
ANTOINE MAN

Read, first, A-N generalities concerning the 2 shell model codes ANTOINE (A.)
AND NATHAN (N.).

Definition of the basis

Standard calculations ( TYPE=0 ):

DO 1 I=1,2

READ(IREAD,*) A(I),SH(i),(NLJ(K,I),K=1,SH(i)),(CLAS(K,I),K=1,SH(i)),SAUT(i)

1 CONTINUE

READ(IREAD,*) MPRO, PARI, JUMP, FLCUT

Nocore calculations :

READ(IREAD,*) (A(I),i=1,2), MPRO, PARI, JUMP, FLCUT, JLIM

I=1 and 2 for protons and neutrons (or opposite). Especially for large matrices,
take the first space the larger, larger in the sense of the number of Slater deter-
minants (combinatorial factor of the number of particles and the number of valence
states).

If we need 2 different valence spaces (ex: change Tz) we must read successively
the 2 valence spaces .

1) the FINAL basis
2) the INITIAl basis
A=number of particles.

SH=number of shells.
NLJ=1000 ∗ n + 100 ∗ l + 2j (definition of the shells)
For Nocore, shells are automatically calculated (1,101,103,205,203,1001,1101,...)
MPRO=2 ∗ Jz PARI= global parity. 0 for positive, 1 for negative.

Notice that
all the quantities which can be half-integer are multiplied by 2.
Truncations.
in Nocore calculations JUMP defines the number of allowed hw excitations .

Situation is a little bit more complicated for TYPE=0. At each shell is associated a



number CLAS(m,i) which is used to truncate the space configurations.
We must have always CLAS(m,i) ≤ CLAS(m+1,i).

For each configuration, defined by n(k,i) number of particles in each shell k, we
calculate :

t(i)=
∑

k n(k, i) ∗ clas(k, i)
We define :
tmin(i)=min(t(i)) (all the particles put in the first shells)
and keep only configurations with :
0 ≤ t(i) ≤ SAUT(i)+tmin(i) in each subspace and
0 ≤ t(1) + t(2) ≤ JUMP in the global space.
It means that the code takes always SAUT(i)=min(SAUT(i),JUMP).
examples in a specific subspace :

6 4 307 1103 305 1101 0 0 0 0 0 a)

6 4 307 1103 305 1101 0 1 1 1 10 b)

6 4 307 1103 305 1101 0 1 1 1 2 c)

10 4 307 1103 305 1101 0 1 1 1 2 d)

a) no restriction
b) no restriction, possibility to analyze the wave function in term of t.
c) maximum 2 particles in the space (1103,305,1101)
d) tmin=2 maximum 4 particles in the space (1103,305,1101)

Exception : if we take JUMP < 0 , we take a fixed truncation :
t(1)+t(2) = IABS(JUMP)
********** Limitation JUMP =24

Sharing of the Lancos vectors.
Lanczos vectors are the succession of blocks (rectangular matrices) caracterized

by Jz and parity ( for each space) We have the possibility to share the vectors
following these blocks. the minimum size will be the dimension of the larger block (
this quantity is printed in the option calculating the dimensions).

The advantage is that it allows the diagonalization of larger matrices . It gives a
natural way to parallelize the code . The disadvantage appears in the pn calculation
: we cannot take advantage of the symetry H(I,J)=H(J,I) when I and J do not belong
at teh same block .

FLCUT=0 no sharing FLCUT > 0 numero of the file where we read the sharing
. FLCUT < 0 useful if you have forgotten the num sharing .

Specificity for Nocore calculations ( TYPE > 0) .
A major difficulty when the truncation becomes large is the number of shells (oper-
ators) to handle . Following the J value that we want, we can eliminate some shells
(example if we calculate J=0 with t=2 in 4 He, we know that the shells 0d5/2, 0d3/2



will not be occupied . These shells will not be eliminated in the basis , but the
operators in which they appear will be. To do that take JLIM= maxi of calculated
J ( if not take JLIM=-1).



V OPTIONS.

• 01. Dimensions of the space.

• 02. Sharing of the lanczos vectors (average on the length.

• 03. Sharing of the lanczos vectors (fixed number of blocks.

• 04. Number of terms in the matrix.

• 05. three-body .

• 06 Pivot without projection on J2 .

• 07 Idem with projection on J2 of the Lanczos vectors.

• 08 Projection on J2.

• 11 Lanczos calculation (random pivot).

• 12 Lanczos calculation (read pivot).

