
ANTOINE.MAN

This code works with shell model wavefunctions written in a M-scheme. The
diagonalization of the matrices are done with the Lanczos method .Besides the M-
sheme, vectors have good angular momentum, this being achieved with a Lanczos
calculation with the operator J2.

Users interested to know what is in this black box can find basic idea of this code
in :

Acta Physica Polonica B30 (1999) 705

It has the possibility to calculate energies, wave-functions, transitions, sum rules,....
It includes tools useful for shell model calculations (modification of two-body

matrix elements...)
All these possibilities are defined by a numero of an option and they can be

executed successivelly.
This code starts from the version of the code put on the WEB :

http://sbgat194.in2p3.fr/ theory/antoine/
The fundamental improvement of this new code is that it includes No Core Shell

Model (NCSM) and that it is possible to ”share” the Lanczos vectors which allows
to diagonalize larger matrices.

This version is very recent which explain that THERE IS NO GUARANTEE on
the exactness of the results of ALL the options with ALL the possible data . Lots of
tests have beee done, but we never know ...

However if the reults are wrong or if the code breaks, check the data and the total
dimension allowed for the calculation before to suspect the code. As a LAST resort
and after a LONG thinking send me the data and the results.

Etienne CAURIER
tel 03-88-10-64-84
fax 03-88-10-62-02
email etienne.caurier@ires.in2p3.fr
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This manual is organized as follows :
I) Generalities.
II) Files.
III) Interactions.
IV) Generalities about the data.
V) List of options.
VI) Specific data following the options.

I. Generalities

The code is written in FORTRAN NORM 77 .
2 possible main programs :

aaa9.f with ”malloc” to get larger memory.
aab9.f standard but also used with 64 bits processor.

In the main program we define the parameter TOT, length of the array F. In
F(∗) are written all the most important arrays needed in the calculation. Notice that
even if F is defined integer, it can contain double precision quantities .Limitations :
TOT ≤ RAM + swap and TOT being an integer ∗4 TOT ≤ 231 ≃ 2 ∗ 109

During a Lanczos calculation, F contains 2 vectors (or 2 pieces of these vectors)
+ some working lengths. During the calculation the code tests often if the size
is sufficient (if not, it stops with a clear message). But the tests are not always
possible... so sometimes it can break ... Before to suspect an error in the code,
increase this parameter.

The first subroutine (acas.f) fixes some quantities ( LNN,LW2, ...) . The code
checks them and send a message if it is necessary to increase them . Some dimen-
sions are fixed in some commons. Some dimensions are arbitrary fixed. During the
execution of the job, they are (in principle !) tested and a clear message appears if
they are too small.

II. Files

The fortran unit for input (IREAD) and output (IOUT) are defined in acas.f
All the precalculations, which are done separetely in the two spaces are stored.

This storage (especially for large truncation in nocore calculations) can be huge .
For this reason we define in ”acas.f” NDISK=k and the storage will be equilibrated
between the directories ”amat1, amat2, ..., amatk”.
NDISK≤5 (see opfil.f)

The Lanczos vectors are stored in a directory called ”vec”.
The Hamiltonian and the vectors files are defined with a numero which is read in

the data and corresponds to a Fortan unit .
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ln -sf HOME/fp/T i46fort.50
ln − sfHOME/hamil/kb3 fort.90
If a file is not used take numero 0. For example if you want only energies without

eigenvectors, take 0 for this file.
Fortran Units 1,2,3,4 are reserved for temporary files in ”amatk” and ”vec” .
At the end of an option, files are in principle rewinded. It is possible to avoid

that (for example you read a vector in an option and you want to write an other one
behind in the next option) For that take a negative value for the numero of the file
(absolute value will be taken in the calculation)

III Interactions

For Nocore calculations, interactions are on binary files calculated by P. Navratil
.

Interactions Files for standard calculations :

USD INT. a)

1 3 203 205 1001 b)

1.64658 -3.94780 -3.16354 c)

1 8 8 0.300000 0.000000 d)

0 1 203 203 203 203 0 3 e)

0.00000 -1.41510 0.00000 -2.88420 f)

-2.18450 0.00000 -0.06650 0.00000

0 1 205 203 203 203 1 3

0.56470 0.00000 2.03370

0.00000 -0.61490 0.00000

...................................

