
GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

Appendix A – Research Programme

GenPro: Generating and Proving Program Properties via Symbol Elimination

1. Purpose and Aims

Software systems used in our daily life, such as networking, security, autonomous devices, traf-

fic control, etc., heavily rely on software used in them. Such software is becoming increasingly

more sophisticated, resulting in system malfunctioning and error-prone and insecure system

behavior. Software errors are very costly. There are many studies attempting to quantify the

cost of software failures, including survey reports by the European Services Strategy Unit, the

British Computer Society, and the US National Institute of Standards and Technology. For ex-

ample, according to US National Institute of Standards and Technology software errors cost the

US economy nearly 60 billion annually, and 80% of development costs involve identifying and

correcting errors. For this reason, there is a growing interest, both industrial and academic, in

applying formal methods for ensuring reliability of long-lived, high-quality software systems.

Formal verification aims at providing a methodology that produces more reliable and robust

systems. Companies developing and running safety-critical systems, such as Microsoft, IBM,

and Intel, have therefore started to use precise formal methods and scalable tools developed

in this area. Precision of designed methods is necessary in order to ensure that the reported

potential system errors are indeed errors, and that no bugs are omitted during the verification

process. Scalability is required so that the tools work efficiently for large systems. Among the

main techniques of formal verification are model checking, abstract interpretation, satisfiability

modulo theory (SMT) reasoning, and first-order theorem proving. These methods are inter-

related and many modern formal verification tools use a combination of them.

The objective of our proposal is to develop new methods advancing the applicability of first-

order theorem proving in formal software verification. The project will explore and advance the

power of the symbol elimination method, introduced recently by ourselves, for generating and

proving program properties. Symbol elimination is based on first-order theorem proving and is

fully automatic. It was the first ever method able to automatically discover complex program

properties with quantifier alternations. The method is based on the following steps. Given a

program loop, we first extend the language of the program with additional symbols, such as a

loop counter. Next, we extract various information about the program that can be expressed

by first-order formulas. These formulas can however use the introduced auxiliary symbols.

Therefore, we run a superposition-based first-order theorem prover to eliminate the auxiliary

symbols and obtain program properties expressed in the original language of the program.

In our project we will pay special attention to developing new theory and tools based on

symbol elimination, solve automated reasoning problems arising in program verification, and

thus prove automatically the validity of safety properties of software.

Safety properties ensure that something ”bad” never happens in the program. Verifying such

properties becomes an especially challenging task when programs contain (nested) loops or re-

cursion. The verification of such programs needs additional information, so-called program

assertions, that express conditions to hold at certain intermediate points of the program. Typi-

cal auxiliary assertions are loop invariants, which describe program states that can be reached

during program computations and thus are essential for safety property verification. The effec-

tiveness of using symbol elimination in formal verification thus crucially depends on whether

such assertions, even trivial ones, can be deduced automatically.

The overall purpose of our project is to design new, unconventional methods for reasoning

about program properties, by using symbol elimination in first-order theorem proving. We will

implement world-leading tools that are likely to be used by others in the area, and apply our

methods and tools on problems of industrial relevance. The results of our project will provide

fundamentally new ways of generating and proving program properties by symbol elimination,

1



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

and have a substantial impact both on the theory and practice of program verification. To achieve

the aim of the project, the specific goals of our project includes the following three directions:

1. Developing new methods for generating complex loop invariants using symbol elimination.

This research will include extensions of symbol elimination to reason about loops with

unbounded data types such as arrays, lists, pointers, and heaps, and generate quantified

invariants, possibly with quantifier alternations, fully automatically. We believe that the

results will be highly original and ground-breaking, since the research we propose is the

only method for property generation based on consequence finding by symbol elimination

in first-order theorem provers.

2. Designing new techniques for constructing small Craig interpolants from proofs in full

first-order logic with theories, and derive interpolants over complex data types. Craig inter-

polants will be further used in the process of invariant generation and model checking. We

will develop efficient interpolation algorithms using symbol elimination in first-order theo-

rem proving and apply our interpolation algorithms both for first-order and SMT reasoning.

Our results will thus not be limited to reasoning in ground (that is, quantifier-free) theories,

but provide automated methods to derive interpolants in quantified first-order theories, such

as the theory of arrays, lists, pointers, and heaps.

