
Department of Computer Science and Engineering

Software Engineering Master Thesis Proposal, 30 hec

An Empirical Assessment of an

Intention Language for Software Merging

Wilhelm Hedman Completed courses relevant for thesis work:
Software Evolution Project
Model-driven Engineering

Empirical Software Engineering

1 Introduction

Maintaining variability in software systems can be achieved in two ways: forking and integrating.
Variants of the same software can coexist in an ecosystem consisting of so-called forks, which
are large-scale clones, with some small-scale alterations to change the desired behavior [1]. By
integrating all variability in a single repository, maintainability can be increased, and duplication
of e↵ort reduced [2], [1]. In an integrated platform, variability is controlled at compile-time or
at runtime.

When a fork variant is merged into an integrated platform through a version control system,
the developer performing the merge must manually handle both the variability and potential
conflicts on a source code level [3], [4]. Since feature integration is a complex task, performing
it manually is time-consuming and error-prone. Understanding the patterns of such conflict
resolution and variability management, and abstracting it away from the source code, considering
the intentions of the developer allows for development of variability-aware merging tools. The
author is currently involved in collaborating in the development of a language with the aim at
capturing such intentions. The expected benefits of a variability-aware merging tool based on
such a language is increased work speed and reduced software defects.

This study aims to analyze and refine the aforementioned intentions language describing the
intentions of software merging and to empirically assess a merging process that employs the
language and its implementation in a merge tool. The language is validated and refined based
on data obtained from mining the open-source 3D-printer firmware Marlin1, which in 2014 had
1588 forks [1]. Following this, the language is implemented in a merge tool, which is evaluated
using a controlled experiment. This thesis will contribute a dataset of merges; an instantiation
of the intentions language for all the merges; empirical data on the the use of the language;
and a qualitative investigation into the di↵erences between intention-based merging and manual
merging.

1
https://github.com/MarlinFirmware/Marlin

1

https://github.com/MarlinFirmware/Marlin


2 Statement of the problem

Manual, unstructured merging is time-consuming, and possibly concerned with the wrong ab-
straction level (i.e., source code) with respect to variants, which could be error-prone [3], [4].

Features and variants. Features represent some logical unit of a system, and are regarded
as part of the domain or as required by the market [5], [6]. Variants of software are created to
fulfill di↵erent requirements in similar products [7], [1]. One or more features can be grouped
inside a variant. A common manifestation of variants is forks, which are repository-scale clones
of an original codebase, called the mainline. This strategy is known as clone-and-own, where
small-scale changes are made to a large-scale copy in order to create a new variant [1]. Features
are spread though out the array of forks that comprise the system.

Orthogonal to variability through clones, stands integrated variability. By gathering all fea-
tures in one common repository, variants are created by composing features. This is realized by
source code-level constructs (such as the C preprocessor #ifdef statement) guarding the feature
code, meaning that behavior can be enabled or disabled at compile-time or runtime.

There is a tradeo↵ between time e↵ort and maintainability with respect to the two variability
strategies. Clone-and-own is an easy and fast method, but does not scale due to the inherent
impact on the maintainability of a large number of clones.

Reintegrating forks. Using the terminology of Buckley et al. [8], fork variants represent
divergent changes being developed asynchronously in parallel [3], [1]. Merging variants back into
an integrated mainline platform (from clone-and-own to integrated platform) has the advantages
of increased maintainability; features and bug-fixes being consolidated; and reducing uninten-
tional code duplications [2], [1]. Since forks are inherently decentralized with respect to both
organization and actual code base, knowledge and e↵ort can be lost if they are not circulated
back into the ecosystem [1], [9]. Currently, the process of merging a fork into the mainline is
based on manual unstructured merging, relying fully on the developer to create a semantically
correct merge [3], [4]. In order to resolve a merge, the ambitions of the involved code must
interpreted and leveraged. Since the ambition is not always explicit, there is significant mental
overhead involved in the activity.