0 1 1001 205 1001 203 2 2

2.06640

-1.94100

............................

0 1 1001 1001 1001 1001 0 1

0.00000 -3.26280

-2.12460 0.00000

a) TEXT (character∗30)
This is the name of the interaction. This will be written with eigenvectors of the

diagonalization. (after some months it can be useful to remember what interaction
has been used !)

b) QMAX, SH, ( NLJ( k ), k= 1, SH)
QMAX=1 individual energy identical for a proton or neutron shell
QMAX=2 individual energy different for a proton or neutron shell
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SH= number of shells in the valence space
NLJ= definition of the shell nlj with NLJ= 1000 ∗ n + 100 ∗ l + 2 ∗ j

n begins at 0 . Examples 307 = 0f7/2 1103 = 1p3/2 . 511 = 0h11/2 .
This notation for the shells will be the same in all the data.

C) Loop on q=1,QMAX
(ZEPSI( k,q), k= 1, SH)

ZEPSI=individual energies. If QMAX=2 q=1=neutron q=2=proton

D) IDENS, (CORE(k),k=1,2), ZMASS
density dependance IDENS=0 no dependance with the mass ; =1 dependance fot

only TBME ; =2 dependance for TBME and individual energies.
CORE = number of particles (space 1 and 2 ) in the core.
the multiplicative factor is :
XMULT=(AINI/ATOT)**ZMASS with AINI=CORE(1)+CORE(2)+2.

(notice that a second coefficient is included in the file, allowing a dependance
with isospin) .

e) TMIN, TMAX, (NLJ( k ), k= 1, 4), JMIN, JMAX

f) loop t= TMIN, TMAX
(VMAT( j, t), j= JMIN, JMAX)

t=isospin. For standart Hamiltonian take TMIN=0 TMAX=1
If V(pp) 6= V(nn) take TMAX=2 V(pn,T=1)=V(nn)=V(t=1) and V(pp)=V(t=2)
If V(pp) 6= V(nn) 6= V(pn,T=1) take TMAX=3 V(pn,T=1)=V(t=1); V(nn)=V(t=2)
and V(pp)=V(t=3)
(it is always possible to have TMIN 6= 0.

If the spaces for protons and neutrons are different,we can have matrix elements
defined in p-n formalism.In that case we will have

TMIN=1 for V(pp) and V(nn)
TMIN=-1 for V(pn) (loop on t=iabs(TMIN),TMAX)

And in these cases we read only (X( j ), j= JMIN, JMAX)
important note:

The order of shells has no importance. The code checks that all the individual
energies are defined (if not, it stops with a message), but does not check if some
matrix elements are missing , they will be put at a value 0.0 without a message .
However the total number of readings e) is printed .
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GENERALITIES about DATA

We give here the fundamendal readings which occur often in the different options.
Examples for each option with explanation about their specific data are given later.

All the data (except character type data) are read with a free format. All the
Fortran variables beginning with a letter :

A-U are integers
V-Z are double precision.

First reading is the same for ALL the options.

READ (IREAD,*,END=99) CAS, ITEXT, IPRI, TYPE

IF(ITEXT.NE.0) READ (IREAD,100,END=99) TEXT

100 FORMAT(A30)

CAS= numero of the option (see list).
If CAS=0 or has not been defined, it stops.

TEXT is a variable of character-type which will be written with the the stored
vectors (or Hamiltonian).

IPRI=0 standard, IPRI=1,2 more intermediate printings .
TYPE=0 Standart valence space .

TYPE=1 No Core valence space .
TYPE=2 No Core maxi (N,Z) ≤ 2

TYPE=2 calculations can be done with TYPE=1 if truncation is not too large.