3. Developing and implementing efficient reasoning methods with theories and quantifiers.

Further progress in program verification needs efficient methods and tools for analyzing

complex data structures, pointers and memory allocation. Reasoning with quantifiers and

theories is the main ingredient required for a major breakthrough making such analysis

feasible. We therefore expect that this research direction will significantly advance the use

of theorem provers in verification. In particular, we will focus on theory reasoning in first-

order superposition calculus and instantiation-based theorem proving, and design new ways

of cooperation between first-order provers and SMT solvers.

The proposed research directions will be accompanied by the development of the award-

winning first-order theorem prover Vampire, to which the PI of the project is actively contribu-

ting. In particular, we will implement new extensions of Vampire to support generating and

proving program properties. The new features of Vampire will be applied and evaluated on

academic and industrial programs, for the latter we have informal agreements about collabora-

tion with verification teams at Microsoft Research and Intel.

We expect our project to have a deep and long-lasting impact in reasoning-based formal ve-

rification, yielding novel methods and scientific breakthroughs in using symbol elimination for

software verification. The timeliness of the proposed research is witnessed by the growing aca-

demic and industrial interest in formal verification, which is due to availability of very powerful

tools and methods based on previous research in the area.

2. Survey of the Field

We overview the state-of-the-art in invariant generation, interpolation, and reasoning in first-

order theories. We give key references to existing methods and discuss the novel features of our

project in relation to these methods. Due to the page limit, we do not discuss the wide range of

tools in this area.

2.1 Quantified Invariant Generation. Invariants with quantifiers are important for the verifica-

tion of programs over non-numeric data structures, such as arrays, due to the unbounded nature

of array structures. Such invariants can express relationships among array elements and proper-

ties involving arrays and scalar variables of the loop, and thus significantly ease the verification

task. Automated discovery of array invariants is therefore a challenging topic.

In [36, 10] loop invariants are inferred by predicate abstraction over a set of a priori defined

predicates, while [13] employs constraint solving over invariant templates. A different approach

2



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

is given in [33], where input predicates in conjunction with interpolation are deployed to com-

pute invariants. Unlike these techniques, in [30] we described a framework for automatically

inferring array invariants without any user guidance, by introducing the symbol elimination

method in first-order theorem proving. User guidance is also not required in [14, 4], but invari-

ants are derived by abstract interpretation over array indexes [14] and array segments [4]. How-

ever, these approaches can only infer universally quantified invariants. Our approach in [30]

is fundamentally different from the afore-cited techniques. The use of symbol elimination in

quantified first-order theories has not yet been addressed by other methods. Based on our pre-

vious work [30, 20], we will provide an automatic method for generating quantified invariants,

including those with quantifier alternations, which cannot be handled by other techniques.

2.2 Interpolation in Formal Verification. Interpolation [5] is an important technique in verifi-

cation and static analysis of programs, in particular in invariant generation and bounded model

checking, see e.g. [23, 33]. The key ingredient of theorem proving based interpolation is the

notion of a so-called local proof, since local proofs admit efficient interpolation algorithms –

see [32] and our work [31].

There are several interpolant generation algorithms for various theories. For example,

[23, 3] derive interpolants from resolution proofs in the ground theory of linear arithmetic and

uninterpreted functions. The approach described in [35] generates ground interpolants in the

combined theory of arithmetic and uninterpreted functions using constraint solving techniques

over an a priori defined interpolant template. The method presented in [33] computes quantified

interpolants from first-order resolution proofs over scalars, arrays and uninterpreted functions.

Craig interpolation has recently been generalized to so-called tree interpolants for their use in

concurrent [11] and recursive [15] programs. Results of [12] can however be applied only for

interpolation in the quantifier-free theory of uninterpreted functions and linear arithmetic. In

contrast to these techniques, in [31] we gave an algorithm for interpolant extraction from lo-

cal proofs in any sound calculus, including calculi for various theories, such as arithmetic or a

theory of arrays. Thus, our interpolation method in [31] is not limited to decidable theories for

which interpolation algorithms are known. However, a consequence of this generality is that,

unlike [23, 3, 35, 11, 15], in [31] we do not guarantee finding interpolants even for decidable

theories or for theories where interpolants are known to exist. In [22] we addressed qualitative

aspects of interpolation, and gave a general framework to minimize interpolants wrt their size

and number of quantifiers. Our work in [22] was the first method providing a flexibility in com-

puting interpolants of different strength and structure.

