
Towards a Taint Mode for Cloud Computing Web Applications

Luciano Bello
Chalmers University of Technology

bello@chalmers.se

Alejandro Russo
Chalmers University of Technology

russo@chalmers.se

Abstract
Cloud computing is generally understood as the distribution
of data and computations over the Internet. Over the past
years, there has been a steep increase in web sites using this
technology. Unfortunately, those web sites are not exempted
from injection flaws and cross-site scripting, two of the most
common security risks in web applications. Taint analysis is
an automatic approach to detect vulnerabilities. Cloud com-
puting platforms possess several features that, while facil-
itating the development of web applications, make it dif-
ficult to apply off-the-shelf taint analysis techniques. More
specifically, several of the existing taint analysis techniques
do not deal with persistent storage (e.g. object datastores),
opaque objects (objects whose implementation cannot be ac-
cessed and thus tracking tainted data becomes a challenge),
or a rich set of security policies (e.g. forcing a specific or-
der of sanitizers to be applied). We propose a taint analy-
sis for could computing web applications that consider these
aspects. Rather than modifying interpreters or compilers, we
provide taint analysis via a Python library for the cloud com-
puting platform Google App Engine (GAE). To evaluate the
use of our library, we harden an existing GAE web applica-
tion against cross-site scripting attacks.

Categories and Subject Descriptors D.2.0 [Software En-
gineering]: Protection Mechanisms

General Terms Security, Languages

Keywords Taint analysis, Cloud computing, Web applica-
tions, Library, Python

1. Introduction
Cloud computing is a model to enable ubiquitous, conve-
nient, and on-demand network access to some computing
resources [31]. Due to its cost-benefit ratio, on-demand scal-
ability and simplicity, cloud computing is spreading quickly
among companies. By paying a (relatively) small fee, com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS’12 June 15, Beijing, China.
Copyright © 2012 ACM ISBN 978-1-4503-1441-1/12/06. . . $10.00

panies are relieved from big investments on servers, database
administrators and backup systems to run their web sites.
Cloud computing developers often use a platform that pro-
vides facilities to access persistent storage as if it were a lo-
cal resource. In this manner, it is easy to dynamically ac-
commodate or change in which part of the cloud computing
infrastructure the application gets executed.

Recent studies show that attacks against web applications
constitute more than 60% of the total attempts to exploit vul-
nerabilities online [36]. Web sites running in the cloud are
not exempted from this. When development of web applica-
tions is done with little or no security in mind, the presence
of security holes increases dramatically. Web-based vulner-
abilities have already outpaced those of all other platforms
[11] and there is no reason to believe that this tendency is
going to change soon [19]. OWASP’s top ten security risks
has established injection flaws and cross-site scripting as the
most common vulnerabilities in web applications [1, 40]. Al-
though these attacks are classified differently, they are pro-
duced by the same reason: user input data is sent to a sen-
sitive sink without a proper sanitization. For instance, injec-
tion flaws could occur when user data is sent to an interpreter
as part of a system call executing unintended commands.
To harden applications against these attacks, popular web
scripting languages provide taint analysis [2, 3].

Taint analysis is an automatic approach to spot poten-
tial vulnerabilities. Intuitively, taint analysis restricts how
tainted (untrustworthy) data flows inside programs, i.e., it
constrains data to be untainted (trustworthy) or previously
sanitized when reaching sensitive sinks. The analysis is then
able to detect simple programming errors like forgetting to
escape some characters in a string when building HTML
web pages. It is worth mentioning that taint analysis is not
conceived for scenarios where the attacker has control over
the code.

Taint analysis comes in different forms and shapes. The
analysis can be perform statically [23, 28, 39], dynamically
[2, 3, 20, 21, 25, 34, 38, 44], or both [12, 14, 22, 29, 41, 45].
Traditionally, taint analysis tends to only consider strings or
characters [2, 20, 21, 25, 33, 38] while ignoring other data
structures or built-in values. The analysis can be provided
as a special mode of the interpreter called taint mode (e.g.
[2],[3],[33],[25]) or via a library [15]. Enhancing an inter-

preter with taint mode generally requires to carefully mod-
ify its underlying data structures, which is a major task on its
own. In contrast, Conti and Russo[15] show how to use some
programming languages abstraction provided by Python in
order to provide taint mode as a library. By staying at the
programming language level, the authors show that the taint
mode can be easily adapted to consider a wider set of built-
in types (e.g. strings, integers, and unicode). Changing the
source code of a library is a much easier task than changing
an interpreter.

Google App Engine (GAE), a popular platform for devel-
oping and hosting web applications in the cloud, does not
provide automatic tools to help developers avoid injection
flaws or cross-site scripting (XSS) vulnerabilities. GAE pos-
sesses several features that, while facilitating programming,
make the application of off-the-shelf taint analysis tech-
niques difficult. Although we focus on GAE, similar difficul-
ties arise when trying to apply taint analysis to other could
computing development platforms 1. More specifically, we
identify the following aspects.

● Persistent storage: To the best of our knowledge, the taint
analysis described in [18] is the only one considering per-
sistent storage. Generally speaking, taint analysis avoids
keeping track of taint information in datastores by, for in-
stance, forcing data sanitization before it is committed.
While this seems to be a reasonable strategy, it might be
inadequate for most web applications. When users post
entries into a forum, it is a common practice to store
a copy of their original, unmodified submission so that
changes to the way data is sanitized (or formatted) can be
easily applied to older submissions.

● Opaque objects: To boost performance, the GAE plat-
form includes some customized libraries. The interface of
these libraries are often presented as opaque objects, i.e.,
objects which internal structure cannot be accessed from
the web application. Opaque objects are usually a mech-
anism to restrictively allow calling code written in C (or
any other high-performance language) from the GAE plat-
form. Since the internal structure of such objects is not
visible from the interpreter, it is difficult to perform track-
ing of tainted information, i.e. it is difficult to determine
how the output of a given method depends on the (possi-
bly tainted) input arguments.

● Sanitization policies: Web frameworks provide some
standard sanitization functions that can be composed to
create more complex sanitizers. It is common that web
frameworks do not enforce the correct use of sanitizers
[43]. For instance, applications might require that some
data is sanitized using several sanitizers in any, or a spe-
cific, order. Traditionally, taint analysis does not support
such fine-grained policies [2, 12, 20, 21, 23, 25, 28, 39,
45].