After this reading, except the options concerning manipulations of files or inter-
actions ( CAS > 60) which have specific data, all the other have the following reading
:

IF(KF.GT.0)

*READ(IREAD,*) (FILV( k ), k= 1,KF),(INIV( k ), k= 1,KF), STOR

KF, defined with a data in the subroutine achoi.f , is the number of files of vectors
that you can have to manipulate during the option. It can be

1. KF=0 we calculate dimensions ...

2. KF=1 we read OR write vectors (calculation of transitions ...).

3. KF=2 we write AND read vectors (usual Lanczos calculations ...) .
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FILV( k ) are the numero of the file (can be =0 if not used)
If KF=2 :
FILV( 1 ) is always the file on which we write vectors.
FILV( 2 ) is always the file on which we read vectors.
Remember that at the end of the option, the files are rewinded, except if the

numero of the file has been defined negative.

INIV( k ) (initialisation of the files) is the number of vectors read at the beginning
of the task.

If INIV( k ) is larger than the number of stored states, a message is given, a
backspace is done and the program continues.

STOR : 2 possible meanings following the options .
When we calculate new vectors , it is the number of vectors precedently calculated
. They will be taken in account in the calculations of spectra, if orthoganlization is
needed. At the opposite the vectors INIV are completly forgotten .

When we do operations on vectors (calculation of transitions ,sum rule,....) it is
the number of vectors which will be treated . In this case STOR is often called NCAL.
STOR=0, all the vectors on the file will be taken in account (STOR is transformed
in 10000) . It avoids to know precisely the number of vectors on the file .

The next read lines define the valence space.
Standard calculations ( TYPE=0 ):

DO 1 I=1,2

READ(IREAD,*) A(I),SH(i),(NLJ(K,I),K=1,SH(i)),(CLAS(K,I),K=1,SH(i)),SAUT(i)

1 CONTINUE

READ(IREAD,*) MPRO, PARI, JUMP, FLCUT

Nocore calculations :

READ(IREAD,*) (A(I),i=1,2), MPRO, PARI, JUMP, FLCUT, JLIM

I=1 and 2 for protons and neutrons (or opposite). Especially for large matrices,
take the first space the larger, larger in the sense of the number of Slater deter-
minants (combinatorial factor of the number of particles and the number of valence
states).

If we need 2 different valence spaces (ex: change Tz) we must read successively
the 2 valence spaces .

1) the FINAL basis
2) the INITIAl basis
A=number of particles.

SH=number of shells.
NLJ=1000 ∗ n + 100 ∗ l + 2j (definition of the shells)
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For Nocore, shells are automatically calculated (1,101,103,205,203,1001,1101,...)
MPRO=2 ∗ Jz PARI= global parity. 0 for positive, 1 for negative.

Notice that
all the quantities which can be half-integer are multiplied by 2.
Truncations.
in Nocore calculations JUMP defines the number of allowed hw excitations .

Situation is a little bit more complicated for TYPE=0. At each shell is associated a
number CLAS(m,i) which is used to truncate the space configurations.
We must have always CLAS(m,i) ≤ CLAS(m+1,i).

For each configuration, defined by n(k,i) number of particles in each shell k, we
calculate :

t(i)=
∑

k n(k, i) ∗ clas(k, i)
We define :
tmin(i)=min(t(i)) (all the particles put in the first shells)
and keep only configurations with :
0 ≤ t(i) ≤ SAUT(i)+tmin(i) in each subspace and
0 ≤ t(1) + t(2) ≤ JUMP in the global space.
It means that the code takes always SAUT(i)=min(SAUT(i),JUMP).
examples in a specific subspace :

6 4 307 1103 305 1101 0 0 0 0 0 a)

6 4 307 1103 305 1101 0 1 1 1 10 b)

6 4 307 1103 305 1101 0 1 1 1 2 c)

10 4 307 1103 305 1101 0 1 1 1 2 d)

a) no restriction
b) no restriction, possibility to analyze the wave function in term of t.
c) maximum 2 particles in the space (1103,305,1101)
d) tmin=2 maximum 4 particles in the space (1103,305,1101)

Exception : if we take JUMP < 0 , we take a fixed truncation :
t(1)+t(2) = IABS(JUMP)
********** Limitation JUMP =24

Sharing of the Lancos vectors.
Lanczos vectors are the succession of blocks (rectangular matrices) caracterized

by Jz and parity ( for each space) We have the possibility to share the vectors
following these blocks. the minimum size will be the dimension of the larger block (
this quantity is printed in the option calculating the dimensions).

