Chebyshev revisited
Bjorn von Sydow

Séaro, February 4 2015.

O0@000000000000000

General setting

The problem

We consider real-valued functions on the standardized interval
[-1,1]. Given f, we want to define a sequence of polynomials
{P,}52,, such that P, converges uniformly to f as n — oo.

1) = Bl
We intend to use P, instead of f 002 hin E00)
for e.g. ’

[

@ differentiation ‘ |
@ integration | \ ;‘ |
@ root-finding \ ‘

e optimization (— —

I mm‘u"}\(\\‘m\\\“‘“m

00@00000000000000

How can you find a polynomial approximant?

Idea 1: Taylor expansion Idea 2: Interpolating polynomial

Use a Taylor polynomial around 0. | Given n + 1 points
For e.g. f(x) = sin(z), we get
o<1 <...<Tp,

Pi(z)==x

P — 0 — 23/6 we can find interpolating P, such
3(@) =z —z°/ that P, (xy) = f () for all k.

Ps(z) =z — 23/6 + 2°/120

For example, take z;, = 2k/n — 1.

@ Requires high order deriva- Will not converge throughout
tives for good approximation. | [-1,1] for most f.

@ Uses only info at z = 0; need | Folklore: Polynomial interpolation
not converge in all [-1,1]. is awful.

0000000000000 000

Monomials

To the left we have
Mn(w) =

forn=0,1,...10.

0000@000000000000

Monomials vs Chebyshev polynomials

Monomials

| Tothe left we have ~_ -

- /i forn=0,1,...10. el \

Chebyshev polynomials
To the right we have

|
\

) =

T, (x) = cos(narccos z), | \
— forn=0,1,...10. N\ \ |

N //

00000e@00000000000

Are they polynomials at all?

Some first-year calculus

Recall

cos(a +) = cos acos f — sin asin 3,

cos(aw — 3) = cos accos 3 + sin asin 3.
Add them and put & = n arccos x and 8 = arccos x to get

Tns1(x) + Th—1(x) = 22T, ()

Recursion scheme Conclusion

. T, (x) is a polynomial of
To(z) =1, degree n with leading
Ti(z) = =, coefficient 27! (for n > 0)
Tot1(x) = 22T, (v) — Th—1(x), n>2 | and all n zeros in [—1,1].

000000e0000000000

The bigger picture

Tt plotted over [—2.5, 2.5].

7000

wo
5000 J
wol |

3000 |
2000
1000

ol ~— _—

1000

2 Bl 0 1

Chebyshev polynomials are very useful inside [-1,1]. /

0000000e000000000

Chebyshev approximation

The problem

We intend to approximate f by »,_; ¢xT). How to define {cj}?

Inspiration: Fourier analysis Back to our setting

Let g(0) = f(cosf),0 <0 < . f(x) = g(arccos x)
We can expand g in a cosine
series *To)+ Z arTk(z
aq
9(0) =5 + Z aj, cos (k) This is fine, but
k=0
i o= [a(0) cos(ro)ay
ay = / 9(0) cos(k6)do. / f@)Ti(x)
0 1 - ac2

with an extensive theory. How do we compute these?

00000000e00000000

Chebyshev interpolation

Key insight 1 Key insight 2

Use interpolation, but choose {zx} | Represent P, in the Chebyshev
as the Chebyshev points: basis, i.e. as P, = > p_ ckTk-
Ty zcos%,kzo,...n.

We need to compute {c;} so that
P, (zx) = f(xy) for all k.

® leo,c1,. . cal s the inverse DCT
of [f(zo), f(x1),- .- f(zn)]-

o If f € C¥([—1,1]), then @ There are simple, linear, stable
If = Palloo = O(n™"). recursions for computing

@ If f is analytic, then e P,(z) (Clenshaw’s algorithm).
If = Palloo = O(p™™) for ° P, (x).

some p > 1. o [P,(t)dt.

