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Algebraic Numbers 

• Classically, complex roots of rational 
polynomials + algebraic transitivity 

• Folklore: algebraics are in fact constructive 
• Construction requirements: 

– algebraically closed 
– contains (algebraic over) rationals 
– has real (ordered) norm 
– conjugation automorphism 



Fundamental Theorem of “Algebra” 

• Famous conundrum and troll 
 “ℂ is algebraically closed” 

• The main subject, the field of complex 
numbers ℂ, is constructed in Analysis 

• Most (all?) proofs are based in Analysis 
• Why is this a “Theorem of Algebra”? 



Norm, Order and Conjugates 

• Order from norm (Num.mixin) 
– a ≤ b ⇔  0 ≤ b - a 
– 0 ≤ a ⇔ |a| = a 

• Norm from conjugation: |a| = aa� 
• An ordered domain has characteristic 0, so it 

contains a copy of , so all we need is 
Theorem Fundamental_Theorem_of_Algebraics : 
  {L : closedFieldType & 
     {conj : {rmorphism L -> L} | involutive conj 
                                & ~ conj =1 id}}. 

 



From Algebraics to the FTA 

• Roots of a complex polynomial P = ∑  n
0 aiXi are bounded 

in norm by the Cauchy bound MP = ∑  n
0  |ai| / |an| 

• A complex polynomial P is a limit of algebraic 
polynomials Qi. 

• Roots of the Qi lie in a compact disk of radius sup MQi . 
 
 
 
 

• Thus they have a limit point z, which is a root of P. 
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The Constructive Real Route 

• Start with the real algebraics E 
– discrete subtype of the constructive reals 
– real closed field 

• Get algebraics as E[i] 
– explicit conjugation 

• Prove the FTA 
– algebraic, constructive proof 

• Cyril Cohen’s PhD work 



Carving Real Algebraics 
• Start with constructive reals CR 

– “quotient” of explicit Cauchy completion 
– not discrete 

• Use CR to interpret countable type of real algebraic specs 
– rational polynomial + sign change interval 
– bisecting root search 

• Show that equality of  interpretations is decidable 
– reduce to separable polynomials 
– in isolation interval compare polynomials 

• Lift arithmetic and closure to RA specs 
– multivariate resultants 

• Build quotient with explicit representative 
 



The Artin Proof of the FTA 

• Classical algebraic proof, uses Galois theory 
• Assume R is a real closed field, p an R[i] polymomial 

–  The Intermediate Value Theorem holds for R polynomials 
• Take a Sylow 2-group S of Gal(C/R), where C is the 

splitting field of p (wlog i is in C) 
– if S < Gal(C/R) its fixed field has odd minimal polynomials 
– if Gal(C/R[i]) has a 2-group H of index 2 its fixed field has 

quadratic minimal polynomials solvable with R square roots. 
• Getting C requires finding irreducible polynomial factors 
• Cyril switched to companion matrix encoding variant. 

 
 
 



The Countable Field Route 

• First construct an algebraic closure E of ℚ. 
– possible because ℚ is countable (R. O’Connor). 

• Then construct (choose!) a conjugation 
automorphism in E. 
– E + conj is rigid so there are many choices 
– doesn’t actually construct reals 
– still involves an FTA proof 
– the Primitive Element Theorem yields generator for 

finite extensions of ℚ. 
• We get algebraic closures of finite fields as a side 

product. 
 



Simple Countable Extensions 

• Given a K-polynomial p, construct K[z] s.t. p[z] = 0. 
– would be K[X] / (q) if we had an irreducible q | p 

• If K is countable, we can still construct a decidable (q)  
– as (q) = ⋂(q𝑖𝑖), and qi+1 = GCD(qi, pi) if ≠1, else qi 
– pi ranges over K[X], and pi ∊ (q) ⇔ qi+1 | pi 

• In Coq 
pose fix d i := 
  if i isn’t i1.+1 then p else 
  let d1 := oapp (gcdp (d i1)) 0 (unpickle i1) in 
  if size d1 > 1 then d1 else d i1. 
pose I : pred {poly F} := [pred q | d (pickle q).+1 %| q]. 
 