• 13 Lanczos vectors are projected .

• 18 Projection on center of mass (nocore).

• 19 Radii (nocore).

• 20 Kinetic energy (nocore).

• 21. Calculation of shells occupations.

• 22. E(L) and M(L) transitions. Parity unchanged.

• 23. Sum rule E(L) or M(L). Parity unchanged.

• 24. Neutrino cross section. Parity unchanged.

• 31. Change truncation (increase the space).

• 32. Change Jz .

• 33. writing vectors for MFD code (nocore) .

• 34. P-N permutation space .

• 41. Change the basis .

• 42. E(L) and M(L) transitions. Parity changed.



• 43. Sum rule E(L) or M(L). Parity changed.

• 44. Neutrino cross section. Parity changed.

• 45. one-body density . Parity changed.

• 46. Change Tz value.

• 47. Gamow-Teller sum rule.

• 48. Gamow-Teller Haxton operator.

• 49. Gabriel operator . Parity changed.

• 50. spectroscopic factors.

• 51. 0νββ .



VI SPECIFIC DATA FOLLOWING THE OPTIONS .

01. Dimensions of a valence space

1 0 0 0

6 4 307 1103 305 1101 0 1 1 1 8

10 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

1 0 2 1

6 5 1 1 8 0

Calculation of the dimensions in the space and that for all the Jz values. It gives
also the dimension in the J space and the effective dimension of the matrix for M=0
when time reversal symetry is taken in account . It allows to see until what value of
J it is better to take Jz=0 instead of Jz=J.
If IPRI=1 calculation of dimensions for JUMP=0,JUMP
If IPRI=2 calculation of dimensions for JUMP=mod(JUMP,2),JUMP,2
(in the second example we calculate dimension for t=0,2,4,6)

02. Sharing of the vectors (with Dimension)

2 0 0 0

10 4 307 1103 305 1101 0 1 1 1 8

12 4 1103 305 1101 409 0 0 0 1 10

0 0 18 70

400 a)

a) MOY size that we try to get in average .

03. Sharing of the vectors (in N blocks)

3 0 0 0

10 4 307 1103 305 1101 0 1 1 1 8

12 4 1103 305 1101 409 0 0 0 1 10

0 0 18 70

7 a)

a) N number of blocks that we need ( option useful for parallelization N=number
of processors !)

04. Number of non-zero of the matrix



4 0 0 0

10 4 307 1103 305 1101 0 1 1 1 8

12 4 1103 305 1101 409 0 0 0 1 10

0 0 18 70

Number of non-zero in the matrix . The result is given for each block (Jz,parite)
and if FLCUT > 0 for all the sghared components.
This option gives also the number of equivalent integer numbers to store on each
disk.

06. Creation of pivot(s) without J2 projection.

6 0 0 1

50 0 0

6 4 0 0 4 0 -1

2 1 -1 245789 1 a)

a) NCAL, (RVT(k),k=1,NCAL), KPVT, RVI
RVT : if MPRO (Jz) =0 we must define a time reversal symetry :
+1 to have a pivot containing even J values
-1 to have a pivot containing odd J values
if MPRO 6= 0 RVT=0 (it means that NCAL must be =1 ).

The created pivots are random . KPVT is an integer which initiates the random
numbers.

RVI=1 pivot states are random but built with T=Tz.
RVI=0 no restriction on isospin .

Supposing A(1) ≥ A(2), states of the basis for which all the occupied states in
space 2 are occupied in space 1 have T=Tz. These states allow to get a pivot state
with good isospin . (It is not possible to get it for a nucleus N=Z=odd with Jz=0) .

07. Creation of pivots projected on J2 .

7 0 0 0

50 0 0

4 4 307 1103 305 1101 0 0 0 0 0

2 4 307 1103 305 1101 0 0 0 0 0

0 0 0 0

3 0 2 4 a)



b) NCAL,(JVAL(k),k=1,NCAL)
JVAL=2*J of the calculated states.
note: the code calculates and stores ,first, the states having same time reversal than
the first one . In the present example we will have on fiel 50 the states J=0,2 and
after J=1.