2.3 Reasoning with Theories and Quantifiers. For reasoning about properties involving both

quantifiers and theories, SMT solvers and first-order theorem provers are complementary. SMT

solvers, see e.g. Z3 [7] and Yices [8], are powerful when it comes to proving formulas without

quantifiers in combinations of common first-order theories such as linear arithmetic, arrays and

uninterpreted functions, but are inefficient for reasoning in full first-order logic. On the contrary,

first-order theorem provers, see e.g. Vampire [19, 21] and iProver [26] are very efficient in

working with quantifiers, but have essentially no support for theory reasoning.

Combining first-order proving and theory reasoning is very hard. For example, some simple

fragments of combining first-order reasoning with linear arithmetic are already Π1
1-complete

[27]. Most of the modern systems are based on two approaches to such reasoning: trigger-based

(heuristic) ground instantiation of quantified axioms in SMT solvers [7, 8] and (incomplete)

axiomatization of theories in first-order provers [30, 20]. A tighter integration is described in

[6, 1]. Motivated by our previous results using Vampire [30, 20], we will investigate how to

integrate theory reasoning with superposition-based first-order theorem proving and implement

our results in Vampire. We believe that our project will enable solving problems beyond the

reach of other methods.

3



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

3. Project Description

3.1 Methodology. To formally verify computer programs means to apply mathematical argu-

ments to prove the correctness of systems. Since systems have bugs, formal verifications aims

at finding and correcting such bugs. There are theoretical results showing undecidability of al-

most every problem related to program correctness, in particular to reason and prove properties

about the logically complex part of the code characterized by (nested) loops and recursion.

The practice of designing new tools supporting the verification of program with loops meets

very hard everyday challenges, and faces the problem of generating and reasoning about loop

properties, in particular loop invariants. Providing loop properties manually requires a con-

siderable amount of work by highly qualified personnel and thus often makes verification pro-

hibitively expensive. Therefore, generation of program properties without user-provided anno-

tations is invaluable in making program analysis and verification economically feasible.

In our project we will focus on developing methods for the automated synthesis of loop

properties of complex programs with unbounded data structures, such as arrays, lists, pointers,

and heaps. First, we will focus on the generation of loop invariants. Next, as Craig interpolation

provides an alternative way to reason about loop invariants, we will compute interpolants and

use them further in invariant synthesis. Finally, as loop properties over unbounded data types

involve quantifiers and theory symbols, we will address reasoning in full first-order (FO) logic

with theories. The common method of our project is the symbol elimination method, introduced

by ourselves in [30].

In a nutshell, symbol elimination is based on the following ideas. Suppose we have a pro-

gram P with a set of variables V . The set V defines the language of P . We extend the language

of P to a richer language V + by adding functions and predicates, such as loop counters. Af-

ter that, we automatically generate a set Π of FO properties of the program in the extended

language V +, by using techniques from symbolic computation and theorem proving. These

properties are valid properties of the program, however they use the extended language V +.

Then we derive from Π program properties in the original language P , thus “eliminating” the

symbols in V + \ V .

The distinctive feature of the symbol elimination method is its power to automatically gen-

erate, with no user guidance, statements expressing complex computer program properties, in-

cluding those with quantifier alternations. The method uses, in a new way, the power of a

superposition-based FO theorem prover and symbolic computation to derive program proper-

ties that hold at intermediate points of the program. Such properties are crucial to ensure the

safety of computer systems.

To illustrate the need of quantified loop properties,

a := 0; b := 0; c := 0;

while (a ≤ k) do

if A[a] ≥ 0
then B[b] := A[a];b := b+ 1;

else C[c] := A[a];c := c+ 1;

a := a+ 1;

end do

Figure 1: Array partition.

consider the program given in Figure 1, written in a C-

like syntax. The program fills an array B with the non-

negative values of a source array A, and an array C with

the negative values of A. It is not hard to derive that at

after any iteration n of this loop (assuming 0 ≤ n ≤ k),

the linear invariant relation a = b+c holds. For example,

this property can be derived by the methods of [34, 29].

