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A b s t r a c t :  In order to test the validity of  various techniques and formalisms developed for treating 
many-particle systems, a model is constructed which is simple enough to be solved exactly in 
some cases, but yet is non-trivial. The construction of such models is based on the observation 
that  bilinear products of  creation and annihilation operators can be considered as generators 
of Lie groups. Thus the problem of finding eigenvalues can be greatly simplified by the additio- 
nal integrals of  the motion which are present if the Hamiltonian is constructed so as to commute 
with invariants of  the group. In the present case, the model consists of N fermions distributed 
in two N-fold degenerate levels and interacting via a monopole-monopole force. It is shown 
that  the model Hamiltonian is easily expressed in terms of quasi-spin operators and exact 
eigenvalues are obtained. In addition, eigenvalues are calculated with ordinary perturbation 
theory using values for the number  of particles and interaction strength which are appropriate 
to the more realistic problems of  finite nuclei. In subsequent papers we consider the results 
obtained by various other approximation methods for comparison with the exact results 
presented here. 

1. Introduction 

Recently many techniques and formalisms have been developed for treating many- 
particle systems. Although different in appearance, some of these methods seem to be 
simply related if not completely equivalent. However, direct comparison of treat- 
ments using different complicated notations is difficult. It is also difficult to check the 
validity of various approximations as a function of the characteristic parameters 
occurring in the physical systems. In particular, one can question the application to 
nuclear physics of approximation methods such as the random phase approximation 
and the BCS treatment of pairing correlations 1, 2), which have been developed in 
field theory and solid state physics where the number of degrees of freedom in the 
system is very large. 
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These different formulations can be tested in models which are simple enough to 
be solved exactly but are yet non-trivial. By comparing the approximate solutions 
with the exact ones, one can determine the region of validity for each method and 
perhaps also find modifications which will have a wider range of  validity. 

One method for constructing soluble models is to incorporate some symmetry in 
the system which gives additional integrals of the motion and therefore can drastically 
reduce the size of the Hamiltonian matrix to be diagonalized. Symmetries can be 
introduced into a Hamiltonian written in terms of creation and annihilation opera- 
tors by noting that bilinear products of these operators can be considered as genera- 
tors of Lie groups. The commutator of two bilinear products of creation and anni- 
hilation operators is a linear combination of such bilinear products. Therefore, the set 
of  all possible bilinear products formed from a finite set of these operators constitutes 
a Lie algebra. The Hamiltonian for a many-particle system interacting via two-body 
forces is a sum of linear and quadratic terms in these bilinear products and is thus 
expressible as a function of the operators of a Lie algebra or the generators of  a Lie 
group. The invariants or Casimir operators of  the group then commute with the 
Hamiltonian and provide constants of the motion in addition to those provided by 
the usual conservation laws. 

The Elliott model a) for light nuclei is an example of a soluble model whose Hamil- 
tonian is expressible in terms of the generators of a Lie group; in this case the group 
SU3. The simplest Lie algebra is the angular momentum algebra. There are a number 
of  ways of  constructing bilinear products of creation and annihilation operators 
which satisfy commutation rules like angular momenta. Such operators are often 
called quasi-spins because of the formal resemblance to angular momentum. 

In this paper, we consider a model which can be described in terms of quasi-spins 
and for which exact solutions are obtainable in many cases. The model also possesses 
states of collective excitation in nuclear physics similar to the giant resonances ob- 
served and often treated using the random phase approximation 4). This model has 
been previously used by Fallieros s) as a simplified model of a giant monopole reso- 
nance. The purpose of this paper is to show that the model Hamiltonian is easily ex- 
pressed in terms of quasi-spin operators, and to give exact solutions as well as solu- 
tions with ordinary perturbation theory using values for the number of  particles and 
interaction strength which are relevant to the treatment of nuclei by the random phase 
approximation. In subsequent papers we consider the result obtained by various 
formulations of  the random phase approximation and compare them with these 
exact results. 