08. Projection on J2.

8 0 0 0

51 50 0 0 2 a1)

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

2 0 4 b)

1 6 b)

8 0 0 0

0 50 0 0 0 a2)

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

a) FLWRI, FLLEC, (NLEC(k),k=1,2), NCAL
2 possibilities:
a1) FLWRI 6=0 , reading of :

b) NKEEP, (JVAL(k),k=1,NKEEP) and that for all the NCAL states. . If
NCAL=0 , it is taken NCAL=1 . If NCAL is larger than the number of vectors on
FLLEC, the code stops .

a2) FLWRI 0 . No reading of b) . If NCAL=0 , all the vectors of the file FLLEC
are considered . This is the main interest of this option, allowing to check the angular
momentum of vectors .

11. Lanczos calculation (random pivot).

11 1 0 0 a)

Ti46-t2 a)

20 0 0 b)

4 4 307 1103 305 1101 0 1 1 1 2

2 4 307 1103 305 1101 0 1 1 1 2

0 0 2 0

93 0 c0)



3 0 2 4 d)

1 1 2 e)

45 0.0005 0 0 f)

11 1 0 0 a)

Ti46-t2 a)

20 0 4 b)

4 4 307 1103 305 1101 0 1 1 1 2

2 4 307 1103 305 1101 0 1 1 1 2

8 0 2 0

93 0 c0)

2 8 12 d)

1 1 e)

45 0.0005 0 0 f)

11 0 0 0 a)

21 0 0 b)

4 4 0 0 0 0 -1

80 2 10. c1)

3 0 2 4 d)

1 1 2 e)

45 0.0005 0 0 f)

a,b) see generalities
Notice that in b1) we have STOR=4 . It means that 4 states will be read and will
appear at the end in the spectrum.

c0) FLNUC,COUL standard SM
FLNUC= file of H
COUL= 0 no coulomb ; COUL=1,2 proton space (coulomb must be included in H)

c1) FLNUC,PPPP, ZCDM Nocore
PPPP=1,2 proton space . ZCDM= multiplicative factor for Hcm.

d) NCAL, (JVAL(k),k=1,NCAL) states to calculated.
remember the order of the states when MPRO=0 (time reversal symmetry). In the
present example, we will get the J=0 state, then the two J=2 states and at the end
the J=1 state. This is very important to remember , especially if these states will
become pivots in a larger spase (see next option) .

e) (NCON(k),k=1,NCAL) number of converged states that we need for each ma-
trix.

f) NLOOP, ZFIT, IORTH, NLANZ
NLOOP= number maximum of Lanczos iterations

ZFIT : test of convergence.
each 3 iterations the tridiagonal Lanczos matrix is diagonalized. If all the states that



we want to converge have an increase of the energy smaller than ZFIT, the Lanczos
procedure is stopped.

For standard calculation take ORTH=NLANZ=0 (see later specific possibilities)

12. Lanczos calculation (read pivot).

Usually in this option, pivot states are the eigenvectors of a smaller space.

12 0 0 1

21 10 0 0 0 a

4 4 0 0 6 0 4 d)

81 2 10.

2 1 1 b)

0 45 0.0005 0 0 c)

Same reading that the precedent option, except:
a) we have 2 files, the pivot states are on FILV(2)
The reading of JVAL(k) has desappeared.

b) NCAL, (NCON(k),k=1,NCAL) same meaning precedent option. c) KPVT,
NLOOP, ZFIT, IORTH, NLANZ
In this line a new reading :
KPVT > 0 pivot : linear combination of the KPVT vectors on the initial file.
KPVT = 0 pivot : linear combination of the NCON(k) vectors on the initial file.

13. idem with projection of Lanczos vectors on J2.

13 1 0 0

Cr50.t2

50 51 0 0 0

1 1 0 a)

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

90 0

2 3 3

1 30 0.0005 0 0

a) (PRV(k),k=0,2)
When many Lanczos iterations are done ( many converged states are needed, ...),

numerical errors appear; symetry of H can be lost . A usual example : you calulate
many J=2 states and at the end you get A j=2 state degenerated with the J=0
ground state. You haverecalculated the GS . Notice that the ”catastrophe” is very
abrupt and can be easily detected in looking at the energy convergence.



To avoid this problem, we can project each new Lanczos vectors on :
PRV(0)=1 time reversal symetry (not necessary for odd-odd nuclei for which it is
calways conserved).
PRV(1)=1 Angular momentum
PRV(2)=1 center of mass (only in nocore calculations)

Notice that this procedure is ”expansive”, not totally secure, not implemented
with shared vectors and not to be used with simple precision calculations . In some
situations an alternative can be the orthogonalization ( see later) .

Special possibilities with Lanczos.