The advantage is that it allows the diagonalization of larger matrices . It gives a
natural way to parallelize the code . The disadvantage appears in the pn calculation
: we cannot take advantage of the symetry H(I,J)=H(J,I) when I and J do not belong
at teh same block .
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FLCUT=0 no sharing FLCUT > 0 numero of the file where we read the sharing
. FLCUT < 0 useful if you have forgotten the num sharing .

Specificity for Nocore calculations ( TYPE > 0) .
A major difficulty when the truncation becomes large is the number of shells (oper-
ators) to handle . Following the J value that we want, we can eliminate some shells
(example if we calculat J=0 with t=2 in 4 He, we know that the shells 0d5/2, 0d3/2 will
not be occupied . These shells will not be eliminated in the basis , but the operators
in which they appear will be. To do that take JLIM= maxi of calculated J ( if not
take JLIM=-1).
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V OPTIONS.

• 01. Dimensions of the space.

• 02. Sharing of the lanczos vectors (average on the length.

• 03. Sharing of the lanczos vectors (fixed number of blocks.

• 04. Number of terms in the matrix.

• 05. three-body .

• 06 Pivot without projection on J2 .

• 07 Idem with projection on J2 of the Lanczos vectors.

• 08 Projection on J2.

• 11 Lanczos calculation (random pivot).

• 12 Lanczos calculation (read pivot).

• 13 Lanczos vectors are projected .

• 18 Projection on center of mass (nocore).

• 19 Radii (nocore).

• 20 Kinetic energy (nocore).

• 21. Calculation of shells occupations.

• 22. E(L) and M(L) transitions. Parity unchanged.

• 23. Sum rule E(L) or M(L). Parity unchanged.

• 24. Neutrino cross section. Parity unchanged.

• 31. Change truncation (increase the space).

• 32. Change Jz .

• 33. writing vectors for MFD code (nocore) .

• 34. P-N permutation space .

• 41. Change the basis .

• 42. E(L) and M(L) transitions. Parity changed.
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• 43. Sum rule E(L) or M(L). Parity changed.

• 44. Neutrino cross section. Parity changed.

• 45. one-body density . Parity changed.

• 46. Change Tz value.

• 47. Gamow-Teller sum rule.

• 48. Gamow-Teller Haxton operator.

• 49. Gabriel operator . Parity changed.

• 50. spectroscopic factors.

• 51. 0νββ .
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VI SPECIFIC DATA FOLLOWING THE OPTIONS .

01. Dimensions of a valence space

1 0 0 0

6 4 307 1103 305 1101 0 1 1 1 8

10 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

1 0 2 1

6 5 1 1 8 0

Calculation of the dimensions in the space and that for all the Jz values. It gives
also the dimension in the J space and the effective dimension of the matrix for M=0
when time reversal symetry is taken in account . It allows to see until what value of
J it is better to take Jz=0 instead of Jz=J.
If IPRI=1 calculation of dimensions for JUMP=0,JUMP
If IPRI=2 calculation of dimensions for JUMP=mod(JUMP,2),JUMP,2
(in the second example we calculate dimension for t=0,2,4,6)

02. Sharing of the vectors (with Dimension)

2 0 0 0

10 4 307 1103 305 1101 0 1 1 1 8

12 4 1103 305 1101 409 0 0 0 1 10

0 0 18 70

400 a)

a) MOY size that we try to get in average .

03. Sharing of the vectors (in N blocks)

3 0 0 0

10 4 307 1103 305 1101 0 1 1 1 8

12 4 1103 305 1101 409 0 0 0 1 10

0 0 18 70

7 a)

a) N number of blocks that we need ( option useful for parallelization N=number
of processors !)