2. The Model 

Consider a system of  N fermions distributed in two levels each having an N-fold 
degeneracy and separated by an energy e. These levels could be twojj-coupling shells 
with the samej.  Each state is described by a quantum number a which has the value 
+ 1 in the upper shell and - 1 in the lower shell, and a quantum number p specifying 
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the particular degenerate state within the shell. For  each value o f p  there are two cor- 
responding states, one in the lower shell and one in the upper shell. If  the levels are 
two j j  coupling shells, the quantum number p is the quantum number m specifying 
the z-component of  the angular momentum. A two-body interaction is assumed 
which scatters pairs of  particles between the two levels without changing the value 
ofp .  In the case when the levels are jj-coupling shells, such an interaction would be a 
"monopote-monopole"  interaction in which the angular momentum quantum num- 
bers of  the particle are not changed in the scattering. Another interpretation of this 
model could be two harmonic oscillator major shells of the same parity containing 
severaljj-coupling sub shells with a monopole interaction scattering particles between 
the shells without changing the angular momentum quantum numbers. 

Let a~o b e  the creation operator for a particle in the p state of  the o- level. The 
Hamiltonian for the system can then be written as 

H ½8Eaa~av, ,+½VE * * _ ,+½w * * (2.1) : E apaap"  - a a p ' a a p  - a ,  ap~ ap,,r ap ,  _ ~ a p  
p¢ pp, ¢ pp, ¢ 

where V and W are parameters specifying the strengths of the interactions. The term 
proportional to V scatters a pair of  particles in the same level to the other level. The 
term proportional to W scatters one particle up while another is scattered down. 

The unperturbed ground state for this system (if V = W = 0) has all the particles in 
the lower level, each particle having a different value of the quantum number p. The 
interaction does not change the value of  p and only mixes the unperturbed ground 
state with those states in which each particle has a different value of the quantum 
number p but may be either in the upper or lower state. There are thus a total of 2 N 
states of  this kind. The diagonaiization of the Hamiltonian (2.1) thus involves a 
matrix of order 2 N. The symmetry of the problem allows a considerable reduction 
in the size of the matrix to be diagonalized. 

That  each particle has only two possible states immediately suggests the use of  a 
quasi-spin formulation. The two-valued specification of the state of  a given particle 
can be represented by a Pauli spinor, while operators describing a transition of a 
particle from one state to another can be represented by Pauli spin matrices. The total 
quasi-spin operators of the system would then be defined by the relations 

j+ • t j _  = ~.a~_lap+l,  
= ap+tap-1, Jz = ½Zaa~,ap¢ • (2.2) 

p p pa 

It can be seen by inspection that the operators (2.2) satisfy angular momentum 
commutation rules. The Hamiltonian is easily expressed in terms of these operators 
a s  

H = J,+½V(JZ+ +J~)+½W(J+J_ +J_J+). (2.3) 

The operator j2  = ½(j+ j _  + j _  j + ) +  j )  commutes with the Hamiltonian (2.3). Thus 
the Hamiltonian matrix breaks up into submatrices, each associated with a different 
value of  J and of order 23"+ 1. The operator J~ is just half the difference between the 
number of particles in the upper state and the number of  particles in the lower state. 
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Thus the maximum possible value for Jz and therefore for J is ½N. The symmetry t 
has therefore reduced the size of  the largest matrix to be diagonalized from 2 N to N +  1. 

Let us now consider the properties of  the multiplet of states belonging to a particu- 
lar submatrix with an eigenvalue J. The operator Jz can also be written as 

J, = nph--½N, 

where nph is the number of  excited particle-hole pairs. Since in a given multiplet each 
value of J~ occurs only once, there is only one state having a given number of excited 
particle-hole pairs in each multiplet. 