STRENGTH FUNCTIONS

13 0 0

50 51 0 0 0

1 1 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

90 0

1 0

1 100 -0.0005 0 0 a)

20 2 1 b)

a) In a strength function we calculate Lanczos vectors until the end without
convergence criteria . For that take ZFIT < 0.0

b) STEP, (NFOR(k), NOVER(k),k=1,NCAL)
In standart Lanczos we have STEP=3 . If you do many iterations take a larger value
.

The NFOR(k) states, higher in energy than the NCON first states, and having a
maximum overlap with th pivot state are kept in FIL(1). At the end we kept always
NCON+NKEEP vectors.

NOVER(k) is the number of vectors which ”follows” the pivot on FIL(2) and for
which a strength function will be calculated ( with the Lanczos vectors precedently
calculated). Notice that for these states the total strength will not be 1.

RESTART A LANCZOS CALCULATION.

12 0 0 0

................

1 30 0.0005 0 100 a)

a) For different reasons you can want to restart a Lanczos calculation

( increase the number of converged state, improve a strength function, ...)

Give a value at NLANZ . The code checks the number NSTOR of vectors



that he has and restart Lanczos with NLANZ = min ( NLANZ, NSTOR).

( at each iteration , the code writes in a file called "tridia" the

tridiagonal matrix . Notice that NLANZ is

\vspace*{2mm}

ORTHOGONALIZATION TO THE PRECEDENT CALCULATED STATES

\begin{verbatim}

12 0 0

50 51 2 0 3

................

2 40 80

3 3

1 30 0.0005 1 0 a)

a) ORTH=1 :
we orthogonalize each new Lanczos vector to the vectors precedently caculated .In
the present example teh 2 fist vectors on file 50 will be forgotten, the orthonlization
will be done with the 3 following vectors for state 40 and the 3 +2 states 40 for state
80 . Vectors with differnt dimensions, ... are forgotten.

It can be an alternative at the projection of Lanczos vectors (option 13), especially
when the vectors ares shared. It can be used to calculate a new state of a given spin
, or converge succesively 2 states instead of the 2 both.

18 Projection on center of mass (nocore). 18. Projection
on center of mass (nocore) .

18 0 0 2

50 51 0 0 2 a)

2 2 0 0 12 0 -1

a) like always if NCAL=0 (here insrtead of 2) all the vectors on FILV(2) are
projected .

We keep only the Os cdm state.

19 Radii (nocore).

119 0 0 2

51 0 0

4 2 0 0 16 0 0

same comment concerning NCAL . In this example, vectors are in simple precision
( CAS=119 instead of 19) .



20 Kinetic energy (nocore).

data idem calculation of radii.

21. Occupation of Shells

21 0 0 0

50 0 0 a)

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

a) Remember that if NCAL=0 all the vectors of the file are read
Results of the options are :
Occupation of shells. Component for each truncation

For stabndard calculation, print the configurations if the occupation is > 0.01 .This
number can be changed (see subroutine TCONFA in tconf.f) .

21. Transitions (no parity change).

22 0 0 0

50 0 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

2 0 20 20 0.5 1.5 a)

22 0 0 0

50 0 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

1 0 20 20 -3.826 0.000 5.586 1.0 a)

22 0 0 1

50 0 0

6 4 0 0 4 0 -1

2 0 12.0 0.0 1.0 b)

a) LB,DP,(CORE(k),k=1,2),(ZCOEF(K,PN),K=1,1+MOD(LB+DP,2)),PN=1,2)
b) LB,DP, ZHW ,(ZCOEF(K,PN),K=1,1+MOD(LB+DP,2)),PN=1,2) LB=lambda

DP=0 no parity change (in this option)
b) CORE : number of particles in the core for space 1 and 2 . (used only to calculate
the oscillator length.



c)= In the nocore calcations ZHW is the hw used in the interaction.
ZCOEF=
electric transition : effective charge 1 and 2
magnetic transition : sigma(1), orbital (1), sigma(2) , orbital (2)

23. Sum Rule (no parity change).

23 0 0 0

51 50 0 0 1

4 4 307 1103 305 1101 0 0 0 0 8

3 4 307 1103 305 1101 0 0 0 0 8

1 1 0 0

2 0 20 20 0.5 1.5

data idem precedent option, except tha we have 2 files. If the initial is not J=0,
the sumrule is projected on angular momentum.