1 Amazon AWS https://aws.amazon.com/articles/3998, Windows Azure http://www.windowsazure.

com/en-us/home/scenarios/web/

In this work, we present a Python library that provides taint
analysis for web applications written in GAE for Python.
The implemented taint mode library propagates taint infor-
mation as usual (i.e. data derived from tainted data is also
tainted) while considering persistent storage, opaque objects
and a rich set of security policies. Users of the library can
run the taint mode by performing minimal modifications
to applications’ source code. The library uses security lat-
tices [16] as the interface to express a rich set of saniti-
zation policies. Surprisingly, we find that the least upper
bound operation (⊔) is often not suitable to capture the se-
curity level of aggregated data when sanitizers lack compo-
sitionality properties. In fact, popular web frameworks often
provide such problematic sanitizers. Instead of ⊔, we intro-
duce the operator ⋎ that computes upper bounds (not nec-
essarily the least ones). To evaluate and motivate the use
of our library, we harden the implementation of an exist-
ing web application written using GAE for Python. The li-
brary and the modified example can be downloaded at http:
//www.cse.chalmers.se/~russo/GAEtaintmode/.

1.1 Motivating example
The google-app-engine-samples project [7] stores examples
of simple web applications for GAE. The guestbook applica-
tion [8] used by the Getting Started documentation [6] serves
as the running example along the paper. Although this ap-
plication is rather simple, it contains all the ingredients to
show how our taint mode works. The guestbook application
consists of a web page where anonymous or authenticated
users are able to write greeting messages which are stored
into the GAE object datastore. These messages are fetched
every time a user visits the web page. This application in-
volves user inputs (greeting messages), the GAE object data-
store, and the presence of opaque objects (due to the use of
a web framework to build HTTP responses). When building
the main web page, the application executes the following
lines of code for every message being fetched from the ob-
ject datastore:

<blockquote >{{ greeting.content|escape

}}</ blockquote >

The variable greeting.content is replaced by a greeting
text and is subsequently fed to the sanitizer escape which
replaces characters that might produce injection attacks such
as < and >. We show that, by using our library, the taint
analysis raises an alarm if the programmer omits to apply
the sanitizer escape to every greeting message. Moreover,
the library is able to enforce a specific sanitization policy,
e.g., that greeting messages should be cleaned by applying
some specific sanitizers in a specific order.

The paper is organized as follows. Section 2 gives back-
ground information on taint analysis. Section 3 describes
how taint information gets propagated into the object datas-
tore. Section 4 deals with taint analysis for opaque objects.
Section 5 illustrates different security policies supported by

our taint analysis. Section 6 incorporates taint analysis to our
motivating example. Section 7 presents related work. Con-
clusions and future work are stated in Section 8.

2. Taint analysis
Taint analysis keeps track of how user inputs, or tainted data,
propagate inside programs by focusing on assignments. In-
tuitively, when the right-hand side of an assignment uses a
tainted value, the variable appearing on the left-hand side be-
comes tainted. Taint analysis can be seen as an information-
flow mechanism for integrity [13]. In fact, taint analysis is
nothing more than a tracking mechanism for explicit flows
[17], i.e., direct flows of information from one variable to an-
other. Implicit flows, or flows through the control-flow con-
structs of the programming language, are usually ignored.
The following piece of code shows an implicit flow.

if tainted == ’a’ : untainted = ’a’

else : untainted = ’’

Variables tainted and untainted are initially tainted and
untainted, respectively. The taint analysis determines that
after executing the branch, variable untainted remains un-
tainted since it is assigned to untainted constants on both
branches, i.e., the strings ’a’ and ’’. Yet, the value of
tainted is copied into untainted when tainted == ’a’!
If attackers have full control over the code (i.e. attackers
can write the code to be executed), taint analysis is easily
circumvented by implicit flows. There is a large body of lit-
erature on language-based information-flow security regard-
ing how to track implicit flows [35]. There are scenarios,
however, where taint analysis is helpful, e.g., non-malicious
applications. In such scenarios, the attacker’s goal consists
of exploiting vulnerabilities by providing crafted input. It is
then enough that programmers simply forget to call some
sanitization function for a vulnerability to be exposed.

It is unusual to find formalizations that capture seman-
tically, and precisely, what security condition taint analysis
enforces. To the best of our knowledge, the closest formal
semantic definition is given by Volpano [42]. Nevertheless,
Volpano’s definition cannot be fully applied to taint analysis
because it ignores sanitization (or endorsement) of data. To
remedy that, it could be possible to extend Volpano’s def-
inition using intransitive noninterference, but this topic is
beyond the scope of this paper. It is not so easy to make a
precise and fair appreciation of the soundness and complete-
ness of a given taint analysis technique. On one hand, com-
pleteness is a challenging property for any kind of analysis.
We do not expect taint analysis to be an exception to that.
On the other hand, assuming the policy untrustworthy data
should not reach sensitive sinks, some taint analysis may be
unsound due to implementation details. For instance, analy-
ses focusing only on strings do not propagate taint informa-
tion when the right-hand side of the assignment is an integer
(e.g. [2, 20, 21, 25, 29, 33, 34]). The following piece of code

shows how to encode a tainted character as an untainted in-
teger.

untainted_int = ord(tainted_char)

Variable untainted_int can be casted back into a string and
be used into a sensitive sink without being sanitized! Re-
gardless of this point, taint analysis has been successfully
used to prevent a wide range of attacks like buffer overruns
(e.g. [24, 32]), format strings (e.g. [14]), and command in-
jections (e.g. [12, 28]). The practical value of taint analysis
is given by how easy it can be applied and how often it cap-
tures omissions with respect to sanitization of data.

2.1 Taint mode via a library
Rather than modifying interpreters, Conti and Russo provide
a taint mode for Python built-in types via a library [15].
It is worth mentioning that built-in types are immutable
objects in Python. The authors show how Python’s object-
oriented features and dynamic typing mechanisms can be
used to propagate taint information. The core part of the
library defines subclasses of built-in types. These subclasses,
called taint-aware classes, contain the attribute taints used
to store taint information. Methods of taint-aware classes
are intentionally defined to propagate taint information from
the input arguments, and the object calling those methods,
into the return values. For instance, consider the following
interaction with the Python interpreter.

1 > ts = taint(’tainted string ’)

2 > ts.taints

3 True

4 > us = ’string ’

5 > tainted(ts + us)

6 True

Function taint takes a built-in value and returns a taint-
aware version of it. More specifically, Line 1 takes a string,
i.e., an instance of the class str, and returns a tainted string.
Tainted strings are instances of the class STR, which is a
subclass of str. For simplicity reasons, we assume that the
taints attributes are simply boolean variables. However, it
can be as complex as any metadata related to taints (see
Section 5). Line 2 shows the taints attribute of ts. Line
4 declares an untainted string us. Function tainted returns
a boolean value indicating if the argument is tainted. Line
5 shows that the concatenation of a tainted string with an
untainted one (ts + us) results in a tainted value. This effect
occurs since ts + us gets translated into the invocation of
the concatenation method of the most specific class, i.e., STR.
Therefore, ts + us is equivalent to ts.__add__(us), which
propagates the taints from the object calling the method (ts)
and the argument (us) into the result. Consequently, and
as shown by this example, operators for different built-in
types can be instrumented to propagate taint information
by simply defining subclasses. This feature, and the fact
that built-in operations are translated into object calls, is
what makes Python particularly suitable to provide taint

analysis via a library. It is difficult to applying these ideas
to languages like PHP or ASP where strings are not objects
and there are no obvious mechanisms to instrument string
operations without modifications in the underlying runtime
system [20, 29, 33]. In contrast, the programming language
Ruby provides some mechanisms to instrument operations 2

that could be possibly used to provided taint analysis via a
library. Based on the ideas of Conti and Russo, we develop
a taint mode that goes beyond built-in values.

