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Appendix A – Research Program

StaRVOOrS:
Unified Static and Runtime Verification

of Object-Oriented Software

1 Purpose and Aims

Nowadays, we witness a significant quest from software industry for lightweight formal
methods. By that, we mean methods which achieve a high degree of confidence in desired
(sub-)system properties, while satisfying high demands on usability and automation. The
reasons for the increased interest, in the software area, for formal methods in general are
the following, parallel developments:
• Model driven development. There is an ever more dominant role of models in the

software development process. Well defined graphical or textual notations are used
to achieve unified documentation, semi-automated code generation, simulation, and
to some extent analysis. As compared to traditional development methods, the gap
to artifacts used for formal specification and verification is much closer here.
• Automated software engineering. Related to the above, there is a trend to (partly)

automate ever more steps in the development cycle. As a side effect, it becomes
more natural for developers to invest into meta-level artifacts.
• Exploding complexity of embedded software. Both the number and size of software

units embedded into mechanical or electr(on)ical environments is increasing dra-
matically. The demands on the safety of such units is typically extremely high.
• Software standards and certification. In specific domains (e.g., avionics, car, med-

ical), standards for architecture, interfaces, and processes are becoming very im-
portant. Their aim is to improve interoperability and quality assurance. Safety
critical certification regimes, such as for the avionics domain ED-12B/DO-178B (for
Europe/USA), have contributed to unparalleled safety in their respective domains.
As late as Dec. 2011, the new versions ED-12C/DO-178C were approved, now con-
taining a dedicated ‘Formal Methods’ supplement.1

• Application focus of program verification. Fundamental concepts of program verifi-
cation have been around for decades, but only lately have arisen many techniques
that are tailored to widely used languages and platforms.
• Increased efficiency of program verification. Verification technology has become a

lot more efficient, and automation has increased significantly.
In spite of the above, academic and industrial R&D in software verification is in danger

of not fulfilling the—now high—expectations they are facing from industry. Even if static
verification of software has become more relevant, effective, and efficient as compared
to earlier days, the community has a hard time overcoming certain inherent limitations.
Certain static verification techniques have high precision, in which case powerful judge-
ments are still too hard to achieve automatically. Other static verification techniques use
abstractions to enable increased automation, in which case important, or even critical,
aspects of the real, concrete system are easily missed, not to speak of the fundamental
difficulty of crafting the right abstraction.

In reaction to this, there is a recent trend towards more lightweight formal methods,
which are easier to exploit but give limited guarantees. One such lightweight method is

1Another supplement of ED-12C/DO-178C is ‘Object-Oriented Technology’, which demonstrates the
growing role of object-orientation in safety critical domains.
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runtime verification. As compared to static verification, it has complementary strengths
and weaknesses. Runtime verification combines full precision of the execution model (even
including the real deployment environment) with full automation. On the other hand, it
only ever judges the observed runs, and cannot judge alternative and future runs. Another
drawback of runtime verification is the computational overhead of monitoring the running
system which, although typically not very high, can still be prohibitive in certain settings.

The overall purpose of the StaRVOOrS project (‘Unified Static and Runtime Verifi-
cation of Object-Oriented Software’) is to provide a unified, lightweight to use but powerful
in result, method for specifying and verifying, with a variety of confidence levels, properties
of parallel object-oriented software systems.

The specific goals of StaRVOOrS are:
1. To combine the strengths of static and runtime verification into a verification method

that is easier to use than static methods, while providing a higher level of confidence
and a lower application slow down than runtime verification.

2. To let both of the underlying verification techniques (static and runtime) profit to
a great extent from the analysis performed by the respective other.

3. To develop techniques which also allow exploiting partial results, like unfinished
proofs, to strengthen the result of the unified verification method.

4. To provide a unified framework for specifying desired properties of the system to
be verified. The user will not have to separate (sub-)properties that are subject to
static vs. runtime verification during the process.