24. Neutrino cross section (no parity change).

24 0 0 0

51 50 0 0 1

2 2 0 0 10 0 -1

.......... a)

.......... a)

a) calculation of sum rules for different operators. See elneu.f

31. Change truncation.

31 0 0 0

51 50 0 0 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 6 0 a)

a) We read the final truncation . Read vectors (on FIL(2)) must have the same
type of truncation but smaller or equal.

32. Change Jz .

31 0 0 0

51 50 0 0 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

2 0 6 0



33. write data to use in MFD code (nocore).

32 0 0 0

51 50 0 0 3

6 4 0 0 6 0 -1

34. permutation of p and n space.

34 0 0 0

51 50 0 0 0

6 4 307 1103 305 1101 0 0 0 0 0

2 4 307 1103 305 1101 0 0 0 0 0

0 0 0 0

we obtain the solution corresponding at the permutation of the 2 supspaces.
In all the option with CAS > 40 , we have different basis for the ifinal and the

initial basis . We read always firstly the final basis and after the initial one . The
only condition is that the shells must be identical. 41. Change

The Basis .

41 0 0 0 a)

63 50 0 0 1

4 4 307 1103 1101 305 0 1 1 1 8

2 4 307 1103 1101 305 0 1 1 1 8

0 0 -2 0

4 4 307 1103 1101 305 0 0 0 0 8

2 4 307 1103 1101 305 0 0 0 0 8

0 0 0

41 0 0 0 b)

63 50 0 0 1

4 4 307 1103 1101 305 0 0 0 0 8

4 4 307 1103 1101 305 0 0 0 0 8

0 0 0 0

4 4 307 1103 1101 305 0 0 1 1 8

4 4 307 1103 1101 305 0 0 1 1 8

0 0 0 0

the truncation can be totally different . We can increase the space, reduce it
or mix the 2 things . a) In this example we extract from a calculation without



truncation, the component with a fixed truncation.
b) If you want to add shells in the valence space you can ”play” with the truncations
. In this example we write vectors from the restricted (f7/2,p3/2) space in the full
space.

42. Transitions ( parity change).

42 0 0 0

50 0 0 a)

4 4 1103 305 1101 409 0 0 0 0 0

4 4 1103 305 1101 409 0 0 0 0 0

0 0 0 0 b)

4 4 1103 305 1101 409 0 0 0 0 0

4 4 1103 305 1101 409 0 0 0 0 0

0 1 0 0 b)

1 1 20 20 0.5 1.5 c)

a) All the vectors must be on the same file.

b) In this example we calculate transitions from

negative parity states (second basis) to positive.

c) reading idem no parity change. However notice

that for E1 transition the read coefficients are irrelevant.

\vspace*{2mm}

{\bf 43. \hspace*{3cm} Sum rule ( parity change).}

\vspace*{2mm}

\begin{verbatim}

43 0 0 0

51 50 0 0 1

4 4 1103 305 1101 409 0 0 0 0 0

4 4 1103 305 1101 409 0 0 0 0 0

0 1 0 0

4 4 1103 305 1101 409 0 0 0 0 0

4 4 1103 305 1101 409 0 0 0 0 0

0 0 0 0

1 1 20 20 0.5 1.5

initial state in the second basis (Here positive parity state).



{\bf 42. \hspace*{3cm} Change Tz.}

\vspace*{2mm}

\begin{verbatim}

15 0 0 0

63 50 0 0 2

3 4 307 1103 1101 305 0 0 0 0 0 a)

3 4 307 1103 1101 305 0 0 0 0 0

0 0 0 0

4 4 307 1103 1101 305 0 0 0 0 0 b)

2 4 307 1103 1101 305 0 0 0 0 0

0 0 0 0

we define the final basis a) and the initial b)



16. Gamow-Teller.

16 0 1

0 50 0 0 1

5 4 307 1103 1101 305 0 1 1 1 8 a)

1 4 307 1103 1101 305 0 1 1 1 8

0 0 3

4 4 307 1103 1101 305 0 1 1 1 8 b)

2 4 307 1103 1101 305 0 1 1 1 8

0 0 2

we define the final basis a) and the initial b) If the initial state is J=0 , the final
state is J=1 and it is written on the file FIL(1) (if FIL(1) 6= 0)

If (second example) the initial state is not J=0 we must project this ”sum rule”
state on J2.

Note :
Possiblity to have JUMP final 6= initial (in the present example to keep Ikeda sum
rule)
In the second example we have Jz=0 excluding to have a final state J=2 since J
initial=2 . To have it Jz value must be changed .(see next option)


