. Define

• D3
def
= 〈K1, κ1, δ1, π1, µ1[z 7→ µ̂(e)], c1[x := z]〉, where we have re-

named y to z which is assumed fresh;

• C3
def
= 〈M2, trans(c1)[x := z]〉 = 〈M2, trans(c1[x := z])〉

and note that
• D3

n1� 〈K2κ2, δ2, π1, µ2[z 7→ v], stop〉 follows from
〈K1, κ1, δ1, π1, µ1[y 7→ µ̂(e)], c1[x := y]〉

n1�
〈K2, κ2, δ2, π1, µ2[y 7→ v], stop〉;

• depth(〈K1, κ1, δ1, π1, µ1[y 7→ µ̂(e)], c1[x := y]〉
n1�

〈K2, κ2, δ2, π1, µ2[y 7→ v], stop〉) = (d−1,n1) < (d, 1) = depth(D1 �
D2).

Thus we resort to the IH and deduce the existence of
C4 s.t. 〈K2, κ2, δ2, π1, µ2[z 7→ v], stop〉 ≺ C4 and C3 � C4. Note that
C4 = 〈M4, stop〉 for some memory M4. Therefore, we set the desired
W-configuration to be 〈M4 \ z, stop〉.

– c = c1; c2. In this case
D1 = 〈K1, κ1, δ1, π1, µ1, c1; c2〉 and C1 = 〈M1, trans(c1); trans(c2)〉. By
definition of the reduction relation over Wdeps, it must be the case
thatD1

n
� D2 is of the formD1 � D3

n−1
� D2 with the derivation of

the judgementD1 � D3 ending in an application of Seq:

〈K1, κ1, δ1, π1, µ1, c1〉
n1� 〈K3, κ3, δ3, π1, µ3, stop〉

Seq
D1 = 〈K1, κ1, δ1, π1, µ1, c1; c2〉� 〈K3, κ3, δ3, π1, µ3, c2〉 = D3

Since
• 〈K1, κ1, δ1, π1, µ1, c1〉 ≺ 〈M1, trans(c1)〉 follows fromD1 ≺ C1;
• 〈K1, κ1, δ1, π1, µ1, c1〉

n1� 〈K3, κ3, δ3, π1, µ3, stop〉; and
• depth(〈K1, κ1, δ1, π1, µ1, c1〉

n1� 〈K3, κ3, δ3, π1, µ3, stop〉) = (d1,n1)
for some d1 and (d1,n1) < (d,n) = depth(D1

n
� D2), since d1 + 1

is used to compute d.
We resort to the IH and assert the existence of C3 s.t.

〈M1, trans(c1)〉� C3 (1)

and
〈K3, κ3, δ3, π1, µ3, stop〉 ≺ C3 (2)

From (2) and trans(stop) = stop, C3 = 〈M3, stop〉 for some memory M3.
Therefore,

〈K3, κ3, δ3, π1, µ3, c2〉 ≺ 〈M3, trans(c2)〉 (3)

Also,
• D3 = 〈K3, κ3, δ3, π1, µ3, c2〉

n−1
� 〈K2, κ2, δ2, π1, µ2, stop〉; and

• depth(D3
n−1
� 〈K2, κ2, δ2, π1, µ2, stop〉) = (d2,n − 1) for some d2.

Since d2 is used to compute d (hence d2 ≤ d), (d2,n − 1) < (d,n).

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 87

Once again we resort to the IH to assert the existence of C2 s.t.

〈M2, trans(c2)〉� C2 (4)

and
〈K2, κ2, δ2, π1, µ2, stop〉 ≺ C2 (5)

We conclude from (1) and (4) and Lem. 1(1).
– c = x := e. In this caseD1 = 〈κ1, δ1, π1, µ1, x := e〉 and
C1 = 〈M1, trans(x := e)〉. Here trans(x := e) will be abbreviated c′. Note
that c′ is the code

xL := lev(x); xP := dep(x)|pc; x := e

where vars(e) = x. By definition of the reduction relation overWdeps,
it must be the case thatD1

n
� D2 is of the formD1 � D2 (i.e. n = 1).