5. To support the combination of data centric and control centric properties, including
real time constraints.

6. To provide a verification solution for sequential, concurrent, and distributed object-
oriented applications.

7. To implement a powerful, integrated tool that achieves the aforementioned goals for
Java applications in particular.

2 Survey of the Field

Because the combination of static verification and runtime verification is a central part
of this project, we briefly summarise here the state-of-the-art of both areas. In addition,
we discuss contemporary work on combining static and dynamic techniques.

2.1 Static Verification of Software

Static software verification is a formal technique for reasoning about properties of all
possible runs of a program. There are basically two families of approaches, deductive
verification and model checking.

Deductive program verification has been around for nearly 40 years [41], however, a
number of developments during the last decade brought dramatic changes to how deduc-
tive verification is being perceived and used.
• The era of verification of individual algorithms written in academic languages is

over: contemporary verification tools support commercial programming languages
such as Java [22, 31, 13] or C# [11] and they are ready to deal with industrial
applications [39, 45, 46, 38].
• Earlier, deductive verification tools used to be stand-alone applications that were

usable effectively only after years of academic training. Nowadays, one can see a
new tool generation that can be used after limited investment in training [1], and
that is integrated into modern IDEs [11, 13]. However, full automation is still rarely
achieved when verifying functional properties of programs with loops, for instance.
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• Perhaps the most striking trend is that deductive verification is emerging as a base
technology. It is not only employed for correctness proofs, but in automatic test
generation [21, 35, 32], and bug finding [37].

Among the state of the art efforts is the KeY tool [2], co-developed by the main
applicant. It differs from other projects in its close to complete coverage of the Java
programming language [12]. In contrast to verifiers based on higher order logics, the
prover of the KeY system provides a state-of-the-art user interface, high automation, and
an easy mechanism for extending its rule base.

Apart from deductive verification, model checking has been applied extensively and
successfully for the static verification of both hardware and software systems. The adapta-
tion of this technique to object-oriented software is progressing but still in an early stage.
The static verification side of StaRVOOrS will focus on deductive techniques rather than
model checking. The reason is that deductive techniques are better suited for fully precise
reasoning, whereas model checking normally requires abstractions. This is an advantage
when connecting to run-time verification, where abstracting from the real data and exe-
cution model is neither necessary nor desirable.

2.2 Runtime Verification of Software

Runtime verification (RV) is a technique for monitoring the execution of a software sys-
tem, detecting violations as they appear at runtime. In recent years researchers have
implemented RV monitoring tools which usually compile high-level (temporal) properties
into monitor implementations (e.g., [23, 40, 29, 30, 8, 27]). There are two main concerns
when defining and using RV. First of all, in order to minimise the possibility of erring, it is
desirable that monitors are automatically synthesised from formally specified properties.
Secondly, though a minimal runtime overhead is acceptable, it is desirable to reduce them
as much as possible.

The above concerns are obviously interdependent: properties should be written in a
formal language that is expressive enough as to represent meaningful properties, but not
too much as to avoid efficient monitoring.

Different solutions based on optimisations have been presented to alleviate the over-
head problem ([15, 16]). Further approaches aim at obtaining small monitors by construc-
tion [44], or use some kind of overhead guarantee, as proposed in [25]. However, there is
still need to improve runtime monitoring techniques as motivated by the development of
specific techniques to improve monitor efficiency [20].

In the following, we give a brief overview over state-of-the-art runtime monitoring tools
developed in recent years, without claiming completeness. ConSpec [6] inlines a runtime
monitor into applications on mobile devices based on observed contract violations. Java-
MOP [23] is a monitoring-oriented development environment where parts of the system’s
functionality are designed as monitor-triggered code. Java-MaC [40] enables automatic
instrumentation to have access to system events. Higher-level activities are processed
by the runtime checker to raise an alarm if any of the specified properties are violated.
Eagle [34] is a runtime verification tool supporting future and past time logics, interval
logics, extended regular expressions, state machines, real-time and data constraints and
statistics. Lola [30] guarantees bounded memory to perform online monitoring, and differs
from most other synchronous languages in that it is able to refer to future values in a
stream. Tracematches [8] is an extension to AspectJ allowing the specification of trace
patterns, also supporting parametrisation of events. This work has been extended in [17]
to improve efficiency by making a temporal and spatial partitioning among collaborative
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users.
Finally, LARVA [27], co-developed by the co-applicant, is a tool tailored to verify un-