The multiplet containing the unperturbed ground state has the maximum ~alue 
of J, namely, J = ½N, since the unperturbed ground state has J ,  = - ½N. The multiplet 
contains one state with one excited particle-hole pair, one state with two excited 
particle-hole pairs, etc., etc. The interaction mixes the states within the same J multi- 
plet. To see the significance of the quasi-spin symmetry, consider the case of  a typical 
double-closed-shell nucleus such as 016 as treated in the shell model. The first step 
(e.g., the classical treatment by Elliott and Flowers 3)) considers all possible states 
formed by the excitation of a single particle-hole pair from the ground state and 
diagonalizes the interaction in this subspace. In diagrammatic language this is called 
summing all the forward-going graphs. The next step, sometimes called the inclusion 
of ground-state correlations, consists in taking into account in some fashion the 
contribution of  forward-and-backward-going graphs which correspond to the mixing 
into the ground state of states having several excited particle-hole pairs, and into the 
excited state of states with more than one excited particle-hole pair. In our model, 
the quasi-spin symmetry automatically performs the standard shell model diagonali- 
zation or summation of forward-going graphs. If  we are considering, for example, 
the states involving one excited particle-hole pair, these are distributed among multi- 
plets in such a way that there is cnly o n e  state with one excited particle-hole pair 
in each multipet. The residual interaction does not mix these one-particle-one-hole 
states with one another, It merely mixes each one-particle-one-hole state with the 
other members of the same multiplet containing different numbers of excited particle- 
hole pairs. The shell model diagonalization is therefore trivial in this model which is 
of  primary interest for the study of  the treatment of ground-state correlations. 

The structure of  the states arising in this model can be examined further as follows. 
We consider first the unperturbed system by setting the interaction V = IJ 7 = 0. 
We then find that the ground state has J~ = - J  = -½N. The first-excited state is 
N-fold degenerate since there are N possible ways to excite one particle-hole pair. 
These states all ha~e Jz = - ½ N +  1, and are mixtures of eigenfunctions of  the oper- 
ator j2  with eigenvalues - J  and - J +  1. One particular linear combination of these 

* Another description of the quasi-spin symmetry is in terms of the invariance of the Hamiltonian 
(2.1) under permutations of the different p states. The different values of Ja correspond to different 
representations of the permutation group. The ground and collective excited states are all totally 
symmetric under these permutations. 
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one-particle-one-hole states is an eigenfunction of j2  with eigenvalue - J .  This state 
is the one obtained by operating on the ground state with the operator J+. All other 
one-particle-one-hole states orthogonal to this one must have J = ½N -1 .  

We now let the interaction parameter W become finite but keep V = 0, to remove 
some of the degeneracy without mixing states having different numbers of particle- 
hole pairs. This corresponds to the case of  the conventional shell-model. The first- 
excited state is now split into two energy levels, one for each value of  3". The single 
state having J = ½N splits off from the rest and can be considered as a "collective" 
state since it is generated from the ground state by the action of the "collective" oper- 
ator J+. If  one defines a "monopole operator" as some linear combination of J+ 
and J_,  this collective state absorbs the entire monopole sum rule since it is just the 
state generated from the ground state by the monopole operator. The remaining 
N -  1 states with one excited particle-hole pair can be considered as "single-particle" 
states. All these single-particle eacitations are degenerate in this model, even when 
the interaction is large. 

We now consider the case when the interaction V is finite and produces configura- 
tion mixing, i.e., mixes states having different numbers of excited particle-hole pairs. 
Since this cannot mix states having different eigenvalues of  j2,  the particular one- 
particle-one-hole state which we have designated as collective cannot be mixed with 
other one-particle one-hole states but is mixed with states having different numbers 
of particles and holes. Another feature of the mixing results from the particular form 
of the interaction which can only excite or de-excite two-particle-hole pairs. States 
having even and odd numbers of particle-hole pairs are therefore not mixed by this 
interaction. This property is expressed in the quasi-spin language by noting that the 
interaction can only change the eigenvalue of Jz by two units. Thus, for integral 
values of J, the states having even and odd eigenvalues of J ,  are not mixed. For half- 
integral eigenvalues of J (odd numbers of particles) the states with eigenvalues 
• . .  - ~ ,  ½, ~ . . .  do not mix with the states having eigenvalues - ~ ,  - 3 ,  ~ .  • • That 
the interaction cannot excite a single-particle-hole pair indicates that the particular 
single-particle basis chosen for the model satisfies the Hartree-Fock equations for 
the interaction. 

