module MLTT.Combinators where open import MLTT.Sets ------------------------------------------------------------------------ -- Combinators I, K, S on p 35-37 id : {A : Set} -> A -> A id = \x -> x K : {A : Set} -> {B : A -> Set} -> (x : A) -> B x -> A K = \x y -> x S : {A : Set} -> {B : A -> Set} -> {C : (x : A) -> B x -> Set} -> (g : (x : A) -> (y : B x) -> C x y) -> (f : (x : A) -> B x) -> (x : A) -> C x (f x) S = \g f x -> g x (f x) -- In Bibliopolis the E elimination rule for Σ on p 48-49 is derived from the -- projections. Here we do the reverse. (Note that Agda was not able to deduce -- all implicit arguments.) p : {A : Set} -> {B : A -> Set} -> Σ A B -> A p {A = A} = \c -> E {A = A} {C = \z -> A} (\x y -> x) c q : {A : Set} -> {B : A -> Set} -> (c : Σ A B) -> B (p c) q {B = B} = \c -> E {B = B} {C = \z -> B (p z)} (\x y -> y) c -- The axiom of choice is proved on p 50-52 in Bibliopolis. ac : {A : Set} -> {B : A -> Set} -> {C : (x : A) -> B x -> Set} -> ((x : A) -> Σ (B x) (\y -> C x y)) -> Σ ((x : A) -> B x) (\f -> (x : A) -> C x (f x)) ac = \g -> ((\x -> p (g x)) , \x -> q (g x))
Page last modified on December 02, 2008, at 07:25 am
Powered by
PmWiki