Moreover, the derivation of this judgement ends in an application of
Assign:

µ̂1(e) = 〈v,P,L〉
Assign

〈K1, κ1, δ1, π1, µ1, x := e〉�
〈K1, κ1, δ1, π1, µ2 = µ1[x 7→ 〈v,P ∪ π,L〉], stop〉 = D2

and (d,n) = (d, 1). Note that

〈M1, trans(x := e)〉
= 〈M1, xL := ; xP := dep(x)|pc; x := e〉
→→ 〈M1[xL 7→ lev(x)][xP 7→ dep(x)|M1(pc)], x := e〉
→ 〈M1[xL 7→ lev(x)][xP 7→ dep(x)|M1(pc)][x 7→ M̂1(e)], stop〉

Let M2 stand for M1[xL 7→ lev(x)][xP 7→ dep(x)|M1(pc)][x 7→ M̂1(e)].
We are left to verify that 〈K1, κ1, δ1, π1, µ2, stop〉 = D2 ≺ 〈M2, stop〉.
This implies verifying the following items:
1. M2(pc) = π1. This follows fromD1 ≺ C1 and M2(pc) = M1(pc).
2. M2(k) = κ1 and M2(d) = δ1. Both follow from D1 ≺ C1 and

M2(k) = M1(k) and M2(d) = M1(d).
3. µ2(x) = 〈M2(x),M2(xP),M2(xL)〉, for all x ∈ dom(µ2). For M2(x) = v

this follows from Rem. 1. For M2(xP) = P we resort to Lem. 2.
Finally, for M2(xL) = L we resort to Lem. 2.

– c = whilep e do c1. In this case D1 = 〈κ1, δ1, π1, µ1, whilep e do c1〉 and
C1 = 〈M1, trans(whilep e do c1)〉. By definition of the reduction rela-
tion overWdeps, two cases are possible.

1. Either D1
n
� D2 is of the form D1 � D2 (i.e. n = 1) with the

derivation of the judgementD1 � D2 ending in an application
of While-F:

88 Luciano Bello and Eduardo Bonelli

µ̂1(e) = 〈0,P,L〉
κ2 = κ1] {p 7→ π1 ∪ P} δ2 = δ1] {p 7→ L}

While-F
D1 = 〈κ1, δ1, π1, µ1, whilep e do c1〉�

〈κ2, δ2, π1, µ1, stop〉 = D2

2. OrD1
n
� D2 is of the formD1 � D3

n−1
� D2 with the derivation

of the judgementD1 � D3 ending in an application of While-T:
µ̂1(e) = 〈i,P,L〉 i , 0 π′1 = π1 ∪ P

κ′1 = κ1] {p 7→ π1 ∪ P} δ′1 = δ1] {p 7→ L}

〈κ′1, δ
′

1, π
′

1, µ1, c1〉
n1� 〈κ3, δ3, π

′

1, µ3, stop〉
While-T

D1 = 〈κ1, δ1, π1, µ1, whilep e do c1〉�

〈κ3, δ3, π1, µ3, whilep e do c1〉 = D3
We consider each case in turn. First, recall that trans(c) =

k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);
while e do
(let pc′ = pc in
pc := pc|{p};
trans(c1);
pc := pc′;
k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);

We address the first case. Note that C1 � C3 = 〈M3, while e do c3〉,
where c3 is the above command without the first two lines. Since for
all x ∈ vars(e), M1(x) = M3(x) andD1 ≺ C1, we deduce that M̂3(e) = 0.
Thus reduction inW continues as follows:

C3 = 〈M3, while e do c3〉 → 〈M3, stop〉 = C4

We are left to verify thatD2 ≺ C4:
1. stop = trans(stop). This holds by definition of trans.
2. M3(pc) = π1. This follows from M3(pc) = M1(pc) =D1≺C1 π1.
3. M3(k) = κ1]{p 7→ π1∪P} (the case M3(d) = δ1]{p 7→ L} is similar

to this one and hence omitted). Note M3(k) = M2(k) = κ3 where
κ3 is defined as follows:

κ3(q)
def
=

{
M1(q), if q , p
M1(kp) ∪M1(pc) ∪ dep(x), if q = p

Note that M1(pc) = π1 follows fromD1 ≺ C1. Also fromD1 ≺ C1
and Lem. 2, we obtain dep(x) = P. Thereforeκ3 = κ1]{p 7→ π1∪P}.