The interaction term proportional to W does not mix configurations and is diago- 
nalized exactly by the quasi-spin representation. The interaction term proportional 
to V contributes the ground-state correlations and mixes configurations. Since the 
main purpose of this model is to test the treatment of  ground-state correlations in 
the random phase approximation, the Hamiltonian (2.3) will be simplified by setting 
W = 0. The resulting Hamiltonian 

n = eJ=+½V(j2+ + j 2 )  = ~S~+ V(J~-S~)  (2.4) 

now has the following additional symmetry. A rotation of 180 ° in quasi-spin space 
about an axis in the xy plane at an angle of  45 ° to the x and y axes changes H into 
- H .  Such a transformation on any eigenfunction of H with eigenvalue E produces 
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another eigenfunction of H with eigenvalue - E .  The eigenvalues of H therefore 
occur in pairs and the secular equation for the eigenvalues contains only even or 
only odd powers of  E depending upon the size of the matrix. 

Another possible choice for the interaction parameters is W = V. This leads to a 
Hamiltonian having a particularly simple form in the strong coupling limit: 

I-Is = 2 v J L  (2.5) 

The Hamiltonian (2.5) is easily solved exactly in the strong coupling limit V>> 
where the exact eigenfunctions are eigenfunctions of j2  and Jx. However, the Hamil- 
tonian (2.5) does not possess the 180 ° rotation symmetry described above for the 
Hamiltonian (2.4). The Hamiltonian (2.5) might be useful for the study of the 
"instability of the Hartree-Fock state against collective oscillations" where the ran- 
dom phase approximation breaks down. One can then find new Hartree-Fock 
solutions which are eigenfunctions neither of Jx nor of  J,  but of some linear combina- 
tion describing an orientation somewhere in the x z  plane. Detailed calculations of  
Hartree-Fock instability and the strong coupling limit are not considered further in 
this paper and the remainder of this work is concerned with the properties of  the 
Hamiltonian (2.4) for interaction strengths where the random phase approximation 
can still be expected to be valid; i.e., the Hartree-Fock state is stable against the 
collective oscillations. 

3. Exact Solutions 

The exact eigenfunctions of  Hamiltonian (2.4) are eigenfunctions of j2 and linear 
combinations of  the 2 J +  1 corresponding eigenfunctions of Jz. For  a system contain- 
ing a given number of  particles N, the Hamiltonian matrix breaks up into submatrices 
of which the largest corresponds to J = ½N and includes the ground state and the 
collective excited states of  interest to this paper. We shall therefore consider only 
those states in the particular multiplet with J = ½N. Note, however, that the Hamil- 
tonian (2.5) depends only upon the quasi-spin variables and not explicitly upon the 
number of  particles. A solution for a given value of J thus applies not only to the 
ground state multiplet for N = 2 , /but  also to all multiplets for larger numbers of  
particles having the same value of J. 

The two additional symmetries further simplify the diagonalization. The 2 J +  1 
states are split into two groups, each containing eigenfunctions of  Jz with eigenvalues 
differing by an even number. The degree of each secular equation is further reduced 
by a factor of 2 because the energy eigenvalues come in equal and opposite pairs. 
The diagonalization of the matrix for N particles thus requires solution of algebraic 
equations which are of  degree ½(N+ 1) if N is odd, ¼(N+2), if N is twice an odd 
number, and ¼N if N is a multiple of 4. In particular for N = 8, J = 4 and the 9 x 9 
matrix splits up  into a 5 x 5 one for even eigenvalues of Jz and a 4 x 4 one with odd 
values of Jz. The secular equation for the 5 x 5 matrix is a fifth degree one and has 
one zero eigenvalue and two pairs of  equal and opposite eigenvalues. 
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The energy levels of  the system are characterized by two parameters, the number 
of  particles N and the interaction strength V/8. Since for N = 2, 3, 4, 6, 8 the secular 
equation is at most quadratic, exact solutions of  eq. (2.4) can be obtained analytically 
for these values of  N. The N +  1 eigenvalues for the given N are 

for N = 2: 

/~ +_ 1+ , 0 ,  (3.1) 

for N =  3: 

for N = 4: 

for N =  6: 

for N =  8: 

E =  + ½+_ 1+3  , (3.2) 
E 

[ _E_-0, _+2 1+3  
8 (3.3) 

E + 1 + 9  

-E=--I-_{5+33~ '__. l+6(ff +54~]_] ~, 

[ E 0, +__2 1+15 

(3.4) 

V 2 

(3.5) {1o+,,8 
In order to illustrate the behaviour of eigenvalues as a function of  the interaction 
parameter NV/e, the positive solutions for N = 8 are plotted in fig. 1. In addition, 
for N = 14, 30 and 50, eigenvalues were found numerically for several values of the 
interaction parameter NV/e. The results of  numerical calculations are presented in 
tames 1-3. 

