
Chebyshev revisited

Björn von Sydow

Särö, February 4 2015.

General setting

The problem

We consider real-valued functions on the standardized interval
[-1,1]. Given f , we want to define a sequence of polynomials
{Pn}∞n=0, such that Pn converges uniformly to f as n→∞.

Motivation
We intend to use Pn instead of f
for e.g.

differentiation

integration

root-finding

optimization

. . .

f(x) = tanh(5 sin(6x))+
0.02e3x sin(300x)

How can you find a polynomial approximant?

Idea 1: Taylor expansion

Use a Taylor polynomial around 0.
For e.g. f(x) = sin(x), we get

P1(x) = x

P3(x) = x− x3/6
P5(x) = x− x3/6 + x5/120

. . .

Problems
Requires high order deriva-
tives for good approximation.

Uses only info at x = 0; need
not converge in all [-1,1].

Idea 2: Interpolating polynomial

Given n+ 1 points

x0 < x1 < . . . < xn,

we can find interpolating Pn such
that Pn(xk) = f(xk) for all k.

For example, take xk = 2k/n− 1.

Problem
Will not converge throughout
[-1,1] for most f .

Folklore: Polynomial interpolation
is awful.

Monomials

Monomials
To the left we have

Mn(x) = xn,

for n = 0, 1, . . . 10.

Monomials vs Chebyshev polynomials

Monomials
To the left we have

Mn(x) = xn,

for n = 0, 1, . . . 10.

Chebyshev polynomials

To the right we have

Tn(x) = cos(n arccos x),

for n = 0, 1, . . . 10.

Are they polynomials at all?

Some first-year calculus

Recall

cos(α+ β) = cosα cosβ − sinα sinβ,

cos(α− β) = cosα cosβ + sinα sinβ.

Add them and put α = n arccos x and β = arccos x to get

Tn+1(x) + Tn−1(x) = 2xTn(x)

Recursion scheme

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 2

Conclusion

Tn(x) is a polynomial of
degree n with leading
coefficient 2n−1 (for n > 0)
and all n zeros in [−1, 1].

The bigger picture

T6 plotted over [−2.5, 2.5].

Conclusion
Chebyshev polynomials are very useful inside [-1,1].

Chebyshev approximation

The problem

We intend to approximate f by
∑n

k=1 ckTk. How to define {ck}?

Inspiration: Fourier analysis

Let g(θ) = f(cos θ), 0 ≤ θ ≤ π.
We can expand g in a cosine
series

g(θ) =
a0
2

+

∞∑
k=0

ak cos(kx)

where

ak =

∫ π

0
g(θ) cos(kθ)dθ.

with an extensive theory.

Back to our setting

f(x) = g(arccos x)

=
a0
2
T0(x) +

∞∑
k=0

akTk(x).

This is fine, but

ak =

∫ π

0
g(θ) cos(kθ)dθ

=

∫ 1

−1

f(x)Tk(x)√
1− x2

dx.

How do we compute these?

Chebyshev interpolation

Key insight 1

Use interpolation, but choose {xk}
as the Chebyshev points:
xk = cos kπn , k = 0, . . . n.

Convergence

If f ∈ Ck([−1, 1]), then
||f − Pn||∞ = O(n−k).

If f is analytic, then
||f − Pn||∞ = O(ρ−n) for
some ρ > 1.

Key insight 2

Represent Pn in the Chebyshev
basis, i.e. as Pn =

∑n
k=0 ckTk.

We need to compute {ck} so that
Pn(xk) = f(xk) for all k.

Computation

[c0, c1, . . . cn] is the inverse DCT
of [f(x0), f(x1), . . . f(xn)].
There are simple, linear, stable
recursions for computing

Pn(x) (Clenshaw’s algorithm).
P ′
n(x).∫ x
Pn(t)dt.