3. Persistent storage
Taint analysis often does not propagate taint information
into persistent storage such as files or databases. Instead,
data must be sanitized before being saved. In the context of
web applications, this strategy might be inadequate, e.g., it is
often recommendable that web applications store user’s data
exactly as submitted to the web site. In that manner, changes
in the way that information is formatted or sanitized can be
applied to older submissions. In this section, we extend the
GAE platform to support tainted values in the GAE object
datastore.

The GAE object datastore saves (and retrieves) data ob-
jects in (from) the cloud computing infrastructure. These ob-
jects are called entities and their attributes are referred to as
properties. Properties represent different types of data (inte-
gers, floating-point numbers, strings, etc). It is important to
remark that a property cannot be an entity itself (and thus
there is no need to consider a notion of nested tainting). An
application only has access to entities that it has created it-
self. The GAE platform includes an API to model entities
as instances of the class db.Model. For example, the guest-
book application models messages by instances of the class
Greeting.

class Greeting(db.Model):

author = db.UserProperty ()

content = db.StringProperty(multiline=

True)

date = db.DateTimeProperty(auto_now_add=

True)

A Greeting entity contains information about who wrote
the entry (property author), its content (property content),
and when it was written (property date). When a user writes
a comment into the guestbook, the application creates an
entity, fetches the comment from the HTML form field
content, and saves it into the database. The following piece
of code reflects that procedure.

greeting = Greeting ()

greeting.author = users.get_current_user ()

greeting.content = self.request.get(’

content ’)

greeting.put()

2 http://stackoverflow.com/questions/1283977/existence-of-right-addition-
multiplication-in-ruby

In this piece of code, the object self refers to a handler
given to the application to access the fields submitted by the
POST request. Method greeting.put() saves the entity into
the datastore. The GAE platform provides two interfaces to
fetch entities from the datastore: a query object interface, and
a very simplified SQL-like query language called Google
Query Language (GQL). Due to lack of space, we only show
how the library works for the query object interface. This
interface requires to create a query object by, for example,
calling the method all of an entity model. Using that object,
the guestbook application is able to fetch all the greetings
from the datastore. The following piece of code shows the
use of all.

query = Greeting.all().order(’-date’)

greetings = query.fetch()

The first line creates a query object in order to select the
Greeting entities ordered by date. The second line retrieves
the entities from the datastore.

One of the main problems to add taint information to the
GAE datastore is related to properties. GAE forces a typed
discipline on the properties, i.e., it only allows properties to
be of a specific type (e.g. string or integers) at the time of
saving them into the datastore. This design decision makes
impossible to simply store tainted values directly into the
datastore. After all, a tainted string is not a built-in type but
rather a value from a subclass of strings (recall Section 2.1).
To overcome this problem, we implement a mechanism to
extend entity models in order to account for taint information
in a separate property.

Decorators in Python allow to dynamically alter the be-
havior of functions, methods or classes without having to
change the source code. The library provides the decorator
taintModel to indicate which entities keep track of taint in-
formation. For the guestbook application is enough to add
the line @taintModel before the declaration of Greetings.

@taintModel

class Greeting(db.Model):

...

We use ... to represent the rest of the declaration of the class
Greeting. Decorator taintModel is a function that receives
and constructs a class. More specifically, the previous code
can be considered equivalent to

class Greeting(db.Model):

...

Greeting = taintModel(Greeting)

Consequently, when referring to Greeting in the rest of
the source code, it is referring to the class being returned
by taintModel. This decorator extends the definition of
Greeting by adding a new text property that stores a map-
ping from property names into taint information. The deco-
rator also redefines the methods put and fetch to consider

such mappings. When an entity gets saved into the datastore,
the put method checks for tainted values and then builds a
mapping reflecting the taint information in the attributes.
We refer to this mapping as tainting mapping. After that,
the tainted attributes are casted into their corresponding un-
tainted versions (e.g. properties of type STR are casted into
str) so that the entity can be saved together with the con-
structed tainting mapping. When an entity is fetched from
the datastore, the method fetch reads the content of the
entity and creates tainted values for those properties that
the tainting mapping indicates. To illustrate this point, let
us consider the following example based on the guestbook
model.

1 > greeting1=Greeting ()

2 > greeting1.content=taint(’<script >’)

3 > greeting1.put()

4 > greeting2=Greeting ()

5 > greeting2.content=’Hello!’

6 > greeting2.put()

7 > query=Greeting.all().order(’-date’)

8 > greetings = query.fetch ()

9 > greetings [0]. content

10 ’<script >’

11 > tainted(greetings [0]. author)

12 False

13 > tainted(greetings [0]. content)

14 True

15 > tainted(greetings [0]. date)

16 False

17 > greetings [1]. content

18 ’Hello ’

19 > tainted(greetings [1]. author)

20 False

21 > tainted(greetings [1]. content)

22 False

23 > tainted(greetings [1]. date)

24 False

Assuming an initially empty object datastore, lines 1–6 cre-
ate and store two entities, where one of them contains the
tainted string ’<script>’. Lines 7–8 recover the entities
from the datastore. Lines 9–16 show that only the property
content is tainted for the first entity. Lines 17–24 show that
the second entity has not tainted properties.

In principle, the user of the library needs to explicitly in-
dicate (by using taintModel) what entities should propagate
taint information into the datastore. Alternatively, it is also
possible to extend the class db.Model to automatically sup-
port tainting mappings. By doing so, every entity class that
inherits from db.Model is able to store taint information into
the datastore.

4. Opaque objects
GAE applications involve objects. The taint mode by Conti
and Russo [15] shows how to propagate taint information for
built-in types. In Python, built-in values are treated as im-

mutable objects. Conti and Russo’s work does not consider
mutable objects like user-defined objects. The fact that GAE
includes some third-party libraries besides the standard li-
brary (with modifications) opens the door to opaque objects
and forces the analysis to treat them differently than user-
defined ones. In this section, we show how our library per-
form taint analysis for objects in their various flavors.