However, such a property does not give us much infor-

mation about the arrays A, B, C and their relationships.

For example, one may want to derive the following properties of the loop (n denotes the loop

counter):

1. Each of B[0], . . . , B[b− 1] is non-negative and equal to one of A[0], . . . , A[a− 1]. Formu-

lating this property in FO logic, yields the loop invariant:

(∀p)(0 ≤ p < n =⇒ B[p] ≥ 0 ∧ (∃k)(0 ≤ k < a ∧ A[k] = B[p])).

4



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

2. For every p ≥ b, the value of B[p] is equal to its initial value. Writing it in FO logic, this

loop invariant is:
(∀p)(p ≥ b =⇒ B[p] = B0[p]),

where B0 denotes the value of B before the first iteration of the loop.

These loop properties in fact describe much of the intended function of the loop and can

be used to verify properties of programs manipulating arrays in which this loop is embedded.

Note however that the first invariant, when formulated in first-order logic, requires quantifier

alternations, whereas the second property involves only universal quantification. Generating

such properties requires reasoning in full FO logic with theories, in our example in the FO

theory of arrays and integers.

This proposal addresses the quest of generating such quantified program properties. We aim

at improving our symbol elimination method for generating quantified loop invariants and in-

terpolants for programs with complex flow and unbounded data structures, such as arrays, lists,

pointers, and heaps. As reasoning about such programs requires reasoning with both theories

and quantifiers, our project will also address proving in FO logic with quantified theories. Our

project will thus be structured in three working packages (WP):

(WP 1). Inferring quantified invariants in theories with unbounded data types;

(WP 2). Generating quantified interpolants from proofs in such theories;

(WP 3). Efficient reasoning with theories and quantifiers.

These work packages are strongly related and depend on each others’ results. For example,

properties generated in (WP1) and (WP2) will be used for testing (WP3), and any development

in (WP3) will improve the results of (WP1)-(WP2). In what follows, we describe the proposed

research for each work package, along with their deliverables and milestones.

WP1. Quantified Loop Invariant Generation. In (WP1) we plan to address the following five

aspects of symbol elimination:

(WP1.1) We will first design various FO theories of data types. For doing so, auxiliary predi-

cates expressing properties over the content of arrays, lists, pointers, and heaps will be added.

Reasoning in FO theories of such unbounded data types will be necessary for extending symbol

elimination to derive quantified invariants. (WP1.1) will use results of (WP3) and help (WP3)

by providing hard benchmarks for reasoning with quantifiers and theories under study.

(WP1.2) We will extend symbol elimination with generation of various classes of clause sets

with eliminated symbols. One interesting extension comes with inferring a minimized set of

invariants to avoid redundant clauses that imply each other.

(WP1.3) Further development of symbol elimination will also require analyzing programs with

nested loops and complex arithmetic followed by or interleaved with theorem proving and sym-

bolic computation. For such analysis, we will apply advanced recurrence solving techniques

from [29] together with the FO interpolation results of (WP2), as well as with the best existing

static analysis methods and tools, for example [36, 14, 4].

(WP1.4) An open challenge of (WP1) is to show when symbol elimination is (or can be made) a

complete approach for invariant generation. By completeness we mean that if a program has a

quantified invariant of a certain form, our approach will find invariants implying them. We will

also generalize (WP2) to generate interpolants from which inductive invariants are inferred.

(WP1.5) We will extend Vampire to analyze complex programs over various data types, and

generate invariants using symbol elimination. Our methods will be tested on benchmarks, in-

cluding large industrial examples coming from Intel and Microsoft (see our collaboration list).

Milestones and Deliverables:

• first-order theories of data types;

5



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

• new and complete invariant generation methods in such theories using symbol elimination;

• a first-order theorem prover with invariant generation;

• case studies of invariant generation for large programs.

WP2. Generating Quantified Interpolants. (WP2) will be structured on the following five

applications of symbol elimination:

(WP2.1) We will use symbol elimination in FO theorem proving and design new methods to

extract interpolants from arbitrary FO superposition proofs. In particular, we will address

interpolation in FO non-local proofs.