In what follows, we shall be primarily concerned with the excitation energy of the 
first-excited state above the ground state. The exact results for the excitation energy 
as a function of the interaction parameter are shown in figs. 2 and 3. Fig. 3 also con- 
tains the results of  second-order perturbation theory discussed in the following 
section. 
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Fig. 1. Positive energy eigenvalues plotted versus the interaction parameter NV[e for 8 particles. 
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Fig. 2. Exact results for the excitation energy of  the first excited state above the ground state plotted 
versus the interaction parameter NV/e for N = 4, 6, 8, 14, 30 and 50 particles. 
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Fig. 3. Excitation energy of  the first-excited state above the ground state. The upper three lines 
refer to the eight particle system and the lower three lines to N = 50. The solid lines shows the exact 
excitation energy, the short dashed lines represent the second-order perturbation theory results, and 

the dot-and-dash lines show the results of  perturbation theory to fourth order. 
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TABLE 1 

Positive energy eigenvalues E/e of the model Hamiltonian (2.4) for 14 particles for different values 
of  the interaction parameters NV/e 

N ~ e  = 0  0.4 0.6 0.8 1.0 2.0 5.0 

7.000 7.038 7.088 7.163 7.270 8.636 17.268 46.151 

6.000 6.096 6.219 6.393 6.622 8.517 17.264 46.151 

5.000 5.123 5.273 5.475 5.717 6.983 11.185 35.396 

4.000 4.126 4.274 4.467 4.692 6.025 10.984 28.000 

3.000 3.110 3.236 3.398 3.583 4.639 7.070 28.028 

2.000 2.080 2.172 2.287 2.418 3.164 5.492 12.889 

1.000 1.042 1.090 1.150 1.218 1.601 2.671 13.416 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

The last column gives the ratio E / V i n  the strong coupling limit (NV/e ~ co). 

TABLE 2 

Positive energy eigenvalues E/e of the model Hamiltonian (2.4) for 30 particles 
of  the interaction parameter NV/e 

for different values 

N ~ e = O  0.4 0.6 0.8 1.0 2.0 5.0 

15.000 15.040 15;094 15.179 15.314 18.547 38.049 218.83 

14.000 14.111 14.258 14.480 14.800 18.545 38.049 218.83 

13.000 13.165 13.378 13.684 14.087 16.453 31.436 178.02 

12.000 12.204 12.461 12.819 13.269 16.327 31.436 178.02 

11.000 11,230 11.514 11.899 12.371 15.029 25.422 140.28 

10.000 10.245 10.540 10.935 11.407 14.242 25.419 140.28 

9.000 9.248 9.544 9.933 10.392 13.093 20.142 105.69 

8.000 8.243 8.529 8.900 9.334 11.875 20.053 105.69 

7.000 7.229 7.497 7.841 8.239 10.557 16.135 74.386 

6.000 6.209 6.451 6.759 7.114 9.169 15.244 74. 377 

5.000 5.183 5.393 5.659 5.964 7.723 12.633 65.449 

4.000 4.152 4.326 4. 545 4.795 6.231 10.466 46.496 

3.000 3.117 3.251 3.418 3.609 4.703 7.933 46.642 

2.000 2.080 2.170 2.284 2.413 3.150 5. 348 22.035 

1.000 1.040 1.086 1.143 1.208 1.579 2.688 23.400 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

The last column gives the ratio El V in the strong coupling limit (NV/e --~ oo). 
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TABLE 3 

E/e of the model Hamiltoninan (2.4) for 50 particles for different values 
of the interaction parameter NV/e 