4. µ1(x) = 〈M3(x),M3(xP),M3(xL)〉, for all x ∈ dom(µ1). Since for
all x ∈ dom(µ1), M1(x) = M3(x), M1(xP) = M3(xP) and M1(xL) =
M3(xL) andD1 ≺ C1, we deduce µ1(x) = 〈M3(x),M3(xP),M3(xL)〉,
for all x ∈ dom(µ1).

We now address the second case. Note that:

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 89

C1

� C3 = 〈M3, while e do c3〉 (?1)
→ 〈M3, c3; while e do c3〉

= 〈M3,
(let pc′ = pc in
pc := pc|{p};
trans(c1);
pc := pc′;
k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);
while e do c3〉

→ 〈M3[pc′ 7→M3(pc)],
pc := pc|{p};
trans(c1);
pc := pc′;
k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);
while e do c3〉

→ 〈M3[pc′ 7→M3(pc)][pc 7→M3(pc)|{p}],
trans(c1);
pc := pc′;
k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);
while e do c3〉

� 〈M4, (?2)
pc := pc′;
k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);
while e do c3〉

� 〈M4[pc 7→M3(pc)],
k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);
while e do c3〉

= 〈M4[pc 7→M3(pc)], trans(while e do c1)〉 (?3)

where
• (?1): M̂3(e) = M̂1(e) = 1 holds since for all x ∈ vars(e), M3(x) =

M1(x) andD1 ≺ C1:
• (?2). For this step we resort to the IH given that 〈κ′1, δ

′

1, π
′

1, µ1, c1〉
n1�

〈κ3, δ3, π′, µ3, stop〉 and
〈κ′1, δ

′

1, π
′

1, µ1, c1〉 ≺ 〈M3[pc′ 7→M3(pc)][pc 7→M3(pc)|{p}], trans(c1)〉.
Thus there exists that there exists M4 s.t.
〈M3[pc′ 7→M3(pc)][pc 7→M3(pc)|{p}], trans(c1)〉� 〈M4, stop〉. From
this we obtain the required computation:

〈M3[pc 7→M3(pc)|{p}], trans(c1);
pc := pc′;
k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);
while e do c3〉

�

〈M4, pc := pc′;
k[p] := k[p]|dep(x)|pc;
d[p] := d[p]|lev(x);
while e do c3〉

90 Luciano Bello and Eduardo Bonelli

• (?3): follows from Def. 3.
Let C5

def
= 〈M4[pc 7→M3(pc)], trans(while e do c1)〉. We now verify that

D3 ≺ C5. In other words, that

D3 = 〈κ3, δ3, π1, µ3, whilep e do c1〉 ≺

〈M4[pc 7→M3(pc)], trans(while e do c1)〉

This implies verifying,
1. M4[pc 7→ M3(pc)](pc) = π1. M4[pc 7→ M3(pc)](pc) = M3(pc) =

M1(pc) = π1. The last equality follows fromD1 ≺ C1.
2. M4[pc 7→M3(pc)](k) = κ3.
3. M4[pc 7→M3(pc)](d) = δ3.
4. µ3(x) = 〈M4[pc 7→ M3(pc)](x),M4[pc 7→ M3(pc)](xP),M4[pc 7→

M3(pc)](xL)〉, for all x ∈ dom(µ3).
Finally, note thatD3 ≺ C5;D3

n−1
� D2; and

(whilep e do c1,n − 1) < (whilep e do c1,n). Thus we resort to the IH
and conclude the case.