04. Number of non-zero of the matrix
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4 0 0 0

10 4 307 1103 305 1101 0 1 1 1 8

12 4 1103 305 1101 409 0 0 0 1 10

0 0 18 70

Number of non-zero in the matrix . The result is given for each block (Jz,parite)
and if FLCUT > 0 for all the sghared components.
This option gives also the number of equivalent integer numbers to store on each
disk.

06. Creation of pivot(s) without J2 projection.

6 0 0 1

50 0 0

6 4 0 0 4 0 -1

2 1 -1 245789 1 a)

a) NCAL, (RVT(k),k=1,NCAL), KPVT, RVI
RVT : if MPRO (Jz) =0 we must define a time reversal symetry :
+1 to have a pivot containing even J values
-1 to have a pivot containing odd J values
if MPRO 6= 0 RVT=0 (it means that NCAL must be =1 ).

The created pivots are random . KPVT is an integer which initiates the random
numbers.

RVI=1 pivot states are random but built with T=Tz.
RVI=0 no restriction on isospin .

Supposing A(1) ≥ A(2), states of the basis for which all the occupied states in
space 2 are occupied in space 1 have T=Tz. These states allow to get a pivot state
with good isospin . (It is not possible to get it for a nucleus N=Z=odd with Jz=0) .

07. Creation of pivots projected on J2 .

7 0 0 0

50 0 0

4 4 307 1103 305 1101 0 0 0 0 0

2 4 307 1103 305 1101 0 0 0 0 0

0 0 0 0

3 0 2 4 a)
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b) NCAL,(JVAL(k),k=1,NCAL)
JVAL=2*J of the calculated states.
note: the code calculates and stores ,first, the states having same time reversal than
the first one . In the present example we will have on fiel 50 the states J=0,2 and
after J=1.

08. Projection on J2.

8 0 0 0

51 50 0 0 2 a1)

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

2 0 4 b)

1 6 b)

8 0 0 0

0 50 0 0 0 a2)

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

a) FLWRI, FLLEC, (NLEC(k),k=1,2), NCAL
2 possibilities:
a1) FLWRI 6=0 , reading of :

b) NKEEP, (JVAL(k),k=1,NKEEP) and that for all the NCAL states. . If
NCAL=0 , it is taken NCAL=1 . If NCAL is larger than the number of vectors on
FLLEC, the code stops .

a2) FLWRI =, 6= 0 (CF?) . No reading of b) . If NCAL=0 , all the vectors of
the file FLLEC are considered . This is the main interest of this option, allowing to
check the angular momentum of vectors .

11. Lanczos calculation (random pivot).

11 1 0 0 a)

Ti46-t2 a)

20 0 0 b)

4 4 307 1103 305 1101 0 1 1 1 2

2 4 307 1103 305 1101 0 1 1 1 2

0 0 2 0

93 0 c0)
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3 0 2 4 d)

1 1 2 e)

45 0.0005 0 0 f)

11 1 0 0 a)

Ti46-t2 a)

20 0 4 b)

4 4 307 1103 305 1101 0 1 1 1 2

2 4 307 1103 305 1101 0 1 1 1 2

8 0 2 0

93 0 c0)

2 8 12 d)

1 1 e)

45 0.0005 0 0 f)

11 0 0 0 a)

21 0 0 b)

4 4 0 0 0 0 -1

80 2 10. c1)

3 0 2 4 d)

1 1 2 e)

45 0.0005 0 0 f)

a,b) see generalities
Notice that in b1) we have STOR=4 . It means that 4 states will be read and will
appear at the end in the spectrum.

c0) FLNUC,COUL standard SM
FLNUC= file of H
COUL= 0 no coulomb ; COUL=1,2 proton space (coulomb must be included in H)

c1) FLNUC,PPPP, ZCDM Nocore
PPPP=1,2 proton space . ZCDM= multiplicative factor for Hcm.

d) NCAL, (JVAL(k),k=1,NCAL) states to calculated.
remember the order of the states when MPRO=0 (time reversal symmetry). In the
present example, we will get the J=0 state, then the two J=2 states and at the end
the J=1 state. This is very important to remember , especially if these states will
become pivots in a larger spase (see next option) .

e) (NCON(k),k=1,NCAL) number of converged states that we need for each ma-
trix.

f) NLOOP, ZFIT, IORTH, NLANZ
NLOOP= number maximum of Lanczos iterations

ZFIT : test of convergence.
each 3 iterations the tridiagonal Lanczos matrix is diagonalized. If all the states that
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we want to converge have an increase of the energy smaller than ZFIT, the Lanczos
procedure is stopped.