(WP2.2) Using the theorem proving engine of (WP3), we will design efficient superposition

algorithms for generating interpolants in the combination of various FO theories, such as arith-

metic, unbounded data structures and uninterpreted function symbols. Various methods of min-

imizing interpolants will also be studied, possibly based on proof transformations.

(WP2.3) We will use generalized Craig interpolants, called tree interpolants [11, 15], and com-

pute FO tree interpolants for concurrent programs.

(WP2.4) We will extend Vampire with efficient interpolation algorithms for complex programs,

and make Vampire work together with model checkers, such as CPAChecker [2]. Our results

will be evaluated on various benchmarks, including examples coming Intel and Microsoft (see

our collaboration list).

(WP2.5) A the quality of interpolation algorithms can only be evaluated in the context of prac-

tical software verification, our results will be integrated in concrete verification tools. We will

experiment how the quality of minimized interpolants effects the efficiency of interpolation-

based verification methods, in particular invariant generation, as discussed in (WP1).

Milestones and Deliverables:

• new methods of interpolation in FO theories using symbol elimination;

• an interpolating theorem prover for first-order formulas with data types;

• integration into model checking based verification tools;

• case studies of interpolation on concrete programs of industrial relevance.

WP3. Efficient Reasoning with Theories and Quantifiers. (WP3) will consist of the follow-

ing four research directions:

(WP3.1) We will first add existing SMT algorithms for the theory of integers, reals and arrays

to Vampire, study theory behavior and understand the best ways of using them within a FO

theorem prover. After that we are interested in new, less understood, theories, such as those of

pointers, queues and heaps.

(WP3.2) We will next extend FO theorem provers with sound but incomplete theory axioma-

tizations. In particular, using testcases from (WP1) and (WP2), we will study necessary and

sufficient sets of theory axioms from which interesting program properties can be derived in

extensions of the superposition calculus. We will need to understand what are the best simplifi-

cation rules, literal selections, variable orderings and maybe also add some theory rules.

(WP3.3) We will address the instantiation based theorem proving framework of [9, 26], and

use (WP3.1) for proving ground instanced of a FO problem. Proofs produced by (WP3.1)

will be analyzed with the purpose of generating proof certificates. The proof certificates will

be propagated back to the FO theorem prover, and new ground instances will be generated.

However, understanding what parts of the proof are relevant is a non-trivial task, and requires a

deeper understanding of how the SMT engine and the FO prover can work together.

(WP3.4) Our work will be based on empirically driven development of methods, resulting in

improvements in algorithms and their use and combination in Vampire. These improvements

will be evaluated on examples coming from (WP1) and (WP2), as well on industrial benchmarks

coming from Microsoft and Intel (see our collaboration list).

Milestones and Deliverables:
6



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

• theory reasoning in superposition calculus;

• theory reasoning in instantiation-based theorem proving;

• new reasoning methods combining first-order provers and SMT solvers;

• case studies on academic and industrial examples.

3.2. Timetable and Organization. The project will last 5 years and will be led by Laura

Kovács (PI). The work will be carried out by the PI and a PhD student under her supervision.

There will be weekly project meetings to exchange ideas and discuss the progress.

The work plan of the project
Work Package Year1 Year2 Year3 Year4 Year5

WP1 X X X

WP2 X X X

WP3 X X X X X

Figure 2: The GenPro Work Plan.

is illustrated in Table 2 and is is

designed according to the depen-

dencies among WPs. (WP1) and

(WP2) crucially depend on (WP3),

and therefore work in (WP3) is

planned during the entire phase

of the project. The work on (WP1) will start already in year 1, yielding results that can im-

prove the research of (WP2) in year 2. Results of all WPs will be joined and tested in year 3 of

the project, identifying this way the essential research directions for years 4 and 5. The working

plan in years 4 and 5 is similar as in years 1 and 2.

Our results will be disseminated as follows. We will publish articles in leading journals and

conferences. We will develop the world-leading theorem prover Vampire. We will participate

in tool competitions in the area. We will al organize workshops and tutorials at top international

conferences, and scientific seminars at Chalmers.