Countable Field Closure 

• Classically 
– (finitely) iterate simple extensions to get splitting 

extensions 
– (transfinitely) iterate splitting extensions for p ∊ K[X] 
– finish with algebraic transitivity 

• Countably, there is no need for the double iteration, and 
algebraic transitivity. 
– just iterate over polynomials in the extensions as we go. 



Extension Codes 

 
• An extension is a countable field with a polynomial enumerator. 
• The enumerator decodes an index into a polynomial over a specific 

(current or earlier) extension. 

pose minXp (p : {poly _}) := if size p > 1 then p else 'X. 
have minXp_gt1 p: size (minXp _ p) > 1 by … 
have ext1 p := countable_field_extension (minXp_gt1 _ p). 
pose ext1to E p : {rmorphism _ -> ext1fT E p} := 
  tag (tagged (ext1 E p)).  
pose Ext := {E : countFieldType & nat -> {poly E}}. 
pose MkExt : Ext := Tagged _ _. 
pose EtoInc (E : Ext) i := ext1to (tag E) (tagged E i). 
pose incEp E i j := 
 if decode j isn’t [:: i1; k] then c else 
 let v := map_poly (EtoInc E i) (tagged E j) in 
 if i1 == i then odflt v (unpickle k) else v. 
pose fix E_ i := 
 if i is i1.+1 then MkExt _ (incEp (E_ i1) i1) else MkExt F \0. 



The Primitive Element Theorem 

• For suitable α : K → L, pα(x) = 0, qα(y) = 0, find z = pz
α(x,y) 

such that x =px
α(z), y = py

α(z) (in fact z = α(t)y - x). 
• Constructive proof by Russell O’Connor 
• For separable q, there is r so that any t with r(α(t))≠0 

works – so in characteristic 0 we can take t = n∊ℕ. 
• Use GCD(pα(XY + x), qα(Y + y)/(Y – y)) – and the division 

annihilator of pα(X + x) and qα(X + y)/X. 
• z is algebraic over K by algebraic transitivity. 
• then GCD (pα(α(t)X - x), qα) = X – y, so y is in Kα[z]. 

 



Building an Involution 
• Using the PET, construct sequences xn, zn in E such that 

1) ℚ[xn] does not contain i = −𝟏𝟏 
2) ℚ[zn] = ℚ[xn, i] 
3) ℚ[xn+1] contains ℚ[xn] 
4) all z in E are in some ℚ[zn] 

• By 1) and 2), conjugation is uniquely defined in ℚ[zn], so by 
4) their chain union is a conjugation for E. 

• The union of the ℚ[xn] is the real algebraics, but we 
never construct it. 

• To ensure 4) we will need the FTA and 
4’) every monic polynomial p over ℚ[xm] with p(0) = - c2 ≠ 0 has a 
root in one of the ℚ[xn]. 



Avoiding −𝟏𝟏 
• We need to strengthen 1) to  

1’) ℚ[xn] is a real subfield. 
• Use index decoding on n to find a suitable polynomial p. 
• Since p(0) < 0 and p(Mp) > 0, p has a positive root xn+1. 
• Order ℚ[xn+1] by positioning xn+1 as the root found by 

dichotomy on [0, Mp]. 
• We can use refine the position of xn+1 to decide whether 

r(xn+1) > 0 when do r < do p, since r and p are coprime, so 
ur + vp = 1. 
 



The Artin Proof, Reordered 

• We don’t have the real subfield! 
• No matter, we induct on |Gal(ℚ[z, zn]/ ℚ[zn])| 

instead. 
• In the non 2-group case, consider –p(X)p(-X) 
• For square roots Y2 = a + ib, b≠0, consider 
          X4 – aX2 – b2/4 (thenY = X + ib/2X).  
• For Y2 = a, a≠0, solve (Y / (1 + i)) 2 = -ia/2. 



The FTA is Analysis, after all 

• It is a theorem that can be stated in 
Algebra, 

• the construction can be done in Algebra, 
• but its proof always seems to require 

either Analysis or Choice… 
• Except for Sturm sequences, perhaps? 
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