– c = ifp e then c1 else c2. Similar to the case for while.
– c = eval(e). In this caseD1 = 〈K1, κ1, δ1, π1, µ1, eval(e)〉 and
C1 = 〈M1, trans(eval(e))〉. Here trans(eval(e)), abbreviated c′, is the
following code:

let pc′ = pc in
pc := pc | {p};
kp := kp | dep(vars(”e”)) | pc′;
dp := dp | lev(vars(”e”));
let h = hash(e) in k := k |Kh; eval(trans(e)); Kh :=Kh | depsIn(k, e);
pc := pc′

By definition of the reduction relation overWdeps, it must be the case
that D1

n
� D2 is of the form D1 � D2 (i.e. n = 1). Moreover, the

derivation of this judgement ends in an application of Eval:

µ̂1(e) = 〈s,P,L〉 h = hash(s) π′1 = π1] {p}
κ′1 = κ1]K1(h)] {p 7→ π1 ∪ P} δ′1 = δ1] {p 7→ L}

〈K1, κ
′

1, δ
′

1, π
′

1, µ1,parse(s)〉 m
� 〈K ′1, κ2, δ2, π

′

1, µ2, stop〉
Eval

〈K1, κ1, δ1, π1, µ1, evalp(e)〉�
〈K
′

1[h 7→ K ′1(h)] κ2|parse(s)], κ2, δ2, π1, µ2, stop〉

and (d,n) = (d1 + 1, 1), where d1 is the depth of
〈K1, κ′1, δ

′

1, π
′

1, µ1,parse(s)〉 m
� 〈K ′1, κ2, δ2, π′1, µ2, stop〉. Note that

C1 = 〈M1, c′〉
� 〈M5, let h = hash(e) in (k := k |Kh; eval(trans(e)); Kh :=Kh | depsIn(k, e)); pc := pc′〉
→ 〈M6, k := k|Kh; eval(trans(e)); Kh :=Kh|depsIn(k, e); pc := pc′〉
→ 〈M7, eval(trans(e)); Kh :=Kh|depsIn(k, e); pc := pc′〉
→ 〈M7,parse(M̂7(trans(e))); Kh :=Kh|depsIn(k, e); pc := pc′〉

Paper two | On-the-fly Inlining of Dynamic DependencyMonitors for Secure Information ... 91

where
• M2

def
= M1[pc′ 7→M1(pc)];

• M3
def
= M2[pc 7→M2(pc)] {p}];

• M4
def
= M3[kp 7→M3(kp)] M̂3(dep(vars(”e”)))]M3(pc′)];

• M5
def
= M4[dp 7→M3(dp)] M̂3(lev(vars(”e”)))];

• M6
def
= M5[h 7→ M̂5(hash(e))]

• M7
def
= M6[k 7→ M̂6(k|Kh)]

LetD
def
= 〈K1, κ′1, δ

′

1, π
′

1, µ1,parse(s)〉andC
def
= 〈M7,parse(M̂7(trans(e)))〉.

In order to apply the I.H. we must first determine whether D ≺ C.
Among other things (analysed below) we must verify that

trans(parse(s)) = parse(M̂7(trans(e)))

We do this now by reasoning as follows:

parse(M̂7(trans(e)))
= parse(I(M7(trans(e)))) (Def. of M̂7)
= parse(ˆtrans(I(M7(e)))) (Def. 1)
= parse(ˆtrans(M̂7(e)))
= trans(parse(M̂7(e))) (Lem. 3)
= trans(parse(s)) (D1 ≺ C1,Rem. 1)