For standard calculation take ORTH=NLANZ=0 (see later specific possibilities)

12. Lanczos calculation (read pivot).

Usually in this option, pivot states are the eigenvectors of a smaller space.

12 0 0 1

21 10 0 0 0 a

4 4 0 0 6 0 4 d)

81 2 10.

2 1 1 b)

0 45 0.0005 0 0 c)

Same reading that the precedent option, except:
a) we have 2 files, the pivot states are on FILV(2)
The reading of JVAL(k) has desappeared.

b) NCAL, (NCON(k),k=1,NCAL) same meaning precedent option. c) KPVT,
NLOOP, ZFIT, IORTH, NLANZ
In this line a new reading :
KPVT > 0 pivot : linear combination of the KPVT vectors on the initial file.
KPVT = 0 pivot : linear combination of the NCON(k) vectors on the initial file.

13. idem with projection of Lanczos vectors on J2.

13 1 0 0

Cr50.t2

50 51 0 0 0

1 1 0 a)

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

90 0

2 3 3

1 30 0.0005 0 0

a) (PRV(k),k=0,2)
When many Lanczos iterations are done ( many converged states are needed, ...),

numerical errors appear; symetry of H can be lost . A usual example : you calulate
many J=2 states and at the end you get A j=2 state degenerated with the J=0
ground state. You haverecalculated the GS . Notice that the ”catastrophe” is very
abrupt and can be easily detected in looking at the energy convergence.

15



To avoid this problem, we can project each new Lanczos vectors on :
PRV(0)=1 time reversal symetry (not necessary for odd-odd nuclei for which it is
calways conserved).
PRV(1)=1 Angular momentum
PRV(2)=1 center of mass (only in nocore calculations)

Notice that this procedure is ”expansive”, not totally secure, not implemented
with shared vectors and not to be used with simple precision calculations . In some
situations an alternative can be the orthogonalization ( see later) .

Special possibilities with Lanczos.

STRENGTH FUNCTIONS

13 0 0

50 51 0 0 0

1 1 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

90 0

1 0

1 100 -0.0005 0 0 a)

20 2 1 b)

a) In a strength function we calculate Lanczos vectors until the end without
convergence criteria . For that take ZFIT < 0.0

b) STEP, (NFOR(k), NOVER(k),k=1,NCAL)
In standart Lanczos we have STEP=3 . If you do many iterations take a larger value
.

The NFOR(k) states, higher in energy than the NCON first states, and having a
maximum overlap with th pivot state are kept in FIL(1). At the end we kept always
NCON+NKEEP vectors.

NOVER(k) is the number of vectors which ”follows” the pivot on FIL(2) and for
which a strength function will be calculated ( with the Lanczos vectors precedently
calculated). Notice that for these states the total strength will not be 1.

RESTART A LANCZOS CALCULATION.

12 0 0 0

................

1 30 0.0005 0 100 a)

a) For different reasons you can want to restart a Lanczos calculation

( increase the number of converged state, improve a strength function, ...)

Give a value at NLANZ . The code checks the number NSTOR of vectors
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that he has and restart Lanczos with NLANZ = min ( NLANZ, NSTOR).

( at each iteration , the code writes in a file called "tridia" the

tridiagonal matrix . Notice that NLANZ is

\vspace*{2mm}

MATRIX ELEMENTS HAVE BEEN PRECEDENTLY CALCULATED .

\begin{verbatim}

112 0 2 1

75 70 8 0 0

4 2 0 0 16 0 0

-58 2 10.0 0.0 a)

1 1

0 30 0.0005 0 0

Especially for nocore calculations with high truncation, the computing time for
precalculation can be not negligible . If they habve been calculated, we can restart
the diagonalization without doing these precalculations

a) put negative value for the Hamiltonian file .