timed and real-time properties of Java programs. Properties can be expressed in a number
of notations, including timed-automata enriched with stopwatches (DATEs), Lustre, and
a subset of the duration calculus. The tool has been successfully used on a number of
case-studies, including an industrial system handling financial transactions. LARVA also
performs analysis of real-time properties, and whenever possible to calculate an upper-
bound on the memory and temporal overheads induced by monitoring.

2.3 Combining static and dynamic techniques

The combination of different verification techniques in order to get the best from each, is
not new. In particular there have been some successful stories combining different static
analysis techniques. This is the case for instance of the SLAM project [10] where symbolic
model checking, program analysis and theorem proving are combined on a novel fashion
to verify drivers written in C. Another example is InVeSt [14] integrating algorithmic and
deductive verification techniques, using abstraction, to verify invariance properties.

In recent years there has been work combining static analysis (other than verification)
and runtime verification in different ways. We mention a few of such works below and we
discuss the main differences with our approach. Arhto and Biere describes an architecture
based on JNuke where Java programs can be statically and dynamically analysed [9]. In
this framework, a static analyser tries to detect faults which are manually checked by a
user who writes test cases for each fault found. The program is then run many times
against those test cases confirming, or not confirming, the failure. In the latter case, a log
is kept for future runs of the static analyser. In [18] static analysis is used to improve the
performance of runtime monitoring based on tracematches. The paper presents a static
analysis to speed up trace matching by reducing the runtime instrumentation needed. The
static analysis part is based on 3 stages in order to: rule out some tracematches, eliminate
inconsistent instrumentation points, and finally further refine the analysis taking into
account certain execution order. In [19] Bodden et al present ahead-of-time techniques to
statically prove the absence of all program errors, or mark specific parts of the programs
where such errors are likely to occur at runtime. The approach is based on tracematches.

The main differences of our approach with the above works are the following. Unlike
[9] we are not concerned with testing faults found by a static analyser but to prove as
much as we can with a static verifier, and only the non-provable parts are verified during
the real execution of a program. Besides we do not extract test cases to test the system
but perform runtime verification. Like [18] we also aim at improving the efficiency of
runtime verification but our techniques are completely different. While Bodden et al use
static analysis we use deductive verification. This distinction is crucial as the kind of
properties we can prove is not the same. Moreover, what distinguishes our work from any
of the above (and other similar work) is that we provide a unified language for specifying
properties which may be used both for static and dynamic verification, and that our
combination is unique in the sense of combing deductive verification (not static analysis)
of Java programs (i.e., KeY) with timed runtime verification (i.e., LARVA).

Finally we would like to mention CLARA, a framework to statically optimise runtime
monitoring [20]. Note that CLARA is not about combining static analysis/verification and
runtime verification techniques to verify software, but rather about using static analysis
techniques to operate on the monitors themselves with the aim of improving performance.
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Figure 1: High-level description of the StaRVOOrS framework

3 Project Description

3.1 Research Group

The project will be performed by a research team consisting of the main applicant, Wolf-
gang Ahrendt (with 20% of full time), and the co-applicant Gerardo Schneider (with
10% of full time), plus a Ph.D. student (with 80% of full time). Wolfgang Ahrendt and
Gerardo Schneider come into the project with a strong background in static verification
(see [2] and Appendix B+C) and runtime verification (see [26] and Appendix B+C),
respectively. Note that, even if Ahrendt and Schneider are affiliated with different univer-
sities (Chalmers and the University of Gothenburg), they work at the same department,
Computer Science and Engineering, which is a joint department of both universities.

3.2 The StaRVOOrS framework

A visualisation of the proposed framework is depicted in Fig. 1. To keep that picture
simple, some elements are left out, and certain work units are hidden in simple arrows,
but we will explain that on the way.