4. Significance

Analyzing and verifying large computer programs requires non-trivial automation. Automatic

generation and proving program properties is a key step to such an automation. Reasoning about

program properties becomes an especially challenging task for programs with complex flow

and, in particular, with loops. Further progress in reasoning about software therefore crucially

depends on the existence of efficient methods and tools analyzing programs with nested loops

and complex data structures. Our project addresses this challenge, and brings new non-standard

approaches to generate and prove program properties via symbol elimination in first-order theo-

rem proving. Our project will give unique, novel and significant contributions for the following

reasons:

• Symbol elimination offers a fully automatic framework to generate invariants with arbitrary

quantifier alternations, without using user/provided templates and annotations. By extending

the application of symbol elimination to more complex programs and unbounded data types,

our project will automatically infer properties that cannot be generated by other approaches.

• Generating quantified loop invariants using theorem provers is a new research area, initiated

by our work in [30] over programs with integers and arrays. No technique is known to infer

invariants over other data structures or theories by using theorem proving.

• Interpolation was mainly studied and implemented in the context of quantifier-free theories,

see e.g. [23, 3, 11]. Our results will however target interpolation in fist-order theories, and

will not limited to decidable theories. That is, results of our project can even be applied to

theories for which no interpolation algorithms are known.

• We will design and implement efficient methods combining superposition theorem proving

and SMT reasoning. We expect that our methods will be as efficient as first-order provers

in reasoning with quantifiers and as efficient as SMT solvers in ground theory reasoning,

solving thus some problems that are beyond the scope of existing technologies.

7



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

The proposed research for a PhD student is in the rapidly developing area of formal verifi-

cation. This area attracts a lot of interest in industry, which means that successful PhD students

can be employed by industry and/or apply their results in an industrial setting. The project will

use and design rigorous techniques in computer science (formal methods), mathematics (com-

binatorics and computer algebra), and logic (reasoning and decision procedures), to support

systems engineering methods and tools. Our project will thus also encourage interactions with

mathematicians, logicians, and computer scientists.

5. Preliminary Results

Our work [30] on symbol elimination in theorem proving resulted in the first ever method to

generate complex loop invariants with quantifier alternations. Symbol elimination, unlike other

known methods, is completely automatic and requires no annotation or patterns. When applying

symbol elimination on industrial safety-critical applications, in [20] we have shown that the loop

properties obtained by symbol elimination could replace human-produced annotations in over

80% of test cases. The impact of symbol elimination method in formal verification is witnessed

by the number of citations of our 2009 paper [30]: 63 international citations since 2009.

Since recent results on Craig interpolation provide an alternative approach to invariant gen-

eration, we extended symbol elimination to interpolation and gave a new algorithm for building

interpolants from first-order local proofs [31]. Further, we designed a new method for com-

puting small interpolants [22], by considering proof transformations and encoding the inter-

polant minimization problem as a pseudo-boolean optimization problem. The evaluation of our

method on bounded model checking examples shows that minimization considerably decreases

the interpolant size [18].

We also investigated the use of symbol elimination in symbolic computation and gave a

complete algorithm for generating all polynomial invariants, by using symbol elimination in

Gröbner basis computation [29]. In addition, when extending symbol elimination to quantifier

elimination methods, our results in [16] gave an automated approach to derive linear inequality

invariants. Interestingly, the application of symbol elimination in symbolic computation turned

out to be a useful method for the timing analysis of real-time system [24].

On the implementation side, we made the Vampire theorem prover into an interpolating

first-order prover with invariant generation [19, 21]. The PI of this project started her work on

Vampire in August 2008. As a result of the PIs involvement in the development of Vampire,

starting from 2009 the number of Vampire users has significantly increased. For example, in

2010–2011 Vampire was downloaded more than 1,000 times (counting only real downloads,

with verified email addresses), that is, over 10 times a week.

We also designed the symbolic computation engine Aligator to derive polynomial invari-

ants [28, 17]. Our work in using symbol elimination for the timing analysis of software has

materialized in the r-TuBound software package [25].

Summarizing, I believe that my preliminary results of symbol elimination in formal verifi-

cation provide a solid background for further progress in the area, addressing the challenge of

reasoning about software with complex flow and various data types. My academic contribution

and my experience in developing reasoning-based verification methods and tools enables me to

make significant developments in both theory and implementation and ensures that the project

successfully meets its scientific goals.