The remaining items to declareD ≺ C are now considered:
1. M7(K) = K1, M7(k) = κ′1, M7(d) = δ′1, M7(pc) = π′1. FromD1 ≺ C1

we know that M1(K) = K1. Therefore, since M1(K) = M7(K),
we deduce M7(K) = K1. Regarding M7(pc) = π′1 we reason as
follows: M7(pc) = M3(pc) = M2(pc)] {p} = M1(pc)] {p} = π1] {p}
(the last equality is due to D1 ≺ C1). Regarding, M7(k) = κ′1 we
wish to show that M7(k) = κ′1 = κ1] K1(h)] {p 7→ π1 ∪ P}. We
first reason as follows: M7(k) = M̂6(k|Kh) = M6(k)] M6(Kh) =
M6(k)]M1(Kh) = M6(k)]K1(h). We note that

M6(k)(q)
def
=

{
M1(k)(q) p , q
M1(kp)] M̂1(dep(vars(”e”)))]M1(pc) p = q

and resort to the fact thatD1 ≺ C1, thus concluding the case. The
item M7(d) = δ′1 is proved along similar lines.

2. µ1(x) = 〈M7(x),M7(xP),M7(xL)〉, for all x ∈ dom(µ1). FromD1 ≺ C1
we know that µ1(x) = 〈M1(x),M1(xP),M1(xL)〉, for all x ∈ dom(µ1).
Since M7 and M1 differ only in the values assigned to h and pc′

(which is fresh) and k, kp, dp, pc (which are not in the domain of
µ1), we conclude the case.

Furthermore,
depth(〈K1, κ′1, δ

′

1, π
′

1, µ1,parse(s)〉 m
� 〈K ′1, κ2, δ2, π′1, µ2, stop〉) = (d1,m) <

(d, 1) since d = d1 + 1. Therefore, the I.H. yields C4 = 〈M8, stop〉 s.t.

〈K
′

1, κ2, δ2, π1, µ2, stop〉 ≺ C4 (6)

92 Luciano Bello and Eduardo Bonelli

and
〈M8,parse(M̂8(trans(e)))〉� C4 (7)

From (7) we have

〈M7,parse(M̂7(trans(e))); Kh :=Kh|depsIn(k, e); pc := pc′〉
� 〈M8,Kh :=Kh|depsIn(k, e); pc := pc′〉
→ 〈M8[Kh 7→ M̂8(Kh|depsIn(k, e))], pc := pc′〉

→ C5
def
= 〈M8[Kh 7→ M̂8(Kh|depsIn(k, e))][pc 7→M8(pc′)], stop〉

In order to conclude we set C2
def
= C5 and verify that indeed

〈K
′

1[h 7→ K ′1(h)] κ2|parse(s)], κ2, δ2, π1, µ2, stop〉 ≺
〈M8[Kh 7→ M̂8(Kh|depsIn(k, e))][pc 7→M8(pc′)], stop〉 = C5

If M9 abbreviates M8[Kh 7→ M̂8(Kh|depsIn(k, e))][pc 7→ M8(pc′)], then
this means we must verify
1. M9(K) = K ′1[h 7→ K

′

1(h)] κ2|parse(s)], M9(k) = κ2, M9(d) = δ2,
M9(pc) = π1. From (6) we know that M8(k) = κ2, M8(d) = δ2
and M8(pc) = π1. Since M8(k) = M9(k), M8(d) = M9(d) and
M8(pc) = M9(pc), all but the first item hold immediately. We now
address the first item. From (6) we know that M4(K) = K ′1. Also,
M9(K) = M̂8(Kh|depsIn(k, e)) = M̂8(Kh)] M̂8(depsIn(k, e)) = K ′1(h)]
M̂8(depsIn(k, e)). We conclude that M̂8(depsIn(k, e)) = κ2|parse(s)

since this follows from ˆdepsIn(κ, s) = κ|parse(s) which holds by
assumption on depsIn.

2. µ2(x) = 〈M9(x),M9(xP),M9(xL)〉, for all x ∈ dom(µ2). From (6) we
know that µ2(x) = 〈M8(x),M8(xP),M8(xL)〉, for all x ∈ dom(µ2).
Since M9 differs from M8 only in the value of K and K is never in
the domain of the memory component of the configuration, we
conclude.

	On-the-fly Inlining of Dynamic Dependency Monitors for Secure Information Flow
	Appendix