The framework takes as input an object-oriented program P (just called P in the
following) and a specification of the desired properties of P. The working title for the
format of the specification is ppDATE, to be developed in the project. The format will
be designed for co-specifying data centric, control centric, and real time aspects of P, in a
unified way. Conceptually, ppDATE describes communicating automata with with event-
triggered transitions, timers, and functional unit specifications. Events are actions on
objects (foremost method calls), timer events, primitives for synchronising with different
automata, or a combination thereof. In addition, events are potentially augmented with
conditions, actions, plus logic based, data centric specifications of the pre-post behaviour
of the called method. In this way, ppDATE will be an extension of the DATE format [26]
with data centric, logic based pre/post specifications of methods, which is dominant in
specification languages like JML (Java Modeling Language [42, 43]). Other elements of
data centric specifications, like class invariants, will also be integrated.

The fact that Fig. 1 takes ppDATE as a starting point should not indicate that pp-
DATE is the final and only input format for scenarios where StaRVOOrS is used. In fact,
in a later phase of the project, we will investigate suitable front end formats for ppDATE,
with the goal to achieve highest usability and intuitive usage in an integrated development
process and environment. For instance such a front end format could potentially be closer
in spirit to JML, in the form of annotations to P itself, than to an explicit automata view.

The first step in the depicted workflow is the extraction of those parts of the specifica-
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tion that are in scope for being verified by the deductive verification unit. Here, we aim at
static program verification techniques targeting data-centric properties. In particular, the
verifier can attempt to prove the correctness of pre/post-conditions of methods, relative
to the methods’ implementations in P. In our own implementation of the StaRVOOrS,
the deductive verifier will be based on the KeY tool [2, 13], a state-of-the-art tool for Java
source code verification (see Sect. 2.1), co-developed by the main applicant. Accordingly,
the object-oriented language to be supported by our own implementation will be Java.

Deductive verification tools typically rely on user input to difficult proof steps, like
finding loop invariants. However, our framework is designed for fully automated usage
of the verifier. Therefore, not all prove attempts will lead to complete proofs. The
workflow makes use of both, complete and partial, proofs, when specialising the ppDATE
specification.

The purpose of the partial specification evaluator for ppDATE is to spare the runtime
verification (in the end of the workflow) from checking properties that were proved stat-
ically. For instance, post-conditions that were completely proved (relatively to a certain
method and pre-condition) do not need to be checked at runtime at all. The more inter-
esting question is how to still make use of the information contained in partial proofs for
the run-time verification phase. Here, the basic idea is to construct, from the open proof
goals, specialisations of the pre-condition to the cases where the post-condition could,
respectively could not, be proved. For instance, suppose the original ppDATE automaton

features a transition s
pre/m()/post−−−−−−−→ s′ (where pre and post are the pre- and post-condition

of calling method m). Suppose further the deductive verifier produces a partial, i.e., un-
finished proof for {pre}m(){post}. (We ignore s for simplicity.) Then, it is possible, by
analysis of the open proof goals, to construct two specialisations pre1 and pre2 of pre,
with pre1 ∧ pre2 ↔ pre, such that pre1 corresponds to the open and pre2 to the closed
proof branches, respectively, and {pre2}m(){post} is a consequence of the partial proof.
This can be used by the partial specification evaluator to replace s′ with two clones s′1

and s′2, and instead of the above transition have s
pre1 /m()/post−−−−−−−−→ s′1 and s

pre2 /m()/true−−−−−−−−→ s′2.
Thereby, during runtime verification, only the transition to s′1 will trigger a checking of
the postcondition post, but not the other transition, as post is ensured there statically.
This is just to give an impression of what can be done; there will be other usages of
(partially) proved results in the specialisation of the ppDATE automaton.