Motivation for a descriptive language. Today, a developer performing a feature merge
must make ad-hoc decisions on how the final result should behave with respect to code blocks and
presence conditions [10]. At the same time, the concern is at the source-code level dealing with
fundamental (preprocessor) language constructs. We propose the following distinction between
intentions and operations: intentions are abstract actions describing how the developer wishes
to resolve the merge. Examples include ”keep this block of code” or ”keep this block of code
but make it a feature”. Operations are actual transformations on the source code such as those
proposed in [10]. A mapping or parameterization from intentions to operations would enable
tool support for intention-based merging. The semantics of the intentions language ensures the
integrity of the code upon which operations are applied to. The language would be the basis
for creating a tool to aid the merging process structurally [3], [4]. In the collaboration, we
are working to define such an intentions language, but we do not yet know how applicable or
complete it is.

Investigation into tool support. Gousios et al. point out that an important improve-
ment for the merging process is tool support in terms of work prioritization and estimated time
for merging [9]. A prerequisite for the capability of migrating clone-and-own to an integrated
platform is having proper merge support [7]. An empirical evaluation of a prototype tool is
required in order to establish whether tool support is actually beneficial for the merging process.
Empirical assessment of such tooling is di�cult and requires proper execution.

2



3 Purpose of the study

The purpose of the study is to explore and evaluate the merge process using intentions that
capture the merge semantics as building blocks. The soundness of the intentions language is
verified against actual merges. Following this, an evaluation of a novel merge tool prototype is
performed to assess the improvement to the fork merging process. By contributing a dataset of
merges; an instantiation of the language for each merge; empirical data and qualitative analysis
on the use of the language within the tool, the long-term goal of providing an automated tool
and workflow for fork integration is abridged. This is intended to benefit both researchers and
practitioners.

4 Review of the literature

Merging and tool support. Merge conflicts arise when software revisions and variants diverge
concurrently [4], [8]. Revision control systems can be divided into two classes: unstructured revi-
sion control systems that operate on plaintext; and structured revision control systems that rely
on structure and semantics of the document being stored in order to resolve conflicts automat-
ically [3], [4]. The former has reached popularity due to being language independent, examples
of such revision control systems include Git, Subversion, and CVS, while structured revision
control systems are of academic interest, since they are not language independent [4]. Apel et
al. [4] introduce the concept of a semistructured revision control system, and in particular the
semistructured merge, which combines the strengths of the two classes, while minimizing their
inherent weaknesses.

Forked and integrated variants. For forked variants, the variability lies in an array of
repository clones with minor changes in them. An integrated platform consolidates the features
and leverages programming language constructs to manage multiple variants simultaneously [1].
The former has lower initial costs, but comes with maintainability issues, while the latter requires
a significant commitment [7]. Antkiewicz et al. [7] propose a strategy for migration from clone-
and-own with low-risk, step-by-step adaption of an integrated platform through what they call
a virtual platform. It has also been shown that the two types are used in parallel in the Marlin
project [1]. Stănciulescu et al. [10] demonstrate the benefit of a projection-based variation
control system to alleviate the complexities of maintaining and evolving code with preprocessor
annotations.

Practical studies on clone-and-own systems. Schmorleiz and Lämmel [2] realize a näıve
virtual platform by introducing a tool that analyzes and annotates changes across cloned-and-
owned variants. As a way to manage similarity, code fragments are annotated with invariants
that propagate to across fragment clones in all variants. Adherence to the invariants is either
performed manually or automatically by their tool. Santos and Kulesza [11] investigate conflicts
that arise from integration of evolved clones. In their study of a web-based Java system, the most
prominent conflict type is indirect – changes in the source system are in the call graph of other
changes in the target system – which they find is in line with the motivation for semistructured
merging [4].

E�ciency experiment. Berger et al. [12] have previously conducted a controlled ex-
periment using students and industrial developers, to determine their editing e�ciency in the
projectional editor MPS, compared to a traditional, parser-based editor. The participants are
given four simple programming tasks to complete, with their screens being recorded to measure
completion time and editing e�ciency in terms of operations and mistakes. Afterwards, partici-
pants respond to a questionnaire with open and closed questions, and take part of a debriefing

3



interview, to gather quantitative and qualitative experiences of the di↵erences and benefits of
the two editor types.

5 Research questions

The research questions are divided into two parts: language evaluation (RQ1), and an evaluation
of the intention-based merge tool (RQ2-3).