Our library does not have access to some attributes or im-
plementation of some methods from opaque objects. This re-
striction makes it impossible to track taint information com-
puted by such objects, e.g., it is not possible to determine
how outputs depend on input arguments. To illustrate this
point, we consider the well-known cStringIO module from
the standard library. This module defines the class StringIO
to implement objects representing string buffers. The imple-
mentation of this class is done in C and imported in Python,
which introduces opaque instances of StringIO. Using the
library by Conti and Russo, if we try to place a tainted value
into a StringIO buffer, the taint information gets lost, i.e.,
the library cannot track how the tainted string is used by the
opaque object. Let us consider the following piece of code.

1 > from cStringIO import StringIO

2 > buff=StringIO ()

3 > buff.write(taint(’<script >’))

4 > tainted(buff.getvalue ())

5 False

Line 3 inserts a tainted string into the buffer. When reading
the content of the buffer (Line 4), the resulting string is not
tainted (Line 5).

We design our library to perform a coarse approxima-
tion related to taint information when dealing with opaque
objects. More specifically, for every opaque object the li-
brary creates a wrapper object that contains taint informa-
tion (the attribute taints) and wrapper methods to perform
taint propagation accordingly. For any call to a method of an
opaque object, the corresponding wrapper object propagates
the taint information from the arguments of the method, and
the object itself, into the returning value. The taint informa-
tion of the opaque object gets then updated to the taint infor-
mation of the resulting value.

By using the primitive opaque_taint, the user of the li-
brary indicates which are the opaque objects being used by
the application. In principle, to avoid developer intervention,
the library could automatically declare several objects pro-
vided with the GAE platform as opaque. The following code
shows a possible use of opaque_taint.

1 > from cStringIO import StringIO

2 > buff=opaque_taint(StringIO ())

3 > buff.write(’us’)

4 > tainted(buff)

5 False

6 > buff.write(taint(’ts’))

7 > tainted(buff)

8 True

In Line 2, the opaque_taint primitive takes the opaque ob-
ject and returns the corresponding wrapper object. Line 3–
8 shows that the object is clean until a tainted argument is
given. Consequently, obtaining the content of the buffer re-
sults in a tainted string as expected.

> tainted(buff.getvalue ())

True

Since buff is tainted, the taint analysis determines that every
value returned by any method call of that object is also
tainted. Observe that we need to be conservative at this point
since we do not know how outputs depend on inputs in
opaque objects. It might happen that the analysis considers
data as tainted even if that data is not related with the content
of the buffer. For example, StringIO objects (as other classes
that simulate a file object) has the attribute softspace used
by the print statement to determine if a space should be
add at the end of a printed string. Clearly, this attribute is
not affected by reading or writing into the buffer; however,
it gets tainted:

> tainted(buff.softspace)

True

The analysis looses precision at this point as the price to pay
for not knowing the internal structure of the opaque object.

As any approximation, our approach to opaque objects
might impact on permissiveness, e.g., it is possible to obtain
tainted empty strings when the buffer of an StringIO object
has run out of elements.

The library treats pure Python user-defined objects as
merely containers, i.e., their attributes can be tainted. There-
fore, whenever a tainted attribute is utilized for computing
the result of a method call, the return value gets tainted.
To illustrate the analysis of these objects, we consider the
non-opaque version of StringIO provided by the module
StringIO.

1 > from StringIO import StringIO

2 > buff=StringIO(taint(’<script >’))

3 > hasattr(buff , ’buf’)

4 True

5 > tainted(buff.buf)

6 True

7 > tainted(buff.getvalue ())

8 True

Notice that it is possible to access to the attribute buf (line
3) which stores the string buffer, so the object buff is not
opaque. Lines 5–6 show that the buffer is tainted. Lines 7–8
demonstrate that reading the content of the buffer results in
a tainted string. Unlike the example for opaque objects, the
attribute softspace does not necessarily is tainted although
the buffer is.

> tainted(buff.softspace)

False

{XSS,SQLI,OSI}

{XSS,SQLI} {SQLI,OSI}{XSS,OSI}

{XSS} {SQLI} {OSI}

{}

Figure 1. Order for set of tags identifying different vulner-
abilities

5. Security policies
Inspired by information-flow research, some taint analyses
([14, 22]) use security lattices [16] to specify security poli-
cies. We use ⊑ to denote the order-relation of the lattice.
Elements in the security lattice represent the integrity level
of data. The bottom and top elements represent trustworthy
and untrustworthy data, respectively. Lattices with more than
two security levels allow for different degrees of integrity
and thus expressing rich properties. With the security lat-
tice in place, security levels are assigned to sources of user
inputs and sensitive sinks. In general, user inputs are associ-
ated with the top element of the lattice (untrustworthy data).
Sensitive sinks are often associated with security levels be-
low top. Taint analysis allows data to flow into a sensitive
sink provided that the integrity level of the data is equal or
above the one associated with the sink. The higher the secu-
rity level associated with a piece of data is, the more untrust-
worthy it becomes. The security level of aggregated data is
determined as the least upper bound (⊔) of the security lev-
els of the constitutive parts. Sanitization of data is the only
action that moves data from higher positions in the lattice to
lower ones, and thus making data more trustworthy. In the
scenario of web applications, the use of ⊔ might not be ad-
equate due to sanitizers being often not compositional with
respect to, for instance, string operations. We illustrate this
point with concrete examples in the rest of the section. In-
stead of the ⊔, we introduce the upper bound operator ⋎ to
correctly determine the security level of aggregated data. For
each sensitive sink at security level ls, our analysis considers
a set of security levels called the safe zone. Data associated
with one of these levels can flow into the sensitive sink. Oth-
erwise, the library raises an alarm. The safe zone is usually
defined in terms of the ⊑-relation. We show three instances
of security policies implemented by our library that capture
the application of sanitizers in different manners.

5.1 Different kinds of sensitive sinks
The first example consists of encoding security policies able
to categorize sensitive sinks. We use tags to represent that
data might exploit different kinds of vulnerabilities. For this
example, we assume tags SQLI, XSS, and OSI to indicate
SQL injections, cross-site scripting, and operating system
command injections, respectively. The elements of the lattice
are sets of tags. Intuitively, a set indicates that data has not
been sanitized for the vulnerabilities described by the tags.

{}

{escape,striptags}

{escape} {striptags}

sanitizers

..
..
..
..
..
..
..
..

Figure 2. Order for identifying the application of sanitizers

The ⊑-relation is simply defined as set inclusion: l1 ⊑ l2
iff l1 ⊆ l2. Figure 1 describes the order between the set of
tags. User input is associated with the security level repre-
sented by the set of all the tags, in this case {XSS,SQLI,OSI}
representing fully untrustworthy data. The bottom element is
the empty set denoting fully trustworthy data, i.e., data that is
not part of any user input or has been sanitized to avoid every
considered vulnerability. Sensitive sinks are then associated
to possibly different security levels. For instance, the Python
primitive os.system, which executes shell commands, can
be associated to the security level {OSI}, while db.select,
responsible to execute SQL-statement, can be associated to
the security level {SQLI}. Given a sensitive sink at security
level ls, its safe zone is defined as every security level l such
¬(ls ⊑ l). By doing so, tainted data with tags SQLI can,
for instance, be used on sensitive sinks at security level OSI
and vice versa. The upper bound operator ⋎ is given by set
union. In this case, the upper bound operator coincides with
the least upper bound induced by the ⊑-relation, i.e. ⋎ = ⊔.
Sanitizers for a given tag t take data at security level l and
endorsed it to the security level l∖{t}, where ∖ is the symbol
for set subtraction. Observe that l ∖ {t} ⊑ l.