ORTHOGONALIZATION TO THE PRECEDENT CALCULATED STATES

12 0 0

50 51 2 0 3

................

2 40 80

3 3

1 30 0.0005 1 0 a)

a) ORTH=1 :
we orthogonalize each new Lanczos vector to the vectors precedently caculated .In
the present example teh 2 fist vectors on file 50 will be forgotten, the orthonlization
will be done with the 3 following vectors for state 40 and the 3 +2 states 40 for state
80 . Vectors with differnt dimensions, ... are forgotten.

It can be an alternative at the projection of Lanczos vectors (option 13), especially
when the vectors ares shared. It can be used to calculate a new state of a given spin
, or converge succesively 2 states instead of the 2 both. 18. Pro-

jection on center of mass (nocore) .

18 0 0 2

50 51 0 0 2 a)

2 2 0 0 12 0 -1
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a) like always if NCAL=0 (here insrtead of 2) all the vectors on FILV(2) are
projected .

We keep only the Os cdm state.

19 Radii (nocore).

119 0 0 1

51 0 0

4 2 0 0 16 0 0

28 a)

a) FLNUC : interaction filewith which the wavefub=nction has been calculated
same comment concerning NCAL . In this example, vectors are in simple precision

( CAS=119 instead of 19) .

20 Kinetic energy (nocore).

data idem calculation of radii.

21. Occupation of Shells

21 0 0 0

50 0 0 a)

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

a) Remember that if NCAL=0 all the vectors of the file are read
Results of the options are :
Occupation of shells. Component for each truncation

For stabndard calculation, print the configurations if the occupation is > 0.01 .This
number can be changed (see subroutine TCONFA in tconf.f) .

21. Transitions (no parity change).

22 0 0 0

50 0 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

2 0 20 20 0.5 1.5 a)

22 0 0 0

50 0 0

6 4 307 1103 305 1101 0 1 1 1 8
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4 4 307 1103 305 1101 0 1 1 1 8

0 0 2 0

1 0 20 20 -3.826 0.000 5.586 1.0 a)

22 0 0 1

50 0 0

6 4 0 0 4 0 -1

2 0 12.0 0.0 1.0 b)

a) LB,DP,(CORE(k),k=1,2),(ZCOEF(K,PN),K=1,1+MOD(LB+DP,2)),PN=1,2)
b) LB,DP, ZHW ,(ZCOEF(K,PN),K=1,1+MOD(LB+DP,2)),PN=1,2) LB=lambda

DP=0 no parity change (in this option)
b) CORE : number of particles in the core for space 1 and 2 . (used only to calculate
the oscillator length.
c)= In the nocore calcations ZHW is the hw used in the interaction.
ZCOEF=
electric transition : effective charge 1 and 2
magnetic transition : sigma(1), orbital (1), sigma(2) , orbital (2)

23. Sum Rule (no parity change).

23 0 0 0

51 50 0 0 1

4 4 307 1103 305 1101 0 0 0 0 8

3 4 307 1103 305 1101 0 0 0 0 8

1 1 0 0

2 0 20 20 0.5 1.5

data idem precedent option, except tha we have 2 files. If the initial is not J=0,
the sumrule is projected on angular momentum.(see definition of the sum rule in
subroutine sures in proj2.f)

24. Neutrino cross section (no parity change).

24 0 0 0

51 50 0 0 1

2 2 0 0 10 0 -1

.......... a)

.......... a)

a) calculation of sum rules for different operators. See elneu.f

31. Change truncation.
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31 0 0 0

51 50 0 0 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

0 0 6 0 a)

a) We read the final truncation . Read vectors (on FIL(2)) must have the same
type of truncation but smaller or equal.

32. Change Jz .

31 0 0 0

51 50 0 0 0

6 4 307 1103 305 1101 0 1 1 1 8

4 4 307 1103 305 1101 0 1 1 1 8

2 0 6 0

33. write data to use in MFD code (nocore).