The monitor generator takes as main input the specialised specification, ppDATE’.
It actually not only generates a monitor, performing the very runtime checks, but also
aspects (in the sense of aspect-oriented programming) for triggering the runtime checks,
to be weaved into the application to be monitored. Our own implementation of the StaR-
VOOrS framework will partly be based on LARVA [26], a monitor generator for Java pro-
grams specified with the DATE format (see Sect. 2.2), co-developed by the co-applicant.
To current approach to automata based monitor generation needs to be extended, in the
project, to cope with those data centric parts of the specification that could not be (fully)
ensured statically. This is particularly true for postconditions as in most cases they in-
volve some kind of procedural checking (e.g., to check that an array is indeed sorted).
Here we will pursue alternative approaches, like dedicated nested automata (for checking
postconditions), and logic based runtime assertion checking of the kind done for JML
specifications [24], possibly using a hybrid of those techniques in the end.

Before weaving the generated aspects into the code to be monitored, further static
optimisations will be applied in the Static Monitoring Optimizer module, using, and ex-
panding on, recent results in the area of combining static analysis (other than verification)
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with runtime verification. In particular, CLARA [20] is a good candidate to base our static
monitor optimizer on (see Sec. 2.3). Note that the optimisations can also affect the mon-
itor itself giving the possibility to reduce its size and thus enhancing performance (this
part is not shown in Fig. 1).

The final step in the workflow is the actual runtime verification, which executes the
weaved program P’ in parallel with the resulting monitor. Suitable forms of reporting
and analysing the results of runtime verification, in certain cases including error recovery
mechanisms, are natural extensions of the framework. They will be addressed in the
project, without aiming at full generality, however. Rather, these issues are specific for
the demands of a deployment scenario and application area, and will be tailored for specific
deployments and case studies.

In addition to what is discussed above, a crosscutting concerns is the treatment of
real-time properties. On the runtime side, DATE and LARVA already support timers.
On the static verification side, there is recent research on loop bound analysis using a
combination of KeY and COSTA [7]. Yet, these two are very different aspects of real-
time. Within StaRVOOrS, we will develop a uniform way to specify real-time properties,
together with a combined static and runtime verification.

The project will also explore potentials of the framework outside the main workflow as
sketched above. One is the possibility of a feedback loop from the runtime verification to
the (static) deductive verifier. For instance, there is work on discovering likely invariants
by dynamic analysis [33] or testing [36], and StaRVOOrS could well be an ideal framework
for dynamic-to-static feedbacks of similar kind. Another issue is to broaden of our current
deductive test case generation approach [32] to control related aspects, like call-graph
related test coverage criteria.

Clearly, there are further research directions highly relevant in our context, but prob-
ably outside of the scope of the project we are applying for herewith. One such is is the
usage of both deductive verification and model checking on the static side. This is natural
as we are mixing data and control centric aspects in the unified specification language,
but it goes beyond what we commit to here.

3.3 Project plan

During the first year, we plan to develop a version of the syntax and semantics of the
language ppDATE which already features the combination of data and control centric
expressiveness. In parallel, as a motor for further developments, we will develop a pro-
totype of the static specification evaluator, performing, at first simple, transformations
triggered by input from the deductive verifier. The end of year two will see a prototypical
implementation of the entire framework (excluding yet the static monitoring optimiser),
not yet using static verification in all ways ever possible. In year three, the prototype will
be applied to a simple but realistic case study. Also, we will work on the static monitor-
ing optimiser, and examine deeper, further reaching exploitation of partial proofs in the
partial evaluator, including changes to the core deductive machinery itself. In year four,
more challenging case studies will be performed, and front end formats to ppDATE will
be studied. In parallel, the focus will turn to real-time properties. In year five, all of the
above will consolidate, and we will develop a solid integration into a common develop-
ment environment. In addition, the aforementioned dynamic-to-static feedback loop will
be explored, and the usage of the framework for test case generation.

3.4 Measures of Success

Our project will be successful if the following is achieved:
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1. A completed PhD thesis finished by the end of the project.
2. At least 5 papers published in high-level conferences, and at least 2 journal papers

submitted.
3. A complete, well defined, integrated specification language, with high usability, for

combined data centric, control centric, and real-time properties.
4. The fully developed, and implemented, StaRVOOrS framework.
5. Successful application of the framework to realistic case studies.