5.2 Identifying the application of sanitizers
Different from the previous example, there are situations
where developers want to know if data has been passed
through specific sanitizers rather than knowing which vul-
nerability can be exploited. In this case the elements of the
lattice are sets of sanitizers. A security level indicates which
sanitizers have been applied to the data.

We define the order as follows: l1 ⊑ l2 iff l2 ⊆ l1. Figure
2 illustrates an example for this order. The security level
representing fully untrustworthy data is the empty set ({}),
i.e., data that has not being applied to any sanitizer. User
input is often associated to that level. On the other end,
the set of all the existing sanitizers represents trustworthy
data. We utilize the constant sanitizers to denote that set.
Given a sensitive sink at security level ls, its safe zone is
defined as every security level l such (l ⊑ ls). Therefore data
flowing into a sensitive sink must have been applied to at
least the sanitizers indicated by its security level.

Induced by ⊑, the least upper bound operator for this
lattice is set intersection. However, this definition does not
reflect the right security level for aggregated data. We define
the upper bound ⋎ as a slightly more complicated operation
than just intersection of sets. The reason for that relies in the

> striptags(’<b’ + ’> Be careful ’)

’ Be careful! ’

> striptags(’<b’) + striptags(’> Be

careful ’)

’ Be careful ’

Figure 3. Non-compositionality of striptags

[]

[escape,striptags]

[escape]

[escape,urlize]

trustworthy

..
..
..
..
..
..
..
..

Figure 4. Order of application of sanitizers

compositional behavior of sanitizers. We say that a sanitizer
is compositional if the result of sanitizing two pieces of data
and then composing them is the same as firstly composing
the pieces and then sanitizing. More specifically, we say that
a sanitizer is compositional iff for all closed operations ⊕
and pieces of data d1 and d2, the following equation holds

sanitizer(d1 ⊕ d2) = sanitizer(d1) ⊕ sanitizer(d2).

Defining N as the set of non-compositional sanitizers, we
define l1 ⋎ l2 = (l1 ∩ l2) ∖ N . In that manner, it is cap-
tured the fact that compositional sanitizers are only pre-
served when data gets combined. Observe that, in presence
of non-compositional sanitizers, it holds that (l1 ⊔ l2) ⊏
(l1 ⋎ l2).

To illustrate that non-compositional sanitizers exist in
modern web frameworks, we consider two sanitizers from
Django: escape and striptags. The sanitizer escape

replaces some characters for their corresponding entity
HTML name, e.g., character < is converted into the string
"<". Since it only looks into one character at the time,
escape is compositional. The sanitizer striptags re-
moves HTML and XHTML tags from a given string, e.g.,
given the string " Be careful " results into
the string " Be careful ". Observe that this sanitizer
is non-compositional. To illustrate this point, consider the
interaction with the Python interpreter given in Figure 3.
Concatenating the strings ’<b’ and ’> Be careful ’

and then sanitizing is not the same as sanitizing ’<b’ and ’>

Be careful ’ and then concatenating the results. Ac-
cording to the definition of ⋎, if we combine strings sanitized
with striptags, the resulting string is associated with the se-
curity level {}, i.e., fully untrustworthy data ({striptags}
⋎ {striptags} = {}). When a sanitizer t is applied to data
at security level l, data is then endorsed to the security level
l ∪ {t}.

5.3 Applying sanitizers in a specific order
In some scenarios, it is important in which order sanitizers
are applied. Different orders of application might lead to
the presence of vulnerabilities. To illustrate this point, we
consider the standard filter urlize: it detects if a string
contains a URL and returns a clickable link if that is the
case. For example:

> print urlize(’www.chalmers.se’)

<a href="http ://www.chalmers.se" rel="

nofollow">www.chalmers.se

If the attacker is under control of the data being applied to
urlize, it is possible to inject JavaScript code. An attacker
can create a link that triggers JavaScript code when the
mouse moves over it. More concretely, we have that

urlize(’www." onmouseover ="alert (42)"’)

returns a tag element anchor that displays in the web browser
the string www."onmouseover="alert(42)" and executes
javascript:alert(42) when the mouse goes over it (no
click needed):

<a href="http ://www."onmouseover="alert

(42)"" rel="nofollow">www."onmouseover="

alert (42)"

To avoid such injection attacks, it is recommended to first
sanitize strings with escape.

urlize(escape(’www." onmouseover ="alert (42)

"’))

In that manner, the resulting tag element anchor does not
execute the JavaScript code.

<a href="http ://www."onmouseover =&

quot;alert (42)"" rel="nofollow">www

."onmouseover ="alert (42)"

;

We design a security lattice that accounts for the order in
which sanitizers are applied. The elements of the lattice are
lists of sanitizers. The order-relation is simply list prefix, i.e.,
l1 ⊑ l2 iff l1 is a prefix of l2. Figure 4 illustrates partially a
specific instance of this order. The empty list ([]) indicates
that no sanitizer has been applied and therefore denotes
untrustworthy data. User input is often associated to that
level. In contrast, we introduce the constant trustworthy
to encode any possible ordered application of sanitizers that
provides fully trustworthy data. Given a sensitive sink at
security level ls, its safe zone is defined as every security
level l such (l ⊑ ls). Therefore, data flowing into a sensitive
sink must have been applied to, at least, the sequence of
sanitizers indicated at its security level.

Similar to the previous case, the least upper bound op-
erator induced by ⊑ (i.e. the longest prefix) does not reflect
the right security level of aggregated data. We use the term
lists and security levels as interchangeable terms. We write
s ∶ l to the list of sanitizers which first element is s and has

Middleware

Web server

Web framework

Data is

tainted

Data must be

untainted

Figure 5. GAE platform schema

a tail l. Taking into account the possibility of using non-
compositional sanitizers (N), the upper bound operator is
defined as follows.

l1 ⋎ l2 = { s ∶ (l′1 ⋎ l′2) , if l1 = s ∶ l′1, l2 = s ∶ l′2, s ∉ N
[] , otherwise

This definition essentially preserves the longest common
prefix of compositional sanitizers, e.g., [escape,striptags]⊔
[escape] is [escape]. Observe that, in presence of non-
compositional sanitizers, it holds that (l1 ⊔ l2) ⊏ (l1 ⋎ l2).
When applying a sanitizer s to data at security level l, the
data is then endorsed to the security level l ++[s], where ++
denotes concatenation of lists.