32 0 0 0

51 50 0 0 3

6 4 0 0 6 0 -1

34. permutation of p and n space.

34 0 0 0

51 50 0 0 0

6 4 307 1103 305 1101 0 0 0 0 0

2 4 307 1103 305 1101 0 0 0 0 0

0 0 0 0

we obtain the solution corresponding at the permutation of the 2 supspaces.
In all the option with CAS > 40 , we have different basis for the ifinal and the

initial basis . We read always firstly the final basis and after the initial one . The
only condition is that the shells must be identical. 41. Change

The Basis .

41 0 0 0 a)

63 50 0 0 1

4 4 307 1103 1101 305 0 1 1 1 8

2 4 307 1103 1101 305 0 1 1 1 8
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0 0 -2 0

4 4 307 1103 1101 305 0 0 0 0 8

2 4 307 1103 1101 305 0 0 0 0 8

0 0 0

41 0 0 0 b)

63 50 0 0 1

4 4 307 1103 1101 305 0 0 0 0 8

4 4 307 1103 1101 305 0 0 0 0 8

0 0 0 0

4 4 307 1103 1101 305 0 0 1 1 8

4 4 307 1103 1101 305 0 0 1 1 8

0 0 0 0

the truncation can be totally different . We can increase the space, reduce it
or mix the 2 things . a) In this example we extract from a calculation without
truncation, the component with a fixed truncation.
b) If you want to add shells in the valence space you can ”play” with the truncations
. In this example we write vectors from the restricted (f7/2,p3/2) space in the full
space.

42. Transitions ( parity change).

42 0 0 0

50 0 0 a)

4 4 1103 305 1101 409 0 0 0 0 0

4 4 1103 305 1101 409 0 0 0 0 0

0 0 0 0 b)

4 4 1103 305 1101 409 0 0 0 0 0

4 4 1103 305 1101 409 0 0 0 0 0

0 1 0 0 b)

1 1 20 20 0.5 1.5 c)

a) All the vectors must be on the same file.

b) In this example we calculate transitions from

negative parity states (second basis) to positive.

c) reading idem no parity change. However notice

that for E1 transition the read coefficients are irrelevant.

\vspace*{2mm}

{\bf 43. \hspace*{3cm} Sum rule ( parity change).}
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\vspace*{2mm}

\begin{verbatim}

43 0 0 0

51 50 0 0 1

4 4 1103 305 1101 409 0 0 0 0 0

4 4 1103 305 1101 409 0 0 0 0 0

0 1 0 0

4 4 1103 305 1101 409 0 0 0 0 0

4 4 1103 305 1101 409 0 0 0 0 0

0 0 0 0

1 1 20 20 0.5 1.5

initial state in the second basis (Here positive parity state).

{\bf 42. \hspace*{3cm} Change Tz.}

\vspace*{2mm}

\begin{verbatim}

15 0 0 0

63 50 0 0 2

3 4 307 1103 1101 305 0 0 0 0 0 a)

3 4 307 1103 1101 305 0 0 0 0 0

0 0 0 0

4 4 307 1103 1101 305 0 0 0 0 0 b)

2 4 307 1103 1101 305 0 0 0 0 0

0 0 0 0

we define the final basis a) and the initial b)
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16. Gamow-Teller.

16 0 1

0 50 0 0 1

5 4 307 1103 1101 305 0 1 1 1 8 a)

1 4 307 1103 1101 305 0 1 1 1 8

0 0 3

4 4 307 1103 1101 305 0 1 1 1 8 b)

2 4 307 1103 1101 305 0 1 1 1 8

0 0 2

we define the final basis a) and the initial b) If the initial state is J=0 , the final
state is J=1 and it is written on the file FIL(1) (if FIL(1) 6= 0)

If (second example) the initial state is not J=0 we must project this ”sum rule”
state on J2.

Note :
Possiblity to have JUMP final 6= initial (in the present example to keep Ikeda sum
rule)
In the second example we have Jz=0 excluding to have a final state J=2 since J
initial=2 . To have it Jz value must be changed .(see next option)
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