RQ 1: To what extent do the intentions properly model and reflect the intentions as evidenced
in actual merges? We perform this verification step in order to assert that the intentions
language can be instantiated to capture actual witnessed merges from real scenarios. This
seeks to establish the completeness and possibly correctness of the language.

RQ 2: Is using the intention-based merge tool beneficial for merging variants? To what degree
does the intention-based merge tool facilitate correct merges? How much faster is the merge
process using the intention-based merge tool? Our goal is that both code quality and time
e↵ort can be improved by a workflow incorporating the intention-based merge tool, which
we summarize as the overall beneficence of the tool.
Hypothesis 1: Using the intention-based merge tool leads to fewer bugs than manual
merging.
Hypothesis 2: Using the intention-based merge tool gives faster merging.

RQ 3: How is the merge process di↵erent using the intention-based merge tool? This is an
investigation into the perceived and evident qualitative di↵erences of the two approaches,
synthesizing the results from the findings of the previous questions.

6 Methods and procedures

The methods and procedures are presented chronologically and linked to the research questions
they correspond to. After this, a rough time schedule of activities is listed. Note that the
development of the intention-based merge tool is a shared e↵ort in the collaboration.

1. Identify 50 merge examples in the Marlin ecosystem that contain #ifdefs. These merges
represent manual variability management, where fork variants have been integrated and a
variability mechanism has been inserted or deleted. They are relevant both on their own
as real-life examples, and as a way to verify the soundness of our proposed language. Such
merge examples can either be located in the mainline, or in forks that integrate the remote
mainline. This could for example be present in commits preceding a pull request.

2. Continuous analysis and refinement of the intentions language on the 50 identified merges
by instantiating the language (RQ1). This means verifying that the language is able to
capture real-life examples of merges and if necessary, refining it.

3. Internal evaluation with merge process examples being performed by the researchers. Cor-
rectness metrics together with preliminary findings regarding performance and e�ciency
(RQ2-3) are collected. This is meant as an internal pre-study in preparation of the con-
trolled experiment, both as quality assurance of the intention-based merge tool and as an
elicitation of valuable information for the controlled experiment, questionnaire and inter-
views.

4



4. Conduct a controlled experiment to assess usefulness by evaluating fork merging using the
intention-based merge tool compared to traditional manual unstructured merging from the
perspective of the developer in merge scenarios. For the experiment, students must be
recruited. The students will be split randomly into two groups, one using an unstructured
merging tool, and one using the intention-based merge tool. They will be presented with
code and instructions for the merging tasks to perform. The instructions contain a quick
domain background, describe the goal of the merge, possibly with code references. The
resulting merges will be compared to the known merge outcome to measure the correctness
(RQ2) of the two groups. There must be some leniency with respect to syntax – i.e.,
only the semantics of the merge comparison should be equal, since especially the manual
unstructured merging can introduce arbitrary syntax changes.

The screens of the participants will be recorded, and afterwards the recordings will be
reviewed in order to measure the completion time and number of mistakes made (RQ 2).

5. Each participant from the tool group is asked to participate in a questionnaire after the
experiment (RQ3). The questionnaire contains closed and open questions about their
background (experience) and their impressions about the possible benefit of the intention-
based merge tool. Some examples of possible Likert questions are: Merging is faster. There
are fewer mistakes. Intention-based merging is too complex. Tool is not mature enough.
Together with this, we also conduct recorded interviews with participants about perceived
benefits, challenges, and improvements of the intention-based merge tool.

Time schedule. The available time comprises about 18 weeks total, from mid January to
late May.

• Iterative fork mining, analysis and refinement of the intentions language. 6 weeks.

• Experiment design. 6 weeks.

• Experiment execution. 2 weeks.

• Synthesis of results. 4 weeks.

7 Limitations and delimitations

The development of the intentions language and the intention-based merge tool is a shared e↵ort
in the research collaboration. The thesis intended to be limited to the assessment of the two.

Threats to internal validity. When observing the merge examples to establish their
intentions, mistakes can be made. This is mitigated by comparing the conflict and the resulting
merge.