000000000 e0000000

Misconceptions

Quotations from numeric analysis textbooks

@ Polynomial interpolants rarely converge |[...]. Polynomial
interpolation is a bad idea. (1989)

@ In this section we consider examples which warn us of the
limitations of using interpolation polynomials [...]. (1996)

@ The surprising state of affairs is that for most continuous functions,
the quantity || f — pn|| Will not converge to 0. (2002)

@ By their very nature, polynomials of a very high degree do not
constitute reasonable models for real-life phenomena, from the
approximation and from the handling point-of-view. (2004)

@ The oscillatory nature of high degree polynomials [. ..] restricts
their use. (2005)

@ In addition to the inherent instability [.. .] there are also classes of
functions that are not suitable for [. ..] interpolation. (2011)

000000000080 00000

Root-finding

An essential tool

We use the roots of the Chebyshev approximant in several
important ways, e.g.:

@ for finding minima and maxima we need roots of the
derivative.

@ for splitting into low-order pieces when approximating the
absolute value of an expression we need the roots.

Unfortunately this is often thought to be problematic:

@ Our main object in this chapter has been to focus attention on
the severe inherent limitations of all numerical algorithms for
finding the zeros of polynomials. (Wilkinson 1963).

@ Speaking for myself | regard it as the most traumatic
experience in my career as a numerical analyst. (Wilkinson
1984, The perfidious polynomial.)

00000000000 e00000

Root-finding, cont'd

Colleague matrices

Given P, = ZZZO ci Ty, we define the colleague matrix

0 1
1 n 1
2 2
3 0 3 1

chp €1 Cp ... Cp-1

O Nl

1
2

Simple fact

The zeros of P,, are the eigenvalues of its colleague matrix.
Fast and stable algorithms exist (e.g., QR algorithm).

000000000000 e0000

Best approximation

Equioscillation theorem

A continuous function f on [—1, 1] has a unique best approximation
P (i.e. a unique polynomial minimizing ||f — P, ||c0)-

The error term f — P attains it maximal absolute value at least

n — 2 times with alternating signs.

Almost as good
Let C,, be the Chebyshev interpolant of degree n. Then

2 *
1= Cullo < (2+ 2 1og(a + 1)) 1 = Pl

0000000000000 e000

Quadrature

Gaussian quadrature

The problem: For given n, find {x;}}_, and weights {\;}}_, such
that

1 n
[f@do= 3" s
-1 k=0

for all polynomials f of degree < 2n + 1.

The solution: Gaussian quadrature. The xj, are the zeros of the
Legendre polynomial of degree n + 1.

Common wisdom: Mostly of theoretical interest. Most software
uses adaptive Newton-Cotes rules with Richardson extrapolation.

Recent development

Linear, stable algorithms for computing abscissas and weights, so
high-order Gaussian quadrature is feasible and competitive.

0000000000000 0e00

Clenshaw-Curtis quadrature

Gauss is optimal but Clenshaw-Curtis is better

Fix zj, to be the Chebyshev point cos %’r and determine the weights
to make the integral exact for polynomials of degree < n + 1.

A simple computation of fil Ty (z)dx gives

n

L 2cp,
/ Z e Tg(x)dx = Z T2
k=0 a

k=0, k even

Note that this is exact. So, if we have approximated f to machine
precision, the integral will also be to machine precision.

0000000000000 00e0

Is Haskell suitable for this?

Basic ingredients

We need

@ efficient vectors; Data.Vector.Storable seem fine.

@ state-of-the-art FFT algorithms; access to FFTW via the
Haskell FFl is fine.

@ state-of-the-art eigenvalue computation; access to LAPACK
via Haskell FFI is fine.

Given this infrastructure, Haskell and the interactive environment
ghci is excellent.

Is a Haskell implementation of Chebfun interesting?

- The applied math community is certainly happy with Matlab.

- Implementing an inferior version of a publicly available
package is dubious.

+ But | have basic funding and am free to do what | think is fun!

0000000000000 000e

Further reading

@ Nick Trefethen: Six myths about polynomial interpolation and
quadrature. Summer Lecture at the Royal Society 2011.
Easily found by googling. Compulsory reading!

@ Nick Trefethen: Approximation Theory and Approximation
Practice. SIAM Press 2013.

	
	dummy