6. National and International Collaborations

We plan to collaborate with well-known researchers in the area, as listed below.

Chalmers. Starting with April 2013, I have joined Chalmers as an associate professor. My ap-

pointment to Chalmers was made with a purpose of building a competitive research group in for-

mal methods and strengthen Chalmers’ research expertise and international scientific competi-

tiveness in formal verification. Topics of the current project are in the center of interest of several

8



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

researchers at Chalmers, including top scientists such as Prof. Wolfgang Ahrendt, Prof. Koen

Claessen, Dr. Moa Johansson, Prof. Andrei Sabelfeld, and Prof. Geraldo Schneider. Our project

will thus encourage cross-institutional collaboration at Chalmers and will benefit from the re-

search expertise and the infrastructure of the department. To be more precise, our collaboration

plans include the following actions: collaboration with Prof. Ahrendt and Prof. Schneider on

invariant generation and verification tools (WP1)-(WP2), joint work with Prof. Claessen and

Dr. Johansson on theorem proving (WP3), and collaboration with Prof. Sabelfeld on reasoning

about properties over concurrent data structures such as queues and heaps (WP1).

Austrian RiSE. Together with 8 other researchers, I am a founding member of the Austrian

Society for Rigorous Systems Engineering (ARiSE). The current project naturally targets col-

laboration with the other members of ARiSE, in particular with Prof. Thomas A. Henzinger

(IST Austria) and Prof. Helmut Veith (TU Vienna) on (WP1) and (WP2); and with Prof. Armin

Biere (JKU Linz) on (WP3).

The University of Manchester, UK. Our main results on symbol elimination in first-order

theorem proving and Vampire were obtained in collaboration with Prof. Andrei Voronkov at the

University of Manchester. We are keen to continue this collaboration on all parts of the project

– (WP1), (WP2), and (WP3). Joint work is also scheduled during the entire development of

Vampire. The collaboration between the PI and Prof. Voronkov has started in 2008, yielding

several joint publications that are of direct relevance to the proposed project.

Industrial Collaborators. We propose joint work with Dr. Nikolaj Bjørner from Microsoft

Research, US on (WP1) and (WP3), as well as with Dr. Zurab Khasidashvili from Intel Haifa

on (WP1). Industrial examples coming from Microsoft and Intel will be used to evaluate the

results of our project. The PI has recently visited Microsoft Research Redmond in February

2013 with the aim of starting deeper collaboration and joint work. The PI already consulted

Intel in December 2010, and has recently restarted her consulting activities with Intel.

7. Other Grants

I have joined Chalmers as an associate professor in April 2013. The current application is

my first VR proposal, and I do not apply for other VR grants. The VR grant would make it

possible for me to start my own independent research group in formal methods at Chalmers. The

VR grant would also provide me the opportunity to integrate myself in the Swedish scientific

community.

Literature

[1] L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational Theorem Proving for Hierar-

chic First-Order Theories. Appl. Algebra Eng. Commun. Comput., 5:193–212, 1994.
[2] D. Beyer and M. E. Keremoglu. CPAchecker: A Tool for Configurable Software Verifica-

tion. In Proc. of CAV, pages 184–190, 2011.
[3] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant Generation in Satisfiability

Modulo Theories. In Proc. of TACAS, pages 397–412, 2008.
[4] P. Cousot, R. Cousot, and F. Logozzo. A Parametric Segmentation Functor for Fully

Automatic and Scalable Array Content Analysis. In Proc. of POPL, pages 105–118, 2011.
[5] W. Craig. Three uses of the Herbrand-Gentzen Theorem in Relating Model Theory and

Proof Theory. J. Symbolic Logic, 22(3):269–285, 1957.
[6] L. de Moura and N. Bjørner. Engineering DPLL(T) + Saturation. In Proc. IJCAR, pages

475–490, 2008.
[7] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In Proc. of TACAS, pages

337–340, 2008.
[8] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In Proc. of

CAV, pages 81–94, 2006.
[9] H. Ganzinger and K. Korovin. Theory Instantiation. In Prof. of LPAR, pages 497–511,

2006.