NV/e=O 0.4 0.6 0.8 1.0 2.0 5.0 oo 

25.000 25.041 25.096 25.186 25.340 31.037 64.043 614.70 

24.000 24.116 24.273 24.520 24.901 31.037 64.043 614.70 

23.000 23.182 23.422 23.785 24.295 28.742 57.300 545.58 

22.000 22.237 22.545 22.996 23.599 28.740 57.300 545.58 

21.000 21.283 21.645 22.162 22.831 26.762 50.898 479.50 

20.000 20.321 20.725 21.291 22.005 26.697 50.898 479.50 

19.000 19.351 19.786 20.386 21.130 25.366 44.854 416.50 

18.000 18.373 18.831 19.453 20.212 24.821 44.854 416.50 

17.000 17.388 17.860 18.493 19.256 23.809 39.193 356.62 

16.000 16.397 16.875 17.509 18.267 22.794 39.193 356.62 
15.000 15.400 15.877 16.505 17.249 21.668 33.967 299.90 

14.000 14.397 14.867 15.482 16.205 20.477 33.960 299.90 

13.000 13.389 13.847 14.441 15.136 19.224 29.333 246.42 

12.000 12.376 12.817 13.385 14.047 17.920 29.205 246.42 

11.000 11.360 11.778 12.316 12.938 16.570 25.786 196.29 

10.000 10.339 10.732 11.233 11.813 15.180 24.826 196.29 

9.000 9.315 9.678 10.140 10.672 13.756 22.442 149.64 

8.000 8.288 8.618 9.037 9.519 12.300 20.400 149.63 

7.000 7.258 7.553 7.926 8.353 10.818 18.047 106.70 

6.000 6.225 6.483 6.807 7.178 9.314 15.635 106.66 

5.000 5.191 5.408 5.682 5.994 7.790 13.134 67.978 

4.000 4.155 4.331 4.552 4.804 6.250 10.574 67.620 

3.000 3.117 3.251 3.417 3.608 4.699 7.969 34.935 

2.000 2.079 2.168 2.280 2.407 3.138 5.330 32.462 
1.000 1.040 1.084 1.140 1.204 1.570 2.670 10.057 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

The last column gives the ratio El V in the strong coupling limit (NV/e ~ oo). 

4. Perturbation Theory 

The  first approx imat ion  procedure  employed  in the study of  this system is ordinary  

per turba t ion  theory.  The  energies o f  the ground and the first-excited states were 

calculated to second and four th  order  in the in teract ion between particles. The  

appl ica t ion o f  per turba t ion  theory  to this p rob lem is greatly facil i tated by using the 

quasi-spin representa t ion  o f  Hami l ton ian  (2.4). A s t ra ightforward appl icat ion o f  

pe r tu rba t ion  theory  to H in the representat ion o f  eq. (2.1) can also be carried out  

and Wick ' s  t heo rem used for  evaluat ing the re levant  mat r ix  elements  o f  products  o f  

annihi la t ion and creat ion operators .  However ,  this p rocedure  is very lengthy and 

cumbersome,  though  the final answer must  o f  course be the same if  the per turba t ion  

series is at all meaningful .  
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Using the Hamiltonian (2.4) the second-order correction to the energy of  the state 
with a given J (J  = ½N) and m is 

A,2) = m[j(j+ l)_m2_½] (V) 2, (4.1) 
J ,  m 

where m is the eigenvalue of  J~. 
In fourth order this correction is 

A c') = ½ m [ -  18(J 2 - m2) 2 + 2(J 2 - m2)(aJ 2 - l a J  2 + 27) 
J ,  m 

+ ( 2 J -  1 ) ( 4 j 2 - 1 4 J  + 9)] (V) 4 . (4.2) 

The resulting excitation energy above the ground state is given by 

E1 ~Eo _ I_½(N_3)(N_I) (~)2 ~(N_3)(N_l)(N2_I6N+27) (V)', (4.3) 

where the three terms correspond to the zero, second and fourth order, respectively. 
In order to illlustrate the range of validity of  perturbation theory, the results to 

second and fourth order are plotted in fig. 3 together with the exact excitation energy 
for 8 and 50 particles. 

In the following papers, other approximation methods will be employed for cal- 
culating the excitation energy in order to study the regions of  validity of  these methods 
by comparing their accuracy with the exact solutions and the perturbation theory 
results found above. Paper II deals with the method of  linearizing the equations of  
motion and with several improvements on that method. Paper HI deals with' dia- 
grammatic many-body perturbation theory and various selective summations of  
higher order graphs. 
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