6. Hardening the motivating example
We revise the example from Section 1.1 and show how to
adapt it to use our library. We have already described in Sec-
tion 3 how to extend the entity Greeting so that taint infor-
mation can be propagated to the datastore. In this section, we
continue modifying the source code to indicate the sources
of untrustworthy data, sensitive sinks, and sanitization func-
tions. Since our library is specialized to the GAE platform,
it allows us to provide out-of-the-box declaration for a set of
operations that can be considered sources of tainted data as
well as sensitive sinks. Sanitization functions, on the other
hand, depend mainly on the web framework used for ren-
dering web pages. If developers consider that the source of
untrustworthy data, sensitive sink, or sanitizer are not pre-
cisely or correctly indicated, the library provides means to
explicitly mark those operations in the code.

6.1 Source of tainted data and sensitive sinks in GAE
Our library considers the web server as both a source of
tainted data and a sink sensitive to XSS attacks, i.e., data
coming from the web server gets tainted while data going
back to the server needs to be untainted. In order to under-
stand how the library intermediates between the web server
and the GAE framework, we need to shortly describe the
GAE platform architecture.

GAE platform utilizes the concept of middleware, which
is a standard way to intercept requests and responses be-
tween the web server and web frameworks (e.g. Django [5],
CherryPy [4], Pylons [10], and webapp [6]). The GAE plat-
form is, to a large extent, web framework independent, i.e.,

it runs any web framework that utilizes middlewares com-
plying with the Web Server Gateway Interface (WSGI) [9].
Web frameworks are no more than a series of useful func-
tions and a template systems to keep a separation between
the presentation- (mostly written in HTML) and the logic
part of the application. Figure 5 schematizes the interaction
between the web server, middleware and web framework.

Our library provides its own middleware responsible to
taint data coming from the web server (e.g. headers, strings
send with the POST and GET methods, source IP and every
other information from the client). The middleware also
checks that data going back to the web server has been
sanitized. As a sensitive sink, it is necessary to indicate
the security level associated to the middleware. The library
provides the configuration file taintConfig.py for that.

To extend the functionality of the guestbook application,
we decide to allow users to include URL addresses in their
greetings as long as they do not include XSS or other attacks.
We then require that users’ greetings must go through the
sequence of sanitizers escape, urlize, and shorturl before
reaching the web client. Sanitizers escape and urlize are
described in Section 5. The user-defined sanitizer shorturl
leaves URL inside an anchor tag only if they are short (e.g.
like the ones provided by the Twitter link service). Clearly,
the example demands the use of the security policy from
Section 5.3 which considers the order of sanitizers. With this
in mind, the file taintConfig.py looks as follows.

1 from Policies import *

2

3 policy = SanitizerOrders

4 policy.ssinks

5 = { ’middleware ’ :

6 [’escape ’,’urlize ’,’shorturl ’] }

Line 3 indicates that the taint analysis takes into account
the order in which sanitizers are applied. We define a map-
ping from sensitive sinks (ssinks) to security levels. In
this case, Line 4–6 indicates that the middleware is as-
sociated with the security level represented by the list
[’escape’,’urlize’,’shorturl’] and thus accepting only
strings that have passed through the sequence of sanitizers
escape, urlize, and shorturl. Once defined the configura-
tion file, the library (called taintmode) should be imported
by the application:

from ...

from taintmode import *

Since taintmode wraps some other modules’ definitions,
it is important to import it last. The motivating example,
and WSGI applications in general, runs in the GAE’s CGI
environment by executing the following lines.

def main():

run_wsgi_app(guestbook_app)

To use our customized WSGI middleware, those lines need
to be slightly modified to simply include the procedure
TaintMiddleware as follows.

def main():

run_wsgi_app(TaintMiddleware(

guestbook_app))

The guestbook application now gets tainted data from the
web server and needs to sanitize data before sending it back
to the web client.

6.2 Sanitization policies
The library needs to know which functions are sanitizers. It
is also important to indicate if they are compositional. To
do that, the file taintConfig.py needs to be extended as
follows.

from Policies import *

policy = SanitizerOrders

policy.ssinks

= { ’middleware ’ :

[’escape ’,’urlize ’,’shorturl ’] }

policy.sanitizers

= { ’escape ’ : Comp ,

’urlize ’ : NonComp ,

’shorturl ’ : NonComp }

The variable policy.sanitizers defines a mapping from
sanitizers’ names to information required by the security
policy implementation, i.e., SanitizerOrders. This infor-
mation might change depending on the security policy to
be enforced. For this scenario, we indicate whether a sani-
tizer is compositional (constant Comp) or non-compositional
(constant NonComp).

If a developer forgets to apply escape, or applies the san-
itizers in the wrong order, an exception (TaintException)
is thrown indicating the tainted substring responsible for the
alarm.

TaintException: wrong sequence of

sanitizers [’urlize ’,’shorturl ’]: [’<

script >alert (42) </script >’]

7. Related work
There is a large volume of published work describing taint
analysis. Readers can refer to [14] for an excellent survey.
In this section, we mainly refer to analyses developed for
popular web scripting languages.

Perl [2] was the first scripting language to include taint
analysis as a native feature of the interpreter. Different from
our work, the security policy enforced by Perl’s taint mode
is rather static, i.e., strings originated from outside a pro-
gram are tainted (e.g. inputs from users), sanitization is done
by regular expressions, and files, shell commands and net-

work connections are considered sensitive sinks. Ruby [3]
provides a taint analysis similar to what our library does for
opaque objects. However, our work allows for more preci-
sion in the analysis for non-opaque objects.

Several taint analysis have been developed for PHP. Aim-
ing to avoid any user intervention, authors in [22] combine
static and dynamic techniques to automatically repair vul-
nerabilities in PHP code. They propose to use a type-system
to insert some predetermined sanitization functions when
tainted values reach sensitive sinks. The semantics of pro-
grams might change when inserting sanitization functions,
which constitutes the dynamic part of the analysis. We de-
cide not to change the semantics of programs unless explic-
itly stated by the user of the library, i.e., we leave it up to
the user of the library to decide where and how sanitization
functions must be called. In [33], Nguyen-Toung et al. adapt
the PHP interpreter to provide a dynamic taint analysis at
the level of characters, which the authors call precise taint-
ing. They argue that precise tainting gains precision over
traditional taint analyses for strings. It would be interesting
to see studies indicating how much precision (i.e. less false
alarms) it is obtained with precise tainting in practice. Sim-
ilarly to Nguyen-Toung et al.’s work, Futoransky [20] et al.
provide a precise dynamic taint analysis for PHP. Pietraszek
and Berghe [34] modify the PHP runtime environment to
assign metadata to user-provided input as well as to pro-
vide metadata-preserving string operations. Security criti-
cal operations are also instrumented to evaluate, when taken
strings as input, the risk of executing such operations based
on the metadata. In our library, the attribute taints is gen-
eral enough to encode Pietraszek and Berghe’s metadata for
strings. Jovanovic et al. [23] propose to combine a traditional
data flow and alias analysis to increase the precision of their
static taint analysis for PHP (which posses a 50% of false
alarms rate). Different from our approach, Jovanovic et al. do
not consider taints for objects. Focusing only on strings, the
works in [12, 29] combine static and dynamic techniques.
The static techniques are used to reduce the number of pro-
gram variables where taint information must be tracked at
runtime. The dynamic analysis in [12] consists of running
test cases using attack strings rather than propagating taint
information at runtime. Conversely, the work in [29] modi-
fies the PHP virtual machine in order to propagate taint infor-
mation. In particular, the modified virtual machine includes
the field labels to store taint meta-information. This field is
similar to the attribute taints used by our library.