If our prototype tool is defective or otherwise buggy, this introduces bias. The early internal
evaluation serves as quality assurance, to find potential bugs or issues in our intention-based
merge tool an mitigate any such issues before the controlled experiment. Along with this, in
order to reduce bias from non-essential factors (e.g. the menu structure), both groups of the
controlled experiment will receive an introduction to their respective editor before performing
the tasks.

Threats to external validity. The source of the real-life examples is a single ecosystem,
that of Marlin. Due to the size and complexity of the codebase and ecosystem, the verification
of the intentions language should be both representative and generalizable.

5



Since Marlin is developed in C++, the C preprocessor (i.e. conditional compilation) will be
the variability mechanism considered throughout the study, although this should not impact the
generalizability to other line-based mechanisms.

Using students for the controlled experiment could be called into question, since they are
neither domain experts of Marlin, nor professional software developers. Programming-wise, stu-
dents should be as proficient as professionals, but the questionnaire asks for the background
and previous programming experience so that this can be taken into account. The tasks in the
controlled experiment do not require previous domain knowledge as such, since the outcome is
described in the task. Therefore, the findings should be applicable to practitioners.

8 Significance of the study

Overall the study aims to towards simplifying the process of merging variants to an integrated
platform, which has relevance for both practitioners and researchers. The concrete contributions
are providing a dataset of merge examples together with instantiation of our intentions
language that can be used in future research and prototyping, together with the empirical
assessment of the intention-based merge tool prototype. Tool support is key to the
e↵ective management of forks and their integration [7], [9], which in turn enables migration from
clone-and-own to integrated platform with lower associated cost and risk. For example, this
facilitates adoption of the virtual platform migration strategy.

References

[1] S. Stanciulescu, S. Schulze, and A. Wasowski, “Forked and integrated variants in an open-
source firmware project,” in 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), Sept 2015, pp. 151–160.

[2] T. Schmorleiz and R. Lämmel, “Similarity management of ’cloned and owned’ variants,”
in Proceedings of the 31st Annual ACM Symposium on Applied Computing, ser. SAC ’16,
2016, pp. 1466–1471.

[3] T. Mens, “A state-of-the-art survey on software merging,” IEEE Transactions on Software
Engineering, vol. 28, no. 5, pp. 449–462, May 2002.

[4] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistructured merge: Re-
thinking merge in revision control systems,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engineering,
ser. ESEC/FSE ’11, 2011, pp. 190–200.

[5] T. Berger, D. Lettner, J. Rubin, P. Grünbacher, A. Silva, M. Becker, M. Chechik, and
K. Czarnecki, “What is a feature?: A qualitative study of features in industrial software
product lines,” in Proceedings of the 19th International Conference on Software Product
Line, ser. SPLC ’15, 2015, pp. 16–25.

[6] S. Apel and C. Kästner, “An overview of feature-oriented software devlopment,” Journal of
Object Technology, vol. 8, no. 5, pp. 49–84, 2009.

[7] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lämmel, S. Stănciulescu,
A. Wasowski, and I. Schaefer, “Flexible product line engineering with a virtual platform,”
in Companion Proceedings of the 36th International Conference on Software Engineering,
ser. ICSE Companion 2014, 2014, pp. 532–535.

6



[8] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards a taxonomy of software
change,” Journal of Software Maintenance and Evolution: Research and Practice, vol. 17,
no. 5, pp. 309–332, 2005.

[9] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work practices and challenges
in pull-based development: The integrator’s perspective,” in Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 1, ser. ICSE ’15, 2015, pp. 358–368.

[10] S. Stanciulescu, T. Berger, E. Walkingshaw, and A. Wasowski, “Concepts, operations, and
feasibility of a projection-based variation control system,” in 32nd IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), 2016.

[11] J. Santos and U. Kulesza, “Quantifying and assessing the merge of cloned web-based system:
An exploratory study,” in The 28th International Conference on Software Engineering and
Knowledge Engineering, SEKE 2016, 2016, pp. 583–588.

[12] T. Berger, M. Völter, H. P. Jensen, T. Dangprasert, and J. Siegmund, “E�ciency of pro-
jectional editing: a controlled experiment,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016, 2016, pp. 763–774.

7


	Introduction
	Statement of the problem
	Purpose of the study
	Review of the literature
	Research questions
	Methods and procedures
	Limitations and delimitations
	Significance of the study