4 Significance

By achieving our goals we will be extending the state-of-the-art of the usage of lightweight
formal methods for software, in so far as a much higher degree of confidence in desired
system properties can be achieved, while still satisfying high demands on usability and
automation. This will enable a better adoption into industrial practise than contemporary
methods with a comparative level of achieved confidence, in particular in the growing
segment of safety critical software production and certification.

5 Preliminary Results by the Applicants

Wolfgang Ahrendt has a strong record in deductive (static) software verification. The
particular focus of his work is logics, calculi, and systems for the verification of object-
oriented programs in general, and Java in particular. Research results have constantly
been implemented in (branches of) the KeY system [2], which will also serve as the basis
for the ‘Deductive Verifier’ unit in our implementation of the StaRVOOrS. Related to
the exploitation of partial proofs in the ‘Partial Specification Evaluator’ is the work on
generating test cases from partial proofs ([32, 5]). Related to the real-time aspects of
our project, we have collaborated with the Radboud University Nijmegen (see 6) on
statically verifying Java loop bounds [47], using a combination of KeY and COSTA [7].
W. Ahrendt has co-developed a program logic and calculus which identifies the logically
quantifiable objects with the actually created ones [3], addressing a gap between logical
and and runtime models of execution. He also has developed a logic and calculus for
compositional verification of locally concurrent, globally distributed objects [4]. This is
related to StarVOOrS as it allows to connect an internal, data centric verification of
classes with an external, more control centric verification of interfaces.

Schneider’s work on runtime verification is also important to the current application.
This includes the development of a runtime monitoring framework based on rich automata
[26], techniques for runtime verification of real-time properties [28], and its realisation on
the tool LARVA for monitoring Java programs [27].

6 Research Collaborations

The project leader and the co-applicant have contact with the following international
well-known research groups conducting research on related topics to our proposal:
• Karsruhe Institute of Technology (Germany). Research contacts: Prof. Peter H.

Schmitt and Prof. Bernhard Beckert. Long term, and future, collaborators in the
KeY project.
• University of Darmstadt (Germany). Research contact: Prof. Reiner Hähnle. Long

term, and future, collaborator in the KeY project.
• University of Malta (Malta). Research contact: Dr. Gordon Pace (Associate Pro-

fessor). Our collaboration with Dr. Pace will be based on our previous work on
run-time verification.
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• University of Oslo (Norway). Research contacts: Prof. Olaf Owe and Prof. Einar
Broch Johnsen. We will collaborate on the topic of compositional object-oriented
verification.
• Company aicas (Karslruhe, Germany). Research contact: Dr. James Hunt, the

scientific coordinator of the ARTEMIS project CHARTER, in which Chalmers is
participating with W. Ahrendt as principal investigator. With the JamaicaVM,
aicas is a leading supplier of realtime Java technology for embedded systems. We
collaborate on deductive verification of, and test case generation for, realtime Java.
• Radboud University Nijmegen (Netherlands). Research contact: Prof. Marko van

Eekelen. We collaborate on the verification of resource bounds in Java, based on the
systems COSTA and KeY, in the frame of the the ARTEMIS project CHARTER.
• Centrum Wiskunde & Informatica (CWI, Amsterdam, Netherlands). Research con-

tacts: Prof. Frank de Boer. We collaborate on closing semantic gaps between models
of object-orientation in program logics vs. the runtime machinery.

7 Other Grants

The co-applicant of this proposal, Gerardo Schneider, is applying, in the same round,
for a project research grant, title SAMECO: Specification, Analysis and Monitoring of
Electronic Contracts, project number 2012-9463-96085-18. The project is about the defi-
nition of a logic-based formal language for computer mediated transactions (“contracts”)
including the development of techniques and tools for model checking and monitoring
such contracts. Schneider’s project does not overlap with the current proposal.
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