A taint analysis for Java [21] instruments the class
java.lang.String as well as classes that present untrust-
worthy sources and sensitive sinks. The authors mention that
a custom class loader in the JVM is needed in order to per-
form online instrumentation. Another taint analysis for Java
[39], called TAJ, focuses on scalability and performance re-
quirements for industry-level applications. To achieve indus-
trial demands, TAJ uses static techniques for pointer analy-

sis, call-graph construction and slicing. Similar to our work,
TAJ allows object fields to store tainted values (such objects
are called taint carries). However, TAJ’s static analysis does
not consider persistent storage and opaque objects. The au-
thors in [28] propose a static analysis for Java that focuses
on achieving precision and scalability. Their analysis consid-
ers objects tainted as a whole instead of tainting their fields.
This approach is similar to our treatment for opaque objects.

In [25], authors modify the Python interpreter to provide
a dynamic taint analysis for strings. More specifically, the
representation of the class str is extended to include a
boolean flag to indicate if a string is tainted. Similar to
[15], our library supports taint analysis for several built-
in types (e.g. strings and integers). The work by Seo and
Lam [38], called InvisiType, aims to enforce safety checks
(including taint analysis) without modifying the analyzed
code. Their approach is designed for a stronger attacker
model, i.e., an attacker that can have control over the source
code. Therefore, InvisiType relies on several modifications
in the Python interpreter in order to perform the security
checks at the right places without the source code being
able to jeopardize them. We consider a weaker attacker that
only has control on input data and therefore no runtime
modifications are required by our library.

Surprisingly, there is not much work considering taint
analysis and persistent storage. In the information-flow
community, Li and Zdancewic [26] enforce information-
flow control in PHP where programs can use a relational
database. The main idea of their work is to statically indicate
the types of the input fields and the results of a fixed number
of database queries. From a technical point of view, when
type checking queries, their type-system behaves largely the
same as when typing function calls. Rather than consider-
ing an static set of queries, our library is able to propagate
taint information when entities are fetched from the data-
store regardless the executed query. Another work dealing
with persistent stores and information flow is the language
Fabric [27]. Proposed by Liu et al., Fabric is essentially an
extension to Jif [30] supporting distributed programming
and transactions. Fabric allows the safe storage of objects,
with exactly one security label, into a persistent storage con-
sisting of a collection of objects. While Jif and Fabric are
special purposes languages and our analysis works via a li-
brary, the manner that Fabric stores security labels in objects
is similar to how taint information gets propagate into the
GAE datastore.

The authors in [43] observe that sanitization should be
context-sensitive, e.g., the sanitization requirements for a
URI attribute are different from those of an HTML tag. In
a similar spirit ScriptGard [37] automatically inserts, being
context-sensitive, sanitizers in web applications to automat-
ically repair vulnerabilities. In principle, it could be possible
to implement some of those context-sensitive policies by en-
riching the information inside the attribute taints as well as

the checks performed by the middleware when information
is sent to the web server.

Considering a different setting, TaintDroid [18], a taint
analysis for Android smartphones, tackles similar problems
that the ones presented in this paper. In order to propa-
gate taint information inside programs, TaintDroid requires
the modification of the Android’s VM interpreter. Taint-
Droid is also able to propagate taints tags (labels) into the
file system extended attributes. To achieve that, a modifi-
cation of the host file system (YAFFS2) is required. Our
library, on the other hand, does not require the modifica-
tion of the Python interpreter or the underlying datastore.
The VM interpreter often calls native code which is unmon-
itored by TaintDroid. In a similar approach as for opaque
objects, TaintDroid makes an approximation for the propa-
gation of taint labels when calling native code, i.e., the la-
bel of the return value is the union of the taint labels of the
call arguments. While the authors of TaintDroid manually
patched native code to implement this approximation, our li-
brary provides a general method for approximating taints in
opaque objects.

8. Final remarks and future work
We have developed a taint mode for the cloud computing
platform Google App Engine for Python. Different from
other taint analysis, our library propagates taint information
into the datastore as well as opaque objects. We propose a
security lattice as the general interface to specify interest-
ing sanitization policies. Although this idea is not novel,
we note that the least upper bound operation (⊔) is inade-
quate to describe the integrity level of aggregated data when
using non-compositional sanitizers. The library defines de-
fault sources and sensitive sinks for the Google App Engine
framework. In particular, it provides a middleware to inter-
mediate between the web server and the application so that
data obtained from the server gets automatically tainted as
well as checks if the data being sent back is sanitized. Pro-
viding a WSGI-compliant middleware, the library can run
with any web framework that follows the WSGI specifica-
tion. We take a concrete example implementing a guestbook
in the cloud and show how to adapt it to run our taint analy-
sis by small modifications of the source code. We show that
the library raises an alarm if developers do not sanitize data
as indicated by the security policy.

There are several directions for future work. Focusing
on avoiding XSS, the library declares the web server as
a sensitive sink. However, we believe that there are other
sensitive sinks in GAE. For instance, GAE applications can
execute computational intensive numerical functions (e.g.
through the numpy library), send emails 3 and even send
HTTP requests 4 to other web sites. Evidently, user inputs
or tainted data should not arbitrarily affect such operations.

3 https://code.google.com/appengine/docs/python/mail/
4 https://code.google.com/appengine/docs/python/urlfetch/

It would be interesting to develop a complete list of sensitive
sinks for GAE. Other future work is to consider larger case
studies for our library in order to determine the scalability of
the approach. The code in the library is currently designed
to be compact, easy to understand, and to be used during
the development stage. It would be interesting to evaluate
the performance of the library and introduce the required
optimizations.

Acknowledgments Thanks to David Sands, Andrei Sabelfeld,
Bart van Delft, and Nick Johnson for valuable comments. This
work was partially funded by the Google Research Award Securing
Google App Engine and the Swedish research agency VR.