9



GenPro: Generating and Proving Program Properties via Symbol Elimination Laura Kovács

[10] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting Abstract Interpreters to Quantified

Logical Domains. In Proc. of POPL, pages 235–246, 2008.
[11] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate Abstraction and Refinement for

Verifying Multi-Threaded Programs. In Proc. of POPL, pages 331–344, 2011.
[12] A. Gupta, C. Popeea, and A. Rybalchenko. Solving Recursion-Free Horn Clauses over

LI+UIF. In APLAS, pages 188–203, 2011.
[13] A. Gupta and A. Rybalchenko. InvGen: An Efficient Invariant Generator. In Proc. of CAV,

pages 634–640, 2009.
[14] N. Halbwachs and M. Peron. Discovering Properties about Arrays in Simple Programs.

In Proc. of PLDI, pages 339–348, 2008.
[15] M. Heizmann, J. Hoenicke, and A. Podelski. Nested Interpolants. In Proc. of POPL, pages

471–482, 2010.
[16] T. Henzinger, T. Hottelier, and L. Kovács. Valigator: A Verification Tool with Bound and

Invariant Generation. In Proc. of LPAR, LNCS, pages 333–342, 2008.
[17] T. Henzinger, T. Hottelier, L. Kovács, and A. Rybalchenko. Aligators for Arrays (Tool

Paper). In Proc. of LPAR, pages 348–356, 2010.
[18] K. Hoder, A. Holzer, L. Kovács, and A. Voronkov. Vinter: A Vampire-Based Tool for

Interpolation. In Proc. of APLAS, 2012. To appear.
[19] K. Hoder, L. Kovács, and A. Voronkov. Interpolation and Symbol Elimination in Vampire.

In Proc. of IJCAR, pages 188–195, 2010.
[20] K. Hoder, L. Kovács, and A. Voronkov. Case Studies on Invariant Generation Using a

Saturation Theorem Prover. In Proc. of MICAI, pages 1–15, 2011.
[21] K. Hoder, L. Kovács, and A. Voronkov. Invariant Generation in Vampire. In Proc. of

TACAS, 2011.
[22] K. Hoder, L. Kovács, and A. Voronkov. Playing in the Grey Area of Proofs. In Proc. of

POPL, pages 259–272, 2012.
[23] R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate Refine-

ment. In Proc. of TACAS, pages 459–473, 2006.
[24] J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic Loop Bound Computation for WCET

Analysis. In Proc. of PSI, pages 224–239, 2011.
[25] J. Knoop, L. Kovács, and J. Zwirchmayr. r-TuBound: Loop Bounds for WCET Analysis

(Tool Paper). In Proc. of LPAR, pages 435–444, 2012.
[26] K. Korovin. iProver - An Instantiation-based Theorem Prover for First-order Logic. In

Proc. of IJCAR, pages 292–298, 2008.
[27] K. Korovin and A. Voronkov. Integrating Linear Arithmetic into Superposition Calculus.

In Proc. of CSL, pages 223–237, 2007.
[28] L. Kovács. Aligator: A Mathematica Package for Invariant Generation. In Proc. of IJCAR,

pages 275–282, 2008.
[29] L. Kovács. Reasoning Algebraically About P-Solvable Loops. In Proc. of TACAS, pages

249–264, 2008.
[30] L. Kovács and A. Voronkov. Finding Loop Invariants for Programs over Arrays Using a

Theorem Prover. In Proc. of FASE, pages 470–485, 2009.
[31] L. Kovács and A. Voronkov. Interpolation and Symbol Elimination. In Proc. of CADE,

pages 199–213, 2009.
[32] K. L. McMillan. An Interpolating Theorem Prover. In Proc. of TACAS, pages 16–30,

2004.
[33] K. L. McMillan. Quantified Invariant Generation Using an Interpolating Saturation Prover.

In Proc. of TACAS, pages 413–427, 2008.
[34] A. Mine. The Octagon Abstract Domain. In Proc. of RE, pages 310–319, 2001.
[35] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for Interpolation. In

Proc. of VMCAI, pages 346–362, 2007.
[36] S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate Ab-

straction. In Proc. of PLDI, pages 223–234, 2009.

10