Misconceptions

Quotations from numeric analysis textbooks

Polynomial interpolants rarely converge [. . .]. Polynomial
interpolation is a bad idea. (1989)

In this section we consider examples which warn us of the
limitations of using interpolation polynomials [. . .]. (1996)

The surprising state of affairs is that for most continuous functions,
the quantity ||f − pn||∞ will not converge to 0. (2002)

By their very nature, polynomials of a very high degree do not
constitute reasonable models for real-life phenomena, from the
approximation and from the handling point-of-view. (2004)

The oscillatory nature of high degree polynomials [. . .] restricts
their use. (2005)

In addition to the inherent instability [. . .] there are also classes of
functions that are not suitable for [. . .] interpolation. (2011)

Root-finding

An essential tool
We use the roots of the Chebyshev approximant in several
important ways, e.g.:

for finding minima and maxima we need roots of the
derivative.

for splitting into low-order pieces when approximating the
absolute value of an expression we need the roots.

Unfortunately this is often thought to be problematic:

Our main object in this chapter has been to focus attention on
the severe inherent limitations of all numerical algorithms for
finding the zeros of polynomials. (Wilkinson 1963).

Speaking for myself I regard it as the most traumatic
experience in my career as a numerical analyst. (Wilkinson
1984, The perfidious polynomial.)

Root-finding, cont’d

Colleague matrices

Given Pn =
∑n

k=0 ckTk, we define the colleague matrix

0 1
1
2 0 1

2
1
2 0 1

2
.

1
2

1
2 0

− 1

2cn

c0 c1 c2 . . . cn−1

 .

Simple fact

The zeros of Pn are the eigenvalues of its colleague matrix.
Fast and stable algorithms exist (e.g., QR algorithm).

Best approximation

Equioscillation theorem

A continuous function f on [−1, 1] has a unique best approximation
P ∗n (i.e. a unique polynomial minimizing ||f − Pn||∞).
The error term f − P ∗n attains it maximal absolute value at least
n− 2 times with alternating signs.

Almost as good

Let Cn be the Chebyshev interpolant of degree n. Then

||f − Cn||∞ <

(
2 +

2

π
log(n+ 1)

)
||f − P ∗n ||∞.

Quadrature

Gaussian quadrature

The problem: For given n, find {xk}nk=0 and weights {λk}nk=0 such
that ∫ 1

−1
f(x)dx =

n∑
k=0

λkf(xk)

for all polynomials f of degree ≤ 2n+ 1.

The solution: Gaussian quadrature. The xk are the zeros of the
Legendre polynomial of degree n+ 1.

Common wisdom: Mostly of theoretical interest. Most software
uses adaptive Newton-Cotes rules with Richardson extrapolation.

Recent development

Linear, stable algorithms for computing abscissas and weights, so
high-order Gaussian quadrature is feasible and competitive.

Clenshaw-Curtis quadrature

Gauss is optimal but Clenshaw-Curtis is better

Fix xk to be the Chebyshev point cos kπn and determine the weights
to make the integral exact for polynomials of degree ≤ n+ 1.
A simple computation of

∫ 1
−1 Tk(x)dx gives∫ 1

−1

n∑
k=0

ckTk(x)dx =

n∑
k=0, k even

2ck
1− k2

.

Note that this is exact. So, if we have approximated f to machine
precision, the integral will also be to machine precision.

Is Haskell suitable for this?

Basic ingredients

We need

efficient vectors; Data.Vector.Storable seem fine.

state-of-the-art FFT algorithms; access to FFTW via the
Haskell FFI is fine.

state-of-the-art eigenvalue computation; access to LAPACK
via Haskell FFI is fine.

Given this infrastructure, Haskell and the interactive environment
ghci is excellent.

Is a Haskell implementation of Chebfun interesting?

- The applied math community is certainly happy with Matlab.

- Implementing an inferior version of a publicly available
package is dubious.

+ But I have basic funding and am free to do what I think is fun!

Further reading

Nick Trefethen: Six myths about polynomial interpolation and
quadrature. Summer Lecture at the Royal Society 2011.
Easily found by googling. Compulsory reading!

Nick Trefethen: Approximation Theory and Approximation
Practice. SIAM Press 2013.

	
	dummy