References
[1] OWASP Top 10 2010. http://www.owasp.org/index.

php/Top_10_2010.

[2] The Perl programming language. http://www.perl.org/.

[3] The Ruby programming language. http://www.

ruby-lang.org.

[4] CherryPy. http://www.cherrypy.org/.

[5] Django project. http://www.djangoproject.com/.

[6] Getting Started: Python - Google App Engine.
https://code.google.com/appengine/docs/python/

gettingstarted/.

[7] Samples for Google App Engine. https://code.google.

com/p/google-app-engine-samples.

[8] Guetbook example for Google App Engine. https:

//google-app-engine-samples.googlecode.com/

files/guestbook_10312008.zip.

[9] PEP 3333: Python Web Server Gateway Interface
v1.0.1. http://http://www.python.org/dev/peps/

pep-3333/.

[10] Pylons Project. http://pylonshq.com/.

[11] M. Andrews. Guest Editor’s Introduction: The State of Web
Security. IEEE Security and Privacy, 4(4):14–15, 2006.

[12] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and
dynamic analysis to validate sanitization in web applications.
In Proceedings of the 2008 IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2008.

[13] K. J. Biba. Integrity considerations for secure computer sys-
tems. Technical Report ESD-TR-76-372, USAF Electronic
Systems Division, Bedford, MA, Apr. 1977. (Also available
through National Technical Information Service, Springfield
Va., NTIS AD-A039324.).

[14] W. Chang, B. Streiff, and C. Lin. Efficient and extensible
security enforcement using dynamic data flow analysis. In
Proceedings of the 15th ACM conference on Computer and
communications security, CCS ’08, pages 39–50, New York,
NY, USA, 2008. ACM. ISBN 978-1-59593-810-7.

[15] J. J. Conti and A. Russo. A taint mode for Python via a
library. In OWASP AppSec Research 2010. Invited paper to
NORDSEC 2010, LNCS, 2010.

[16] D. E. Denning. A lattice model of secure information flow.
Comm. of the ACM, 19(5):236–243, May 1976.

[17] D. E. Denning and P. J. Denning. Certification of programs for
secure information flow. Comm. of the ACM, 20(7):504–513,
July 1977.

[18] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation, OSDI’10.
USENIX Association, 2010.

[19] Federal Aviation Administration (US). Review of Web Appli-
cations Security and Intrusion Detection in Air Traffic Control
Systems, June 2009.

[20] A. Futoransky, E. Gutesman, and A. Waissbein. A dynamic
technique for enhancing the security and privacy of web ap-
plications. In Black Hat USA Briefings, Aug. 2007.

[21] V. Haldar, D. Chandra, and M. Franz. Dynamic Taint Propa-
gation for Java. In Proceedings of the 21st Annual Computer
Security Applications Conference, pages 303–311, 2005.

[22] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-
Y. Kuo. Securing web application code by static analysis and
runtime protection. In Proc. of the International Conference
on World Wide Web, May 2004.

[23] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analy-
sis Tool for Detecting Web Application Vulnerabilities (Short
Paper). In 2006 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2006.

[24] J. Kong, C. C. Zou, and H. Zhou. Improving software security
via runtime instruction-level taint checking. In Proceedings
of the 1st workshop on Architectural and system support for
improving software dependability, ASID ’06. ACM, 2006.

[25] D. Kozlov and A. Petukhov. Implementation of Tainted Mode
approach to finding security vulnerabilities for Python tech-
nology. In Proc. of Young Researchers’ Colloquium on Soft-
ware Engineering (SYRCoSE), June 2007.

[26] P. Li and S. Zdancewic. Practical information-flow control in
web-based information systems. In Proc. of the 18th work-
shop on Computer Security Foundations. IEEE Computer So-
ciety, 2005.

[27] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, , and A. C.
Myers. Fabric: A platform for secure distributed computation
and storage. In Proc. ACM Symp. on Operating System Prin-
ciples, October 2009.

[28] V. B. Livshits and M. S. Lam. Finding security vulnerabilities
in Java applications with static analysis. In Proceedings of the
14th conference on USENIX Security Symposium - Volume 14.
USENIX Association, 2005.

[29] M. Monga, R. Paleari, and E. Passerini. A hybrid analysis
framework for detecting web application vulnerabilities. In
Proc. of the 2009 ICSE Workshop on Software Engineering for
Secure Systems, IWSESS ’09. IEEE Computer Society, 2009.

[30] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proc. ACM Symp. on Principles of Programming
Languages, Jan. 1999.

[31] National Institute of Standards and Technology. Defini-
tion of cloud computing. csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf, 2011.

[32] J. Newsome and D. Song. Dynamic Taint Analysis for Au-
tomatic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Proc. of the Network and
Distributed System Security Symposium, 2005.

[33] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically Hardening Web Applications Using
Precise Tainting. In In 20th IFIP International Information
Security Conference, pages 372–382, 2005.

[34] T. Pietraszek, C. V. Berghe, C. V, and E. Berghe. Defending
against injection attacks through context-sensitive string eval-
uation. In Recent Advances in Intrusion Detection, 2005.

[35] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications, 21
(1):5–19, Jan. 2003.

[36] SANS (SysAdmin, Audit, Network, Security) Institute.
The top cyber security risks. http://www.sans.org/

top-cyber-security-risks, Sept. 2009.

[37] P. Saxena, D. Molnar, and B. Livshits. Scriptgard: automatic
context-sensitive sanitization for large-scale legacy web appli-
cations. In Proceedings of the 18th ACM conference on Com-
puter and communications security, CCS ’11. ACM, 2011.

[38] J. Seo and M. S. Lam. InvisiType: Object-Oriented Security
Policies. In 17th Annual Network and Distributed System
Security Symposium. Internet Society (ISOC), Feb. 2010.

[39] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man. TAJ: effective taint analysis of web applications. In
Proc. ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’09. ACM, 2009.

[40] A. van der Stock, J. Williams, and D. Wichers. OWASP Top
10 2007. http://www.owasp.org/index.php/Top_10_

2007, 2007.

[41] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross-site scripting prevention with dynamic
data tainting and static analysis. In Proc. of the Network and
Distributed System Security Symposium, Feb. 2007.

[42] D. Volpano. Safety versus secrecy. In Proc. Symp. on Static
Analysis, volume 1694 of LNCS, pages 303–311. Springer-
Verlag, Sept. 1999.

[43] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and
D. Song. A systematic analysis of XSS sanitization in web
application frameworks. In Proc. of the European Conference
on Research in Computer Security. Springer-Verlag, 2011.

[44] W. Xu, E. Bhatkar, and R. Sekar. Practical dynamic taint anal-
ysis for countering input validation attacks on web applica-
tions. Technical report, Stony Brook University, 2005.

[45] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy
enforcement: a practical approach to defeat a wide range of
attacks. In Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15. USENIX Association, 2006.

